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§0. Introduction. Here we discuss automorphisms (biholomorphic maps) of compact,
projective surfaces with positive entropy. Cantat [C1] has shown that the only possibilities
occur for tori and K3 (and certain of their quotients), and rational surfaces. K3 surfaces
have been studied by Cantat [C2] and McMullen [M1]. Here we consider the family of
birational maps of the plane which are defined by

fa,b : (x, y) 7→

(

y,
y + a

x+ b

)

, (0.1)

and which provide an interesting source of automorphisms of rational surfaces. The maps
fa,b form part of the family of so-called linear fractional recurrences, which were studied
from the point of view of degree growth and periodicity in [BK]. We let V = {(a, b) ∈ C2}
be the space of parameters for this family, and we define

q = (−a, 0), p = (−b,−a),

Vn = {(a, b) ∈ V : f j
a,bq 6= p for 0 ≤ j < n, and fn

a,bq = p}.
(0.2)

In [BK] we showed that fa,b is birationally conjugate to an automorphism of a compact,
complex surface Xa,b if and only if (a, b) ∈ Vn for some n ≥ 0. The surface Xa,b is obtained
by blowing up the projective plane P2 at the n+ 3 points e1 = [0 : 1 : 0], e2 = [0 : 0 : 1],
and f jq, 0 ≤ j ≤ n. The dimension of Pic(Xa,b) is thus n+ 4, and f∗

a,b is the same for all
(a, b) ∈ Vn; the characteristic polynomial is

χn(x) := −1 + x2 + x3 − x1+n − x2+n + x4+n. (0.3)

When n ≥ 7, χn has a unique root λn > 1 with modulus greater than one, and the entropy
of fa,b is logλn > 0. More recently, McMullen [M2] considers automorphisms of blowups
of P2 in terms of their action on the Picard group and connects the numbers λn with the
growth rates of Coxeter elements of Coxeter groups; [M2] then gives a synthesis of surface
automorphisms starting from λn (or one of its Galois conjugates) and an invariant cubic.
This gives an alternative construction of certain of the maps of Vn and in particular shows
that Vn is nonempty for all values of n (a question left open in [BK]).

The purpose of this paper is to further discuss the maps fa,b for (a, b) ∈ Vn, n ≥
7. In §1,2 we show that the maps with invariant cubics are divided into three families,
Γj ⊂ V, j = 1, 2, 3, which correspond to maps constructed in [M2]. In §2 we describe the
intersection Γj ∩ Vn. In §3 we show the existence of automorphisms fa,b of Xa,b without
invariant curves. In particular, these are examples of rational surfaces with automorphisms
of positive entropy, for which the pluri-anticanonical bundle has no nontrivial sections. This
gives a negative answer to a conjecture/question of Gizatullin, Harbourne, and McMullen.
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We next describe the dynamics of the maps fa,b for (a, b) ∈ Γ ∩ Vn for n ≥ 7. We
discuss rotation (Siegel) domains in §4. In §5 we look at the real mappings in the families
Γj , i.e., (a, b) ∈ Γj ∩ R2. The set XR of real points inside Xa,b is then invariant under
fa,b. Let fR denote the restriction of fa,b to XR. We show in §5 that fR has maximal
entropy in the sense that its entropy is equal to the entropy of the complex map fa,b. The
condition that fR has maximal entropy has been useful in several cases to reach a deeper
understanding of the map (see [BD1,2] and [BS2]).

Among the maps with invariant curves, there is a dichotomy:

Main Theorem. Let fa,b be a mapping of the form (0.1) which is equivalent to an
automorphism with positive entropy. If there is an fa,b-invariant curve, then one of the
following occurs:
(i) f has a rotation (Siegel) domain centered at a fixed point.
(ii) a, b ∈ R, and fR has the same entropy as f . Further the (unique) invariant measure

of maximal entropy is supported on a subset of XR of zero area.

The proof is given in §6. The mappings of V6 all have invariant pencils of cubics and entropy
zero. The relation between the family V6 and the curves Γ are discussed in Appendix A.
Then, in Appendix B, we discuss the relation between Vn ∩ Γ and Vn − Γ for the case of
positive entropy. Finally, in Appendix C we give an auxiliary calculation of characteristic
polynomials, which is used in §5.

Acknowledgement. We wish to thank Serge Cantat and Jeff Diller for explaining some
of this material to us and giving helpful suggestions on this paper.

§1. Invariant Curves. We define α = γ = (a, 0, 1) and β = (b, 1, 0), so in homogeneous
coordinates the map f is written

fa,b : [x0 : x1 : x2] 7→ [x0β · x : x2β · x : x0α · x].

The exceptional curves for the map f are given by the lines Σ0 = {x0 = 0}, Σβ = {β · x =
0}, and Σγ = {γ · x = 0}. The indeterminacy locus I(f) = {e2, e1, p} consists of the
vertices of the triangle Σ0ΣγΣβ . Let π : Y → P2 be the complex manifold obtained by
blowing up e1 and e2, and let the exceptional fibers be denoted E1 and E2. By Σ0, Σβ

and Σγ we denote the strict transforms in Y . Let fY : Y → Y be the induced birational
map. Then the exceptional locus is Σγ , and the indeterminacy loci are I(fY ) = {p} and
I(f−1

Y
) = {q}. In particular, fY : Σβ → E2 → Σ0 → E1 → ΣB = {x2 = 0}. By curve,

we mean an algebraic set of pure dimension 1, which may or may not be irreducible or
connected. We say that an algebraic curve S is invariant if the closure of f(S−I) is equal
to S. We define the cubic polynomial jf := x0(β · x)(γ · x), so {jf = 0} is the exceptional
locus for f . For a homogeneous polynomial h we consider the condition that there exists
t ∈ C∗ such that

h ◦ f = t · jf · h. (1.1)

Proposition 1.1. Suppose that (a, b) /∈
⋃

Vn, and S is an fa,b-invariant curve. Then S
is a cubic containing e1, e2, as well as f jq, f−jp for all j ≥ 0. Further, (1.1) holds for S.

Proof. Let us pass to fY , and let S denote its strict transform inside Y . Since (a, b) /∈
⋃

Vn,
the backward orbit {f−np : n ≥ 1} is an infinite set which is disjoint from the indeterminacy
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locus of I(f−1
Y

). It follows that S cannot be singular at p (cf. Lemma 2.3 of [DJS]). Let
µ denote the degree of S, and let µ1 = S · E1, µ0 = S · Σ0, and µ2 = S · E2. It follows
that µ = µ2 + µ0 + µ1. Further, since fY : E2 → Σ0 → E1, we must have µ2 = µ0 = µ1.
Thus µ must be divisible by 3, and µ/3 = µ2 = µ0 = µ1. Now, since S is nonsingular at
p = Σβ ∩ Σγ , it must be transversal to either Σγ or Σβ .

Let us suppose first that S is transverse to Σγ at p. Then we have µ = µ2 + S · Σγ .
Thus S intersects Σγ − {p} with multiplicity µ − (µ/3) − 1. If µ > 3, then this number
is at least 2. Now Σγ is exceptional, fY is regular on Σγ − {p}, and fY(Σγ − {p}) = q.
We conclude that S is singular at q. This is not possible by Lemma 2.3 of [DJS] since q is
indeterminate for f−1. This is may also be seen because since (a, b) /∈

⋃

Vn, it follows that
fnq is an infinite orbit disjoint from the indeterminacy point p, which is a contradiction
since S can have only finitely many singular points.

Finally, suppose that S is transversal to Σβ . We have µ = S · Σβ + µ2, and by
transversality, this means that S intersects Σβ − {p} with multiplicity 2µ

3 − 1. On the
other hand, fY is regular on Σβ − {p}, and Σβ − {p} → E2. Thus the multiplicity of
intersection of S with Σβ − {p} must equal the multiplicity of intersection with E2, but
this is not consistent with the formulas unless µ = 3.

The following was motivated by [DJS]:

Theorem 1.2. Suppose that (a, b) ∈ Vn for some n ≥ 11. If S is an invariant algebraic
curve, then the degree of S is 3, and (1.1) holds.

Proof. Let X be the manifold π : X → P2 obtained by blowing up e1, e2, q, fq, . . . , f
nq =

p, and denote the blowup fibers by E1, E2, Q, fQ, . . . , f
nQ = P . Suppose that S is an

invariant curve of degree m. By S, Σ0, etc., we denote the strict transforms of these
curves inside X . Let fX be the induced automorphism of X , so S is again invariant for
fX , which we write again as f . Let us write the various intersection products with S as:
µ1 = S ·E1, µ0 = S ·Σ0, µ2 = S ·E2, µP = S ·P , µγ = S ·Σγ , µQ = S ·Q. Since e1, e2 ∈ Σ0,
we have

µ1 + µ0 + µ2 = m.

Now we also have
f : Σβ → E2 → Σ0 → E1

so µβ = µ2 = µ0 = µ1 = µ for some positive integer µ, and m = 3µ. Similarly, p, e2 ∈ Σβ,
so we conclude that µP + µβ + µ2 = m, and thus µP = µ. Following the backward orbit
of P , we deduce that S · f jQ = µ for all 0 ≤ j ≤ n.

Now recall that if L ∈ H1,1(P2,Z) is the class of a line, then the canonical class of
P2 is −3L. Thus the canonical class KX of X is −3L+

∑

E, where sum is taken over all
blowup fibers E. In particular, the class of S in H1,1(X ) is −µKX . Since we obtained X
by performing n+ 3 blowups on P2, the genus formula, applied to the strict transform of
S inside X , gives:

g(S) =
S · (S +KX )

2
+ 1 =

µ(µ− 1)

2
K2

X + 1 =
µ(µ− 1)

2
(9 − (3 + n)) + 1.

Now let ν denote the number of connected components of S (the strict transform inside
X ). We must have g(S) ≥ 1 − ν. Further, the degree 3µ of S must be at least as large as
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ν, which means that µ(µ− 1)(n− 6) ≤ 2ν ≤ 6µ and therefore µ ≤ 6/(n− 6) + 1. We have
two possibilities: (i) If n ≥ 13, then µ = 1, and S must have degree 3; (ii) if n = 11 or 12,
either µ = 1, (i.e., the degree of S is 3), or µ = 2. Let us suppose n = 11 or 12 and µ = 2.
From the genus formula we find that 5 ≤ ν ≤ 6. We treat these two cases separately.

Case 1. S cannot have 6 connected components. Suppose, to the contrary, ν = 6. First
we claim that S must be minimal, that is, we cannot have a nontrivial decompositionS =
S1∪S2, where S1 and S2 are invariant. By the argument above, S1 and S2 must be cubics,
and thus they must both contain all n + 3 ≥ 14 points of blowup. But then they must
have a common component, so S must be minimal.

Since the degree of S is 6, it follows that S is the union of 6 lines which map L1 →
L2 → · · · → L6 → L1. Further, each Li must contain exactly one point of indeterminacy,
since it maps forward to a line and not a quadric. Since the class of S in H1,1(X ) is −2KX ,
we see that e1, e2, p, q ∈ S with multiplicity 2. Without loss of generality, we may assume
that e1 ∈ L1, which means Σβ ∩ L1 6= ∅, and therefore e2 ∈ L2. Similarly q ∈ L3. Since
the backward image of L3 is a line, e1, e2 /∈ L3, and thus p ∈ L3, which gives Σ ∩ L3 6= ∅.
Continuing this procedure, we end up with L6 ∋ p, q. It follows that L1 = L4, L2 = L5,
and L3 = L6, so S has only 3 components.

Case 2. S cannot have 5 connected components. Suppose, to the contrary, that ν = 5.
It follows that S is a union of 4 lines and one quadric. Without loss of generality we may
assume that L1 → Q → L2 → L3. Since L1 maps to a quadric, it cannot contain a point
of indeterminacy, which means that L1 ∩ Σ0 6= ∅, L1 ∩ Σβ 6= ∅, and L1 ∩ Σγ 6= ∅. It
follows that e1, e2, q ∈ Q. On the other hand, since L2 maps to a quadric by f−1, we have
e1, e2, p ∈ Q, and e1, e2, q /∈ L2. Thus we have that Q ∩ Σ0 = {e1, e2}, Q ∩ Σβ = {e2, p},
and Q ∩ Σγ = {e1, p}. It follows that q /∈ L2, which means that L2 does not contain any
point of indeterminacy, and therefore L2 maps to a quadric.

Thus we conclude that S has degree 3, so we may write S = {h = 0} for some cubic
h. Since the class of S in H1,1(X ) is −3KX , we see that e1, e2, q ∈ S. Since these are the
images of the exceptional lines, the polynomial h ◦ f must vanish on Σ0 ∪ Σγ ∪ Σβ . Thus
jf divides h ◦ f , and since h ◦ f has degree 6, we must have (1.1).

Remarks. (a) From the proof of Theorem 1.2, we see that if S is an invariant curve, n ≥
11, then S contains e1, e2, and f jq, 0 ≤ j ≤ n. (b) The only positive entropy parameters
which are not covered in Theorem 1.2 are the cases n = 7, 8, 9, 10. By Proposition B.1, we
have Vn ⊂ Γ for 7 ≤ n ≤ 10.

Corollary 1.3. If S is f -periodic with period k, and if n ≥ 11, then S ∪ · · · ∪ fk−1S is
invariant and thus a cubic.

§2. Invariant Cubics. In this section, we identify the parameters (a, b) ∈ V for which
fa,b has an invariant curve, and we look at the behavior of fa,b on this curve. We define
the functions:

ϕ1(t) =

(

t− t3 − t4

1 + 2t+ t2
,

1 − t5

t2 + t3

)

,

ϕ2(t) =

(

t+ t2 + t3

1 + 2t+ t2
,
−1 + t3

t+ t2

)

, ϕ3(t) =
(

1 + t, t− t−1
)

,

(2.1)
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The proofs of the results in this section involve some calculations that are possible but
tedious to do by hand; but they are not hard with the help of Mathematica or Maple.

Theorem 2.1. Let t 6= 0,±1 with t3, t5 6= 1 be given. Then there is a homogeneous cubic
polynomial P satisfying (1.1) if and only if (a, b) = ϕj(t) for some 1 ≤ j ≤ 3. If this
occurs, then (up to a constant multiple) P is given by (2.2) below.

Proof. From the proof of Theorem 1.2, we know that P must vanish at e1, e2, q, p. Using
the conditions P (e1) = P (e2) = P (q) = 0, we may set

P [x0 : x1 : x2] =(−a2C1 + aC2)x
3
0 + C2x1x

2
0 + C3x2x

2
0 + C1x0x

2
1+

+ C4x2x
2
1 + C5x0x

2
2 + C6x1x

2
2 + C7x0x1x2

for some C1, . . . , C7 ∈ C. Since e1, e2, q ∈ {P = 0}, we have P ◦ f = jf · P̃ for some cubic

P̃ . A computation shows that

P̃ =(−ab2C1 + b2C2 + bC3 + aC5)x
3
0 + (−2abC1 + 2bC2 + C3)x1x

2
0+

(bC1 + C5 + aC6 + bC7)x2x
2
0 + (−aC1 + C2)x0x

2
1 + C1x2x

2
1 + (bC4 + C6)x0x

2
2+

+ C4x1x
2
2 + (2bC1 + C7)x0x1x2.

Now setting P̃ = tP and comparing coefficients, we get a system of 8 linear equations in
C1, . . . , C7 of the form

M · [x3
0, x1x

2
0, x2x

2
0, x0x

2
1, x0x

2
2, x0x1x2, x1x

2
2, x

2
1x2]

t = 0.

We check that there exist cubic polynomials satisfying (1.1) if and only if the two principal
minors of M vanish simultaneously, which means that

a+ abt+ abt4 − b2t4 − at5 + bt5 = 0

−1 + (1 − a− b)t+ (a+ b)t2 + b2t3 + b2t4 + (a− 2b)t5 + (1 − a+ 2b)t6 − t7 = 0

Solving these two equations for a and b, we obtain ϕj , j = 1, 2, 3 as the only solutions,
and then solving M = 0 we find that P must have the form:

Pt,a,b(x) =ax3
0(−1 + t)t4 + x1x2(−1 + t)t(x2 + x1t)

+ x0[2bx1x2t
3 + x2

1(−1 + t)t3 + x2
2(−1 + t)(1 + bt)]

+ x2
0(−1 + t)t3[a(x1 + x2t) + t(x1 + (−2b+ t)x2)]

(2.2)

which completes the proof.

Remark. In §A, we discuss maps in Vn, 0 ≤ n ≤ 6. These are maps with invariant
cubics, but (a, b) 6= ϕj(t). The invariant cubics transform according to (1.1), but the
transition factor t is a root of unity excluded in the hypotheses of Theorem 2.1.

If h satisfies (1.1), then we may define a meromorphic 2-form ηP on P2 by setting
ηh := dx∧dy

h(1,x,y) on the affine coordinate chart [1 : x : y]. Then ηh satisfies t f∗ηh = ηh. It
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follows that if the points {p1, . . . , pk} form a k-cycle which is disjoint from {h = 0}, then
the Jacobian determinant of f around this cycle will be t−k.

Let Γj = {(a, b) = ϕj(t) : t ∈ C} ⊂ V denote the curve corresponding to ϕj , and set
Γ := Γ1∪Γ2∪Γ3. Consistent with [DJS], we find that the cases Γj yield cubics with cusps,
lines tangent to quadrics, and three lines passing through a point.

Σ γ

βΣ

0Σ

0Σ

Figure 2.1. Orbit of q for family Γ1; 1 < t < δ⋆.

Γ1: Irreducible cubic with a cusp. To discuss the family Γ1, let (a, b) = ϕ1(t) for some
t ∈ C. Then the fixed points of fa,b are FPs = (xs, ys), xs = ys = t3/(1 + t) and
FPr = (xr, yr), xr = yr = (−1 + t2 + t3)/(t2 + t3). The eigenvalues of Dfa,b(FPs) are
{t2, t3}. The invariant curve is S = {Pt,a,b = 0}, with P as in (2.2). This curve S contains
FPs and FPr, and has a cusp at FPs. The point q belongs to S, and thus the orbit f jq
for all j until possibly we have f jq ∈ I. The 2-cycle and 3-cycle are disjoint from S, so
the multipliers in (B.1) must satisfy µ3

2 = µ2
3, from which we determine that Γ1 ⊂ V is a

curve of degree 6.

We use the notation δ⋆ for the real root of t3 − t − 1. Thus 1 ≤ λn < δ⋆, and the
λn increase to δ⋆ as n → ∞. The intersection of the cubic curve with RP2 is shown in
Figure 2.1. The exceptional curves Σβ and Σγ are used as axes, and we have chosen a
modification of polar coordinates so that Σ0, the line at infinity, appears as the bounding
circle of RP2. The points FPs/o, e1, e2, p, q, fq, f

2q, f3q all belong to S, and Figure 2.1
gives their relative positions with respect to the triangle Σβ,Σγ ,Σ0 for all 1 < t < δ⋆.
Since t > 1, the points f jq for j ≥ 4 lie on the arc connecting f4q and FPr, and f jq
approaches FPr monotonically along this arc as j → ∞. In case (a, b) belongs to Vn, then
fnq lands on p. The relative position of St with respect to the axes is stable for t in a large
neighborhood of [1, δ⋆]. However, as t increases to δ⋆, the fixed point FPr moves down to
p; and for t > δ⋆, FPr is in the third quadrant. And as t decreases to 1, f approaches the
(integrable) map (a, b) = (−1/4, 0) ∈ V6. The family V6 will be discussed in Appendix A.
When 0 < t < 1, the point FPs becomes attracting, and the relative positions of q and fq,
etc., are reversed. Figure 2.1 will be useful in explaining the graph shown in Figure 4.1.

Γ2: Line tangent to a quadric. Next we suppose that (a, b) = ϕ2(t). We let S = {Pt,a,b =
0} be the curve in (2.2). In this case, the curve is the union of a line L = {t2x0 +tx1 +x2 =
0} and a quadric Q. The fixed points are FPs = (xs, ys), xs = ys = −t2/(1 + t) and
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FPr = (xr, yr), xr, yr = (1 + t + t2)/(t + t2). The eigenvalues of Dfa,b at FPs are
{−t,−t2}. The 3-cycle and FPr are disjoint from S, so we have det(Dfa,bFPr)

3 − µ3 = 0
on Γ2, with µ3 as in (B.1). Extracting an irreducible factor, we find that Γ2 ⊂ V is a
quartic.

Σ γ

βΣ

0Σ

0Σ

Figure 2.2. Orbit of q for family Γ2; 1 < t < δ⋆.

Figure 2.2 gives for Γ2 the information analogous to Figure 2.1. The principal differ-
ence with Figure 2.1 is that S contains an attracting 2-cycle; there is a segment σ inside
the line connecting f3q to one of the period-2 points, and there is an arc γ ∋ p inside the
quadric connecting f4q to the other period-2 point. Thus the points f2j+1q will approach
the two-cycle monotonically inside σ as j → ∞, and the points f2jq will approach the
two-cycle monotonically inside γ. The picture of S with respect to the triangle Σβ ,Σγ,Σ0

is stable for t in a large neighborhood of [1, δ⋆]. As t increases to δ⋆, one of the points of
the 2-cycle moves down to p. As t decreases to 1, q moves up (and f2q moves down) to
e2 ∈ I, and fq moves down to Σ0. The case t = 1 is discussed in Appendix A.

Σ γ

βΣ

0Σ

0Σ

Figure 2.3. Orbit of q for family Γ3; 1 < t < δ⋆.

Γ3: Three lines passing through a point. Finally, set (a, b) = ϕ3(t), and let S = {Pt,a,b =
0} be given as in (2.2). The fixed points are FPs = (xs, ys), xs = ys = −t and FPr =
(xr, yr), xr = yr = 1+t−1. The invariant set S is the union of three lines L1 = {tx0 +x1 =
0}, L2 = {tx0 + x2 = 0}, L3 = {(t+ t2)x0 + tx1 + x2 = 0}, all of which pass through FPs.
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Further p, q ∈ L3 → L2 → L1. The eigenvalues of Dfa,b at FPs are {ωt, ω2t}, where ω
is a primitive cube root of unity. The 2-cycle and FPr are disjoint from S, so we have
det(Dfa,bFPr)

2 − µ2 = 0 on Γ2. Extracting an irreducible factor from this equation we
see that Γ3 ⊂ V is a quadric. Figure 2.3 is analogous to Figures 2.1 and 2.2; the lines L1

and L2 appear curved because of the choice of coordinate system.

Theorem 2.2. Suppose that n, 1 ≤ j ≤ 3, and t are given, and suppose that (a, b) :=
ϕj(t) /∈ Vk for any k < n. Then the point (a, b) belongs to Vn if and only if: j divides n
and t is a root of χn.

Proof. Let us start with the case j = 3 and set (a, b) = ϕ3(t). By the calculation above,
we know that S = L1 ∪L2 ∪L3 factors into the product of lines, each of which is invariant
under f3. L3 contains FPs and R = [t2 : −1 : t − t3 − t4], which is periodic of period 3.
We define ψ(ζ) = FPs + ζR, which gives a parametrization of L3; and the points ψ(0) and
ψ(∞) are fixed under f3. The differential of f3 at FPs was seen to be t3 times the identity,
so we have f3(ψ(ζ)) = ψ(t3ζ). Now set ζq := t2/(1 − t2 − t3) and ζp := t/(t3 − t − 1). It
follows that ψ(ζq) = q and ψ(ζp) = p. If n = 3k, then fnq = f3kq = p can hold if and only
if tnζq = t3kζq = ζp, or tn+2/(1− t2 − t3) = t/(t3 − t−1), which is equivalent to χn(t) = 0.

Next, suppose that j = 2 and let (a, b) = ϕ2(t). In this case the polynomial P given
in (2.2) factors into the product of a line L and a quadric Q. L contains FPs and the
point R = [t + t2 : t3 + t2 − 1 : −t], which has period 2. We parametrize L by the map
ψ(ζ) = FPs+ζR. Now f2 fixes FPs and R, and the differential of f2 has an eigenvalue t2 in
the eigenvector L, so we have f2ψ(ζ) = ψ(t2ζ). Since p, q ∈ Q, we have fq, f−1p ∈ L. We
see that ζq := t3/(1− t2− t3) and ζp := (t3− t−1)−1 satisfy ψ(ζq) = fq and ψ(ζp) = f−1p.
If n = 2k, then the condition fnq = f2kq = p is equivalent to the condition t2n−2ζq = ζp,
which is equivalent to χn(t) = 0.

Finally we consider the case j = 1 and set (a, b) = ϕ1(t). If we substitute these
values of (a, b) into the formula (2.2), we obtain a polynomial P (x) which is cubic in x
and which has coefficients which are rational in t. In order to parametrize S by C, we
set ψ(ζ) = FPs + ζA + ζ2B + ζ3FPr. We may solve for A = A(t) and B = B(t) such
that P (ψ(ζ)) = 0 for all ζ. Thus f fixes ψ(0) and ψ(∞), and f(ψ(ζ)) = ψ(tζ). We set
ζq := t2/(1 − t2 − t3) and ζp := t/(t3 − t − 1). The condition fnq = p is equivalent to
tnζq = ζp, or −tn+2/(t3 + t2 − 1) = t/(t3 − t− 1), or χn(t) = 0.

For each n, we let ψn(t) denote the minimal polynomial of λn.

Theorem 2.3. Let t 6= 1 be a root of χn for n ≥ 7. Then either t is a root of ψn, or t is
a root of χj for some 0 ≤ j ≤ 5.

Proof. Let t be a root of χn. It suffices to show that if t is a root of unity, then it is a root of
χj for some 0 ≤ j ≤ 5. First we note that χ6(t) = (t−1)3(t+1)(t2+t+1)(t4+t3+t2+t+1),
and χ7 = (t − 1)ψ7(t). Since every root of χ6 is a root of χj for some 0 ≤ j ≤ 5, and
the Theorem is evidently true for n = 7, then by induction it suffices to show that if
t is a root of unity, then it is a root of χj for some 0 ≤ j ≤ n − 1. By Theorem 2.2,
we see that χn(t) = 0 if and only if tnζq(t) = ζp(t), where ζq(t) = t2/(1 − t2 − t3) and
ζp(t) = t/(t3− t−1). Note that if t is a root of χn, then so is 1/t, and that ζq(t) = ζp(1/t).
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Claim 1: We may assume tn 6= ±1. Otherwise, from tnζq(t) = ζp(t) we have

t2(t3 − t− 1) ± t(t3 + t2 − 1) = 0.

In case we take “+”, the roots are also roots of χ0, and in case we take “−”, there are no
roots of unity.

Claim 2: If tk = 1 for some 0 ≤ k ≤ n− 1, then t is a root of χj for some 0 ≤ k − 1.
As in the proof of Theorem 2.2, the orbit of ζq is {ζq, tζq, . . . , t

k−1ζq}. Thus the condition
that tk = 1 means that fkq = p, so χk(t) = 0.

Claim 3: If tk = 1 for n+1 ≤ k ≤ 2n−1, then t is a root of χj for some 0 ≤ j ≤ k−n.
Since tnζq(t) = ζp(t), we have tk−nζp(t) = tkζq(t) = ζq(t). By our observations above,
ζq(1/t) = (1/t)k−nζp(1/t), and 0 ≤ k − n ≤ n − 1. It follows that 1/t is a root of χj for
some 0 ≤ j ≤ k − n, and thus t, too, is a root of χj .

Claim 4: If χn(t) = 0, then t is not a primitive k-th root of unity for any k > 2n.
Since tnζq(t) = ζp(t) we have ζq(1/t) = (1/t)k−nζp(1/t), and k − n > n. And 1/t is also a
root of χn, and therefore (1/t)k−2nζq(1/t) = ζp(1/t), and t is a (k − 2n)-th root of unity,
which contradicts our assumptions.

The following result gives the possibilities for the roots of χn(x)/ψn(x) ∈ Z[x].

Theorem 2.4. Let t 6= 1 be a root of χn with n ≥ 7. Then t is either a root of ψn, or t is
a root of some χj for 0 ≤ j ≤ 5. Specifically, if t is not a root of ψn, then it is a kth root
of unity corresponding to one of the following possibilities:
(i) k = 2, t+ 1 = 0, in which case 2 divides n;
(ii) k = 3, t2 + t+ 1 = 0, in which case 3 divides n;
(iii) k = 5, t4 + t3 + t2 + t+ 1 = 0, in which case n ≡ 1 mod 5;
(iv) k = 8, t4 + 1 = 0, in which case n ≡ 2 mod 8;
(v) k = 12, t4 − t2 + 1 = 0, in which case n ≡ 3 mod 12;
(vi) k = 18, t6 − t3 + 1 = 0, in which case n ≡ 4 mod 18;
(vii) k = 30, t8 + t7 − t5 − t4 − t3 + t+ 1 = 0, in which case n ≡ 5 mod 30.
Conversely, for each n ≥ 7 and k satisfying one of the conditions above, there is a corre-
sponding root t of χn which is a kth root of unity.

Proof. Recall that χn(t) = 0 if and only if tnζq(t) = ζp(t) by Theorem 2.2. If t is a k-th
root of unity, then k < n and χj(t) = 0 for some 0 ≤ j ≤ 5. In case j = 0, ζp(t) = ζq(t),
and (t+ 1)(t2 + t+ 1) = 0. Thus tnζq(t) = ζp(t) if and only if t+ 1 = 0 and 2 divides n,
or t2 + t+ 1 = 0 and 3 divides n. Now let us write kj = 5, 8, 12, 18, 30 for j = 1, 2, 3, 4, 5,
respectively, in case we have 1 ≤ j ≤ 5, tjζq(t) = ζp(t), and n ≡ j mod kj . Thus tnζq(t) =
ζp(t) if and only if n ≡ j mod kj . That is, tnζq(t) = (tkj )ntjζq(t) = tjζq(t) = ζp(t).

As a corollary, we see that the number of elements of Γj ∩ Vn is determined by the
number of Galois conjugates of λn.

Corollary 2.5. If n ≥ 7, and if 1 ≤ j ≤ 3 divides n, then

Γj ∩ Vn = {ϕj(t) : t is a root of ψn}.
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In particular, these sets are nonempty.

Theorem 2.6. If n ≥ 7, then every root of χn is simple. Thus the possibilities enumerated
in Theorem 2.4 give the irreducible factorization of χn.

Proof. If t is a root of χn, then either it is a root of ψn, which is irreducible, or it is one
of the roots of unity listed in Theorem 2.4. We have

χ′
n(t) = (n+ 4)tn+3 − (n+ 2)tn+1 − (n+ 1)tn + 3t2 + 2t.

Since χ′
n(1) = 6 − n, 1 is a simple root. Now we check all the remaining cases:

(i) 2 divides n : t+ 1 = 0 ⇒ χ′
n(t) = −2 − n 6= 0.

(ii) 3 divides n : t2 + t+ 1 = 0 ⇒ χ′
n(t) = 3t2 − nt+ 3 6= 0.

(iii) n ≡ 1 (mod 5) : t4 + t3 + t2 + t+1 = 0 ⇒ χ′
n(t) = (n+4)t4 − (n− 1)t2 − (n− 1)t 6= 0.

(iv) n ≡ 2 (mod 8) : t4 + 1 = 0 ⇒ χ′
n(t) = −(n+ 2)t3 − (n− 2)t2 − (n+ 2)t 6= 0.

(v) n ≡ 3 (mod 12) : t4 − t2 + 1 = 0 ⇒ χ′
n(t) = −(n+ 1)t3 − (n− 1)t2 + 2t− 2 6= 0.

(vi) n ≡ 4 (mod 18) : t6 − t3 + 1 = 0 ⇒ χ′
n(t) = −(n+ 2)t5 + 3t4 + 3t2 − (n+ 2)t 6= 0.

(vii) n ≡ 5 (mod 30) : t8 + t7 − t5 − t4 − t3 + t+ 1 = 0 ⇒
χ′

n(t) = (n+ 4)t8 − (n+ 2)t6 − (n+ 1)t5 + 3t2 + 2t 6= 0.

Example. The number n = 26 corresponds to cases (i), (iii), and (iv), so we see that
χ26 = (t− 1)(t+ 1)(t4 + 1)(t4 + t3 + t2 + t+ 1)ψ26, so ψ26 has degree 20.

§3. Surfaces without Anti-PluriCanonical Section. A curve S is said to be a pluri-
anticanonical curve if it is the zero set of a section of Γ(X , (−KX )⊗n) for some n > 0. We
will say that (X , f) is minimal if whenever π : X → X ′ is a birational morphism mapping
(X , f) to an automorphism (X ′, f ′), then π is an isomorphism. Gizatullin conjectured that
if X is a rational surface which has an automorphism f such that f∗ has infinite order on
Pic(X ), then X should have an anti-canonical curve. Harbourne [H] gave a counterexample
to this, but this counterexample is not minimal, and f has zero entropy.

Proposition 3.1. Let X be a rational surface with an automorphism f . Suppose that X
admits a pluri-anticanonical section. Then there is an f -invariant curve.

Proof. Suppose there is a pluri-anticanonical section. Then Γ(X , (−KX )⊗n) is a nontrivial
finite dimensional vector space for some n > 0, and f induces a linear action on this space.
Let η denote an eigenvalue of this action. Since X is a rational surface, S = {η = 0} is a
nontrivial curve, which must be invariant under f .

The following answers a question raised in [M2, §12].

Theorem 3.2. There is a rational surface X and an automorphism f of X with positive
entropy such that (X , f) is minimal, but there is no f -invariant curve. In particular, there
is no pluri-canonical section.

Proof. We consider (a, b) ∈ V11. Suppose that (Xa,b, fa,b) has an invariant curve S. Then
by Theorem 1.2, S must be a cubic. By Theorem 2.2., then we must have (a, b) ∈ Γ1. That
is, (a, b) = ϕ1(t) for some t. By Theorem 2.4, t is a root of the minimal polynomial ψ11. By
Theorem 2.6, ψ11(t) = χ11(t)/((t−1)(t4+t3+t2+t+1)) has degree 10, so V11∩Γ1 contains

10



10 elements. However, there are 12 elements in V11 − Γ1; a specific example is given in
Appendix B. Each of these gives an automorphism (Xa,b, fa,b) with entropy logλ11 > 0
and with no invariant curve. Since X11 was obtained by starting with P2 and blowing up
the minimal set necessary to remove singularities, it is evident that (Xa,b, fa,b) is minimal.
The nonexistence of an pluri-anticanonical section follows from Proposition 3.1.

Remark. By Proposition B.1 we cannot take n ≤ 10 the proof of Theorem 3.2.

§4. Rotation (Siegel) Domains. Given an automorphism f of a compact surface
X , we define the Fatou set F to be the set of normality of the iterates {fn : n ≥ 0}.
Let D be an invariant component of F . We say that D is a rotation domain if fD is
conjugate to a linear rotation (cf. [BS1] and [FS]). In this case, the normal limits of
fn|D generate a compact abelian group. In our case, the map f does not have finite
order, so the iterates generate a torus Td, with d = 1 or d = 2. We say that d is the
rank of D. The rank is equal to the dimension of the closure of a generic orbit of a
point of D. McMullen [M2] showed that if n ≥ 8 there are rank 2 rotation domains
centered at FPr in the family Γ2 ∩ Vn (if 2 divides n) and Γ3 ∩ Vn (if 3 divides n).

Figure 4.1. Orbits of three points in the rank 1 rotation domain
containing FPs; (a, b) ∈ V7 ∩ Γ1. Two projections.

Theorem 4.1. Suppose that n ≥ 7, j divides n, and (a, b) ∈ Γj∩Vn. That is, (a, b) = ϕj(t)
for some t ∈ C. If t 6= λn, λ

−1
n is a Galois conjugate of λn, then fa,b has a rotation domain

of rank 1 centered at FPs.

Proof. There are three cases. We saw in §1 that the eigenvalues of Dfa,b at FPs are
{t2, t3} if j = 1; they are {−t,−t2} if j = 2 and {ωt, ω2t} if j = 3. Since λn is a Salem
number, the Galois conjugate t has modulus 1. Since t is not a root of unity, it satisfies
the Diophantine condition

|1 − tk| ≥ C0k
−ν (4.1)

for some C0, ν > 0 and all k ≥ 2. This is a classical result in number theory. A more
recent proof (of a more general result) is given in Theorem 1 of [B]. We claim now that if
η1 and η2 are the eigenvalues of Dfa,b at FPs, then for each m = 1, 2, we have

|ηm − ηj1
1 η

j2
2 | ≥ C0(j1 + j2)

−ν (4.2)
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for some C0, η > 0 and all j1 + j2 ≥ 2. There are three cases to check: Γj , j = 1, 2, 3. In

case j = 1, we have that ηm − ηj1
1 η

j2
2 is equal to either t2 − t2j1+3j2 = t2(1 − t2(j1−1)+3j2)

or t3 − t2j1+3j2 = t3(1− t2j1+3(j2−1)). Since j1 + j2 > 1, we see that (4.2) is a consequence
of (4.1). In the case j = 2, Df2 has eigenvalues {t2, t4}, and in the case j = 3, Df3 has
eigenvalues {t3, t3}. In both of these cases we repeat the argument of the case j = 1. It
then follows from Zehnder [Z2] that fa,b is holomorphically conjugate to the linear map
L = diag(η1, η2) in a neighborhood of FPs.

Figure 4.2. f2-orbits of three points in the rank 1 rotation domain
containing FPs; (a, b) ∈ V8 ∩ Γ2. Two projections.

Remark. Now let us discuss the other fixed point. Suppose that (a, b) ∈ Γ1 ∩ Vn and
{η1, η2} are the multipliers at FPr. As was noted in the proof above, t satisfies (4.1), and
so by Corollary B.5, both η1 and η2 satisfy (4.1). On the other hand, the resonance given
by Theorem B.3 means that they do not satisfy (4.2), and thus we cannot conclude directly
that f can be linearized in a neighborhood of FPr. However, by Pöschel [P], there are
holomorphic Siegel disks (of complex dimension one) sj : {|ζ| < r} → Xa,b, j = 1, 2, with
the property that s′j(0) is the ηj eigenvector, and f(sj(ζ)) = sj(ηjζ). We note that one
of these Siegel disks will lie in the invariant cubic itself. And by Theorem B.4 there are
similar resonances between the multipliers for the 2- and 3-cycles, and thus similar Siegel
disks, in the cases Γ2 ∩ Vn and Γ3 ∩ Vn respectively.

Remark. For each n ≥ 7 and each divisor 1 ≤ j ≤ 3 of n, the only values of (a, b) ∈
Vn ∩Γj to which Theorem 4.1 does not apply are the two values ϕj(λn) and ϕj(λ

−1
n ). For

all the other maps in Vn ∩ Γ, the Siegel domain D ∋ FPs is a component of both Fatou
sets F(f) and F(f−1). For instance, if j = 1, then f is conjugate on D to the linear map
(z, w) 7→ (t2z, t3w). Thus, in the linearizing coordinate, the orbit of a point of D will be
dense in the curve {|z| = 1, w2 = cz3}, for some r and c. In particular, the closure of the
orbit bounds an invariant (singular) complex disk. Three such orbits are shown in Figure
4.1. Similarly, if j = 2, then f2 is conjugate on D to (z, w) 7→ (t2z, t4w). Thus the f2-orbit
of a point D, shows in Figure 4.2, will be dense in the boundary of {|z| = r, w = cz2}. The
whole f -orbit will be (dense in) the union of two such curves.

Corollary 4.2. If n, j, and (a, b) are as in Theorem 4.1, and if j = 2 or 3, then fa,b has
(at least) two rotation domains.
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Proof. Theorem 4.1 gives a rank 1 rotation domain centered at FPs. If j = 2 or 3, then
FPr is not contained in the invariant cubic, and McMullen [M2] gives a rank 2 rotation
domain centered at FPr.

§5. Real Mappings of Maximal Entropy. Here we consider real parameters (a, b) ∈
R2∩Vn for n ≥ 7. Given such (a, b), we let XR denote the closure of R2 inside Xa,b. We let
λn > 1 be the largest root of χn, and for 1 ≤ j ≤ 3, we let fj,R denote the automorphism
of XR obtained by restricting fa,b to XR, with (a, b) = ϕj(λn).

Σ γ

βΣ

Figure 5.1. Graph G1; Invariant homology class for family Γ1.

Theorem 5.1. There is a homology class η ∈ H1(XR) such that f1,R∗η = −λnη. In
particular, f1,R has entropy logλn.

Proof. We use an octagon in Figure 5.1 to represent XR. Namely, we start with the
real projective plane RP2; we identify antipodal points in the four “slanted” sides. The
horizontal and vertical pairs of sides of the octagon represent the blowup fibers over the
points e1 and e2. These are labeled E1 and E2; the letters along the boundary indicate the
identifications. (Since we are in a blowup fiber, the identification is no longer “antipodal.”)
Further, the points f jq (written “j”) 0 ≤ j ≤ n, are blown up, although we do not draw
the blowup fibers explicitly. To see the relative positions of “j” with respect to the triangle
Σβ ,Σγ,Σ0, consult Figure 2.1. The 1-chains of the homology class η are represented by
the directed graph G1 inside the manifold XR. If we project XR down to the projective
plane, then all of the incoming arrows at a center of blowup “j” will be tangent to each
other, as well as the outgoing arrows.

In order to specify the homology class η, we need to assign real weights to each edge of
the graph. By “51” we denote the edge connecting “5” and “1”; and “170 = 1a70” denotes
the segment starting at “1”, passing through “a”, continuing through “7”, and ending at
“0”. Abusing notation, also write “51”, etc., to denote the weight of the edge, as well
as the edge itself. We determine the weights by mapping η forward. We find that, upon
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mapping by f , the orientations of all arcs are reversed. Let us describe how to do this.
Consider the arc “34”=“3e4”. The point “e” belongs to Σ0, and so it maps to E1. Thus
“34” is mapped to something starting at “4”, passing through E1, and then continuing to
“5”. Thus we see that “34” is mapped (up to homotopy) to “4f05”. Thus, the image of
“34” covers “04” and “05”.

Inspection shows that no other arc maps across “04”, so we write “04 → 34” to
indicate that the weight of side “04” in f∗η is equal to the weight of “34”. Inspecting the
images of all the arcs, we find that “24” also maps across “05”, so we write “05 → 24+34”
to indicate how the weights transform as we push G1 forward. Looking at all possible arcs,
we write the transformation η 7→ f∗η as follows:

02 → 16 + 170 + · · ·+ 1(n− 1)0, 03 → 24 + 25 + 26, 04 → 34,

05 → 24 + 34, 06 → 25, 12 → 1n0, 13 → 02, 14 → 03,

15 → 04, 16 → 05, 170 → 06, 1k0 → 1(k − 1)0, 7 < k ≤ n,

23 → 12, 24 → 13, 25 → 14, 26 → 15, 34 → 23,

(5.1)

The formula (5.1) defines a linear transformation on the space of coefficients of the 1-
chains defining η. The spectral radius of the transformation (5.1) is computed in Appendix
C, where we find that it is λn. Now let w denote the eigenvector of weights corresponding
to the eigenvalue λn. It follows that if we assign these weights to η, then by construction
we have f1,R∗η = −λnη, and η is closed.

Remark. Let us compare with the situation for real Hénon maps. In [BLS] it was shown
that a real Hénon map has maximal entropy if and only if all periodic points are real. On
the other hand, if (a, b) = ϕ1(t), 1 ≤ t ≤ 2, the (unique) 2-cycle of the map fa,b is non-real.
This includes all the maps discussed in Theorem 5.1, since all values of t = λn are in this
interval.

Theorem 5.2. The maps f2,R (if n is even) and f3,R (if n is divisible by 3) have entropy
logλn.

Proof. Since the entropy of the complex map f on X is log λn, the entropies of f2,R and
f3,R are bounded above by logλn. In order to show that equality holds for the entropy of
the real maps, it suffices by Yomdin’s Theorem [Y] (see also [G]) to show that fj,R expands
lengths by an asymptotic factor of λn. We will do this by producing graphs G2 and G3

on which f has this expansion factor. We start with the case n = 2k; the graph G2 is
shown in Figure 5.2, which should be compared with Figure 2.2. Note that as drawn in
Figure 5.2, G2 looks something like a train track in order to show how it is to be lifted to
a graph in XR. We use the notation 01 = 0d1 for the edge in G2 connecting “0” to “1” by
passing through d. In this case, the notation already defines the edge uniquely; we have
added the d by way of explanation. Now we discuss how these arcs are mapped. The arc
01 crosses Σβ and then E2 ∋ d before continuing to “1”. Since Σβ is mapped to E2 and
E2 is mapped to Σ0, the image of 01 will start at “1” and cross E2 and then Σ0 before
reaching “2”. Up to homotopy, we may slide the intersection points in E2 and Σ0 over to
a point g ∈ E2 ∩ Σ0. Thus, up to homotopy, f maps the edge 01 in G2 to the edge 1g2.
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Σ γ

βΣ

Figure 5.2. Invariant graph G2: n = 2k.

Σ γ

βΣ

Figure 5.3. Invariant graph G3: n = 3k.

Similarly, we see that the arcs 04, 06, . . . , 0(2k − 1) all cross Σβ and then Σγ . Thus
the images of all these arcs will start at 1, pass through E2 at d, then 0, and continue
to the respective endpoints 5, 7, . . . , (2k − 1). Since the images of all these arcs, up to
homotopy, contain the edge 01, the transformation of weights in the graph is given by the
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first entry of (5.2), and the whole transformation is given by the rest of (5.2):

01 → 04 + 061 + 081 + · · ·+ 0(2k − 1)1, 03 → 25 + 072 + 092 + · · ·+ 0(2k − 1)2

04 → 3c4, 061 → 25 + 45, 12 → 0(2k)1, 1g2 → 01, 14 → 03

0(2j)1 → 0(2j − 1)2, j = 4, 5, . . . , k, 0(2j + 1)2 → 0(2j)1, j = 3, 4, . . . , k − 1

2a3 → 12, 2e3 → 1g2, 25 → 14, 3c4 → 2e3, 34 → 2a3, 45 → 34.
(5.2)

The characteristic polynomial for the transformation defined in (5.2) is computed in the
Appendix, and the largest eigenvalue of (5.2) is λn, so f2,R has the desired expansion.

The case n = 3k is similar. The graph G3 is given in Figure 5.3. Up to homotopy,
f3,R maps the graph G3 to itself according to:

01 → 04, 02 → 13 + 162 + 192 + · · ·+ 1(3k − 3)2,

04 → 3a4 + 073 + 0(10)3 + · · ·+ 0(3k − 2)3, 051 → 04 + 3c4 + 3a4,

0(3j − 1)1 → 0(3j − 2)3, j = 3, 4, . . . , k, 1(3j)2 → 0(3j − 1)1, j = 2, 3, . . . , k,

0(3j + 1)3 → 1(3j)2, j = 2, 3, . . . , k − 1,

12 → 01, 13 → 02, 23 → 1(3k)2, 2d3 → 12, 3a4 → 23, 3c4 → 2d3.

(5.3)

The linear transformation corresponding to (5.3) is shown in Appendix C to have spectral
radius equal to λn, so f3,R has entropy logλn.

§6. Proof of the Main Theorem. The Main Theorem is a consequence of results we
have proved already. Let fa,b be of the form (0.1). By Proposition B.1, we may suppose
that n ≥ 11. Thus if f has an invariant curve, then by Theorem 1.2, it has an invariant
cubic, which is given explicitly by Theorem 2.1. Further, by Theorem 2.2, we must have
(a, b) = ϕj(t) for some j dividing n, and a value t ∈ C which is a root of χn. By Theorem
2.4, t cannot be a root of unity. Thus it is a Galois conjugate of λn. The Galois conjugates
of λn are of two forms: either t is equal to λn or λ−1

n , or t has modulus equal to 1.
In the first case, (a, b) ∈ V ∩R2, and thus f is a real mapping. The three possibilities

are (a, b) ∈ Vn ∩ Γj , j = 1, 2, 3, and these are treated in §5. In all cases, we find that the
entropy of the real mapping fR,j has entropy equal to logλn. By Cantat [C2], there is a
unique measure µ of maximal entropy for the complex mapping. Since fR,j has a measure
ν of entropy logλn, it follows that µ = ν, and thus µ is supported on the real points. On
the other hand, we know that µ is disjoint from the Fatou sets of f and f−1. McMullen
[M2] has shown that the complement of one of the Fatou sets F(f) or F(f−1) has zero
volume. The same argument shows that the complement inside R2 has zero area. Thus
the support of µ has zero planar area.

The other possibility is that t has modulus 1. In this case, the Main Theorem is a
consequence Theorem 4.1.

Appendix A. Varieties Vj and Γ for 0 ≤ j ≤ 6. The sets Vj , 0 ≤ j ≤ 6 are
enumerated in [BK]. We note that V0 = (0, 0) ⊂ Γ2 ∩ Γ3, V1 = (1, 0) ⊂ Γ1, V2 ⊂ Γ1 ∩ Γ2,
V3 ⊂ Γ1 ∩ Γ3, and (V4 ∪ V5) ∩ Γ = ∅.
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Each of the mappings in V6 has an invariant pencil of cubics; any of these cubics,
including nodal cubics and elliptic curves, can be used to synthesize the map, following
[M2, §7]. There are two cases: the set V6 ∩ {b 6= 0} (consisting of four points) is contained
in Γ2 ∩ Γ3. The other case, V6 ∩ {b = 0} = {(a, 0) : a 6= 0, 1}, differs from the cases Vn,
n 6= 0, 1, 6, because the manifold Xa,0 is constructed by iterated blowups (f4q ∈ E1 and
f2q ∈ E2, see [BK, Figure 6.2]).

The invariant function r(x, y) = (x+ y+ a)(x+ 1)(y+ 1)/(xy) for fa,0, which defines
the invariant pencil, was found by Lyness [L] (see also [KLR], [KL], [BC] and [Z1]). We
briefly describe the behavior of fa,0. By Mκ = {r = κ} we denote the level set of r inside
Xa,0. The curve M∞ consists of an invariant 5-cycle of curves with self-intersection −2:

Σβ = {x = 0} 7→ E2 7→ Σ0 7→ E1 7→ ΣB = {y = 0} 7→ Σβ .

The restriction of f5 to any of these curves is a linear (fractional) transformation, with
multipliers {a, a−1} at the fixed points. M0 consists of a 3-cycle of curves with self-
intersection −1: {y + 1 = 0} 7→ {x + 1 = 0} 7→ {x + y + a = 0}. The restriction of f3

to any of these lines is linear (fractional) with multipliers {a − 1, (a − 1)−1} at the fixed
points.

Theorem A.1. Suppose that a /∈ {−1
4 , 0,

3
4 , 1, 2}, and κ 6= 0,∞. If Mκ contains no fixed

point, then Mκ is a nonsingular elliptic curve, and f acts as translation on Mκ. If Mκ

contains a fixed point p, then Mκ has a node at p. If we uniformize s : Ĉ → Mκ so that
s(0) = s(∞) = p, then f |Mκ

is conjugate to ζ 7→ αζ for some α ∈ C∗.

The intersection Γj ∩ {b = 0} ∩ V6 is given by (−1
4
, 0), ( 3

4
, 0), or (0, 2), if j = 1, 2, or

3, respectively.

Theorem A.2. Suppose that a = −1
4 ,

3
4 , or 2. Then the conclusions of Theorem A.1

hold, with the following exception. If FPs ∈Mκ, then Mκ is a cubic which has a cusp at
FPs, or is a line and a quadratic tangent at FPs, or consists of three lines passing through
FPs. If we uniformize a component s : Ĉ → Mκ such that s(∞) = FPs, then f j|Mκ

is
conjugate to ζ 7→ ζ + 1, where j is chosen so that (a, 0) ∈ Γj .

Appendix B. Varieties Vn and Γ for n ≥ 7. We may define the domains Vn explicitly
by starting with the equation fn

a,b(−a, 0)+(b, a) = 0 and clearing denominators to convert
it to a pair of polynomial equations with integer coefficients in the variables a and b. Thus
we have a pair of polynomial equations whose solutions contain Vn. Factoring and taking
resultants, we may obtain an upper estimate on the number of elements in Vn. In this way,
we find that #V7 ≤ 10. On the other hand, by Theorem 2.6, χ7(x) = (x − 1)ψ7(x), and
ψ7 has degree 10. So by Theorem 2.5, #(V7 ∩ Γ1) = 10, and we conclude that V7 ⊂ Γ1.
Arguing in this manner, we obtain

Proposition B.1. V7 ⊂ Γ1, V8 ∪ V10 ⊂ Γ1 ∪ Γ2, and V9 ⊂ Γ1 ∪ Γ3.

Examples. When n > 10, the sets Vn exhibit quite a number of maps without invariant
curves. By Theorems 2.4 and 2.6, Γ1∩V11 = Γ∩V11 contains 10 elements. Using resultants,
we find that V11 contains 22 elements, and so #V11 − Γ = 12. For instance, there is a
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parameter (a, b) ≈ (.206286 − .00427394i,−.00802592 + .604835i) ∈ V11 − Γ. All periodic
points of fa,b with period ≤ 7 are saddles; by the Main Theorem this behavior is different
from what happens with elements of Γ ∩ Vn.

Similarly, V12 contains 60 elements: #Γj ∩V12 = 12 for j = 1, 2, 3, and #V12−Γ = 24.
There is a parameter (a, b) ≈ (.586092 + .739242i, .061427− .940666i) ∈ V12 for which fa,b

has both an attracting fixed point and a repelling 5-cycle; such behavior can not come
from an element of Γ ∩ V12.

We note that the parameter values (ā, b̄), (a − b,−b), and (ā − b̄,−b̄), corresponding
to complex conjugate of fa,b and taking inverse, or both, also belong to Vn. Thus each of
the examples above actually corresponds to four parameter values.

A map fa,b has a unique 2-cycle and a unique 3-cycle. For ℓ = 2, 3, we let Jℓ denote
the product of the Jacobian matrix around the ℓ-cycle.

Theorem B.2. For ℓ = 2, 3, the determinant µℓ of Jℓ is given by

µ2 =
a− b− 1

2b2 + a− 1
, µ3 =

1 + b+ b2 − a− ab

1 − a− ab
(B.1)

and the trace τℓ is given by

τ2 =
3 − 2a+ b− b2

2b2 + a− 1
, τ3 =

2 + a2 + b+ 2b2 − b3 + b4 + a(−2 − b+ 2b2)

−1 + a− ab
. (B.2)

Proof. The proof of the 2-cycle case is simpler and omitted. We may identify a 3-cycle
with a triple of numbers z1, z2, z3:

ζ1 = (z1, z2) 7→ ζ2 = (z2, z3 =
a+ z2
b+ z1

) 7→ ζ3 = (z3, z1 =
a+ z3
b+ z2

) 7→ ζ1 = (z1, z2 =
a+ z1
b+ z3

).

Substituting into this 3-cycle, we find that z1, z2, z3 are the three roots of

P3(z) = z3 + (1 + a+ b+ b2)z2 + (b3 + ab+ 2a− 1)z − 1 + a− b+ ab− b2.

It follows that
z1 + z2 + z3 = −(1 + a+ b+ b2)

z1z2 + z1z3 + z2z3 = −1 + 2a+ ab+ b3

z1z2z3 = 1 − a+ b− ab+ b2
(B.3)

Since

Dfa,b(ζ1 = (z1, z2)) =

(

0 1
− a+z2

(b+z1)2
1

b+z1

)

=

(

0 1
−z3

b+z1

1
b+z1

)

,

the determinant of Dfa,b(ζ1) = z3/(b+ z1), and therefore

µ3 =
z2

b+ z3

z1
b+ z2

z3
b+ z1

=
z1z2z3

(b+ z3)(b+ z2)(b+ z1)
.

Using equations (B.3) we see that (b+ z1)(b+ z2)(b+ z3) = 1− a+ ab so µ3 has the form
given in (B.1).

Similarly, we compute

Tr(J3) = −
−1 + b(z1 + z2 + z3) + z2

1 + z2
2 + z2

3

(b+ z1)(b+ z2)(b+ z3)
.

Using (B.3) again, we find that τ3 is given in the form (B.2).
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A computation shows the following:

Theorem B.3. Suppose that (a, b) = ϕ1(t) ∈ Vn ∩ Γ1, n ≥ 7. Then the eigenvalues of
Df at FPr are given by {η1 = 1/t, η2 = −(t3 + t2 − 1)/(t4 − t2 − t)}, where t is a root of
ψn. Further, ηn

1 η2 = 1.

In the previous theorem, the fixed point FPr is contained in the invariant curve. If
ℓ divides n, for ℓ = 2 or 3, then the ℓ-cycle is disjoint from the invariant curve. Thus we
have:

Theorem B.4. Suppose ℓ = 2 or 3 and n = kℓ ≥ 7. If (a, b) = ϕℓ(t) ∈ Vn ∩ Γℓ, then the
eigenvalues of the ℓ-cycle are {η1 = t−ℓ, η2 = −tℓ−1(t3 + t2 − 1)/(t3 − t − 1)}. Further,
ηn+1
1 η2 = 1.

Corollary B.5. If t = λn or λ−1
n , then the cycles discussed in Theorems B.3 and B.4 are

saddles. If t has modulus 1, then the multipliers over these cycles have modulus 1 but are
not roots of unity.

Appendix C. Computation of Characteristic Polynomials.

Theorem C.1. If χn is as in (0.3), and n ≥ 7, then
(i) The characteristic polynomial for (5.1) is (x7 + 1)χn(x)/(x2 − 1);
(ii) The characteristic polynomial for (5.2) is (x5 − 1)χ2k(x)/(x2 − 1);
(iii) The characteristic polynomial for (5.3) is (x4 − 1)χ3k(x)/(x3 − 1).

Proof. We start with case (i). Since the case n = 7 is easily checked directly, it suffices
to prove (i) for n ≥ 8. Let us use the ordered basis:

{12, 23, 34, 04, 15, 26, 03, 14, 25, 05, 16, 02, 13, 24, 06, 170, 180, . . . , 1n0},

and let M = (mi,j) denote the matrix which represents the transformation η 7→ f∗η defined
in (4.1), i.e., we set mi,j = 1 if the i-th basis element in our ordered basis maps to the
j-th basis element, and 0 otherwise. To compute the characteristic polynomial of M , we
expand det(M − xI) by minors down the last column. We obtain

det(M − xI) = −xMn+9,n+9 + (−1)nM1,n+9, (C.1)

where we use the notation Mi,j for the i, j-minor of the matrix M − xI. To evaluate
Mn+9,n+9 and M1,n+9, we expand again in minors along the last column to obtain

Mn+9,n+9 = −x det m̂1 + (−1)n det m̂2, M1,n+9 = det m̂3,

where m̂1 =

(

A1 0
0 A2(n)

)

, m̂2 =

(

B1 ∗
0 B2(n)

)

, and m̂3 =

(

C1 ∗
0 C2(n)

)

. Here A1,

B1, and C1 do not depend on n, and A2(n), B2(n), and C2(n) are triangular matrices of
size (n− 7) × (n− 7), (n− 8) × (n− 8) and (n− 8) × (n− 8) of the form

A2(n) =





−x 0 0

∗
. . . 0

∗ ∗ −x



 , B2(n) =





1 + x ∗ ∗

0
. . . ∗

0 0 1 + x



 , C2(n) =





1 ∗ ∗

0
. . . ∗

0 0 1



 .
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Thus
detA2(n) = (−x)n−7, detB2(n) = (1 + x)n−8, and detC2(n) = 1. (C.2)

Since A1, B1, and C1 do not depend on n, we may compute them using the matrix M
from the case n = 8 to find

detA1 = −x6(x8 − x5 − x3 + 1), detB1 = −x8, and detC1 = x5 + x3 − 1. (C.3)

Using (C.2) and (C.3) we find that the characteristic ploynomial of M is equal to

(−1)n
[

x9(x+ 1)n−8 − xn+1(x8 − x5 − x3 + 1) + x5 + x3 − 1
]

= (x7 − 1)χn(x)/(x2 − 1),

which completes the proof of (i).
For the proof of (ii), we use the ordered basis

{12, 2a3, 34, 45, 1g2, 2e3, 3c4, 04, 01, 03, 14, 25, 061, 072, 081, . . . , 0(2k − 1)2, 0(2k)1},

and for (iii) we use the ordered basis

{23, 3a4, 015, 13, 01, 12, 2d3, 3c4, 02, 04, 162, 073, 081, 192, . . . , 0(3k − 1)1, 1(3k)2}.

Otherwise, the proofs of cases (ii) and (iii) are similar. We omit the details.
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