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Abstract

It is well-established that equity returns are not Normally distributed, but
what should the portfolio manager do about this, and is it worth the effort?
As we describe, there are now some good choices for multivariate modeling
distributions that capture heavy tails and skewness in the data; we argue that
among the best are the (Student) t and skewed t distributions. These can be
efficiently calibrated to data, and show a much better fit to real data than
the Normal distribution. By examining efficient frontiers computed using
different distributional assumptions, we show, using for illustration 5 stocks
chosen from the Dow index, that the choice of distribution has a significant
effect on how much available return can be captured by an optimal portfolio
on the efficient frontier.



Portfolio optimization requires balancing risk and return; for this pur-

pose one needs to employ some precise concept of “risk”. Already in 1952,

Markowitz used the standard deviation (StD) of portfolio return as a risk

measure, and, thinking of returns as normally distributed, described the ef-

ficient frontier of fully invested portfolios having minimum risk among those

with a specified return. This concept has been extremely valuable in portfo-

lio management because a rational portfolio manager will always choose to

invest on this frontier.

The construction of an efficient frontier depends on two inputs: a choice of

risk measure (such as StD, V aR, or ES, described below), and a probability

distribution used to model returns.

Using StD (or equivalently, variance) as the risk measure has the draw-

back that it is generally insensitive to extreme events, and sometimes these

are of most interest to the investor. Value at Risk (V aR) better reflects ex-

treme events, but it does not aggregate risk in the sense of being subadditive

on portfolios. This is a well-known difficulty addressed by the concept of a

“coherent risk measure” in the sense of Artzner, et. al. [1999]. A popular

example of a coherent risk measure is expected shortfall (ES), though V aR

is still more commonly seen in practice.

Perhaps unexpectedly, the choice of risk measure has no effect on the ac-

tual efficient frontier when the underlying distribution of returns is Normal

– or more generally any “elliptical” distribution. Embrechts, McNeil, and

Straumann [2001] show that when returns are elliptically distributed, the

minimum risk portfolio for a given return is the same whether the risk mea-

sure is standard deviation, V aR, ES, or any other positive, homogeneous,

translation-invariant risk measure.

This fact suggests that the portfolio manager should pay at least as much

attention to the family of probability distributions chosen to model returns

as to the choice of which risk measure to use.

It is now commonly understood that the multivariate Normal distribution

is a poor model of generally acknowledged “stylized facts” of equity returns:

• return distributions are fat-tailed and skewed

• volatility is time-varying and clustered
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• returns are serially uncorrelated, but squared returns are serially cor-

related.

The purpose of this paper is to make the case that portfolio managers

should consider using heavy-tailed distributions as models for equity returns

– especially the multivariate Student t and skewed t distributions. Recently

other authors have also argued, with different data that these distributions

empirically superior, e.g. Keel, et. al. [2006], and Aas and Hobaek Haff

[2006].

Does it really cost anything to determine optimal portfolios by calibrat-

ing returns data to a Normal distribution, rather than some heavier-tailed

choice? The answer is yes. Not only do other distributions do a better job

of modeling extreme events, but using them allows the manager to capture

portfolio returns that are inaccessible using the Normal model.

We illustrate this below with a portfolio of 5 stocks using daily returns

data to optimize the one-day forecast return at a fixed risk level. We use

a GARCH filter to remove serial correlations of squared returns; we then

fit this approximately i.i.d. five dimensional data using a selection of poten-

tial distributions from the Generalized Hyperbolic family, including Normal,

hyperbolic (Hy), normal inverse Gaussian (NIG), variance gamma (V G),

(Student) t, and skewed t (defined below). We find that the t and skewed

t have the largest log likelihood, despite having fewer parameters than Hy,

NIG, or V G.

After discussion of coherent risk measures, value at risk, and expected

shortfall, we examine the problem of portfolio optimization for these different

risk measures and returns distributions, concentrating on the t and skewed t.

We show (proposition 6) that for zero skewness, these distributions produce

the same efficient frontiers no matter which risk measure or degree of freedom

is chosen, so long as the same means and correlations are used. Nevertheless,

our data set illustrates how much potential return is lost by a manager who

calibrates data to a Normal distribution when returns are in reality t or

skewed t distributed.
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The Multivariate Generalized Hyperbolic Dis-

tributions

The family of multivariate skewed-t distributions is a subfamily of the larger

family of “generalized hyperbolic (GH) distributions”, introduced by Barndorff-

Nielsen [1977] and championed for financial applications in McNeil, Frey, and

Embrechts [2005].

These distributions are usefully understood as examples of a nice class of

distributions called normal mean-variance mixture distributions, defined as

follows.

Definition 1 Normal Mean-Variance Mixture. The d-dimensional ran-

dom variable X is said to have a multivariate normal mean-variance mixture

distribution if

X
d
= µ+Wγ +

√
WZ, where (1)

1. Z ∼ Nk(0,Σ), the k-dimensional Normal distribution with mean zero

and covariance Σ (a positive semi-definite matrix),

2. W ≥ 0 is a positive, scalar-valued r.v. which is independent of Z, and

3. µ and γ are parameter vectors in Rd.

The mixture variable W can be interpreted as a shock which changes

the volatility and mean of an underlying normal distribution. From the

definition, we can see that, conditional on W , X is Normal:

X | W ∼ Nd(µ+Wγ,WΣ), (2)

and

E(X) = µ+ E(W )γ (3)

COV (X) = E(W )Σ + var(W )γγ ′ (4)

the latter defined when the mixture variable W has finite variance var(W ).
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If the mixture variable W is generalized inverse gaussian (GIG) dis-

tributed (see Appendix), then X is said to have a generalized hyperbolic

distribution (GH). As described in the Appendix, the GIG distribution has

three real parameters, λ, χ, ψ, and we write W ∼ N−(λ, χ, ψ) when W is

GIG.

Therefore the multivariate generalized hyperbolic distribution depends on

three real paramters λ, χ, ψ, two d-dimensional parameter vectors µ (loca-

tion) and γ (skewness) in Rd, and a d×d positive semidefinite matrix Σ. We

then write

X ∼ GHd(λ, χ, ψ,µ,γ,Σ).

Some Special Cases

Hyperbolic distributions (Hy):

When λ = 1, we get the multivariate generalized hyperbolic distribution

whose univariate margins are one-dimensional hyperbolic distributions. For

λ = (d + 1)/2, we get the d-dimensional hyperbolic distribution. However,

its marginal distributions are no longer hyperbolic.

The one dimensional hyperbolic distribution is widely used in the mod-

elling of univariate financial data, for example in Eberlein and Keller [1995]

and Farjado and Farias [2003].

Normal Inverse Gaussian distributions (NIG):

If λ = −1/2, then the distribution is known as normal inverse gaussian

(NIG). NIG is also commonly used in the modelling of univariate financial

returns. Hu [2005] contains a fast calibration algorithm.

Variance Gamma distribution (VG):

If λ > 0 and χ = 0, then we get a limiting case known as the variance

gamma distribution. For the variance gamma distribution, we can calibrate

all the parameters including λ; see Hu [2005].

Skewed t Distribution:

If λ = −ν/2, χ = ν and ψ = 0, we get a limiting case which is called the

skewed-t distribution by Demarta and McNeil [2005], because it generalizes

the usual t distribution, obtained from the skewed t by setting the skew-

ness parameter γ = 0. (The skewed t can also be described as a Normal
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mean-variance mixture distribution, where the mixture variable W is inverse

gaussian Ig(ν/2, ν/2), see McNeil, Frey, and Embrechts [2005].)

The t distribution is widely used in modelling univariate financial data

since the degree of freedom measures the heaviness of heavy tails. The EM

algorithm now makes practical the use of the t distribution also for multi-

variate data.

Without skewness, the Student t is elliptical, and therefore predicts, for

example, that joint crashes have the same likelihood as joint booms. This

partly motivates the introduction of skewness with the skewed-t.

For convenience, explicit density functions of the skewed t distributions

are given in the Appendix. The mean and covariance of a skewed t distributed

random vector X are

E(X) = µ+ γ
ν

ν − 2
(5)

COV (X) =
ν

ν − 2
Σ + γγ ′

2ν2

(ν − 2)2(ν − 4)
(6)

where the covariance matrix is defined when ν > 4, and the expectation

when ν > 2.

Furthermore, in the limit as γ → 0, we get the joint density function of

the t distribution:

f(x) =
Γ(ν+d

2
)

Γ(ν
2
)(πν)

d
2 |Σ| 12

(1 +
ρ(x)

ν
)−

ν+d
2 (7)

with mean and covariance

E(X) = µ, COV (X) =
ν

ν − 2
Σ (8)

The Portfolio Property

A great advantage of the generalized hyperbolic distributions with this para-

metrization is that they are closed under linear transformation. These facts

are easily proved in McNeil, Frey, and Embrechts [2005]. To be precise, if

X ∼ GHd(λ, χ, ψ,µ,Σ,γ)
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and Y = BX + b for B ∈ Rk×d and b ∈ Rk, then

Y ∼ GHd(λ, χ, ψ,Bµ+ b, BΣB′, Bγ) (9)

In particular, if X ∼ SkewedTd(ν,µ,Σ,γ), we have

Y ∼ SkewedTk(ν,Bµ+ b, BΣB′, Bγ) (10)

Forming a linear portfolio y = ωTX of the components of X amounts to

choosing B = ωT = (ω1, · · · , ωd) and b = 0. In this case,

y ∼ GH1(λ, χ, ψ,ωTµ,ωTΣω,ωTγ)

or, in the skewed-t case,

y ∼ SkewedT1(ν,ωTµ,ωTΣω,ωTγ) (11)

That is, all portfolios share the same degree of freedom ν.

This also shows that the marginal distributions are automatically known

once we have calibrated the multivariate generalized hyperbolic distributions,

i.e., Xi ∼ SkewedT1(ν, µi,Σii, γi).

Calibration of t and Skewed t Distributions Using the
EM Algorithm

The mean-variance representation of the multivariate skewed t distribution

has the great advantage that the EM algorithm is directly applicable. See

McNeil, Frey, and Embrechts [2005] for a general discussion of this algorithm

for calibrating generalized hyperbolic distributions.

The EM (expectation-maximization) algorithm is a two-step iterative pro-

cess in which (the E-step) an expected log likelihood function is calculated

using current parameter values, and then (the M-step) this function is max-

imized to produce updated parameter values. After each E and M step,

the log likelihood is increased, and the method converges to a maximum log

likelihood estimate of the distribution parameters.

What helps this along is that the skewed t distribution can be represented

as a conditional normal distribution, so most of the parameters (Σ,µ,γ) can

be calibrated, conditional on W , like a Gaussian distribution. See Hu [2005]

for details of our implementation and comparisons with other versions.
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Data Sets and Calibration

For illustration, we consider portfolios composed of the following 5 stocks:

WALT DISNEY, EXXON MOBIL, PFIZER, ALTRIA GROUP and INTEL,

and use adjusted closing prices for the period 7/1/2002 to 08/04/2005. The

daily close data are converted to log returns. Exhibit 1 illustrates the relative

price movements of each stock using the most recent 750 returns. The initial

price of each stock is rescaled to one to facilitate the comparison of relative

performance.

From Exhibit 2, we can see that squared returns series show some evidence

of serial correlation.

We use a GARCH(1, 1) model with Gaussian innovations to remove the

serial return dependence for each stock.

That is, we fit parameters α0, α1 and β1 in the following GARCH(1, 1)

model of the return series Xt:

Xt = σtZt where Zt ∼ N(0, 1) i.i.d., (12)

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1. (13)

We then think of Zt as a “filtered return” which we hope is i.i.d.

From Exhibit 3, we can see that squared filtered returns series show no

evidence of serial correlation; Exhibit 4 shows that heteroscedasticity clearly

exists in 5 stocks.

After we get the approximately i.i.d. training data, we can estimate the

multivariate density. Note that in the GARCH fitting we assume filtered

marginal returns are Gaussian in order to arrive at best fit pseudo-maximum-

likelihood GARCH parameters (see Bradley and Taqqu [2002]), but the mul-

tivariate distribution that best fits the filtered data need not be a posteriori

Gaussian.

From QQ-plots versus normal for those 5 stocks in Exhibit 5, we can

see that a normal distribution is not a good fit in the tails. Therefore we

consider several distributions in the generalized hyperbolic family to model

the multivariate density.

Exhibit 6 shows the maximized log likelihood for fitting the filtered re-

turns to various distributions. It shows again that all the generalized hyper-
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bolic distributions we examine have higher log likelihood than the Normal

distribution, and the skewed t has the highest log likelihood, with the t close

behind.

Risk Measures and Portfolio Optimization

Suppose ωT = (ω1, · · · , ωd) is the capital amount invested in each risky

security in a portfolio, and XT = (X1, · · · , Xd) is the return of each risky

security. Let

L(ω,X) = −
d∑
i=1

ωiXi = −ωTX

denote the loss of this portfolio over a fixed time interval ∆ and FL its

distribution function. (Usually, the time interval ∆ is one, ten, or 30 days

for equity portfolio management.)

From the portfolio property, if X has distribution Nd(µ,Σ) (Normal),

td(ν,µ,Σ) (Student t), or SkewedTd(ν,µ,Σ,γ) (skewed t), then the loss

L(ω,X) has distribution

L ∼ N1(-ωTµ,ωTΣω) (14)

L ∼ t1(ν,−ωTµ,ωTΣω) (15)

or

L ∼ SkewedT1(ν,−ωTµ,ωTΣω,−ωTγ) (16)

respectively.

Whatever the model distribution of the loss random variable L, we inde-

pendently need to choose a risk measure that associates L with some numer-

ical measure of risk.

Definition 2 Value at Risk Given a confidence level α between 0 and 1

(such as 99% or 95%), the V aR at confidence level α is the smallest value l

such that the probability that the loss L exceeds l is no larger than (1 − α).

In other words,

V aRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}
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For the Normal and t distributions, the following explicit V aR formulas

are easy to verify. When the loss L is Normally distributed with mean µ and

variance σ2, then

V aRα = µ+ σΦ−1(α) (17)

where Φ denotes the standard normal distribution function. When the loss

L is t distributed, L ∼ t1(ν, µ, σ2), then

V aRα = µ+ σt−1
ν (α) (18)

where tν denotes the distribution function of the standard t with degree of

freedom ν.

It’s helpful to consider more generally some desirable properties for a risk

measure.

Definition 3 Coherent Risk Measure (Artzner et. al. [1999]). A real

valued function ρ of a random variable is a coherent risk measure if it satisfies

the following properties,

1. Subadditivity. For any two random variables X and Y , ρ(X + Y ) ≤
ρ(X) + ρ(Y ).

2. Monotonicity. For any two random variables X ≥ Y , ρ(X) ≥ ρ(Y ).

3. Positive homogeneity. For λ ≥ 0, ρ(λX) = λρ(X).

4. Translation invariance. For any a ∈ R, ρ(a+X) = a+ ρ(X).

In the language above, StD is not a coherent risk measure; V aR is a

coherent measure if the underlying distribution is elliptical, but not generally.

Expected shortfall (ES), also called Conditional Value at Risk, introduced

by Rockafellar and Uryasev [2001], is always coherent.

Definition 4 Expected Shortfall (ES). For a continuous loss distribu-

tion with
∫

R |l|dFL(l) <∞, the ESα at confidence level α ∈ (0, 1) for loss L

of a security or a portfolio is defined to be

ESα = E(L|L ≥ V aRα) =

∫∞
V aRα

ldFL(l)

1− α
(19)
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=

∫
I{−(ωTx)≥V aRα}[−(ωTx)]f(x)dx

1− α
(20)

ES can also be computed explicitly for some loss distributions: if L is

normally distributed N(µ, σ2), then

ESα = µ+ σ
ψ(Φ−1(α))

1− α
(21)

where ψ is the density of standard normal distribution. If L is t distributed

t(ν, µ, σ2), then

ESα = µ+ σ
fν(t

−1
ν (α))

1− α

(
ν + (t−1

ν (α))2

ν − 1

)
(22)

where fν is the density function of the standard t with degree of freedom ν.

For skewed t, there is no closed formula for or V aR or ES. To calculate

V aR or ES, we use numerical integration and a zero-finder routine, or Monte

Carlo simulation by using equation (20).

Next we need the concept of an elliptical distribution. Briefly, an elliptical

distribution is an affine transformation of a spherical distribution; a spherical

distribution is one which is invariant under rotations and reflections (that is,

spherically symmetric). Explicit definitions are available from many sources,

e.g. Bradley and Taqqu [2002]. The normal and t distributions are elliptical;

the skewed t is not when γ 6= 0.

Proposition 5 Efficient Frontier for Elliptical Distributions. (Em-

brechts, McNeil, and Straumann [2001]). Suppose X is elliptically distributed

and all univariate marginals have finite variance. For any r ∈ R, let

Q = {Z =
d∑
i=1

ωiXi|ωi ∈ R,
d∑
i=1

ωi = 1, E(Z) = r}

be the set of all fully invested portfolio returns with expectation r. Then for

any positively homogeneous, translation invariant risk measure ρ,

argminZ∈Qρ(Z) = argminZ∈Qσ
2
Z .
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This proposition means that if we assume that the underlying distribution

is elliptical, then the Markowitz minimum variance portfolio, for a given

return, will be the same as the optimized portfolio obtained by minimizing

any other translation invariant and positively homogeneous risk measure,

such as V aR or ES. That is, the portfolio allocation does not depend on

the choice of risk measure (or confidence level), but only on the choice of

distribution.

The skewed t distribution is not elliptical if γ 6= 0. In this case we see

in practice that the efficient portfolios do depend on the choice of confidence

level, and on the whether we use V aR, ES, or StD. The practitioner might

view this as a disadvantage of using distributions with skewness – she will

have to decide whether the data show enough skewness to justify the need

to confront these extra choices.

A practical disadvantage of skewed distributions is that we do not have

a closed form formula for V aR or ES. Instead, we turn to Monte Carlo

simulation to minimize ES at confidence level α by sampling the multivariate

distribution of returns. (This method also can be applied to the elliptical

distributions mentioned above.)

More specifically, from (20), we can rewrite the definition of expected

shortfall as follows,

ESα = V aRα +

∫
[−(ωTx)− V aRα]+f(x)dx

1− α
,

where [x]+ := max(x, 0).

We get a new objective function by replacing V aR by p,

Fα(ω, p) = p+

∫
[−(ωTx)− p]+f(x)dx

1− α
. (23)

Rockafellar and Uryasev [2001] showed that ES can be computed by min-

imizing this function with respect to ω and p. If the minimum is (ω∗, p∗),

then ω∗ is the optimized portfolio composition and p∗ is the corresponding

portfolio’s V aR at confidence level α.

Below, we sample the multivariate density by Monte Carlo simulation to

estimate Fα(ω, p) by
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F̂α(ω, p) = p+

∑n
k=1[−(ωTxk)− p]+

n(1− α)
, (24)

where xk is the k-th sample from some distribution and n is the number of

samples.

Efficient Frontier Analysis

We now study the possible efficient frontiers, for this 5-stock universe, as we

vary the risk measure (StD, 99% V aR, 99% ES) and the modeling distribu-

tion (Normal, Student t, skewed t).

Suppose we are standing at August 4, 2005, the last date in our data

set, and the holding period is one day. 750 sample data are used in the

calibration. The one day ahead forecasted GARCH volatilities for all the

stocks are denoted σ = (σ1, · · · , σ5)T at that date. The weight constraint

condition is written as

5∑
i=1

ωi = 1, (25)

where we assume the initial capital is 1 and ωi is the capital invested in risky

stock i. We suppose short sales are allowed.

Suppose that the calibrated filtered expected log return of stock i is µ̂i,

then the de-filtered forecasted expected return is µi = σiµ̂i. Let

µ = (µ1, · · · , µ5)T (26)

so that the expected portfolio return is ωTµ. We set the expected portfolio

return to be a constant c,

ωTµ = c (27)

and find the efficient frontier by minimizing StD, V aR, or ES subject to the

constraints (25) and (27).
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Normal Frontier

Under the modeling assumption that returns are Normal, we calibrate the

mean and covariance of a multivariate Normal to our filtered data, and then

compute the normal efficient frontier.

Exhibit 7 shows the filtered expected log return and the GARCH volatil-

ity forecast on Aug 4, 2005; Exhibit 8 shows the best-fit covariance matrix

(upper triangular), the variance (diagonal) and correlation matrix (lower tri-

angular) for the returns of the 5 stocks.1

We numerically minimize the portfolio variance, 99% V aR, and 99% ES

to compute the normal frontiers. Exhibit 9 shows the portfolio compositions

and the corresponding standard deviation, 99% V aR and 99% ES. Because

the Normal distribution is elliptical, we expect and see that these three meth-

ods all arrive at the same portfolio composition for a given return. Exhibit

10 shows three efficient frontiers plotted against 99% ES – where the objec-

tive function is either variance (StD), 99% ES, or 99% ES via Monte Carlo

simulation. The three frontiers are the same because the optimal portfolios

are the same. Note also that changing the confidence level of the objective

function will leave the picture unchanged as long as we plot the same variable

on the horizontal axis.

t Frontier

Exhibit 11 shows the expected log return for the filtered data using the t

distribution. The calibrated degree of freedom is 5.87. Exhibit 12 shows the

dispersion matrix (upper triangle), and correlation matrix (lower triangle)

for the five stocks2.

Since the t distribution is elliptical, we again expect the same portfolio

1The expected return µ̂ and covariance matrix Σ̂ are first calibrated with filtered re-
turns. We then restore the de-filtered expected return µ and covariance matrix Σ by
µi = µ̂iσi and Σ = AΣ̂A, where A=Diag(σ).

2The expected return µ̂ and dispersion matrix Σ̂ are first calibrated using filtered
returns. We then restore the de-filtered expected return µ and dispersion matrix Σ by
µi = µ̂iσi and Σ = AΣ̂A, where A=Diag(σ). For this reason, the expected log return
depends on Σ̂, and hence on the choice of multivariate distribution. This explains why the
expected log returns differ in Exhibits 7 and 11.
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compositions on the t frontier, whether we minimize StD, 99% V aR, or 99%

ES. This is confirmed in Exhibit 13.

From this table, we can also see that the portfolio compositions are differ-

ent than those of the Normal frontier. Exhibit 14 displays these (coincident)

frontiers on 99% ES - return axes, with the normal frontier included for

reference.

Normal vs. t frontiers

From the portfolio property and our explicit formulas (17), (18), (21), (22)

for V aR and ES, we have

V aRα = ωTµ+ c1ω
TΣω (28)

where c1 is a constant depending only on α for the Normal distribution, and a

different constant depending only on α and ν for the t distribution. Similarly,

ESα = ωTµ+ c2ω
TΣω (29)

for c2 depending only on α and ν.

Since ωTµ is held fixed when minimizing risk for the efficient frontier, all

three risk measures StD, V aR, ES will therefore produce the same efficient

portfolios for both the Normal and the t distributions, provided that we

use the same µ and Σ. Since µ is the mean of the t distribution and,

from equation (4), Σ is a scalar multiple of the covariance matrix, we can

summarize this as

Proposition 6 Invariance of efficient portfolios. If the vector of asset

returns is multivariate Normal or t distributed, with correlation matrix C

and mean µ, then the portfolios on the efficient frontier depend on C and µ,

but do not depend on the degree of freedom ν or on whether the risk measure

is chosen to be StD, V aR, or ES.

The difference between the t and Normal frontiers in Exhibit 14 is there-

fore due solely to the different means and correlations that arise in calibrating

the data to the best-fit Normal or t distributions.
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The cost of using a Normal model in a Student t world

For a fixed level of expected return, the corresponding fully invested risk-

minimizing portfolio depends on which distribution is used to model returns,

because of differing calibrated means and correlations.

As a first example, suppose Adam is a traditional Markowitz mean-

variance manager, using StD as his risk measure. He calibrates a multi-

variable Normal distribution to his filtered returns, in effect assuming the

Normal distribution is a good model for realized returns. Adam now believes

his efficient frontier is as shown by the dashed line in Exhibit 15.

However, as we have shown above, the Student t distribution is in fact

a better fit to the data. If we suppose that the “true” distribution is the

calibrated Student t distribution, the actual efficient frontier is shown by the

solid line in Exhibit 15. The circles indicate the efficient portfolios that Adam

computes under his incorrect Normal assumption, where we are plotting the

“true” expected log return and standard deviation based on the Student t

distribution. (Note that these portfolios do not lie on the Normal frontier

because Adam’s computation of risk using his Normal distribution gives him

the wrong answer.)

As expected, all of Adam’s portfolios lie below the true frontier. The dis-

tance between the circles and the solid curve in Exhibit 15 illustrates amount

of available return Adam fails to capture because his chosen portfolios do not

lie on the real efficient frontier. For moderate levels of risk he could have

increased his portfolio expected return by 20 or 30 percent if he had chosen

porfolios on the true efficient frontier.

Suppose now that Betty is another manager who uses 99% ES as her

risk measure because of its coherence properties, but for convenience she still

assumes filtered returns are normal. Her normal efficient frontier is plotted

as the dashed curve in Exhibit 16. If filtered returns are in fact Student

t distributed, then the true efficient frontier is the solid curve in the same

figure. Here, the normal frontier is actually inaccessible. As can be seen from

the tables and from the plotted circles, for a fixed return, the risk-minimizing

portfolio Betty chooses is actually not the true ES minimizing portfolio but

is inside the accessible region. Betty is investing sub-optimally due to her

choice of the Normal as modeling distribution.

15



Exhibit 16 also illustrates that the minimum variance portfolios are iden-

tical to the minimum ES portfolios – as expected since the Student t is an

elliptical distribution.

A similar discussion, illustrated by plotting frontiers against 99% V aR in

Exhibit 17, shows the results for Carol, a 99 % V aR minimizer who assumes

returns are Normal.

Skewed t Frontier

Exhibit 6 showed that a fitted skewed t distribution has a slightly higher

log likelihood than the Student t because of a small amount of skewness,

shown in Exhibit 18. The calibrated degree of freedom is 5.93. Exhibit 19

shows the dispersion matrix (upper triangular), and correlation matrix (lower

triangular) for the 5 stocks.

We use Monte Carlo simulation3 to find the skewed t frontier by minimiz-

ing expected shortfall. Exhibit 20 shows the 99% level portfolio compositions

and the corresponding 99% ES, and Exhibit 21 shows the 95% level portfolio

compositions and the corresponding 95% ES. Since the skewed t distribu-

tion is not elliptical, the 99% level and 95% level produce slightly different

portfolios.

In Exhibit 22 we show a comparison of the three efficient frontiers, one for

each of the three distributions, against 99% ES. We also include 95% ES to

illustrate that the confidence level now matters. The skewed t and t frontiers

are very close for small returns. When returns are large, the two curves

diverge. Note that the calibrated µ and Σ are similar for the t and skewed

t distributions, so the divergence is attributable to the skewness parameter

in the skewed t distribution, which affects correlations according to equation

3We use the filtered returns series to calibrate skewed t distribution and then use the
mean-variance mixture definition to sample the multivariate skewed t distribution to get
the 1,000,000 samples X̂1000000×5. Specifically, in Matlab, we generate 1,000,000 multi-
variate normal distributed random variables with mean 0 and covariance Σ̂, which is cali-
brated using filtered returns series, then we generate 1,000,000 InverseGamma(ν/2, ν/2)
distributed random variables, finally, we get 1,000,000 multivariate skewed t distributed
random variables by using the mean-variance mixture definition. The restored samples
X = X̂A, where A = Diag(σ). The restored mean µi = (µ̂i + ν

ν−2 γ̂i)σi where µ̂ and γ̂
are location and skewness parameters respectively calibrated using filtered data.
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(4). Here again, if we suppose that the true distribution of returns is skewed

t, the manager who assumes skewness is zero arrives at the wrong efficient

portfolios for large returns. Comparison of Exhibits 20 and 13 show that

skewness has a noticeable effect on both the magnitude of the minimum ES

for large returns, and on the portfolio composition itself.

Conclusion

Distributions matter. When calibrating non-normal data to a normal distri-

bution, it is not surprising that we might see inaccurate estimates of means

and correlations. This is confirmed with our daily equity price data.

The result is that the composition of optimized portfolios can be quite

sensitive to the kind of modeling distribution chosen.

The t distribution forms a better fit (in the sense of log likelihood) to our

equity data than does the Normal or several other common families of Gener-

alized Hyperbolic distributions. The skewed t is slightly better. When pass-

ing from Normal to t, the calibrated filtered means and dispersion matrices

(Σ) change substantially, leading to a noticeable effect on the efficient fron-

tiers. Introducing skewness with the skewed t distribution does not change

the calibrated correlations or means much, but the skewness still affects the

efficient portfolios for larger values of expected return. There is some evi-

dence of skewness in our data, but the increased log likelihood obtained by

introducing a skewness parameter is small.

Calibration of the t and skewed t distributions can be accomplished with

the EM algorithm. In the case of the skewed t, we lack explicit formulas for

V aR or ES, so that we must use Monte Carlo simulation to compute risk in

that case.

Since non-elliptical distributions are in many ways less convenient, man-

agers may choose for simplicity to opt for the t over the skewed t distribution,

especially when estimated skewness may be small. The t distribution is easy

enough, compared to the Normal, that we recommend managers graduate

at least to that family. They can find a much better fit to the data at the

cost of only one extra parameter (ν), and, because we believe real returns

are fat-tailed, capture much more of the true available expected return at a
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give true level of risk.

Appendix

Distribution Formulas

Definition 7 Generalized Inverse Gaussian distribution(GIG). The

random variable X is said to have a generalized inverse gaussian(GIG) dis-

tribution if its probability density function is

h(x;λ, χ, ψ) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

xλ−1exp

(
−1

2
(χx−1 + ψx)

)
, x > 0, (30)

where Kλ is a modified Bessel function of the third kind with index λ,

Kλ(x) =
1

2

∫ ∞
0

yλ−1e−
x
2

(y+y−1)dy, x > 0 (31)

and the parameters satisfy
χ > 0, ψ ≥ 0 ifλ < 0
χ > 0, ψ > 0 ifλ = 0
χ ≥ 0, ψ > 0 ifλ > 0

In short, we write X ∼ N−(λ, χ, ψ) if X is GIG distributed.

Generalized Hyperbolic Distributions. If the mixing variable W ∼
N−(λ, χ, ψ), then the density of the resulting generalized hyperbolic distri-

bution is

f(x) = c
Kλ− d

2

(√
(χ+ (x− µ)′Σ−1(x− µ)) (ψ + γ′Σ−1γ)

)
e(x− µ)′

Σ−1γ(√
(χ+ (x− µ)′Σ−1(x− µ)) (ψ + γ′Σ−1γ)

) d
2
−λ

,

(32)

where the normalizing constant is

c =
(
√
χψ)−λψλ(ψ + γ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ| 12Kλ(

√
χψ)

,
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and | · | denotes the determinant.

Skewed t Distribution. Let X be skewed t distributed, and define

ρ(x) = (x− µ)′Σ−1(x− µ). (33)

Then the joint density function of X is given by

f(x) = c
K ν+d

2

(√
(ν + ρ(x)) (γ′Σ−1γ)

)
e(x− µ)′

Σ−1γ(√
(ν + ρ(x)) (γ′Σ−1γ)

)− ν+d
2

(1 + ρ(x)
ν

)
ν+d
2

, (34)

where the normalizing constant is

c =
21− ν+d

2

Γ(ν
2
)(πν)

d
2 |Σ| 12

.
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Exhibit 2: Correlograms of squared log return series for 5 stocks
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Exhibit 3: Correlograms of squared filtered log return series for 5 stocks
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Exhibit 4: GARCH volatility of log return series for 5 stocks over time
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Model Normal Student t Skewed t VG Hyperbolic NIG
LL -5095.0 -4877.8 -4873.9 -4901.7 -4891.5 -4884.2

Exhibit 6: Log likelihood (LL) of estimated multivariate density for 6
distribution families
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Stock Disney Exxon Pfizer Altria Intel
Expected filtered return 0.040 0.073 -0.015 0.039 0.027

GARCH volatility 0.0107 0.0128 0.0130 0.0113 0.0156

Exhibit 7: Expected filtered log return and one day ahead forecasted
GARCH volatility on 08/04/2005
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Stock Disney Exxon Pfizer Altria Intel
Disney 1.009 0.372 0.340 0.191 0.428
Exxon 0.367 1.015 0.364 0.199 0.309
Pfizer 0.337 0.359 1.008 0.217 0.302
Altria 0.189 0.197 0.215 1.009 0.171
Exxon 0.420 0.303 0.297 0.168 1.027

Exhibit 8: Covariance and correlation matrix obtained by calibrating filtered
returns to a Normal distribution. Variances are on the diagonal, covariances
above the diagonal, and correlations below.
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Return StD 99%V aR 99% ES Disney Exxon Pfizer Altria Intel
0 0.0096 0.0223 0.0256 0.319 -0.206 0.528 0.320 0.040

0.0002 0.0084 0.0194 0.0222 0.318 -0.038 0.344 0.333 0.043
0.0004 0.0079 0.0180 0.0207 0.318 0.131 0.161 0.345 0.045
0.0006 0.0082 0.0186 0.0214 0.317 0.300 -0.023 0.358 0.048
0.0008 0.0093 0.0209 0.0241 0.317 0.468 -0.206 0.371 0.050
0.001 0.0109 0.0244 0.0281 0.316 0.637 -0.390 0.384 0.052

0.0012 0.0129 0.0287 0.0331 0.316 0.806 -0.573 0.397 0.055
0.0014 0.0150 0.0335 0.0386 0.316 0.974 -0.757 0.409 0.057
0.0016 0.0173 0.0386 0.0444 0.315 1.143 -0.940 0.422 0.060
0.0018 0.0196 0.0438 0.0505 0.315 1.312 -1.124 0.435 0.062
0.002 0.0220 0.0492 0.0567 0.314 1.480 -1.307 0.448 0.065

Exhibit 9: Portfolio composition and corresponding standard deviation,
99%V aR and 99%ES for the Normal frontier
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Exhibit 10: Markowitz efficient frontier vs 99% ES for the Normal
distribution. Note thhat all three risk measures give the same results.
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Stock Disney Exxon Pfizer Altria Intel
Expected filtered return 0.015 0.077 -0.018 0.069 0.030

GARCH volatility 0.0107 0.0128 0.0130 0.0113 0.0156

Exhibit 11: Expected filtered log return using the Student t distribution

31



Stock Disney Exxon Pfizer Altria Intel
Disney 0.709 0.268 0.267 0.159 0.332
Exxon 0.363 0.771 0.274 0.170 0.244
Pfizer 0.378 0.373 0.702 0.155 0.250
Altria 0.265 0.271 0.259 0.511 0.138
Exxon 0.460 0.324 0.349 0.225 0.734

Exhibit 12: Dispersion (Σ) and correlation matrix obtained by calibrating
filtered returns to a t distribution. Correlations are shown below the

diagonal. (Recall that the covariance matrix is equal to ν
ν−2

Σ)
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Return StD 99%V aR 99% ES Disney Exxon Pfizer Altria Intel
0 0.0095 0.0245 0.0316 0.494 -0.153 0.447 0.247 -0.035

0.0002 0.0086 0.0218 0.0281 0.410 -0.048 0.315 0.336 -0.014
0.0004 0.0080 0.0203 0.0262 0.326 0.057 0.184 0.425 0.008
0.0006 0.0081 0.0201 0.0261 0.242 0.162 0.052 0.515 0.030
0.0008 0.0086 0.0214 0.0278 0.158 0.267 -0.080 0.604 0.051
0.001 0.0097 0.0238 0.0310 0.074 0.371 -0.211 0.693 0.073

0.0012 0.0110 0.0271 0.0352 -0.010 0.476 -0.343 0.782 0.094
0.0014 0.0126 0.0309 0.0402 -0.094 0.581 -0.474 0.871 0.116
0.0016 0.0143 0.0352 0.0457 -0.178 0.686 -0.606 0.961 0.138
0.0018 0.0161 0.0396 0.0515 -0.262 0.791 -0.737 1.050 0.159
0.002 0.0180 0.0443 0.0576 -0.347 0.895 -0.869 1.139 0.181

Exhibit 13: Portfolio composition and corresponding standard deviation,
99%V aR and 99%ES for the t frontier
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Exhibit 14: t frontier and Normal frontier versus 99% ES. The t frontier is
unchanged if we use Monte Carlo simulation to compute ES, or if we

minimize variance instead of ES
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Exhibit 15: The efficient t and Normal frontiers vs StD, along with Adam’s
portfolio optimized under the assumption of Normality
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Exhibit 16: The efficient t and Normal frontiers vs 99% ES, along with
Betty’s portfolio optimized under the assumption of Normality
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Exhibit 17: The efficient t and Normal frontiers vs 99% VaR, along with
Carol’s portfolio optimized under the assumption of Normality
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Stock Disney Exxon Pfizer Altria Intel
location parameters -0.071 0.089 -0.030 0.161 0.042

skewness parameters 0.073 -0.010 0.010 -0.079 -0.010
GARCH volatility 0.0107 0.0128 0.0130 0.0113 0.0156

Exhibit 18: Expected filtered log return and skewness parameters for the
skewed t distribution
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Stock Disney Exxon Pfizer Altria Intel
Disney 0.706 0.269 0.267 0.164 0.333
Exxon 0.269 0.773 0.275 0.171 0.244
Pfizer 0.267 0.275 0.704 0.157 0.251
Altria 0.164 0.171 0.157 0.509 0.139
Exxon 0.333 0.244 0.251 0.139 0.736

Exhibit 19: Dispersion matrix Σ obtained by calibrating filtered returns to
a skewed t distribution
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Return 99% ES Disney Exxon Pfizer Altria Intel
0 0.0320 0.393 -0.219 0.515 0.337 -0.026

0.0002 0.0280 0.383 -0.058 0.328 0.363 -0.015
0.0004 0.0263 0.374 0.101 0.139 0.389 -0.003
0.0006 0.0274 0.381 0.259 -0.051 0.406 0.006
0.0008 0.0312 0.399 0.415 -0.244 0.416 0.013
0.001 0.0367 0.428 0.573 -0.436 0.415 0.021

0.0012 0.0433 0.456 0.733 -0.626 0.413 0.024
0.0014 0.0506 0.485 0.892 -0.817 0.409 0.031
0.0016 0.0583 0.514 1.052 -1.007 0.406 0.036
0.0018 0.0662 0.549 1.209 -1.200 0.404 0.038
0.002 0.0744 0.587 1.365 -1.394 0.399 0.042

Exhibit 20: Portfolio composition and corresponding 99%ES for the skewed
t frontier
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Return 95% ES Disney Exxon Pfizer Altria Intel
0 0.0215 0.354 -0.222 0.515 0.367 -0.013

0.0002 0.0187 0.348 -0.065 0.325 0.393 -0.002
0.0004 0.0175 0.349 0.094 0.136 0.415 0.006
0.0006 0.0182 0.356 0.253 -0.054 0.430 0.014
0.0008 0.0206 0.369 0.412 -0.245 0.442 0.023
0.001 0.0242 0.386 0.570 -0.435 0.449 0.029

0.0012 0.0285 0.407 0.730 -0.625 0.453 0.036
0.0014 0.0333 0.426 0.889 -0.816 0.459 0.042
0.0016 0.0383 0.447 1.047 -1.007 0.466 0.047
0.0018 0.0436 0.470 1.206 -1.197 0.468 0.053
0.002 0.0489 0.492 1.366 -1.387 0.472 0.057

Exhibit 21: Portfolio composition and corresponding 95%ES for the skewed
t frontier
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Exhibit 22: Skewed t efficient frontier at 99% ES or 95% ES versus t
frontier
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