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Abstract

The use of time-inhomogeneous additive processes in option pric-
ing has become increasingly popular in recent years due to the ability
of these models to adequately price across both strike and maturity
with relatively few parameters. In this paper we use the property of
selfsimilarity to construct two classes of models whose time one distri-
butions agree with those of prespecified Lévy processes. The pricing
errors of these models are assessed for the case of Standard and Poor’s
500 index options from the year 2005. We find that both classes of
models show dramatic improvement in pricing error over their associ-
ated Lévy processes. Furthermore, with regard to the average of the
pricing errors over the quote dates studied, one such model yields a
mean pricing error significantly less than that implied by the bid-ask
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spreads of the options, and also significantly less than those given by
the less parsimonious Lévy stochastic volatility models.

1 Introduction

The purpose of this paper is to study the ability of certain non-Lévy, addi-
tive processes to price options on the Standard and Poor’s 500 index (SPX)
across both strike and maturity. As noted by Carr and Wu [9] and Eber-
lein and Kluge [14], Lévy models are incapable of adequately fitting implied
volatility surfaces of equity options across both strike and maturity. Al-
though stochastic volatility models with jumps have success in pricing both
across strike and maturity [11], the use of such models likely incurs the cost
of computing with a significantly larger number of parameters than in the
Lévy case. By using additive models which allow for nonstationarity of in-
crements, one obtains greater flexibility in pricing across maturity than with
Lévy processes. Furthermore, the additive processes developed in this pa-
per require only one more parameter than a Lévy model of like time one
distribution. This additional parameter is known as the Hurst exponent.

One class of models studied consists of price processes whose logarithm
is given by a H-selfsimilar additive process of Sato. These models were pre-
viously studied by Nolder in 2003 [22]. Recently Carr, Geman, Madan, and
Yor [6] demonstrated that exponential H-selfsimilar additive models could be
calibrated with great success using options on the Standard and Poor’s 500
index, as well as for individual equity options. One reason for their success
is due to the fact that these processes may be constructed from any of a
multitude of selfdecomposable distributions already used in finance. In con-
trast, selfsimilar Lévy models consist solely of Brownian motion and Paretian
stable processes [20]. The selfsimilar additive models studied in this paper
are those whose time one distributions coincide with those of the Variance
Gamma and Normal Inverse Gaussian processes, denoted by “HssVG” and
“HssNIG,” respectively.

The other class of models studied consists of those processes whose loga-
rithm is given by a Lévy process time-changed by an independent, increasing
H-selfsimilar additive process. Examples from this class of models are con-
structed by time-changing a Brownian motion by an independent, increasing,
selfsimilar additive process. When the directing process used for the time-
change is a selfsimilar Gamma process (resp. selfsimilar Inverse Gaussian
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process) the resulting process is denoted by “VHG” (resp. “NHIG”). In
order that this research may be viewed in historical context, a brief history
of pricing with additive processes now follows.

The use of additive processes to price options dates prior to 1900 when
Louis Bachelier, a student of Henri Poincaré, began the development of the
theory of Brownian motion [13]. In his dissertation, “Theorie de la Specula-
tion,” changes in the price of a stock were modeled with what is now known
as a zero mean, arithmetic Brownian motion, a 1

2
-selfsimilar additive process

[20]. Later, Paul Lévy studied and further developed the theory associated
with a class of stochastic processes which included Brownian motion as a spe-
cial case, the stable processes [17]. As in the case of Brownian motion, the
increments of these stable processes were both independent and stationary.
Unlike the associated one-dimensional distributions of Brownian motion, the
non-Gaussian stable distributions permitted existence of, at most, the first
moment [23].

The forthcoming financial application came in 1963 when Mandelbrot
coined the phrase “stable Paretian” to denote the set of non-Gaussian stable
distributions. By modeling the change in the logarithm of the closing spot
price of cotton [21] as a Paretian stable distributed random variable, he was
able to demonstrate that the tail behavior of his model was consistent with
that corresponding to the observed change in the logarithm of the spot price
[20]. A special case of this stable Paretian distribution would later be revived
by Carr and Wu for the purpose of option pricing [9].

In January of 1973 Peter Clark introduced a new pricing model, the
lognormal-normal process. Given σ1, σ2, µ > 0, the time one distribution of
the process being time–changed was Normal(0, σ2

2) distributed while the di-
recting process (subordinator) had a time one distribution which was Lognormal(µ, σ2

1)
distributed. Clark attributed the nonuniformity of the rate of change in cot-
ton futures prices to the nonuniformity of the rate at which information
became available to traders. In his argument, fast trading days were caused
by the influx of new information inconsistent with previously held expecta-
tions, while slow trading days were caused from a lack of new information
[10]. This idea would prove useful in the subsequent development of the
Lévy stochastic volatility models [5]. During that same year Fisher Black
and Myron Scholes produced their closed-form expression for the price of a
European call option, where the underlying price process was modeled by a
geometric Brownian motion [2].

Another closed-form option pricing formula appeared in 1998 in which
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the logarithm of the underlier was distributed according to a non-stable Lévy
process, known as the Variance Gamma process. In this model, a Brown-
ian motion was time-changed by an independent Gamma process, yielding
a model which could better accommodate the leptokurtic and negatively
skewed risk-neutral distributions of the logarithm of the return data [18].
Although this process lacked selfsimilarity, its increments were independent
and stationary, with notably, finite moments. Other well-known Lévy pro-
cesses include: Normal Inverse Gaussian, Meixner, Generalized Hyperbolic
[24], the five parameter CGMY process with drift term included [4], and the
more general 6 parameter KoBoL process with drift term included [3]. As
noted by Carr and Wu, Lévy models have associated model implied volatility
surfaces as a function of maturity, T, and moneyness, ln(K/S)√

T
, which tend to

a constant value as maturity gets large. This was contrary to the observed
behavior associated with SPX options where, as maturity increased, the mar-
ket implied volatility tended to a function which appeared to be independent
of maturity alone and decreasing with moneyness [9].

One answer to the problem of fitting option prices across both strike and
maturity came in 2003 when Carr, Madan, Geman, and Yor showed that one
may subordinate a Lévy process by the time integral of a mean-reverting, pos-
itive process in order to obtain a process which was quite flexible across both
strike and maturity [5]. Since closed-form characteristic functions exist where
the rate of time change is given by the solution to the Cox-Ingersoll Ross
or Ornstein-Uhlenbeck stochastic differential equation with one-dimensional
Gamma or Inverse Gausssian distribution, one could use Fourier transform
methods to quickly price options under such models.

Another answer to this problem came with the simpler Finite Moment
Log Stable process, a stable Paretian process in which the skewness param-
eter, β, was set to an extreme value of −1. With β fixed and the drift term
set so that the martingale condition was satisfied, the FMLS model was able
to fit SPX option data relatively well with only two free parameters [9]. In
an effort to find models which had more flexibility than the Finite Moment
Log Stable process and were more parsimonious than the stochastic volatility
models, researchers pursued the development of time-inhomogeneous addi-
tive processes. In 2003 Nolder proposed the modeling of prices of certain
financial instruments with the H-selfsimilar additive processes of Sato [22].
Eberlein and Kluge in 2004 used piecewise-stationary additive processes to
price swaptions [14]. More recently in 2007 Carr, Madan, Geman, and Yor
used exponential H-selfsimilar additive models of Sato to price options writ-
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ten on the Standard and Poor’s 500 index, along with various equity options.
[6].

2 Construction of Additive Processes

Definition 1 A stochastic process {Xt : t ≥ 0} is selfsimilar if, for any a >
0, there exists b > 0, such that {Xat} and {bXt} are identical in law.

Furthermore, if {Xt} is selfsimilar, then there exists H > 0 such that
b = aH [23, p. 73].

Definition 2 A probability measure µ on R is selfdecomposable if, for all
b > 1, there exists a probability measure ρb on R such that

µ̂ (z) = µ̂ (z/b) ρ̂b (z) ,

where µ̂ (z) is the characteristic function of µ.

Selfdecomposable distributions on R are characterized by a Lévy measure
whose density is of the form k (x) / |x|, where k:R → R+ is increasing for
x < 0 and decreasing for x > 0 [23, p. 95]. Furthermore, Sato proved that
given a selfdecomposable distribution, µ, on Rd, an H-selfsimilar process,
{Xt} exists such that the characteristic function of the distribution at time
t is µ̂

(
tHz
)

[23, p.99]. Since a selfdecomposable distribution is infinitely
divisible, it also generates a Lévy process. In this case the characteristic
function at time t is µ̂t (z) [23, p.35].

In the remainder of this section, three classes of additive models are in-
troduced. The first process of each class has a time one distribution which
is Variance Gamma distributed while the second has a time one distribu-
tion which is Normal Inverse Gaussian distributed. Given a process {Xt},
let Ψ, η, and Φ denote the Laplace exponent, characteristic exponent, and
characteristic function of the distribution of Xt, respectively.

2.1 Lévy Processes

The three parameter Variance Gamma Process may be defined as a Brownian
motion with drift which is time-changed by an independent Gamma process
[18]. Let σ, ν > 0 and µ ∈ R. On the probability space (Ω,F , P) define X ≡

5



{Xt : t ≥ 0} to be a R-valued Brownian motion, where X1 is Normal(µ, σ2)
distributed, and Z ≡ {Zt : t ≥ 0} to be an R-valued, independent Gamma
process where, for any t > 0, Zt is Gamma

(
t
ν
, 1

ν

)
distributed. Since for all

t > 0 and ξ ∈ R, the characteristic exponent of Zt is given by ηZt[ 1
ν

, 1
ν ]

(ξ) =

log
[
(1− iξν)−

t
ν

]
, it follows by the subordination theorem for the Lévy case

that the characteristic function of the time t distribution of the Variance
Gamma process is given by

E
[
eiξ(V Gt)

]
= exp {ΨZt (ηX1 (ξ))}

= exp
(
log (1− i {−iηX1 (ξ)} ν)−

t
ν

)
=

(
1 + ν

[
−iµξ +

1

2
σ2ξ2

])− t
ν

.

The Normal Inverse Gaussian process is defined as a Brownian motion
with drift which is time-changed by an independent Inverse Gaussian process
[1]. Fix δ, γ > 0 and β ∈ R. On the probability space (Ω,F , P) define X ≡
{Xt : t ≥ 0} to be a R-valued Brownian motion, where X1 is Normal(βδ2, δ2)
distributed, and Z ≡ {Zt : t ≥ 0} to be a R-valued, independent Inverse
Gaussian process where, for any t > 0 , Zt is IG(t, δγ) distributed with char-

acteristic exponent given by ηZt[1,δγ] (ξ) = −t

{√
−2iξ + (δγ)2 − δγ

}
, ξ ∈

R. The subordination theorem for the Lévy case yields the following char-
acteristic function of the time t distribution of the Normal Inverse Gaussian
process.

E
[
eiξ(NIGt)

]
= exp {ΨZt (ηX1 (ξ))}

= exp

(
−t

{√
−2i {−iηX1 (ξ)}+ (δγ)2 − δγ

})
= exp

(
−δt

{√
ξ2 − 2iβξ + γ2 − γ

})
.

2.2 H-selfsimilar Additive Processes

H-selfsimilar additive processes are constructed as in the proof to Sato’s
existence theorem [23, p.99]. It must first be verified that the time one
distributions of the Variance Gamma and Normal Inverse Gaussian processes
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are selfdecomposable. Consequently, the following integral representation of
the modified Bessel function of the second kind [11] is needed.∫ ∞

0

exp

(
−α2t

2
− β2

2t

)
t−(1+ν)dt = 2

(
α

β

)ν

Kν (αβ)

On the probability space (Ω,F , P) define X ≡ {Xt : t ≥ 0} to be a R-
valued Brownian, motion, where X1 is Normal(µ, σ2) distributed, and Z ≡
{Zt : t ≥ 0} to be an R-valued, independent Gamma process where for any
t > 0, Zt is Gamma

(
t
ν
, 1

ν

)
distributed. If for any t > 0, %Zt is the Lévy

density corresponding to Zt, then by the subordination theorem for Lévy
processes, the Lévy density corresponding to the distribution of the time t
Variance Gamma random variable, V Gt, is given by

%V Gt (x) =

∫
(0,∞)

dµXs

dx
(x) %Zt (s) ds

=

∫
(0,∞)

1√
2πσ2s

exp

(
− [x− µs]2

2σ2s

)
t

νs
exp

(
− s

ν

)
ds

=
t√

2πσν
exp

(xµ

σ2

)2


√

µ2

σ2 + 2
ν

|x|
σ


1
2

K 1
2

(
|x|
σ

√
µ2

σ2
+

2

ν

)
=

t

ν

1

|x|
exp

(
− 1

σ

[√
µ2

σ2
+

2

ν
|x| − µ

σ
x

])
.

The exponential is a decreasing function of x if ν > 0. Consequently, the
k-function given by

k (x) =
t

ν
exp

(
− 1

σ

[√
µ2

σ2
+

2

ν
|x| − µ

σ
x

])

with t = 1, satisfies the requirement for proving selfdecomposability of the
time one distribution of the Variance Gamma process.

On the probability space (Ω,F , P) define X ≡ {Xt : t ≥ 0} to be a R-
valued Brownian motion, where X1 is Normal(βδ2, δ2) distributed, and Z ≡
{Zt : t ≥ 0} to be a R-valued, independent Inverse Gaussian process where,
for any t > 0, Zt is IG(t, δγ) distributed. If, for any t > 0, %Zt is the Lévy
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density corresponding to Zt, then the Lévy density corresponding to the time
t Normal Inverse Gaussian random variable, NIGt, is given by

%NIGt (x) =

∫
(0,∞)

dµXs

dx
(x) %Zt (s) ds

=

∫
(0,∞)

1√
2πδ2s

exp

(
− [x− βδ2s]

2

2δ2s

)
t√
2π

s−
3
2 exp

(
−1

2
δ2γ2s

)
ds

=
t

2πδ
exp (βx)

2

(
δ
√

β2 + γ2

|x|
δ

)1

K1

(
δ
√

β2 + γ2
|x|
δ

)
=

t

π
δα exp (βx)

1

|x|
K1 (α |x|) where α ≡

√
β2 + γ2.

In order to check selfdecomposability, another integral representation the-
orem for the modified Bessel function of the second kind is needed [11]:

Kν (z) =
e−z

Γ
(
ν + 1

2

)√ π

2z

∫ ∞

0

e−ttν−1/2

(
1 +

t

2z

)ν−1/2

dt.

The Lévy density may now be expressed as

%NIGt (x) =
t

π
δα exp (βx)

1

|x|

[
e−α|x|

Γ
(

3
2

)√ π

2α |x|

∫ ∞

0

e−tt1/2

(
1 +

t

2α |x|

)1/2

dt

]

= exp (βx− α |x|)

[
1

|x|
t

π
δα

1

Γ
(

3
2

)√ π

2α |x|

∫ ∞

0

e−tt1/2

(
1 +

t

2α |x|

)1/2

dt

]
.

Consequently, the product of %NIGt and |x| is decreasing on R+ and
increasing on R− if α > |β|. It follows that the k-function given by

k (x) = exp (βx− α |x|)

[
t

π
δα

1

Γ
(

3
2

)√ π

2α |x|

∫ ∞

0

e−tt1/2

(
1 +

t

2α |x|

)1/2

dt

]−1

with t = 1, satisfies the requirement for proving selfdecomposability of the
time one distribution of the Normal Inverse Gaussian process. The proof
to Sato’s existence theorem for selfsimilar additive processes may now be
applied to construct H-selfsimilar additive versions of the Variance Gamma
and Normal Inverse Gaussian processes.
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For σ, ν, H > 0 and µ ∈ R, the characteristic function of the distribution
of HssVGt is determined as follows. On the probability space (Ω,F , P) let
m = PV G1 be the selfdecomposable time one Variance Gamma(σ, µ, ν) distribution
on R. The characteristic function of the time t distribution corresponding to
the H-selfsimilar additive process, {HssV Gt} is given by

E
[
eiξ(HssV Gt)

]
= m̂

(
tHξ; σ, µ, ν

)
=

(
1 + ν

[
−iµtHξ +

1

2
σ2t2Hξ2

])− 1
ν

.

Similarly, for the characteristic function of the distribution of HssNIGt,
let δ, γ,H > 0, β ∈ R, and m = PNIG1 be the selfdecomposable Normal
Inverse Gaussian(δ, β, γ) distribution on R. The characteristic function of
the time t distribution corresponding to the H-selfsimilar additive process,
{HssNIGt} is given by

E
[
eiξ(HssNIGt)

]
= m̂

(
tHξ; β, δ, γ

)
= exp

(
−δ
{√

t2Hξ2 − 2iβtHξ + γ2 − γ
})

.

2.3 Subordinated Additive Processes

Subordinated additive processes are constructed by the extension of the sub-
ordination theorem of Lévy processes to the case of additive directing pro-
cesses. Such an extension exists since, unlike the condition of independence
of increments, time homogeneity is not a necessary condition for the rep-
resentation of the characteristic exponent of the time t distribution of the
subordinated process as a composition of the Laplace exponent correspond-
ing to the directing process with the characteristic exponent corresponding
to some Lévy process.

The first process to be constructed is a Brownian motion time changed
by an independent H-selfsimilar additive Gamma process (VHG) while the
second is a Brownian motion time changed by an independent H-selfsimilar
additive Inverse Gaussian process (NHIG). In order to construct the self-
similar additive versions of the directing processes, selfdecomposability of
the time one distributions of the Gamma and Inverse Gaussian distributions
must first be verified. The Lévy densities corresponding to the Gamma pro-
cess and Inverse Gaussian process are given in Table 1 where a, b > 0 for
both distributions [24].
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Table 1: Lévy densities of Subordinator Distributions

Distribution Lévy Density
Gamma(a, b) % (x) = a exp (−bx) x−1, x > 0

Inverse Gaussian(a, b) % (x) = 1√
2π

ax−
3
2 exp

(
−1

2
b2x
)
, x > 0

Since the corresponding k-functions given by

kΓ = a exp (−bx) , x > 0 and

kIG =
1√
2π

ax−
1
2 exp

(
−1

2
b2x

)
, x > 0

are decreasing on the positive reals, it follows that the Gamma and Inverse
Gaussian distributions are selfdecomposable.

The characteristic function of the distribution of V HGt is determined as
follows. Let σ, ν, H > 0 and µ ∈ R. On the probability space (Ω,F , P)
define X ≡ {Xt : t ≥ 0} to be a R-valued Brownian motion where X1 is
Normal(µ, σ2) distributed. On the same probability space define Z ≡ {Zt : t ≥ 0}
to be an independent, increasing H-selfsimilar additive process such that Z1

is Gamma
(

1
ν
, 1

ν

)
distributed . Since for all ξ ∈ R, the characteristic exponent

of Z1 is given by ηZ1[ 1
ν

, 1
ν ]

(ξ) = log
[
(1− iξν)−

1
ν

]
, it follows by the extension

to the subordination theorem for the case of additive directing processes
that the characteristic function of the time t distribution corresponding to
the subordinated process, {V HGt}, is given by

E
[
eiξ(V HGt)

]
= exp {ΨZt (ηX1 (ξ))}
= exp

{
ΨZ1

(
tHηX1 (ξ)

)}
= exp

(
log

(
1− i

{
−itH

} [
−1

2
σ2ξ2 + iµξ

]
ν

)− 1
ν

)

=

(
1 + tHν

[
−iµξ +

1

2
σ2ξ2

])− 1
ν

.

The characteristic function of the distribution of NHIGt is similarly de-
fined. Fix δ, γ,H > 0 and β ∈ R. On the probability space (Ω,F , P)
define X ≡ {Xt : t ≥ 0} to be a R-valued Brownian motion where X1 is
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Normal(βδ2, δ2) distributed. On the same probability space define Z ≡
{Zt : t ≥ 0} to be an independent, increasing H-selfsimilar additive process
such that Z1 is IG(1, δγ) distributed. Since for all ξ ∈ R, the characteristic

exponent of Z1 is given by ηZ1[1,δγ] (ξ) = −
{√

−2iξ + (δγ)2 − δγ

}
, it fol-

lows by the extension to the subordination theorem for the case of additive
directing processes that the characteristic function of the time t distribution
of the subordinated process, {NHIGt}, is given by

E
[
eiξ(NHIGt)

]
= exp {ΨZt (ηX1 (ξ))}
= exp

{
ΨZ1

(
tHηX1 (ξ)

)}
= exp

(
−
{√

−2i {−itHηX1 (ξ)}+ (δγ)2 − δγ

})
= exp

(
−δ
{√

tH [ξ2 − 2iβξ] + γ2 − γ
})

.

3 Properties of the Increments

In order to investigate the distributional properties of the increments of the
additive processes, the first four central moments of the distribution of the
increment over the time interval [s, t] for 0 < s < t are calculated for each of
the Variance Gamma family of models. Given a R-valued additive process
Y ≡ {Yt} on (Ω,F , P), let µYt+s−Yt denote the distribution of Yt+s − Yt for
s, t > 0. By additivity of Y, the characteristic function of the increment is
given by

µ̂Yt+s−Yt (ξ) =
µ̂Yt+s (ξ)

µ̂Yt (ξ)
, 0 ≤ s ≤ t.

Since the distributions of {Yt} are infinitely divisible, set {(At, νt, γt)} as the
corresponding system of unique Lévy triplets. By the previous equation the
Lévy triplet of the increment is given by (At+s − At, νt+s − νt, γt+s − γt) . Let
{Yt} denote the VG process or either of its two time-inhomogeneous versions.
In the following tables the first four central moments of the increments,
Xs,t ≡ Yt+s − Yt for 0 ≤ s < t, are listed.

An interesting property among the three classes of models is the variance
structure of the increment. For the Lévy case, the increment variance is
an increasing function of maturity. If H ∈

(
0, 1

2

)
both the selfsimilar and

subordinated additive models have an increment variance which decreases
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Table 2: Variance Gamma Process: Increment Moments

Moment VG
E [Xs,t] sµ

E
[(

Xs,t −Xs,t

)2]
s [µ2ν + σ2]

E
[(

Xs,t −Xs,t

)3]
s [2µ3ν2 + 3σ2νµ]

E
[(

Xs,t −Xs,t

)4] (
[t + s]2 − t2

)
[3µ4ν2 + 6σ2νµ2 + 3σ4] + s [6µ4ν3 + 12σ2ν2µ2 + 3σ4ν]

Table 3: Selfsimilar Variance Gamma Process: Increment Moments

Moment HssVG

E [Xs,t]
(
[t + s]H − tH

)
µ

E
[(

Xs,t −Xs,t

)2] (
[t + s]2H − t2H

)
[µ2ν + σ2]

E
[(

Xs,t −Xs,t

)3] (
[t + s]3H − t3H

)
[2µ3ν2 + 3σ2νµ]

E
[(

Xs,t −Xs,t

)4] (
[t + s]4H − t4H

)
[3µ4ν2 (1 + 2ν) + 6σ2νµ2 (1 + 2ν) + 3σ4 (1 + ν)]

Table 4: Variance H-Gamma Process: Increment Moments

Moment VHG

E [Xs,t]
(
[t + s]H − tH

)
µ

E
[(

Xs,t −Xs,t

)2] (
[t + s]2H − t2H

)
[µ2ν] +

(
[t + s]H − tH

)
[σ2]

E
[(

Xs,t −Xs,t

)3] (
[t + s]3H − t3H

)
[2µ3ν2] +

(
[t + s]2H − t2H

)
[3σ2νµ]

E
[(

Xs,t −Xs,t

)4] (
[t + s]4H − t4H

)
[3µ4ν2 (1 + 2ν)]

+
(
[t + s]3H − t3H

)
[6σ2νµ2 (1 + 2ν)] +

(
[t + s]2H − t2H

)
[3σ4 (1 + ν)]
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with maturity. For H ∈
(

1
2
, 1
)

the increment variance of the selfsimilar
distribution is increasing with maturity, while for the subordinated case, the
increment variance is either decreasing or increasing depending on the choice
of parameters. Finally, if H ≥ 1 both models have an increment variance
which increases with maturity.

4 Definition of the Price Process

Let X ≡ {Xt}t∈[0,T ] be a R-valued semimartingale on (Ω,F , P) in which the
characteristic function of its time t distribution with n-dimensional parameter
vector, θ ∈ Rn, is denoted by φθ

Xt
. Define Θ ⊂ Rn as the set of parameter

vectors such that for each θ ∈ Θ, φθ
Xt

(ξ) is defined for each ξ ∈ R ∪ {−i}
and each t ∈ [0, T ]. In the case where {Xt} has independent increments,
let S ≡

{
Sθ

t

}
t∈[0,T ]

be the price process on (Ω,F , {Ft} , P) used to model a

risk-neutral underlier of an option with continuously compounded values of
both interest rate, r, and dividend yield, q, where

Sθ
t

d
=

S0 exp (Xt + [r − q] t)

φθ
Xt

(−i)
for each t ∈ [0, T ] .

By definition,
{
e−(r−q)tSθ

t

}
is an (Ft − P) martingale, and the time-consistent

linear pricing rule used to determine the fair price of a contingent claim, H,
on
{
Sθ

t

}
t∈[0,T ]

is given by π, where

πθ
t,T (H) = e−r(T−t)EP

[
H
(
Sθ

T

)
|Ft

]
[11].

In the case where X is a Lévy stochastic volatility model, the method
of Carr, Geman, Madan and Yor (CGMY) [5] is used to obtain a martingale
price process whose marginals match those of

{
e−(r−q)tSθ

t

}
. The reason for

doing this, as noted by CGMY, is that in the previous case, the additivity
of X enabled the conditional expectation of the valuation operator to be
evaluated as an unconditional one [5]. As a result, the normalization term of
φθ

Xt
(−i) occurred in the definition of Sθ

t , t ∈ [0, T ]. Consequently, when X
lacks independent increments, one may not simply evaluate the pricing rule
using the conditional expectation under P.

In order to establish existence of a martingale whose marginals match
those of

{
e−(r−q)tSθ

t

}
, one needs only to assume that the option quotes are

13



free of static arbitrage [8]. By results of CGMY [8], [19], there exists a

martingale {Mt} on some probability space
(
Ω̃,G, {Gt} , P̃

)
for which the

the following holds

Mt
d
= e−(r−q)tSθ

t for each t ∈ [0, T ] .

Consequently, the price process, S ≡
{
Sθ

t

}
, on

(
Ω̃,G, {Gt} , P̃

)
is defined by

{
Sθ

t

} d
=
{
e(r−q)tM θ

t

}
.

Since
{
e−(r−q)tSθ

t

}
is a

(
Gt − P̃

)
martingale, it follows that the pricing rule

is given by
πθ

t,T (H) = e−r(T−t)E
eP
[
H
(
Sθ

T

)
|Gt

]
.

Below are the characteristic functions of the time t distributions of the
logarithm of the risk-neutral underlier for the models used in this study.

• risk-neutral exponential Variance Gamma

ΦV G
ln St

(ξ) =
exp

{
iξ (ln S0 + t [r − q])− t

ν
log
(
1 + ν

[
−iµξ + 1

2
σ2ξ2

])}(
1− ν

[
µ + 1

2
σ2
])− t

ν

• risk-neutral exponential Variance H−Gamma

ΦV HG
ln St

(ξ) =
exp

{
iξ (ln S0 + t [r − q])− 1

ν
log
(
1 + tHν

[
−iµξ + 1

2
σ2ξ2

])}(
1− tHν

[
µ + 1

2
σ2
])− 1

ν

• risk-neutral exponential H-selfsimilar Variance Gamma

ΦHssV G
ln St

(ξ) =
exp

{
iξ (ln S0 + t [r − q])− 1

ν
log
(
1 + ν

[
−iµtHξ + 1

2
σ2t2Hξ2

])}(
1− ν

[
µtH + 1

2
σ2t2H

])− 1
ν

• risk-neutral exponential Normal Inverse Gaussian

ΦNIG
ln St

(ξ) =
exp

{
iξ (ln S0 + t [r − q])− δt

[√
ξ2 − 2iβξ + γ2 − γ

]}
exp

(
−δt

[√
−1− 2β + γ2 − γ

])
14



• risk-neutral exponential Normal H-Inverse Gaussian

ΦNHIG
ln St

(ξ) =
exp

{
iξ (ln S0 + t [r − q])− δ

[√
tH (ξ2 − 2iβξ) + γ2 − γ

]}
exp

(
−δ
[√

tH (−1− 2β) + γ2 − γ
])

• risk-neutral exponential H-selfsimilar Normal Inverse Gaussian

ΦHssNIG
ln St

(ξ) =
exp

{
iξ (ln S0 + t [r − q])− δ

[√
t2Hξ2 − 2iβtHξ + γ2 − γ

]}
exp

(
−δ
[√

−t2H − 2βtH + γ2 − γ
])

• risk-neutral exponential Variance Gamma - Ornstein Uhlenbeck with
stationary Gamma distribution

ΦVG-OU-Γ
ln St

(ξ) = exp (iξ (ln S0 + t [r − q]))
ΦOU−Γt (−i log ΦV G1 (ξ; C, G, M) ; λ, a, b, 1)

ΦOU−Γt (−i log ΦV G1 (−i; C, G, M) ; λ, a, b, 1)

where

ΦV G1 (ξ; C, G, M) =

(
GM

GM + i (M −G) ξ + ξ2

)C

and

ϕOU−Γt (ξ; λ, a, b, y0) = exp {iy0λ
−1
[
1− e−λt

]
ξ

+
λa

iξ − λb

[
b log

(
b

b− iλ−1 (1− e−λt) ξ

)
− itξ

]
}

• risk-neutral exponential Normal Inverse Gaussian - Ornstein Uhlenbeck

with stationary Gamma distribution

ΦNIG-OU-Γ
ln St

(ξ) = exp (iξ (ln S0 + t [r − q]))
ΦOU−Γt (−i log ΦNIG1 (ξ; β, δ, γ) ; λ, a, b, 1)

ΦOU−Γt (−i log ΦNIG1 (−i; β, δ, γ) ; λ, a, b, 1)

where

ΦNIG1 (ξ; β, δ, γ) = exp
{
−δ
[√

ξ2 − 2iβξ + γ2 − γ
]}

and

ϕOU−Γt (ξ; λ, a, b, y0) = exp {iy0λ
−1
[
1− e−λt

]
ξ

+
λa

iξ − λb

[
b log

(
b

b− iλ−1 (1− e−λt) ξ

)
− itξ

]
}
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It is noted that in the Variance Gamma case, the parametrization (µ, σ, ν) 7→
(C, G, M) is used since it allows a single parameter, C, to be associated with
time, unlike the original parametrization. Below is the required mapping.

C =
1

ν

G =

(√
1

4
µ2ν2 +

1

2
σ2ν − 1

2
µν

)−1

M =

(√
1

4
µ2ν2 +

1

2
σ2ν +

1

2
µν

)−1

The parametrization chosen for the NIG process, however, does not require
such a transformation of variables, since the parameter, δ, is a multiplicative
constant of time, t, and appears only once in the characteristic function
given.

5 Calibration

In order to calculate European option prices, the “modified call” method of
Carr and Madan [7] is used, requiring a closed form expression for the in-
verse Fourier transform of a damped call price in terms of the characteristic
function of the distribution of the logarithm of the risk-neutral stock price.
Put prices are calculated by the call price using put-call parity. For any of
the eight previously defined models, let the risk-neutral underlier, S ≡ {St} ,
be defined on (Ω,F , {Ft} , P) so that

{
e−(r−q)tSt

}
is a (Ft − P) martingale.

Let Θ denote the set of model parameter vectors which determine the dis-
tribution corresponding to the logarithm of the risk-neutral underlier, ln St.
Furthermore, let the set of N model option prices corresponding to θ ∈ Θ
be given by

{
πθ

i

}
i=1...N

and the corresponding set of weights be given by
{wi}i=1...N . In order to estimate the set of parameters chosen by the market,
the quadratic pricing error, E : Θ → R+, is minimized with

E (θ) =
∑N

i=1
wi

[
πθ

i (r, q, S0, Ti, Ki)− Pi (Ti, Ki)
]2

, θ ∈ Θ (1)

[11].
It is noteworthy to mention a few of the theoretical and computational

difficulties pertaining to the calibration of a given model. First, the number
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of options used to calibrate a model is generally inadequate to uniquely iden-
tify the optimal model parameter vector [12]. Consequently, there may be
many model parameter vectors which yield pricing errors to within a given
tolerance [26]. Second, the set of values used to represent the current market
values of the options, to within bid-ask, may induce numerical instability
with respect to calendar time, resulting in relatively large variations in cal-
ibrated parameter vectors [26]. Finally, implementation of the least squares
minimization may be difficult since the objective function is not convex in θ
and may have many local minima [12].

Without resorting to a regularization scheme which includes a relative
entropy penalization term [12] or an evolutionary optimization technique
[15], the data sets are calibrated as posed, with the following conditions.
First, the cut-off criterion for the optimization routine does not require that
the gradient norm achieve a certain tolerance, but rather the relative change
in the infinity norm of the minimizer (solution) achieve a certain tolerance.
Second, in a manner similar to CGMY [6], deep out-of-the-money options
with relatively small price to spot ratios are deleted from the data set in
order to decrease noise in the error surface.

6 Results

In order to measure the pricing performance of each of the eight pre-
viously defined models, the Average Pricing Error (A.P.E.) is now defined.
Denote N by the number of options used on a particular quote date, {Pi}, by
the set of observed bid-ask averages, and {πi}, by the set of corresponding
calculated model prices. The Average Pricing Error as defined by Schoutens
[24] is the following.

A.P.E. =

∑N
i=1 |Pi − πi|∑N

i=1 Pi

The out-of-sample Average Pricing Errors were calculated using the in-
sample parameter estimates and the bid-ask quotes taken 1 day and 1 week
later than the in-sample quote date. Since the option prices were taken as
the set of averages of the bid and ask quotes on a given quote date, each
model price may deviate at most by (ask − bid) /2 if it is to lie between the
bid and ask quotes. Setting the price difference to be (ask − bid) /2 and the

17



Table 5: Mean Average Pricing Error: Twelve Quote Date Time-average
(Jan. - Dec. 2005)

mean A.P.E. (%)
Process Name in-sample 1 day-ahead 1 week-ahead

VG 12.5 13.5 15.5
NIG 11.2 12.4 14.0
VHG 8.04 8.55 11.1
NHIG 6.31 7.10 9.84
HssVG 6.73 7.19 9.73
HssNIG 4.33 5.36 8.57
VG-OU-Gamma 5.81 6.66 9.09
NIG-OU-Gamma 5.21 6.29 8.82
market 4.75 5.10 4.63

observed option price to be (ask + bid) /2 in the previous formula yields the
measure of uncertainty in market prices given below.

A.P.E.market =

∑N
i=1 (aski − bidi)∑N
i=1 (aski + bidi)

In Figures 1 - 3 are the bar graphs of the in-sample, 1 day-ahead, and 1
week-ahead out-of-sample A.P.E. for each quote date, for each model. The in-
sample and out-of-sample twelve quote date time-averaged Average Pricing
Errors are given in Table 5. The only model in this table with a mean
Average Pricing Error which was less than the market average for the in-
sample case was the HssNIG model. Furthermore, the worst performing
model class, with respect to in-sample and out-of-sample average A.P.E.,
was the Lévy class. Not surprising is that with one additional parameter, the
subordinated additive and selfsimilar models had lower A.P.E. values than
their time-homogeneous counterpart. Remarkable, however, is the difference
in performance between the two, four parameter additive models.

Table 6 contains the twelve quote averages of the ratio of A.P.E. of one
model to that of the other for both in-sample and out-of-sample cases. In
the first two rows of Table 6, the model pairs of the additive processes have
identical time one distributions. As shown in this table, the four parameter
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Table 6: Mean Ratio of Average Pricing Errors: Twelve Quote Date Time-
average (Jan. - Dec. 2005) 〈

A.P.E.1
A.P.E.2

〉
model 1 : model 2 in-sample 1 day-ahead 1 week-ahead

HssVG: VHG 0.832 0.839 0.850
HssNIG: NHIG 0.685 0.754 0.830

HssVG: VG-OU-Gamma 1.16 1.09 1.08
HssNIG: NIG-OU-Gamma 0.830 0.852 0.951

selfsimilar models outperformed their corresponding four parameter subor-
dinated additive models for the in-sample and out-of-sample cases. In the
second row the mean ratio of the pricing error for the selfsimilar NIG pro-
cess to that of its corresponding subordinated additive model was 0.69 for
the in-sample case and did not exceed 0.83 for the out-of-sample cases. Re-
markably, the selfsimilar additive NIG model had pricing errors which were,
on average, 83 to 85 percent of that corresponding to the NIG-OU-Gamma
process, both for in-sample and one-day-ahead out-of-sample cases, as shown
in the fourth row of Table 6. This is in contrast to the VG case where the
selfsimilar process, on average, had pricing errors which were 116 and 109
percent of that corresponding to the VG-OU-Gamma process for in-sample
and one-day-ahead out-of-sample A.P.E., respectively.

Below is a summary of the HssNIG pricing performance frequencies with
respect to A.P.E taken from Figures 1-3.

• The fraction of quote dates in which the HssNIG model had a lower
A.P.E. than those of both stochastic volatility models for the in-sample,
1 day-ahead, and 1 week-ahead out-of-sample cases were 10

12
,12
12

, and 7
12

,
respectively.

• The fraction of quote dates in which the HssNIG model had a lower
A.P.E. than that of the market for the in-sample, 1 day-ahead, and 1
week-ahead out-of-sample cases were 8

12
, 5
12

, and 1
12

, respectively.

In Table 7 each pair of models lies within the same model class: Lévy,
selfsimilar, subordinated additive, and stochastic volatility. For each of the
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Table 7: Mean Ratio of Average Pricing Errors: Twelve Quote Date Time-
average (Jan. - Dec. 2005) 〈

A.P.E.1
A.P.E.2

〉
model 1 : model 2 in-sample 1 day-ahead 1 week-ahead

NIG: VG 0.892 0.916 0.887
NHIG: VHG 0.787 0.829 0.873

HssNIG: HssVG 0.641 0.746 0.852
NIG-OU-G: VG-OU-G 0.900 0.942 0.958

four model classes, the twelve month time-averaged ratio of A.P.E. of the
NIG model to that of its corresponding VG model is given. Notable in row
three is that the time-averaged ratio of A.P.E. for the selfsimilar NIG model
to that of its VG model was less than 0.65 for the in-sample case and did
not exceed 0.86 for the out-of-sample cases. The consistency with which the
NIG distributions outperformed those of the VG family may be observed in
the following summary statistics taken from Figures 1- 3.

• The fraction of quote dates in which each of the four models of the NIG
family had a lower A.P.E. than that of the corresponding member of the
VG family for in-sample, 1 day-ahead, and 1 week-ahead out-of-sample
cases were 12

12
,10
12

, and 7
12

, respectively.

In Figures 4 and 5 the market and calculated model option prices are
plotted versus simple moneyness (K/S) for the set of options corresponding
to the January 2005 quote date. The month of January was chosen since,
for this quote date, the Average Pricing Error relative to that of the market
was its worst for the HssNIG model. Figure 4 consists of the plots for the
VG family while Figure 5 consists of the plots for the NIG family of models.
In each panel of plots, the subordinated additive model showed a drastic
improvement in pricing over the Lévy model with respect to long and near-
term puts. Further improvement in the long and near-term puts and calls are
seen as one moves from the subordinated additive case to the selfsimilar case.
For the NIG family of models, the selfsimilar model usually provided better
pricing of the two longest maturity set of puts than did its Lévy stochastic
volatility counterpart.
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Table 8: Variance Gamma Family: Twelve Quote Date Time-averaged Pa-
rameter Estimates (Jan. - Dec. 2005)

model
parameter VG VHG HssVG

µ -0.131 (0.034) -0.132 (0.030) -0.094 (0.015)

σ 0.119 (0.006) 0.107 (0.010) 0.132 (0.007)

ν 0.315 (0.079) 0.995 (0.231) 1.023 (0.161)

H 0.935 (0.084) 0.622 (0.028)

In order to illustrate the rather distinct distributional properties of the
increments of the additive processes in this study, the term structures of the
first four central moments of the distributions calibrated with the options
available on the January 2005 quote date are included. In Figure 6 the top
(resp. bottom) rows consist of the term structures of the first four central
moments pertaining to the VG (resp. NIG) family of processes. Notable is
the signature linear dependence of mean and variance on maturity for the
Lévy processes. Furthermore, the absolute values of skewness and kurtosis
decrease in a manner consistent with the well-known 1√

t
dependence for skew-

ness and 1
t

dependence for kurtosis. For the set of parameters chosen by the
market, the skewness and kurtosis of the subordinated additive models are
monotonic with respect to maturity with values lying in a smaller interval
than that pertaining to the Lévy process.

The selfsimilar processes have a rather striking constant skewness and
kurtosis. Invariance with respect to maturity is due to the fact that the
characteristic function is obtained by a composition of a characteristic func-
tion at time one with the map, ξ 7→ tHξ. When the chain rule is applied to
the composition, the monomial term yields a factor of tH . Consequently, the
moment number is matched by the same number of factors of tH , thereby
allowing cancelation in the calculation of skewness and kurtosis.

The stability of the parameters for each model over time is denoted by
the sample standard deviations of the corresponding time-averaged param-
eter estimates over the twelve quote dates. In Tables 8 and 9 the standard
deviations are included in parentheses.

21



Table 9: Normal Inverse Gaussian Family: Twelve Quote Date Time-
averaged Parameter Estimates (Jan. - Dec. 2005)

model
parameter NIG NHIG HssNIG

β -8.261 (2.536) -25.938 (18.654) -6.865 (1.808)

δ 0.188 (0.034) 0.111 (0.011) 0.138 (0.016)

γ 13.103 (1.931) 14.501 (6.223) 8.571 (1.088)

H 0.873 (0.116) 0.622 (0.027)

Table 10: Normal H-Inverse Gaussian Process: Three Quote Date Time-
average of Parameter Estimates ( Sept. - Nov. 2005)

parameter NHIG

β -52.373 (4.448)

δ 0.108 (0.010)

γ 22.663 (1.095)

H 0.729 (0.040)

In the case of the NHIG model, the standard deviations of the β and γ
parameters were large compared to the same parameters for the other NIG
models. This large standard deviation was due to the relatively large esti-
mates of β and γ for the September, October, and November 2005 quote
dates. The time-averaged parameter estimates and sample standard devia-
tions pertaining to these three months are found in Table 10. Such behavior
was not observed in the case of the selfsimilar NIG model, where the relative
simplicity of the skewness and kurtosis term structures appears to have been
beneficial with regard to parameter stability.
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7 Conclusion

Two classes of time-inhomogeneous additive processes have been developed.
Models based on the Variance Gamma and Normal Inverse Gaussian pro-
cesses were constructed and used to model the logarithm of the risk-neutral
underlier of European exercised options. Out-of-the-money SPX spot op-
tions from the year 2005 were used to obtain the risk-neutral parameters
for the underlier. Not too surprisingly, the subordinated additive models
usually had lower in-sample and out-of-sample Average Pricing Errors than
did the corresponding Lévy models. In like manner, it was found that the
selfsimilar models had lower in-sample and out-of-sample pricing errors than
the corresponding subordinated additive models. The most successful model
was the selfsimilar NIG process, HssNIG, which outperformed both of the
six-parameter Lévy stochastic volatility models, VG-OU-Γ and NIG-OU-Γ,
in addition to both of the subordinated additive models. Furthermore, the
stability of the parameters of the selfsimilar NIG model, as measured by the
sample standard deviation of the mean parameter estimate, was noticeably
better than that of its subordinated additive counterpart. Finally, it is inter-
esting to note that whether the form of the time one distribution was held
in common between two models, as in the NHIG vs. HssNIG comparison,
or the manner of time evolution was held in common, as in the HssVG vs.
HssNIG comparison, the pricing error associated with the HssNIG model
was significantly less than that of the other model.

8 Future Research

Although the selfsimilar models performed better than the subordinated
models for SPX spot options, there may be other markets for which the sub-
ordinated additive models yield lower pricing errors. Consequently, a next
step for future research is to perform the same analysis on options in other
markets. Another area of research lies in the pricing of exotic options under
these models in order to study their path dependent properties. It would
be interesting to derive the relative entropy functions, the Kullback-Leibler
distances, for these models and perform calibrations using a relative entropy
regularization as discussed by Cont [11]. Such an exercise may be useful for
increasing parameter stability.
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Figure 1: Average Pricing Error [in-sample, out-of-the-money options]
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Figure 2: Average Pricing Error [1 day-ahead out-of-sample, out-of-the-
money options]
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Figure 3: Average Pricing Error [1 week-ahead out-of-sample, out-of-the-
money options]
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Figure 4: Market and Model Option Prices vs. Moneyness (K/S) for Variance
Gamma family : January 2005 quote date, out-of-the-money options
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Figure 5: Market and Model Option Prices vs. Moneyness (K/S) for Normal
Inverse Gaussian family : January 2005 quote date, out-of-the-money options
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Figure 6: Risk-neutral Mean, Variance, Skewness, and Kurtosis for January
2005 quote date [VG models - top row][NIG models - bottom row]
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