
AUTOMORPHISM 2-GROUP OF A WEIGHTED PROJECTIVE

STACK

BEHRANG NOOHI

Abstract. For a given sequence of positive integers (n0, · · · , nr) we define
the weighted projective general linear 2-group PGL(n0, · · · , nr) as a crossed-

module in the category of schemes and show that it is a model for (i.e is natu-
rally homotopy equivalent to) the gr-stack of self-equivalences of the weighted
projective stack of weight (n0, · · · , nr). We also give an explicit description of
the structure of PGL(n0, · · · , nr).

1. Introduction

To study group actions on stacks is an intricate task. That is because most
actions that arise in nature are weak actions. This means, given element g, h in
our (discrete) group G, the action of gh on our stack X is not strictly equal to the
composition of the actions of g and h, but only 2-isomorphic to it, and such 2-
isomorphisms are required to satisfy certain coherence conditions. In other words,
an action of G on X is the same as a weak morphism of 2-groups G → Aut X. (In
fact the latter is a pseudo 2-group, but we will not get into that for the moment.)
Furthermore, there is a notion of transformation between two such actions, and
every two actions that are related by a transformation should be regarded as the
“same”. This makes the study of group actions on stacks quite tricky. Things
get even more complicated when one wants to study actions of group schemes (or
2-group schemes) on stacks.

To bring the situation under control, one needs to use certain homotopy theoretic
tools in order to strictify the weak actions in a computable manner. In the case of
discrete group actions, a machinery for handling this problem has been developed
in [No3].1 In favorable situations, this machinery enables us to lift weak actions of
a group G on a stack X to strict actions of an extension H of G on a scheme X
sitting above X.

To be able to run the machinery developed in [No3], the required input is a
crossed-module (which is essentially the same thing as a strict 2-group) model for
the pseudo 2-group of self-equivalences of the stack in question.

In the case of a weighted projective stacks over C, such a model was introduced
in [BeNo] and it was called a weighted projective general linear 2-group. Combined
with the covering theory developed in [No1], it was used to give a classification of
smooth Deligne-Mumford analytic curves by their uniformization types, and also
to give an explicit presentation of such stacks as quotient stacks.

The purpose of this paper is to study self-equivalences of a weighted projective
stack over an arbitrary base scheme and produce the corresponding crossed-module
in full generality. We define a weighted projective general linear 2-group scheme

1The general case is the subject of a future paper.
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over a given base scheme, and show that it models the gr-stack of self-equivalences
of the corresponding weighted projective stack. We then go on to make explicit
the structure of the weighted projective general linear 2-group schemes. This will
enable one to study weak actions of group schemes (or 2-group schemes, for that
matter) on weighted projective stacks in an explicit fashion.

Acknowledgment. I would like to thank A. Vistoli and M. Olsson for their useful
comments.
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2. Notation and terminology

Our notation for 2-groups and crossed-modules is that of the papers [No2] and
[No3], to which the reader is referred to for more on 2-group theory relevant to this
work. In particular, we use mathfrak letters G, H for 2-groups or crossed-modules.

For us a stack is a presheaf of groupoids (and not a category fibered in groupoids)
over a Grothendieck site which satisfies the decent condition. We use mathcal letters
X, Y,... to denote stacks.

Given a presheaf of groupoids X over a site, its stackification is denoted by Xa.
We use the same notation for the sheafification of a presheaf of sets (or groups).

The mth general linear group scheme over Spec R is denoted by GL(m, R). When
R = Z, this is abbreviated to GL(m). The corresponding projectivized general
linear group scheme is denoted by PGL(m); this notation does not conflict with
the notation PGL(n0, n1, · · · , nr) for a weighted projective general linear 2-group
(Section 5) because in the latter case we always assume r ≥ 1.

3. Recall on 2-groups and crossed-modules

A (strict) 2-group is a group object in the category of groupoids. Equivalently, a
2-group is a strict monoidal groupoid G in which every object has a strict inverse.
We define a pseudo 2-group to be a strict monoidal groupoid G in which every object
has a weak inverse; that is, multiplication by any object induces an equivalence of
categories from G to itself. This is of course much stronger than the conventional
definition of a weak category, because we are assuming that associativity holds on
the nose and there exists a strict identity element.

The set of isomorphism classes of objects in a (pseudo) 2-group G is denoted by
π1G; this is a group. The automorphism group of the identity object 1 ∈ ObG is
denoted by π2G; this is an abelian group.
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Pseudo 2-groups and strict monoidal functors between them form a category
Ps2Gp which contains the category 2Gp of (strict) 2-groups as a full subcate-
gory. Morphisms in this category induce group homomorphisms on π1 and π2. A
morphism between pseudo 2-groups is called an equivalence if the induced homo-
morphisms on π1 and π2 are isomorphisms.

The following lemma is straightforward.

Lemma 3.1. Let f : H → G be a morphism of pseudo 2-groups. Then f , viewed as a
morphism of underlying groupoids, is fully faithful if and only if π1f : π1H → π1G is
injective and π2f : π2H → π2G is an isomorphism. It is an equivalence of groupoids
if an only if both π1f and π2f are isomorphisms.

A crossed-module G = [ϕ : G2 → G1] is a pair of groups G1, G2, a group ho-
momorphism ϕ : G2 → G1, and a (right) action of G1 on G2, denoted −a, which
lifts the conjugation action of G1 on the image of ϕ and descends the conjugation
action of G2 on itself. The kernel of ϕ is a central (in particular abelian) subgroup
of G2 and is denoted by π2G. The image of ϕ is a normal subgroup of G1 whose
cokernel is denoted by π1G. A morphism of crossed-modules is a pair of group
homomorphisms which commute with the ϕ maps and respect the actions. Such a
morphism induces group homomorphisms on π1 and π2.

Crossed-modules and morphisms between them form a category, which we denote
by CrossedMod. A morphism in this category is called an equivalence if it induces
isomorphisms on π1 and π2.

There is a natural equivalence of categories 2Gp ≃ CrossedMod. This equiv-
alence is compatible with the functors π1 and π2. This way, we can think of a
crossed-module as a 2-group, and vice versa. For this reason, we will sometimes
use the term 2-group for an object that is actually a crossed-module. We hope that
this will not cause any confusion.

Definition 3.2. A pseudo 2-group is a strict monoidal category in which multipli-
cation by any object is an equivalence of categories. A morphism of pseudo 2-groups
is a strict monoidal functor.

In fact it is easy to show that the underlying category of a pseudo 2-group is
a groupoid. So a pseudo 2-group is a monoid object in the category of groupoids.
Recall that a 2-group is a monoidal object in the category of groupoids in which
multiplication by any object is an isomorphism. The category Ps2Gp of pseudo
2-groups contains the category 2Gp of 2-groups as a full subcategory. The functors
π1 and π2 extend to Ps2Gp in the obvious way.

4. 2-groups over a site and gr-stacks

First a few words on terminology. For us a stack is presheaf of groupoids (and
not a category fibered in groupoids) over a Grothendieck site. This may be a bit
unusual for algebraic geometers, but it makes the exposition simpler. Of course, it is
standard that this point of view is equivalent to the approach via categories fibered
in groupoids. Just to recall how this equivalence works, to any category fibered in
groupoids X one can associate a presheaf X of groupoids over C which is defined
as follows. By definition, X is the presheaf that assigns to an object U ∈ C the
groupoids X(U) := Hom(U, X), where U stands for the presheaf of sets represented
by U and Hom is computed in the category of stacks over C. Conversely, to any
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presheaf of groupoids one associates a category fibered in groupoids defined by the
Grothendieck construction. For more on this we refer the reader to [Ho], especially
Section 5.2.

Let C be a Grothendieck site. Let Ps2GpC be the category of presheaves of
pseudo 2-groups on C; that is, the category of contravariant functors from C to
Ps2Gp. We define 2Gp

C
and CrossedModC analogously. The category 2Gp

C

is a full subcategory of Ps2GpC. There is a natural equivalence of categories
2Gp

C
≃ CrossedModC. In particular, we can think of a presheaf of crossed-

modules as a presheaf of of 2-groups.
Let X be a presheaf of groupoids over C. To X we associate a presheaf of

pseudo 2-groups AutX ∈ Ps2Gp
C

which parameterizes autoequivalences of X. By
definition, AutX is the functor that associates to an object U in C the pseudo
2-group of self-equivalences of XU , where XU is the restriction of X to the comma
category CU . Notice that in the case where X is a stack, AutX, viewed as a presheaf
of groupoids, is also a stack. Indeed, AutX is almost a group object in the category
of stacks over C. To be more precise, AutX is a gr-stack in the sense of Definition
4.1 below.

Let G ∈ Ps2GpC be a presheaf of pseudo 2-groups on C. We define πpre
1 G to

be the presheaf U 7→ π1

(

G(U)
)

, and π1G to be the sheaf associated to the presheaf

πpre
1 G. Similarly, πpre

2 G is defined to be the presheaf U 7→ π2

(

G(U)
)

, and π2G to
be the sheaf associated to the presheaf πpre

2 G.
We define π1G and π2G for a presheaf of crossed-modules G ∈ CrossedModC in

a similar manner. The equivalence of categories between 2Gp
C

and CrossedModC

respects πpre
1 , π1, πpre

2 and π2. Lemma 3.1 remains valid in this setting if instead
of π1 and π2 we use πpre

1 and πpre
2 .

Definition 4.1 ([Br], page 19). Let C be a Grothendieck site. By a (strict) gr-
stack over C we mean a stack G that is a (strict) monoid object in the category of
stacks over C and for which weak inverses exist. All our gr-stacks will be strict, so
from now on we will drop the adjective strict.

The condition on existence of weak inverses means that for every U ∈ ObC and
every object a in the groupoid G(U), multiplication by a induces an equivalence of
categories from G(U) to itself (or equivalently, an equivalence of stacks from XU to
itself). This condition is equivalent to saying that, for every U ∈ ObC, X(U) is a
pseudo 2-group. More compactly, it is equivalent to

G × G
(pr,mult)
−→ G × G

being an equivalence of stacks.
A morphism of gr-stacks is by definition a morphism of stacks that (strictly)

respects the monoidal structure. Let grStC be the category of gr-stacks and mor-
phisms between them. There are natural functors

Ps2Gp
C
→ grSt

C
and CrossedModC → grSt

C
.

The former is simply the stackification functor that sends a presheaf of groupoids
to the associated stack; note that since the stackification functor preserves prod-
ucts, we can carry over the monoidal structure from the presheaf of groupoids to
its stackification. The latter functor is obtained from the former by using the nat-
ural functor CrossedModC → Ps2GpC. Given a presheaf of crossed-modules
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[ϕ : G2 → G1], the associated gr-stacks has as the underlying stack the quotient
stack [G1/G2], where G2 acts on G1 by multiplication on the right (via ϕ).

Definition 4.2. Let X be a presheaf of groupoids over C. We define πpre(X) to be
the presheaf that sends an object U in C to the set of isomorphism classes in X(U).
We denote the sheaf associated to πpre(X) by π(X). For a global section e of X, we
define AutX(e) to be sheaf associated to the presheaf that sends an object U in C

to the group of automorphisms, in the groupoid X(U), of the object eU ; note that
when X is a stack this presheaf is already a sheaf and no sheafification is needed.

It is clear that πpre, π and Aut are functorial in X.

Definition 4.3. Let G be a gr-stack. We define πpre
1 (G) := πpre(G), and πpre

2 (G) :=
Aut(e), where e is the identity section of G. We define π1(G) and π2(G) to be
sheafifications of πpre

1 (G) and πpre
2 (G), respectively.

There are two ways of defining the notion of equivalence between gr-stacks. One
way is to regard them as stacks and use the usual notion of equivalence of stacks.
The other way is to regard them as presheaves of pseudo 2-groups and use π1 and
π2. The next lemma shows that these two definitions agree.

Lemma 4.4. Let G and H be gr-stacks, and let f : H → G be a morphism of
gr-stacks. Then, the following are equivalent:

i. f is an equivalence of stacks.
ii. The induced maps π1(f) : πpre

1 (H) → πpre
1 (G) and π2(f) : πpre

2 (H) → πpre
2 (G)

are isomorphisms of presheaves of groups.
iii. The induced maps π1(f) : π1(H) → π1(G) and π2(f) : π2(H) → π2(G) are

isomorphisms of sheaves of groups.

Proof. The only non-trivial implication is (iii) ⇒ (ii). In the proof we will use the
following standard fact from closed model category theory.

Theorem ([Hi], Theorem 3.2.13). Let M be a closed model cate-
gory, L a localizaing class of morphisms in M, and ML the localized
model category. Let X and Y be fibrant objects (i.e. L-local ob-
jects) in ML, and let f : Y → X be a morphism in M that is a weak
equivalence in the localized model structure ML (that is, f is an
L-local weak equivalence). Then, f is a weak equivalence in M.

We will apply the above theorem with M being the model structure on the
category GpdC of presheaves of groupoids on C in which weak equivalences are
morphisms that induce isomorphisms (of presheaves of groups) on πpre

1 and πpre
2 ,

and fibrations are objectwise. We take L to be the class of hypercovers. The
weak equivalences in the localized model structure will then be the ones inducing
isomorphism (of sheaves of groups) on π1 and π2. The main reference for this is
[Ho].

Let us now prove (iii) ⇒ (ii). It is shown in [Ho] that G and H are L-local objects
(see Section 5.2 and Section 7.3 of loc. cit.). By hypothesis, f induces isomorphisms
(of sheaves) on π1 and π2, so it is a weak equivalence in the localized model struc-
ture. Therefore, since G and H are L-local, f is already a weak equivalence in the the
non-localized model structure. This exactly means that π1(f) : πpre

1 (H) → πpre
1 (G)

and π2(f) : πpre
2 (H) → πpre

2 (G) are isomorphisms of presheaves. �
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Lemma 4.5. Let X be a presheaf of groupoids over C and ϕ : X → Xa its stackifi-
cation. Then we have the following:

i. The induced morphism πX → π(Xa) is an isomorphism of sheaves of sets.
ii. For every global section e of X, the natural map AutX(e) → AutXa(e) is an

isomorphism of sheaves of groups.

Proof. This is a simple sheaf theory exercise. We include the prove of Part (i).
Proof of Part (ii) is similar.

First we prove that πϕ : πX → π(Xa) is injective. Let U ∈ ObC, and let x, y
be element in πX(U) such that πϕ(x) = πϕ(y). We have to show that x = y. By
passing to a cover of U , we may assume x and y lift to objects x̄ and ȳ in X(U). We
will show that there is an open cover of U over which x̄ and ȳ become isomorphic.
Since ϕ(x̄) and ϕ(ȳ) become equal in π(Xa), there is a cover {Ui} of U such that
there is an isomorphism αi : ϕ(x̄|Ui

) ∼−→ ϕ(ȳ|Ui
) in the groupoid Xa(Ui), for every

i. By replacing {Ui} with a finer cover, we may assume that αi come from X(Ui).
(More precisely, αi = ϕ(βi), where βi is a morphism in the groupoid X(Ui).) This
implies that, for every i, x̄|Ui

and ȳ|Ui
are isomorphic as objects of the groupoid

X(Ui). This is exactly what we wanted to prove.
Having proved the injectivity, to prove the surjectivity it is enough to show that

every object x in π(Xa)(U) is in the image of ϕ, possibly after replacing U by an
open cover. By choosing an appropriate cover, we may assume x lifts to Xa(U).
Since Xa is the stackification of X, we may assume, after refining our cover, that x
is in the image of X(U) → Xa(U). The claim is now immediate. �

Lemma 4.6. Let G = [G2 → G1] be a presheaf of crossed-modules, and let G =
[G1/G2] be the corresponding gr-stack. Then, we have natural isomorphisms of
sheaves of groups πiG

∼−→ πiG, i = 1, 2.

Proof. Apply Lemma 4.5. �

We now specialize to the case where C is SchS , the big site of schemes over a base
scheme S, endowed with a subcanonical topology (say, étale, Zariski, fppf, fpqc,...).
We define a crossed-module in S-schemes [ϕ : G2 → G1] to be a pair of S-group
schemes G1, G2, an S-group scheme homomorphism ϕ : G2 → G1, and a (right)
action of G1 on G2 satisfying the axioms of a crossed-module. These are precisely
the representable objects in CrossedModSchS

; in other words, a crossed-module
in schemes [ϕ : G2 → G1] gives rise to a presheaf of crossed-modules

U 7→ [ϕ(U) : G2(U) → G1(U)].

We will abuse the terminology and call a crossed-module in schemes over S
simply a 2-group scheme over S.

Proposition 4.7. Let S be a base scheme. Let H be an abelian group scheme over
S, acting on a S-scheme X, and let X = [X/H ] be the quotient stack. Let G be the
automorphisms of X that commute with the H action; this is a sheaf of groups on
SchS . We have the following:

i. With the trivial action of G on H, the natural map H → G becomes a
crossed-modules in SchS-schemes (which is the same thing as a 2-group
scheme).
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ii. Let G be the gr-stack associated to [H → G]. Then there is a natural
morphism of gr-stacks G → AutX. Furthermore, this morphism induces an
isomorphism of sheaves of groups π2G

∼−→ π2(AutX).
iii. Assume that X → S has geometrically connected fibers and X → S is

proper. Then G → AutX is fully faithful (as a morphism of presheaves of
groupoids). In particular, the induced map π1G

∼−→ π1(AutX) of sheaves of
groups is injective.

Proof. Let G denote the presheaf of 2-groups associated to [H → G]. It is enough
to construct a morphism of presheaves of 2-groups G → AutX and show that it
has the required properties. Stackification of this map gives us the desired map
(Lemma 4.6).

Construction of the morphism G → AutX is precisely as in ([BeNo], Lemma 8.2),
and so are the proofs of (i) and (ii). Also, in the presence of the hypothesis on having
geometrically connected fibers, the proof in loc. cit. of (iii) can be repeated word by
word with C replaced by a connected scheme U . This implies that G(U) → AutXU

is fully faithful (Lemma 3.1) for an arbitrary U . From this it follows that G → AutX
is fully faithful. It remains fully faithful after stackification (because AutX is a
stack). �

5. Weighted projective general linear 2-groups

In this section we introduce our main objects of interest, the weighted projective
general linear 2-group schemes, and prove that they model the self-equivalences
of weighted projective stacks (Theorem 5.1). In fact, since the construction of
the weighted projective stacks, and also of the weighted projective general linear
2-group schemes, commutes with base change, it will be enough to work over Z.

We begin with some notation. We denote the multiplicative group scheme over
Spec Z by Gm,Z, or simply Gm. The affine (r + 1)-space over a base scheme S is

denoted by Ar+1
S ; when the base scheme is Spec R it is denoted by Ar+1

R , and when
the base scheme is Spec Z simply by Ar+1. Since r will be fixed throughout this
section, we will usually denote Ar+1

S − {0} by US . We will abbreviate USpec R and
USpecZ to UR and U, respectively. We fix a Grothendieck topology on SchS that
is not coarser than Zariski.

Let n0, n1, · · · , nr be a sequence of positive integers, and consider the weight
(n0, n1, · · · , nr) action of Gm on U = Ar+1−{0}. (That is, for every scheme T , an el-
ement t ∈ Gm(T ) acts on UT by multiplication by (tn0 , tn1 , · · · , tnr ).) The quotient
stack of this action is called the weighted projective stack of weight (n0, n1, · · · , nr)
and is denoted by PZ(n0, n1, · · · , nr), or simply by P(n0, n1, · · · , nr). The weighted

projective general linear 2-group scheme PGL(n0, n1, · · · , nr) is defined to
be the 2-group scheme associated to the crossed-module

[ϕ : Gm → Gn0,n1,··· ,nr
],

where Gn0,n1,··· ,nr
is the group scheme, over Z, of all Gm-equivariant (for the above

weighted action) automorphisms of U. More precisely, the T -points of Gn0,n1,··· ,nr

are automorphisms

f : UT → UT

that commute with the Gm-action. The homomorphism ϕ : Gm → Gn0,n1,··· ,nr
is

the one induced from the Gm-action itself. We take the action of Gn0,n1,··· ,nr
on
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Gm to be trivial. The associated gr-stack is denoted by PGL(n0, n1, · · · , nr), and
is called the projective general linear gr-stack of weight (n0, n1, · · · , nr).

The following theorem says that a weighted projective general linear 2-group
scheme is a model for the gr-stack of self-equivalences of the corresponding weighted
projective stack. A special case of this theorem (namely, the case where the base
scheme is C) was proved in ([BeNo], Theorem 8.1). We briefly sketch how the proof
in loc. cit. can be modified to cover the general case.

Theorem 5.1. Let AutP(n0, n1, · · · , nr) be the gr-stack of automorphisms of the
weighted projective stack P(n0, n1, · · · , nr). Then, the natural map

PGL(n0, n1, · · · , nr) → AutP(n0, n1, · · · , nr)

is an equivalence of gr-stacks. In particular, we have isomorphisms of sheaves of
groups

π1AutP(n0, n1, · · · , nr) ∼= π1PGL(n0, n1, · · · , nr) ∼= π1 PGL(n0, n1, · · · , nr),

π2AutP(n0, n1, · · · , nr) ∼= π2PGL(n0, n1, · · · , nr) ∼= π2 PGL(n0, n1, · · · , nr) ∼= µd,

where d = gcd(n0, n1, · · · , nr) and µd stands for the multiplicative group scheme
of dth roots of unity.

To prove the above theorem we use the following result.

Proposition 5.2. Let P = PS(n0, n1, · · · , nr), where S = Spec R is the spectrum
of a local ring. Then every line bundle on P is of the form O(d) for some d ∈ Z.

Proof. We only sketch the proof (due to A. Vistoli). Details can be found in [No4].
In the proof we use stacky versions of Grothendieck’s base change and semiconti-
nuity results ([Ha], III. Theorem 12.11). We will assume R is Noetherian.

In the case where R is a field, the assertion is easy to prove using the fact that
the Picard group of P is isomorphic to the Weil divisor class group. To prove the
general case, let x be the closed point of S = Spec R. Let L be a line bundle
on P. After twisting with on appropriate O(d), we may assume Lx

∼= O. We
will show that L is trivial. We have H1(Px, Lx) = H1(Px, Ox) = 0. Hence, by
semicontinuity, H1(Py, Ly) = 0 for every point y of S. Base change implies that
R1f∗(L) = 0, and that R0f∗(L) = f∗(L) is locally free (necessarily of rank 1).
Therefore, f∗(L) is free of rank 1 and, by base change, H0(Py, Ly) is 1-dimensional
as a k(y)-vector space, for every y in S. In fact, this is true for every tensor
power L⊗n, n ∈ Z. So, Ly is trivial for every y in S. (Note that, when k is a
field, dimk H0(Pk(n0, n1, · · · , nr), O(d)) is equal to the number of solutions of the
equation a1n0 + a2n1 + · · · + arnr = d in non-negative integers ai.)

Now let s be a generating section of f∗(L) ∼= R. It follows that f∗(s) is a
generating section of L. So L is trivial. �

Proof of Theorem 5.1. We apply Proposition 4.7 with S = Spec Z, X = Ar+1−{0},
and H = Gm. This implies that PGL(n0, n1, · · · , nr) → AutP(n0, n1, · · · , nr) is a
fully faithful morphism of stacks. That is, for every scheme U , the morphism of
groupoids PGL(n0, n1, · · · , nr)(U) → AutP(n0, n1, · · · , nr)(U) is fully faithful. All
that is left to show is that it is essentially surjective. Since PGL(n0, n1, · · · , nr)
and AutP(n0, n1, · · · , nr) are both stacks, it is enough to prove this for U =
Spec R, where R is a local ring. In this case, we know by Proposition 5.2 that
PicP(n0, n1, · · · , nr) ∼= Z. We can now proceed exactly as in ([BeNo], Theorem
8.1).
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The isomorphisms stated at the end of the theorem follow from Lemma 4.4 and
Lemma 4.6. �

6. Structure of PGL(n0, n1, · · · , nr)

Throughout this section, the action of Gm on U = Ar+1 −{0} means the weight
(n0, n1, · · · , nr) action. To shorten the notation, we denote the group Gn0,n1,··· ,nr

by G. The rank m general linear group scheme over Spec R is denoted by GL(m, R).
When R = Z, this is abbreviated to GL(m). We always assume r ≥ 1. The
corresponding projectivized group scheme is denoted by PGL(m); this notation
does not conflict with the notation PGL(n0, n1, · · · , nr) for a weighted projective
general linear 2-group as in the latter case we have at least two variables.

We begin with a simple lemma.

Lemma 6.1. Let R be an arbitrary ring, and let f be a global section of the structure
sheaf of UR = Ar+1

R − {0}, r ≥ 1. Then f extends uniquely to a global section of

Ar+1
R .

Proof. Let Ui = Spec R[x0, · · · , xr, x
−1
i ] and consider the covering UR = ∪n

i=1Ui.
We show that the restriction fi := f |Ui

is a polynomial for every i. To see this,
observe that, except possibly for xi, all variables occur with positive powers in fi.
To show that xi also occurs with a positive power, pick some j 6= i and use the fact
that xi occurs with a positive power in fj|Ui∩Uj

= fi|Ui∩Uj
.

Therefore, for every i, fi actually lies in R[x0, · · · , xr, x
−1
i ]. Since fj|Ui

= fi|Uj
,

it is obvious that all fi are actually the same and provide the desired extension of
f to UR. �

From now on, we will use a slightly different notation with indices. Namely, we
assume that the weights are m1 < m2 < · · · < mt, with each mi appearing exactly
ri ≥ 1 times in the weight sequence (so in the previous notation we would have
r + 1 = r1 + · · · + rt). We denote the corresponding projective general linear 2-
group by PGL(m1 : r1, m2 : r2, · · · , mt : rt). We use the coordinates xi

j , 1 ≤ i ≤ t,

1 ≤ j ≤ ri, for Ar+1. We think of xi
j as a variable of degree mi. We will usually

abbreviate the sequence xi
1, · · · , xi

ri
to xi. Similarly, a sequence F i

1, · · · , F i
ri

of

polynomials is abbreviated to Fi.

Let R be a ring. The following proposition tells us how a Gm,R-equivariant
automorphisms of UR looks like.

Proposition 6.2. Let F : UR → UR be a Gm-equivariant map. Then F is of the
form (Fi)1≤i≤t, where for every i, each component F i

j ∈ R[xi
j ; 1 ≤ i ≤ t, 1 ≤ j ≤ ri]

of Fi is a weighted homogeneous polynomial of weight mi.

Proof. The fact that components of F are polynomial follows from Lemma 6.1. The
statement about homogeneity of F i

j is a simple exercise in polynomial algebra and
is left to the reader. �

In the above proposition, each F i
j can be written in the form F i

j = Li
j + P i

j ,

where Li
j is linear in the variables xi

1, · · · , xi
ri

, and P i
j is a homogeneous polynomial

of degree mi in variables xa
b with a < i. Let LF := (Li)1≤i≤t be the linear part of

F . It is again a Gm-equivariant endomorphism of U.
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Proposition 6.3. Let F be as in the Proposition 6.2. The assignment F 7→ LF

respects composition of endomorphisms. In particular, if F is an automorphism,
then so is LF .

Proof. This follows from direct calculation, or, alternatively, by using the fact that
LF is simply the derivative of F at the origin. �

Corollary 6.4. There is a natural split homomorphism

φ : G → GL(r1) × GL(r2) × · · · × GL(rt).

Next we give some information about the structure of the kernel U of φ. It
consists of endomorphisms F = (F i

j )i,j , where F i
j has the form

F i
j = xi

j + P i
j .

Here, P i
j is a homogeneous polynomial of degree mi in variables xa

b with a < i.

Indeed, it is easily seen that, for an arbitrary choice of the polynomials P i
j , the

resulting endomorphism F is automatically invertible. So, to give such an F ∈ U
is equivalent to giving an arbitrary collection of polynomials {P i

j}1≤i≤t,1≤j≤ri
such

that each P i
j is a homogeneous polynomial of degree mi in variables xa

b with a < i.

So, from now on we switch the notation and denote such an element of U by (P i
j )i,j .

Proposition 6.5. For each 1 ≤ a ≤ t, let Ua ⊆ U be the set of those endomor-
phisms F = (P i

j )i,j for which P i
j = 0 whenever i 6= a. Let Ka denote the set of

monomials of degree ma in variables xi
j, i < a, and let ka be the cardinality of Ka.

(In other words, ka is the number of solutions of the equation

a−1
∑

i=1

mi

ri
∑

j=1

zi,j = ma

in non-negative integers zi,j.) Then we have the following:

i. Ua is a subgroup of U and is canonically isomorphic to the vector group
scheme Ara ⊗ AKa ∼= Araka . (Note: U1 is trivial.)

ii. If a < b, then Ua normalizes Ub.
iii. The groups Ua, 1 ≤ i ≤ t, generate U and we have Ua ∩ Ub = {1} if a 6= b.

Proof of Part (i). The action of (P i
j )i,j ∈ Ua on Ar+1 is given by

(x1, · · · ,xa, · · · ,xt) 7−→ (x1, · · · ,xa + Pa, · · · ,xt).

So, if AKa stands for the vector group scheme on the basis Ka, there is a canonical
isomorphism

Ua
∼=

ra
⊕

i=1

AKa ∼= Ara ⊗ AKa .

Proof of Part (ii). Let G = (Qi
j)i,j be an element in Ua and F = (P i

j )i,j an element

in Ub. By (i), the inverse of G is G−1 = (−Qi
j)i,j . Let us analyze the effect of the

composite G ◦ F ◦ G−1 on Ar+1:

(x1, · · · ,xa, · · · ,xb, · · · ,xt)
G−1

7−→ (x1, · · · ,xa − Qa, · · · ,xb, · · · ,xt)
F

7−→ (x1, · · · ,xa − Qa, · · · ,xb + Rb, · · · ,xt)
G
7−→ (x1, · · · ,xa, · · · ,xb + Rb, · · · ,xt).
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Here the polynomial Rb
k, 1 ≤ k ≤ rb, is obtained from P b

k by substituting the
variables xa

j with the polynomial xa
j − Qa

j .

Proof of Part (iii). Easy. �

Part (ii) implies that each Ua acts by conjugation on each of Ua+1, Ua+2,· · · ,
Ut.

2 To fix the notation, in what follows we let the conjugate of an automorphism
f by an automorphism g to be g ◦ f ◦ g−1.

Notation. Let {Ua}
t
a=1 be a family of subgroups of a group U which satisfies the

following properties: 1) Each Ua normalizes every Ub with a < b; 2) No two distinct
Ua intersect; 3) The Ua generate U . In this case, we say that U is a successive
semi-direct product of the Ua, and use the notation U ∼= Ut ⋊ · · · ⋊ U2 ⋊ U1.

The following is an immediate corollary of Proposition 6.5.

Corollary 6.6. There is a natural decomposition of U as a semi-direct product

U ∼= Ut ⋊ · · · ⋊ U2 ⋊ U1,

where Ua
∼= Araka is the group introduced in Proposition 6.5. (Note that U1 is

trivial.)

In the next theorem we use the notation Am for two things. One that has already
appeared is the affine group scheme of dimension m. When there is a group scheme
G involved, we also use the notation Am for the trivial representation of G on Am.

Theorem 6.7. There is a natural decomposition of G as a semi-direct product

G ∼= Ut ⋊ · · · ⋊ U2 ⋊ U1 ⋊
(

GL(r1) × · · · × GL(rt)
)

,

where Ua
∼= Araka and ka is as in Proposition 6.5. (Note that U1 is trivial.)

Furthermore, for every 1 ≤ a ≤ t, the action of GL(ra) leaves each Ub invariant.
We also have the following:

i. When a > b the induced action of GL(ra) on Ub is trivial.
ii. When a = b the induced action of GL(ra) on Ua is naturally isomorphic

to the representation ρ ⊗ AKa , where ρ is the standard representation of
GL(ra) and Ka is as in Proposition 6.5. (Recall that Ua is canonically
isomorphic to Ara ⊗ AKa .)

iii. When a < b the action of GL(ra) on Ub is naturally isomorphic to the
representation

⊕

0≤l≤⌊
mb
ma

⌋

Arbdl ⊗ ρ̂⊗l.

Here ρ̂ stands for the inverse transpose of ρ, and dl is the number of mono-
mials of degree mb in variables xi

j , i < b, i 6= a; so dl also depends on a

and b. (In other words, dl is the number of solutions of the equation

b−1
∑

i=1
i6=a

mi

ri
∑

j=1

zi,j = mb − lma

in non-negative integers zi,j.)

2All group actions in this section are assumed to be on the left.
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Proof. Let g ∈ GL(ra) and F ∈ Ub. As in the proof of Proposition 6.5.i, we analyze
the effect of the composite g ◦ F ◦ g−1 on Ar+1. The element g ∈ GL(ra) acts

on Ar+1 as follows: it leaves every component xj
i invariant if i 6= a and on the

coordinates xa
1 , · · · , xa

ra
it acts linearly (like the action of an ra × ra matrix on a

column vector).

Proof of Part (i). The effect of g ∈ GL(ra) only involves the variables xa
1 , · · · , xa

ra

and does not see any other variable, whereas the effect of F ∈ Ub only involves the
variables xi

j , i ≤ b. Since b < a, these two are independent of each other. That is,
F and g commute.

Proof of Part (ii). Assume F = (P i
j )i,j ; so P i

j = 0 if i 6= a. The effect of g ◦F ◦ g−1

can be described as follows:

(x1, · · · ,xa, · · · ,xt)
g−1

7−→ (x1, · · · ,ya, · · · ,xt)
F
7−→ (x1, · · · ,ya + Pa, · · · ,xt)

g
7−→ (x1, · · · ,xa + Qa, · · · ,xt).

Here, ya
j is the linear combination of xa

1 , · · · , xa
ra

, the coefficients being the en-

tries of the jth row of the matrix g−1. Similarly, Qa
j is the linear combination of

P a
1 , · · · , P a

ra
, coefficients being the entries of the jth row of the matrix g.

Proof of Part (iii). Assume F = (P i
j )i,j ; so P i

j = 0 if i 6= b. Let ya be as in (ii).

The effect of g ◦ F ◦ g−1 can be described as follows:

(x1, · · · ,xa, · · · ,xb, · · · ,xt)
g−1

7−→ (x1, · · · ,ya, · · · ,xb, · · · ,xt)
F

7−→ (x1, · · · ,ya, · · · ,xb + Rb, · · · ,xt)
g

7−→ (x1, · · · ,xa, · · · ,xb + Rb, · · · ,xt).

Here the polynomials Rb
k, 1 ≤ k ≤ rb, are obtained from P b

k by substituting the
variable xa

j with ya
j .

Let λ be the representation of GL(ra) on the space V of homogenous polynomials
of degree mb which acts as follows: it takes a polynomial P ∈ V and substitutes
the variables xa

j , 1 ≤ j ≤ ra, with ya
j . From the description above, we see that the

representation of GL(ra) on Ub is a direct sum of rb copies of λ. We will show that

λ ∼=
⊕

0≤l≤⌊
mb
ma

⌋

Adl ⊗ ρ̂⊗l.

To obtain the above decomposition, simply note that a polynomial in V can be
uniquely written in the form

∑

0≤l≤⌊
mb
ma

⌋

SlTl,

where Tl is a homogenous polynomial of degree lma in variables xa
1 , · · · , xa

ra
, and

Sl is a homogenous polynomial of degree mb − lma in the rest of the variables. The
action of GL(ra) leaves Sl intact and acts on Tl by the lth power of the inverse
transpose of the standard representation. �

The actions of various pieces in the above semi-direct product decomposition,
though explicit, are tedious to write down, except for small values of t. We give
some examples.
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Example 6.8. Weight sequence m < n, m ∤ n. In this case we have t = 2, and
r1 = r2 = 1 and k1 = 0. So G ∼= Gm × Gm.

Example 6.9. Weight sequence m < n, m | n. In this case we have t = 2, r1 = r2 =
1, and k1 = 1. So we have

G ∼= A ⋊ (Gm × Gm).

The action of an element (λ1, λ2) ∈ Gm × Gm on an element a ∈ A is given by

(λ1, λ2) · a = λ2λ
− n

m

1 a.

More explicitly, an element in G is map of the form

(x, y) 7→ (λ1x, λ2y + ax
n
m ).

Note the similarity with the group of 2 × 2 lower-triangular matrices.

Example 6.10. Weight sequence n = m. We obviously have G ∼= GL(2).

Example 6.11. Weight sequence 1, 2, 3. First we determine U . A typical element in
U is of the form

(x, y, z) 7→ (x, y + ax2, z + bx3 + cxy).

We have U2 = A and U3 = A2. The action of an element a ∈ U2 on an element
(b, c) ∈ U3 is given by (b − ac, c). That is, a acts on U3 = A2 by the matrix

(

1 −a
0 1

)

So, U ∼= A⊕2 ⋊ A. Finally, we have

G ∼= U ⋊ (Gm)3 = A⊕2 ⋊ A ⋊ (Gm)3,

where the action of an element (λ1, λ2, λ3) ∈ (Gm)3 on an element (a, b, c) ∈ U is
given by (λ−2

1 λ2a, λ−3
1 λ3b, λ

−2
1 λ−1

2 λ3c).

Example 6.12. Weight sequence 1, 2, 4. An element in U has the general form

(x, y, z) 7→ (x, y + ax2, z + bx4 + cx2y + dy2).

We have U2 = A and U3 = A3. The action of an element a ∈ U2 on an element
(b, c, d) ∈ U3 is given by the matrix





1 −a a2

0 1 −2a
0 0 1





So, U ∼= A⊕3 ⋊ A.
Finally, we have

G ∼= U ⋊ (Gm)3 = A⊕3 ⋊ A ⋊ (Gm)3,

where the action of an element (λ1, λ2, λ3) ∈ (Gm)3 on an element (a, b, c, d) ∈ U
is given by

(λ−2
1 λ2a, λ−4

1 λ3b, λ
−2
1 λ−1

2 λ3c, λ
−2
2 λ3d).
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Next we look at PGL(m1 : r1, m2 : r2, · · · , mt : rt). Recall that, as a crossed-
module, this is given by [ϕ : Gm → G], where ϕ is the obvious map coming from
the action of Gm on Ar+1, and the action of G on Gm is the trivial one.

Observe that the map ϕ factors though the component GL(r1)× · · · ×GL(rt) of
G. So, let us define L to be the cokernel of the following map:

Gm

(

r1z }| {
λ

m1 , . . . , λ
m1 ,·····,

rtz }| {
λ

mt , . . . , λ
mt )

GL(r1) × · · · × GL(rt).

From Theorem 6.7 we immediately obtain the following.

Proposition 6.13. Let L be the group defined in the previous paragraph, and let
k = gcd(m1, · · · , mt). We have natural isomorphisms of group schemes

π1 PGL(m1 : r1, m2 : r2, · · · , mt : rt) ∼= Ut ⋊ · · · ⋊ U2 ⋊ U1 ⋊ L,
π2 PGL(m1 : r1, m2 : r2, · · · , mt : rt) ∼= µk.

Our final result is that, if all weights are distinct (that is, ri = 1), then the
corresponding projective general linear 2-group is split.

Proposition 6.14. Let {m1, · · · , mt} be distinct positive integers, and consider
the projective general linear 2-group PGL(m1, m2, · · · , mt). Then, the projection
map G → π1 PGL(m1, m2, · · · , mt) splits. In particular, PGL(m1, m2, · · · , mt) is
split. That is, it is completely classified by its homotopy group schemes:

π1 PGL(m1, · · · , mt) ∼= Ut ⋊ · · · ⋊ U2 ⋊ U1 ⋊ (Gm)t−1,
π2 PGL(m1, · · · , mt) ∼= µk.

Proof. By Theorem 6.7 and Proposition 6.13 we know that G ∼= Ut ⋊ · · · ⋊ U2 ⋊
U1 ⋊ (Gm)t and π1 PGL(m1, m2, · · · , mt) ∼= Ut ⋊ · · ·⋊ U2 ⋊ U1 ⋊ L, where L is the
cokernel of the map

α : Gm

(λm1 ,··· ,λmt )
(Gm)t.

So it is enough to show that the image of µ is a direct factor. Note that if we
divide all the mi by their greatest common divisor, the image of α does not change.
So, we may assume gcd(m1, · · · , mt) = 1. Let M be a t × t integer matrix whose
determinant is 1 and whose first column is (m1, · · · , mt). The matrix M gives rise
to an isomorphism µ : (Gm)t → (Gm)t whose restriction to the subgroup Gm ×
{1}t−1 ∼= Gm is naturally identified with α. The subgroup µ({1} × (Gm)t−1) ⊂
(Gm)t is the desired complement of the image of α. �

Corollary 6.15. Let m, n be distinct positive integers, and let k = gcd(m, n).
Then PGL(m, n) is a split 2-group. That is, it is classified by its homotopy groups:

π1 PGL(m, n) ∼=

{

Gm, if m < n, m ∤ n
A ⋊ Gm, if m < n, m | n

π2 PGL(m, n) ∼= µk.

(In the case m | n, the action of Gm on A in the cross product A ⋊ Gm is simply
the multiplication action.)
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Proof. Everything is clear, except perhaps a clarification is in order regarding the
parenthesized statement. Observe that the Gm appearing in the cross product
A ⋊ Gm is indeed the cokernel of the map

α : Gm

(λm,λn)
(Gm)2,

which is naturally identified with the subgroup {1} × Gm ⊂ (Gm)2. Therefore, by
the formula of Example 6.9, the action of an element λ ∈ Gm on an element a ∈ A
is given by λa. �

Finally, for the sake of completeness, we include the following.

Proposition 6.16. The 2-group PGL(k, k, · · · , k), k appearing t times, is given by
the following crossed-module:

[Gm

(λk,··· ,λk)
GL(t)].

We have π1 PGL(k, · · · , k) ∼= PGL(t) and π2 PGL(k, · · · , k) ∼= µk. In particular,
PGL(1, 1, · · · , 1), 1 appearing t times, is equivalent to the group scheme PGL(t).
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