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Abstract

Strategies to achieve order reduction in four dimensional variational data assimilation

(4D-Var) search for an optimal low rank state subspace for the analysis update. A com-

mon feature of the reduction methods proposed in atmospheric and oceanographic studies

is that the optimality criteria to compute the basis functions relies on the model dynamics

only, without properly accounting for the specific details of the data assimilation system

(DAS). In this study a general framework of the proper orthogonal decomposition (POD)

method is considered and a cost-effective approach is proposed to incorporate DAS in-

formation into the order reduction procedure. The sensitivities of the cost functional in

4D-Var data assimilation with respect to the time varying model state are obtained from

a backward integration of the adjoint model. This information is further used to define

appropriate weights and to implement a dual-weighted proper orthogonal decomposition

(DWPOD) method to order reduction. The use of a weighted ensemble data mean and

weighted snapshots using the adjoint DAS is a novel element in reduced order 4D-Var data

assimilation. Numerical results are presented with a global shallow-water model based on

the Lin-Rood flux-form semi-Lagrangian scheme. A simplified 4D-Var DAS is considered

in the twin-experiments framework with initial conditions specified from the ECMWF

ERA-40 data sets. A comparative analysis with the standard POD method shows that

the reduced DWPOD basis provides an increased efficiency in representing a specified

model forecast aspect and as a tool to perform reduced order optimal control. This ap-

proach represents a first step toward the development of an order reduction methodology

that combines in an optimal fashion the model dynamics and the characteristics of the

4D-Var DAS.
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1. Introduction

Implementation of modern data assimilation techniques as formulated in the context

of estimation theory (Jazwinski 1970, Lorenc 1986, Daley 1991, Bennett 1992, Cohn

1997, Kalnay 2002) is often hampered by the high computational cost to obtain the

analysis state and to dynamically evolve the error statistics. A characteristic feature

of the global ocean and atmospheric circulation models is the large dimensionality of

the discrete state vector, typically in the range 106 − 107. This dimension is likely to

increase in the near future when climate models are envisaged to run at a horizontal

resolution as high as 1/4 degree in forecast and data assimilation mode. To accommodate

these requirements, computationally efficient techniques to assimilate an ever increasing

amount of observational data into models must be developed.

Significant efforts have been dedicated to ease the computational burden of Kalman

filter based algorithms through various simplifying assumptions. State reduction tech-

niques and low-rank approximations of the error covariance matrix are described in the

work of (Dee 1990), Todling and Cohn (1994), Cane et al. (1996), Pham et al. (1998),

Hoteit and Pham (2003). Ensemble Kalman filter (EnKF) methods build on the original

work of Evensen (1994) to provide the analysis state and error covariance using an en-

semble of model forecasts ( Molteni et al. 1996, Burgers et al. 1998, Anderson 2001). A

review of the EnKF and low-rank filters can be found in the work of Evensen (2003) and

Nerger et al. (2005) who emphasize that a common feature of these methods is that their

analysis step operates in a low-dimensional subspace of the true error space.

In four dimensional variational data assimilation (4D-Var) the analysis state is ob-

tained by solving a large-scale optimization problem (Le Dimet and Talagrand 1986) with

the initial conditions of the discrete model as control parameters. The incremental ap-

proach (Courtier et al. 1994) is currently used at numerical weather prediction centers
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implementing 4D-Var (Rabier et al. 2000). Computational savings are further achieved

by running a coarse resolution tangent linear and adjoint models in the inner loop of the

minimization. Implementation issues and a study on the convergence of the incremental

4D-Var method are provided by Trémolet (2004, 2005).

Although running a coarse resolution model provides a certain state reduction, the

issue of finding an optimal low-dimensional state subspace for the 4D-Var minimization

problem is an open question where the current state of research is at an incipient stage.

Mathematical foundations of approximation theory for large-scale dynamical systems and

flow control are presented by Antoulas (2005) and Gunzburger (2003). A substantial

amount of work was done in the climate research community to build reduced models

of the atmospheric dynamics with a minimal number of degrees of freedom. The proper

orthogonal decomposition (POD) method (also known as the method of empirical orthog-

onal functions - EOFs, Karhunen-Loève decomposition) has been widely used in fluid

dynamics (Holmes, Lumley and Berkooz 1996, Sirovich 1987) and atmospheric flow mod-

eling (Selten 1995, 1997, Achatz and Opsteegh 2003) to obtain basis functions for reduced

order dynamics. Shortcomings of the POD/EOFs reduced models are discussed by Aubry

et al. (1993) and in practice other choices should be also considered. In particular, princi-

pal interaction patterns (Hasselmann 1988) have shown the potential to achieve improved

results when compared to EOFs (Achatz and Schmitz 1997, Kwasniok 2004, Crommelin

and Majda 2004). While these studies were only concerned with the construction and

analysis of reduced models to the atmospheric flow, the development and implementation

of optimal order-reduction strategies in the context of 4D-Var atmospheric data assimi-

lation is a far more difficult task.

For oceanic models, initial efforts on reduced order 4D-Var were put forward by Blayo

et al. (1998) and Durbiano (2001). The use of EOFs to identify a low-rank control space

has shown promising results in the studies of Robert et al. (2005), Hoteit and Köhl (2006),
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Cao et al. (2006). The potential use of the reduced order 4D-Var as a preconditioner to

4D-Var data assimilation was considered by Robert et al. (2006). A common feature of

the reduction methods used in these studies is that the optimality criteria to compute

the basis functions relies on the model dynamics only, without properly accounting for

the specific details of the data assimilation system (DAS). As such, the efficiency of the

reduced basis may be impaired by the lack of information on the optimization problem

at hand.

Meyer and Matthies (2003) used adjoint modeling to improve the efficiency of the

POD approach to model reduction when targeting a scalar aspect of the model dynamics.

A method to achieve balanced model reduction of linear systems using POD and potential

extensions to nonlinear dynamics are discussed by Willcox and Peraire (2002). A goal-

oriented, model-constrained optimization framework to reduction of large-scale models is

presented in the work of Bui-Thanh et al. (2007).

In this work we consider a novel method to incorporate DAS information into the order

reduction procedure by implementing a dual-weighted proper orthogonal decomposition

(DWPOD) method. The DWPOD method searches to provide an ”enriched” set of basis

functions that combine information from both model dynamics and DAS. The use of a

weighted ensemble data mean and weighted snapshots using the adjoint DAS is a novel

element in reduced order 4D-Var data assimilation. The traditional POD basis consists

on the modes that capture most of the ”energy” of the dynamical system whereas the

DWPOD basis may include lower energy modes that are more significant to the represen-

tation of the 4D-Var cost functional. The DWPOD procedure is shown to be cost-effective

since it provides a substantial qualitative improvement as compared to the standard POD

approach at the additional computational expense of a single adjoint model integration.

Henceforth, the paper is organized as follows: in Section 2 the 4D-Var data assimi-

lation problem is briefly revisited. A general POD framework to reduced order 4D-Var
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and the dual weighted POD approach are described in Section 3. Numerical experiments

with a finite volume global shallow water model are provided in Section 4. Concluding

remarks and further research directions are presented in Section 5.

2. The 4D-Var data assimilation problem

The 4D-Var data assimilation searches for an optimal estimate (analysis) xa
0 to the

m−dimensional vector of the discrete model initial conditions by solving a large-scale

optimization problem

min
x0∈Rm

J (x0); xa
0 = Arg minJ (1)

The cost functional

J =
1

2
(x0 − xb)

TB−1(x0 − xb) +
1

2

N∑
k=1

(Hkxk − yk)
TR−1

k (Hkxk − yk) (2)

includes the distance to a prior (background) estimate to initial conditions xb and the

distance of the model forecast xk = M(x0) to observations yk, k = 1, 2, . . . N time dis-

tributed over the analysis interval [t0, tN ]. The model M is nonlinear and for simplicity

we assume a linear representation of the observational operator Hk that maps the state

space into the observation space at time tk. Statistical information on the errors in the

background and data is used to define appropriate weights: B is the covariance matrix

of the background errors and Rk is the covariance matrix of the observational errors. An

accurate estimation of the matrix B is difficult to provide and, given its huge dimension-

ality, simplifying approximations are required for the practical implementation (Lorenc

et al. 2000). Information on the errors statistics may be obtained using differences be-

tween forecasts with different initialization times as in the ”NMC” method (Parrish and

Derber 1992) or ensemble methods based on a perturbed forecast-analysis system. Re-

cent advances in modeling flow-dependent background error variances are discussed by
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Kucukkaraca and Fisher (2006).

3. A general POD framework to reduced-order 4D-Var data assimilation

The specification of the basis functions lies at the core of the reduced-order 4D-Var

procedure. The proper orthogonal decomposition (POD) method provides an optimal

low-rank representation of an ensemble data set {x(1),x(2), . . . ,x(n)}, x(i) ∈ Rm that may

be collected from observational data and/or the state evolution at various instants in

time t1, t2, . . . , tn (method of snapshots, Sirovich 1987). The use of data weighting as a

tool to improve the performance of the POD method was previously considered in model

reduction for dynamical systems. Graham and Kevrekidis (1996) proposed an ensemble

average based on the arc-length in the phase space and emphasized that the choice of

the ensemble average (weights) for the POD method can have a significant impact on

the selection of the dominant modes. A weighted POD (w-POD) approach is discussed

by Christensen et al. (2000) who consider including multiple copies of an ”important”

snapshot in the ensemble data set. Kunisch and Volkwein (2002) use the time distribution

of the snapshots ∆ti = ti+1 − ti to specify weights and provide a detailed theoretical

framework and error estimates with applications to Navier-Stokes equations.

We define the weighted ensemble average of the data as

x =
n∑

i=1

ωix
(i) (3)

where the snapshot weights ωi are such that 0 < ωi < 1,
∑n

i=1 ωi = 1 and are used to

assign a degree of importance to each member of the ensemble. Time weighting is usually

considered and in the standard approach ωi = 1/n. A modified m×n dimensional matrix

is obtained by subtracting the mean from each snapshot

X =
[
x(1) − x,x(2) − x, . . .x(n) − x

]
(4)
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and the weighted covariance matrix C ∈ Rm×m is defined

C = XWXT (5)

where W = diag{ω1, . . . , ωn} is the diagonal matrix of weights. Since the metric on the

state space is often related to the physical properties of the system, we consider a general

norm ‖x‖2
A = 〈x,x〉A = xTAx, where A ∈ Rm×m is a symmetric positive definite matrix.

For the standard Euclidean norm A is the identity matrix and for the total energy metric

A is a diagonal matrix.

The POD basis of order k ≤ n provides an optimal representation of the ensemble

data in a k-dimensional state subspace by minimizing the averaged projection error

min
{ψ1,ψ2,...,ψk}

n∑
i=1

ωj

∥∥∥(x(i) − x)− Pψ,k
(x(i) − x)

∥∥∥2

A
(6)

subject to the A-orthonormality constraint 〈ψi,ψj〉A = δi,j, 1 ≤ i, j ≤ k, where Pψ,k
is

the projection operator onto the k-dimensional space Span{ψ1,ψ2, . . . ,ψk}

Pψ,k
(x) =

k∑
i=1

〈x,ψi〉Aψi

The POD modes are m-dimensional eigenvectors to the eigenvalue problem

CAψi = σ2
iψi (7)

and since in practice the number of snapshots is much smaller than the state dimension,

n � m, an efficient way to compute the reduced basis is to solve the n-dimensional

eigenvalue problem

W
1
2XTAXW

1
2µi = σ2

iµi (8)

to obtain the orthonormal (Euclidean) eigenvectors µi ∈ Rn then to compute the POD

modes as

ψi =
1

σi

XW
1
2µi (9)
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From (8) and (9) the close relationship with the singular value decomposition (Golub and

Van Loan 1996)

A
1
2XW

1
2 = UΣVT (10)

is established: σ1 ≥ σ2 ≥ . . . σn ≥ 0 are the singular values, µi the right singular vectors

and A
1
2ψi the left singular vectors. The fraction of total information (”energy”) captured

by the dominant k modes is I(k) = (
∑k

i=1 σ2
i )/ (

∑n
i=1 σ2

i ) and in practice, given a tolerance

0 < γ ≤ 1 in the vicinity of the unity, k is selected such that I(k) ≥ γ.

a. The reduced order 4D-Var

The k-dimensional reduced order control problem is obtained by projecting x0 − x

onto the POD space

Pψ,k
(x0 − x) = Ψη =

k∑
i=1

ηiψi (11)

where the matrix Ψ = [ψ1, . . . ,ψk] ∈ Rm×k has the POD basis vectors as columns and

η = (η1, . . . ηk)
T ∈ Rk is the coordinates vector in the reduced space

ηi = ψT
i A(x0 − x), η = ΨTA(x0 − x) (12)

The large-scale 4D-Var optimization (1) is thus replaced by the reduced order 4D-Var

problem of finding the optimal coefficients η

Ĵ (η) := J (x + Ψη); min
η∈Rk

Ĵ (η) (13)

If ηa denotes the solution to (13), an approximation to the analysis (1) is obtained as

xa
0 ≈ x + Ψηa (14)
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It should be noticed that in the reduced-order 4D-Var as formulated in (13) only the

initial conditions are projected into the POD state subspace and the cost functional is

computed using the full model dynamics. The gradient of the cost (13) is expressed as

∇ηĴ (η) = ΨT (∇x0J ) |
x0=x+Ψη (15)

and its evaluation requires integration of the full adjoint model. Second order derivatives

in the reduced space may be computed if a full second order adjoint model is available

(Daescu and Navon 2006). Consequently, computational savings may be achieved only by

a drastic reduction in the number of iterations due to the low dimension of the optimization

problem (13).

Once the POD basis is selected, a reduced model approach to order reduction may be

also considered by projecting the full model dynamics into the POD space. The projected

state x̂(t) = x + Ψη(t) evolves in time according to the differential equations system

x̂′(t) = ΨΨTAM(x̂, t) (16)

x̂(0) = ΨΨTA(x(0)− x) + x (17)

and the coefficients η(t) may be obtained by integrating the reduced model equations

η′(t) = ΨTAM(x + Ψη(t), t) (18)

η(0) = ΨTA(x(0)− x) (19)

Such approach may result in significant computational savings when Galerkin type

numerical schemes are implemented (Ravindran 2002, Kunisch and Volkwein 1999) or an

implicit time integration scheme to finite differences/finite volume semi-discretization is

considered (van Doren et al. 2006). However, for finite difference and finite volume nu-

merical methods with explicit time schemes, integration of the reduced model equations

(18-19) will require in general an increased CPU time due to the cost of repeated pro-

jection operations (unless analytic simplifications can be made). An additional issue in
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the reduced model approach is that the projection (16-17) introduces a model error that is

difficult to quantify (Rathinam and Petzold 2003) and thus to account for in the reduced

4D-Var data assimilation.

b. The dual-weighted POD basis

The specification of the weights ωi to the snapshots may have a significant impact

on which modes are selected as dominant and thus inserted into the POD basis. The

dual-weighted approach we propose makes use of the time varying sensitivities of the

4D-Var cost functional with respect to perturbations in the state at the time instants

ti, i = 1, . . . , n when the snapshots are taken.

The use of the adjoint modeling to identify ”target” regions where observational data

is of most benefit to a forecast aspect J (x) is well established in the context of targeted

observations for high impact weather events (Langland et al. 1999). By analogy, the dual-

weighted approach may be taught as a targeting in time procedure (rather than targeting

the state space at a given time) that assigns weights to time distributed snapshots data.

For simplicity of the presentation, we assume a cost functional J (x(t)) defined in terms

of the state at time t. The impact of small errors/perturbations δxi in the state vector

at a snapshot time ti ≤ t on J may be estimated using the tangent linear model M(ti, t)

and its adjoint model M∗(t, ti)

δJ ≈ 〈J ′(x(t)), δx(t)〉 = 〈J ′(x(t)),M(ti, t)δx(ti)〉 = 〈M∗(t, ti)J ′(x(t)), δx(ti)〉

= 〈A−1M∗(t, ti)J ′(x(t)), δx(ti)〉A (20)

The dual-weights ωi to the snapshots are obtained as normalized values

αi = ‖A−1M∗(t, ti)J ′(x(t))‖A, ωi =
αi∑n

j=1 αj

, i = 1, 2, . . . n (21)
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and provide a measure of the relative impact of the state errors ‖δx(ti)‖A on the cost

functional. A large value of ωi indicate that state errors at ti play an important role in

the representation of the cost functional and an increased weight is assigned to the fit to

snapshot data x(i) in the reduced-basis optimization problem (6). The weights (21) are

determined by the 4D-Var data assimilation cost functional (2) such that information from

the DAS is incorporated directly into the optimality criteria that identifies the reduced-

space basis functions. The DWPOD basis is thus adjusted to the 4D-Var optimization

problem at hand.

From the implementation point of view, the evaluation of all dual-weights requires

only one adjoint model integration to obtain the backward trajectories of the adjoint

variables (influence functions) λ(τ) = M∗(t, τ)J ′(x(t)), t0 ≤ τ ≤ t. Since in the 4D-Var

data assimilation context the adjoint model is already available, little additional software

development is required and the increased computational cost of implementing DWPOD

over the standard POD method is modest. In the numerical experiments section we

compare the performance of these two methods first as tools to provide a reduced order

representation of a forecast output, then as tools to perform reduced order 4D-Var data

assimilation.

4. Numerical Experiments

The numerical experiments are performed with a two-dimensional global shallow-water

(SW) model using the explicit flux-form semi-Lagrangian (FFSL) scheme of Lin and Rood

(1997). The finite volume FFSL scheme is of particular importance since it provides

the horizontal discretization to the finite-volume dynamical core of NCAR Community

Atmosphere Model (CAM) and NASA GEOS-5 data assimilation and forecasting system

(Lin 2004). The adjoint model to the SW-FFSL scheme used in this study was developed
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in the work of Akella and Navon (2006) with the aid of TAMC software (Giering and

Kaminski 1998).

Input data obtained from the ECMWF ERA-40 atmospheric data sets is used to

specify the SW model state variables at the initial time: geopotential height h and the

zonal and meridional wind velocities (u, v). We consider a 2.5◦×2.5◦ resolution (144×72

grid cells) such that the dimension of the discrete state vector x = (h, u, v) is ∼ 3× 104.

The time integration is performed with a constant time step ∆t = 450 s using a staggered

’CD-grid’ system with the prognostic variables updated on the D-grid (Lin and Rood

1997). Point values of the model output are obtained by converting the winds from the

D-grid to an unstaggered A-grid.

As a reference initial state xref
0 we consider the 500mb ECMWF ERA-40 data valid

for 06h UTC 15 March 2002. The configuration of the geopotential height at the initial

time and a 24h SW model forecast is displayed in Fig. 1. On the discrete state space we

consider a total energy norm

‖x‖2
A =

1

2

[
‖u‖2 + ‖v‖2 +

g

h
‖h‖2

]
(22)

where ‖ · ‖ denotes the Euclidean norm, g is the gravitational constant and h is the mean

height of the reference data at the initial time, such that A is a diagonal matrix with

block constant entries g/2h, 1/2, 1/2.

To generate the set of snapshots we introduced small random perturbations δx0 in the

reference initial conditions and performed a full model integration starting with xref
0 +δx0.

The state evolution x(ti) = Mt0,ti(x
ref
0 + δx0) was stored at each time step and used to

define the ensemble data set x(i) = x(ti), i = 1, 2, . . . n. This data set is then used by the

POD and DWPOD methods to identify an appropriate reduced order state subspace. In

the standard POD approach, all the weights are set ωi = 1/n and the POD basis of order

k < n is determined by the data only. In the DWPOD approach the weights are deter-

mined according to (21) such that the DWPOD reduced basis of order k < n depends on
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the problem at hand.

a. Reduced-order representation of a forecast aspect

In the first set of experiments we consider the POD and DWPOD methods as tools

to provide a reduced-order representation of a scalar aspect of the model forecast. The

target functional is taken as a measure of the time integrated energy of the system for a

24h forecast initiated from xref
0 , J (x) =

∑n
i=1 ‖xi‖2

A. For the 24h period, the ensemble

data set includes 193 snapshots. The variance (”energy”) I(k) captured by the leading

POD and DWPOD modes from the ensemble data as a function of the dimension k of

the reduced space is displayed in Fig. 2, and selected numerical values are provided in

Table 1. It is noticed that for the same dimension k of the reduced space a similar amount

of variance is captured by the POD and DWPOD from the data set and weighted data

set, respectively. In each case the dominant mode provides ∼ 78% of the information,

first ten modes ∼ 99%, and up to a small fraction, most of the information is contained

in the leading 25 modes. However, the k−dimensional bases Ψpod and Ψdwpod identified

by the POD and respectively DWPOD are distinct and in particular, higher modes of

same rank may differ significantly from the POD basis to the DWPOD basis. In Fig. 3

isopleths of the POD and DWPOD modes are displayed using the energy norm to provide

point values. A close resemblance is noticed between the dominant POD and DWPOD

modes, whereas higher POD and DWPOD modes of same rank have a completely different

structure.

In the POD approach the reduced order representation of the initial state is

x̂0 = x + ΨpodΨ
T
podA(xref

0 − x)
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with x = 1
n

∑n
i=1 x(i) and in the DWPOD approach the initial state is represented as

x̂0 = xω + ΨdwpodΨ
T
dwpodA(xref

0 − xω)

with the weighted mean xω computed according to (3), (21). Since in practice the dimen-

sion k of the reduced space is determined by specifying a threshold value 0 < γ < 1 such

that I(k) ≥ γ, it is of interest to analyze the error in the reduced-order representation of

the target functional |J (x) − J (x̂)| as the dimension of the reduced space varies. The

numerical results using POD and DWPOD bases of dimension k = 5, 10, 15, 20, 25 are

displayed in Fig. 4 and it is noticed that the DWPOD basis provided a significantly

improved accuracy as compared to the POD basis. For example, projection of the initial

conditions in the 10-dimensional DWPOD space provided qualitative results similar to the

15-dimensional POD space, whereas the representation in the 15-dimensional DWPOD

space provided one order of magnitude gain in accuracy over the 15-dimensional POD

space.

The reduced DWPOD space provided not only an improved representation of J (x̂)

but also a more accurate state forecast trajectory, as measured in the total energy norm.

The forecast error ‖xref
i − x̂i‖A is displayed in Fig. 4 for each time step during the model

integration. It is noticed the increased efficiency of the DWPOD basis that provided qual-

itative results similar to the POD basis while requiring fewer basis vectors. In particular,

the errors in the 5-dimensional DWPOD space are close to the errors in the 10-dimensional

POD space, the 10-dimensional DWPOD space provided forecast errors nearly identical

to the errors in the 15-dimensional POD space, and the 15-dimensional DWPOD provided

one order of magnitude gain in forecast accuracy over the 15-dimensional POD space.

As the dimension of the reduced space increases, each basis captures practically all of

the information from the ensemble data. Little improvement in forecast accuracy may be

achieved by increasing the DWPOD dimension from 20 to 25 and the state forecast error

using a 25-dimensional DWPOD and a 25-dimensional POD basis provided overlapping
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graphs (visually indistinguishable) in Fig. 4.

While for both POD and DWPOD methods the state reduction from ∼ 3 × 104 to

∼ 20 is remarkable, in practical applications it is important to obtain accurate reduced

order representations using a small (the smallest) number of basis vectors. The enhanced

efficiency of the DWPOD over POD in providing accurate results for small dimensional

bases is thus a desirable property that may become increasingly significant as the dimen-

sion of the full model state increases. The dimension of the reduced space is also crucial

in the efficiency of the reduced order 4D-Var data assimilation that aims to perform a

minimal number of iterations to achieve a certain accuracy gain in the analysis.

b. Data assimilation experiments

To analyze the potential computational savings of the reduced order procedure, 4D-

Var data assimilation experiments are setup in a twin experiments framework. As a

background estimate xb to the initial conditions we consider 500mb ECMWF ERA-40

data valid for 00h UTC 15 March 2002, six hours prior to the reference state xref
0 . The

errors in the background term, averaged over the longitudinal coordinate, are displayed

in Fig. 5. A data assimilation time interval [t0, t0 + 24h] is considered with four data sets

at 6h, 12h, 18h, and 24h provided by a model integration initiated from xref
0 . Two data

assimilation experiments are setup: the first experiment, hereafter referred to as DAS-I,

is a model inversion problem where data is provided for all discrete state components

and no background term is included in the cost functional (2); in the second experiment,

hereafter referred to as DAS-II, the background term is included in the cost and data is

provided at every 4th grid point on the longitudinal and latitudinal directions (∼ 6% of

the state is ”observed” every six hours). The distance to the background and observations

is measured in the A-norm that corresponds to diagonal matrices B and R. To emphasize
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the fit to data, a weight factor of 0.01 is assigned to the distance to background in DAS-II.

Data assimilation experiments performed in the full model space resulted in a slow

convergence for the large scale optimization problem (1). The minimization process using

a high-performance limited memory quasi-Newton L-BFGS algorithm (Liu and Nocedal

1989) is displayed in Fig. 6 and it is noticed that a large number of iterations is required

to approach the optimal point. A slower convergence rate is observed for DAS-I versus

DAS-II due to the increased number of data constraints and the absence of the regular-

ization provided by the background term.

c. Reduced-order 4D-Var data assimilation

Twin reduced-order 4D-Var data assimilation experiments were implemented using

the POD and DWPOD bases respectively. It should be noticed that while the POD basis

vectors remain unchanged for both DAS-I and DAS-II experiments, in the dual-weighted

approach the reduced basis is adjusted to the optimization problem at hand. As shown

in Fig. 7, the dual weights to the snapshot data are distinct from DAS-I to DAS-II and,

as an illustrative example, in Fig. 8 isopleths of the DWPOD mode of rank 10 reveal a

different configuration in DAS-I than in DAS-II.

The low dimensionality of the reduced spaced allowed the implementation of a full

quasi-Newton BFGS algorithm to solve the optimization problem (13). The minimization

process is displayed in Fig. 9 and it is noticed that only few iterations were required to

reach the optimal point for each of the DAS-I and DAS-II experiments. For example, in

DAS-II experiments 3 to 4 iterations are practically sufficient to reach a close vicinity of

the optimal point and the computational savings of the reduced-order 4D-Var are thus

significant. To facilitate the qualitative analysis, the total energy errors in the retrieved

initial conditions, averaged over the longitudinal direction, are displayed in Fig. 10 and

16



Fig. 11 for DAS-I and respectively, DAS-II. By comparison to Fig. 5, the reduced 4D-Var

data assimilation is able to provide analysis errors that are lowered by an order of magni-

tude as compared to the errors in the background estimate. For the 5- and 10-dimensional

spaces, the analysis errors corresponding to the DWPOD space have much lower values

as compared to the analysis errors for the POD space showing that the dual weighted

approach to order reduction is of significant benefit. In particular, for the 10-dimensional

spaces, in the DAS-I experiments one notices an error reduction by as much as a factor

of three in the DWPOD space as compared to the POD space, whereas in the DAS-II

experiments, the analysis error is reduced by as much as a factor of two in the DWPOD

space as compared to the POD space. Increasing the dimension of the reduced space

from 10 to 15 proves to be of little benefit to the analysis thus indicating that further

improvements are constrained by the limited information provided by the snapshot data.

5. Conclusions and further research

The computational burden of the large-scale 4D-Var optimization problem may be

significantly reduced by performing the optimization in a low order control space. An

optimal order reduction approach to 4D-Var data assimilation must capture accurately

the properties of the full dynamical model that are most relevant to a specific data assim-

ilation system. To date, studies on reduced order 4D-Var have considered low order state

subspaces based on the properties of the flow only, without properly taking into account

the characteristics of the DAS. In this work an adjoint-model approach is proposed to di-

rectly incorporate information from the DAS into the optimality criteria that defines the

reduced space basis. The dual weighted POD method is novel in reduced order 4D-Var

data assimilation and relies on a weighted ensemble data mean and weighted snapshots

with weights determined by the adjoint DAS. The numerical experiments presented with
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a finite volume global shallow water model indicate that the DWPOD approach may sig-

nificantly improve the efficiency of the reduced basis as compared to the standard POD

method. The DWPOD space was found to increase the accuracy in the representation of

a forecast aspect by as much as an order of magnitude versus the POD space representa-

tion. In 4D-Var data assimilation twin experiments, optimization in the DWPOD space

provided a reduction in the analysis errors by as much as a factor of two when compared to

the POD-based optimization. The dual-weighted approach is thus cost-effective since the

additional computational requirements to identify the DWPOD basis consist of a single

adjoint model integration to evaluate the dual weights to the snapshot data.

This work represents a first step toward the development of an order reduction method-

ology that combines in an optimal fashion the model dynamics and the characteristics

of the 4D-Var DAS. The mathematical formulation of the dual-weighted POD approach

to model reduction is sound however, taking into account the simplicity of the shallow

water model used in this study, the enhanced efficiency of the DWPOD method remains

to be validated for numerical weather prediction and general circulation models in an

operational data assimilation environment.

Strategies to implement an adaptive update of the reduced basis functions as the min-

imization algorithm advances toward the optimal point are at an incipient stage and this

is an area where future research is much needed. Evaluation of the Hessian matrix of

the 4D-Var cost functional in the reduced space is feasible using a second order adjoint

model (Daescu and Navon 2006) and may be used to provide statistical information on

the analysis errors. The reduced order 4D-Var approach is highly dependent on the qual-

ity of the snapshot data and the issue of generating a ”good” set of snapshots is crucial

for the reduced order procedure to be effective. The twin experiments setup used in this

study facilitated the selection of the snapshot data in a close vicinity of the reference state

trajectory. For practical applications, an ensemble of model forecasts may be used to gen-

18



erate snapshots taken from multiple state calculations with perturbations in the initial

conditions that capture the main directions of variability of the model such as the bred

vectors and singular vectors of the tangent linear model (Kalnay 2002). In this context

the reduced order procedure will result in a hybrid approach that combines in an optimal

fashion features of the ensemble and variational methods in data assimilation.
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Figure 1: Isopleths of the geopotential height (m) for the reference run: top figure -
configuration at the initial time specified from ECMWF ERA-40 data sets; bottom figure
- the 24h forecast of the shallow water model.
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Figure 2: The fraction of the variance captured by the POD and DWPOD modes from
the snapshot data as a function of the dimension of the reduced space.
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Figure 5: Zonal averaged errors in the background estimate to the initial conditions.
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Figure 10: Zonal averaged errors in the analysis provided by the reduced order 4D-Var
data assimilation. Results for the DAS-I experiments with POD and DWPOD spaces of
dimension 5, 10, and 15.
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Figure 11: Zonal averaged errors in the analysis provided by the reduced order 4D-Var
data assimilation. Results for the DAS-II experiments with POD and DWPOD spaces of
dimension 5, 10, and 15.
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Table 1: Fraction of the variance captured by the leading POD and DWPOD vectors

Basis Dimension 1 5 10 15 20 25

POD 0.7827 0.9736 0.9924 0.9987 0.9998 0.9999

DWPOD 0.7897 0.9612 0.9918 0.9990 0.9999 0.9999
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