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Abstract

A novel Proper Orthogonal Decomposition (POD) model has been developed for use
with an advanced unstructured mesh finite element ocean model, the Imperial Col-
lege Ocean Model (hereafter, ICOM, described in detail below) which includes many
recent developments in ocean modelling and numerical analysis. The advantages of
the POD model developed here over existing POD approaches are the ability:

To increase accuracy when representing geostrophic balance (the balance between
the Coriolis terms and the pressure gradient). This is achieved through the use of two
sets of geostrophic basis functions where each one is calculated by basis functions
for velocities u and v;

To speed up the POD simulation. To achieve this a new numerical technique is
introduced, whereby a time-dependent matrix in the discretised equation is rapidly
constructed independent of time. This development imparts considerable efficiency
gains over the oft used alternative of calculating each finite element and node over
the computational domain at each time level;

To use dynamically adaptive meshes in the above POD model.

keywords: POD; reduced-order modelling; ocean model; finite element; unstruc-
tured adaptive mesh

1 Introduction

Proper Orthogonal Decomposition (POD) is a numerical procedure that can be used to extract
a basis for a modal decomposition from an ensemble of signals. The technique was originally
proposed independently by Kosambi (1943)[1], Loève (1945)[2] and Karhunen (1946)[3], and is
alternatively known as the Karhunen-Loève decomposition (KLD) method. Related method-
ologies have, however, been developed in a variety of disparate disciplines [4]. The procedure
is also known as Principal Components Analysis (PCA) (Fukunaga, 1990) in statistics, and
Empirical Orthogonal Functions (EOF) in oceanography ([5]; [6]) and meteorology ([7]).

Proper Orthogonal Decomposition (POD) has been widely and successfully applied to numer-
ous fields, including signal analysis and pattern recognition ([8]), fluid dynamics and coherent
structures (Lumley,1967; [9]; [10]; [11]) and image reconstruction ([12]).
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An important innovation in use of POD for large problems in fluid dynamics involves using a
series of snapshots,which consist of a set of state solutions evaluated at different time instants
and determined from the evolution in time of the full model([13],[14],[15] and [16]). The snap-
shots are used to compute the POD basis vectors to yield an optimal representation of the
data so that for any given basis vector size, the two-norm of the error between the original and
reconstructed snapshot is minimised.

A further advance in POD technology, the gappy POD procedure, was developed to recon-
struct full human facial images from partial data-sets ([17]). Gappy POD is a variation of
POD proposed by Everson and Sirovich (1995)[17] allowing missing or incomplete data to be
reconstructed in a lower dimensional space. In this technique, given a set of POD modes, an
incomplete data vector is reconstructed by solving a small linear system. If the snapshots them-
selves are damaged or incomplete an iterative method is used to derive the POD basis. This
methodology has also been applied to fluid dynamic applications ([18]).

POD methodologies, in combination with the Galerkin projection procedure have also been
shown to provide an efficient means of generating reduced order models ([10]; [19], [20]). This
technique essentially identifies the most energetic modes in a time-dependent system thus pro-
viding a means of obtaining a low-dimensional description of the system’s dynamics. To improve
the accuracy of reduced models, the goal-oriented approach has been used to optimise the POD
bases ([21], [22]). The dual-weighted POD approach seeks to provide an ’enriched’ set of basis
functions combining information from both model dynamics and the data assimilation system.
This practical utility of this approach has been extended to include ocean and climate modelling
and the solution of inverse problems ([23], [24], [25] and [19]).

The motivation of the current work is to develop a POD-based reduced model for an unstruc-
tured ocean model, i.e., the Imperial College Ocean Model (ICOM), that can simultaneously
resolve both small and large scale ocean flows whilst smoothly varying resolution and conform-
ing to complex coastlines and bathymetry [26]. What distinguishes the reduced model developed
here from other existing reduced models is the inclusion of adaptive mesh capability. This rep-
resents the main challenge in the implementation of the POD approach. When adaptive meshes
are employed, the mesh resolution requirements may be spatially and temporally different, as
the meshes are adapted according to the flow features. This unavoidably introduces difficulties
in the implementation of a POD-based reduced model for an adaptive model. One of these chal-
lenges is that snapshots can be of different length at different time levels. To overcome these
difficulties, a standard reference fixed mesh is adopted for the reduced models. The solutions
from the full models are then interpolated from their own mesh onto the same reference fixed
mesh at each time level. This allows the same number of base modes at each time level.

One of the important issues in reducing ocean models is to accurately represent the geostrophic
balance. In this work, the pressure variable is divided into two parts: non-geostrophic and
geostrophic pressures. The basis function for the geostrophic pressure is constructed by two
sets which should satisfy the geostrophic balance and be calculated by the basis functions for

3



the velocity components u and v respectively.

In order to construct an efficient POD model, a new numerical technique is introduced. A
general discretised reduced model at the time level n can be written: Anαn = sn, where, αn is a
vector of the coefficients associated with the basis functions for the variables in the full model.
The matrix An is time dependent and calculated at each element and node over the whole
computational domain. Calculating the matrix An at each time level is compute-intensive. To
accelerate the POD simulation, the matrix An is constructed by a set of time-independent
matrices which are obtained prior to running the reduced model.

Error estimation is a critical issue in reduced order modelling. The references related to error
estimation can be found in ([27]; [28]; [29]; [30]; [31]; [32]) to cite but a few. Early work on error in
model reduction has been done by Utku (1985)[27], where the first order error estimation of the
model reduction for non-linear systems is given at a small number of time steps. More recently,
the Dual- Weighted-Residual method (DWR), which makes use of the solution of an adjoint
system, has been incorporated into the error estimation of reduced models ([22],[31]; [29],[33]).
Using this method it is possible to obtain ’a priori’ error estimate for a certain cost functional of
solution. This error estimate can be used to satisfy a given error tolerance. It can also be used to
form a very efficient low-dimensional basis especially tailored to the cost functional of interest.
For example, Homescu et al. (2005, 2007) [29] [34] employed the DWR method to determine the
regions of validity of the reduced models, that is, ranges of perturbations in the original system
over which the reduced model is still appropriate. Furthermore, Hinze and Volkwein (2005)
[28] incorporated both the time derivatives and adjoint information into snapshots in the error
estimation for the PDE constrained optimisation and POD inverse model. In this work, the
error estimation is carried out using a simple approach described in [19], where, a spectral norm
||A||2 is defined to estimate the spatial error between the full and reduced models. An error

bound is given by
√

λ(M+1) if M POD bases are chosen, where λ(M+1) is (M + 1)th eigenvalue

for AAT .

The remainder of this paper is structured as follows: In the second section the Imperial College
Ocean Model (ICOM) is briefly described. In the third section the reduced forward model is
then derived, whilst the geostrophic pressure, mesh adaptivity, and acceleration of the POD
simulation are discussed in detail in section four. In section five the above reduced model is
applied to and illustrated by some relevant cases. Summary and conclusions are drawn in the
final section.
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2 Description of ICOM

In this work, a POD-based reduced model is developed for ICOM that can simultaneously
resolve both small and large scale ocean flows whilst smoothly varying resolution and conforming
to complex coastlines and bathymetry [1, 2, 3]. With more appropriate focused numerical
resolution (e.g. adaptive and anisotropic resolution of fronts and boundary layers, and optimal
representation of vertical structures in the ocean) ocean dynamics may be accurately predicted
during future climatic change. To accurately represent local flow around steep topography the
hydrostatic assumption is not made in this work. Here, the pressure variable is split into the
non-geostrophic and geostrophic parts which are solved separately. This allows the accurate
representation of hydrostatic/geostrophic balance [2]. In principle, coupling of the momentum
and continuity equations results in an extremely large system of equations to solve, for which an
efficient solution strategy is difficult to devise. Therefore, a technique (e.g. a projection method)
is used in which the pressure and velocity variables are solved for independently, thus reducing
the total dimension of the systems that must be solved for (for details see [8]).

The underlying model equations consist of the 3-D non-hydrostatic Boussinesq equations,

∇ · u=0, (1)

∂u

∂t
+ u · ∇u + fk × u=−∇p − ρgk + ∇ · τ, (2)

where u ≡ (u, v, w)T ≡ (u1, u2, u3)
T is the velocity vector, x ≡ (x, y, z)T ≡ (x1, x2, x3)

T are the
orthogonal Cartesian coordinates, p is the perturbation pressure (p := p/ρ0, ρ0 is the constant
reference density), f represents the Coriolis inertial force, g represents the acceleration due to
gravity, ρ is the perturbation density (ρ := ρ/ρ0), and k = (0, 0, 1)T . The stress tensor τ is used
to represent viscous terms and is defined in terms of the deformation rate tensor S as

τij = 2µijSij, Sij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

− 1

3

3
∑

k=1

∂uk

∂xk
, 1 ≤ i, j ≤ 3,

with no summation over repeated indices. In this work the horizontal kinematic viscosities
(µ11, µ22) and vertical kinematic viscosity (µ33) take constant values with the off-diagonal
components of τ defined by µij = (µiiµjj)

1/2, see also [35, 36]. For barotropic flow (baroclinic flow
is incorporated in section 4), the pressure p consists of hydrostatic ph(z) and non-hydrostatic
pnh(x, y, z, t) components. The hydrostatic component of pressure balances exactly the constant
buoyancy force and both terms are therefore dropped at this stage.

ICOM utilises dynamic adaptation of a fully unstructured tetrahedral mesh in three- dimensions
(3-D), as presented in Pain et al. (2001) [37]. This technique uses a form of h-refinement (or
mesh optimisation) to adapt the mesh, changing the size, shape and location of tetrahedral
elements to optimise the mesh according to specific criteria, as defined by an error measure.
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The algorithm is based on a series of mesh connectivity and node position searches, defining the
mesh quality. A Riemannian metric tensor reflecting the error measure is used to calculate the
desired element size and, importantly, its shape. A functional is used to gauge the mesh quality–
this functional embodies both element size and shape with respect to the metric tensor. A
local based search strategy is adopted to carry out the adaptation operations–node smoothing,
edge and face-edge swapping, and edge splitting and collapsing–to minimise the functional.
The algorithm is robust, produces high quality anisotropic meshes, and has a time complexity
which varies linearly with the number of elements see Pain et al. (2001) [37]. An alternate
approach of defining an error measure to guide an adaptive meshing algorithm for unstructured
tetrahedral finite elements is to utilise an adjoint or goal-based method. This method is based
upon a functional, encompassing important features of the flow structure. The sensitivity of this
functional, with respect to the solution variables, is used as the basis from which an error mea-
sure is derived. This error measure acts to predict those areas of the domain where resolution
should be changed.

3 Reduced order ocean model

A derivation of the 3-D reduced forward equations is described in this section. The Proper
Orthogonal Decomposition (POD) reduction is the most efficient choice among linear decom-
positions in the sense that it can capture the greatest possible kinetic energy.

3.1 Discretised ocean model

To construct the discretised ocean model, the linear basis function N is chosen for the velocity
components and non-geostrophic pressure, whilst quadratic basis function M is used for the
geostrophic pressure (Figure 1). The variables to be solved can be expressed in the finite element
form:

ux,y,z =
N
∑

i=1

uiNi, vx,y,z =
N
∑

i=1

viNi, wx,y,z =
N
∑

i=1

wiNi,

png =
N
∑

i=1

png,iNi, pg =
N
∑

i=1

pg,iMi, (3)

where, N is the number of nodes, png and pg are the non-geostrophic and geostrophic pressures,
respectively.
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[Fig. 1 about here.]

3.2 Proper Orthogonal Decomposition

The model variables (e.g., u, v, w, p) are sampled at defined checkpoints during the simulation
period [t1, . . . , tn, . . . , tK], also referred to as snapshots (K being the number of snapshots). The
snapshots can be obtained either from a mathematical (numerical) model of the phenomenon
or from experiments/observations. The sampled values of variables at the snapshot i are stored
in a vector Ui with N entries (N being the number of nodes), here, U can represent one of
variables u, v, w, p. The average of the ensemble of snapshots is defined as:

Ūi =
1

K

K
∑

k=1

Uk,i, 1 ≤ i ≤ N , (4)

Taking the deviation from the mean of variables,forms

Vk,i = Uk,i − Ūi, 1 ≤ i ≤ N . (5)

A collection of all Vk,i constructs a rectangular N by K matrix A. The goal of Proper Orthogonal
Decomposition (POD) is to find a set of orthogonal basis functions Φ = Φ1, Φ2, . . . , ΦK such
that it maximise

1

K

K
∑

k=1

N
∑

i=1

(Vk,iΦk), (6)

subject to
K
∑

k=1

Φ2
k = 1. (7)

The Singular Value Decomposition (SVD) is used to find the optimal base Φ of the optimisation
problem (6). From SVD, the matrix A ∈ RN×K can be expressed

A = X







Λ 0

0 0





Y T , (8)

where, Λ = diag(σ1, σ2, . . . , σd) ∈ Rd×d, X ∈ RN×N and Y ∈ RK×K are the matrices which
consist of the orthogonal vectors for AAT and AT A respectively. The order N for matrix AAT

is far larger than the order K for matrix AT A. Therefore a K ×K eigenvalue problem is solved

AT Ayk = λkyk; 1 ≤ k ≤ K. (9)

This procedure is equivalent to a Singular Value Decomposition (SVD). The eigenvalues λk

are real and positive and should be sorted in an descending order. The POD basis vectors Φk

associated with the eigenvalues λk are orthogonal and expressed as follows:

Φk = Ayk/
√

λk. (10)
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It can be shown [6,11], that the kth eigenvalue is a measure of the kinetic energy transferred
within the kth basis mode (strictly speaking this is applied, when the field under consideration
is the velocity field, but can be generalised to others fields as well). If the POD spectrum
(energy) decays fast enough, practically all the support of the invariant measure is contained
in a compact set. Roughly speaking, all the likely realisations in the ensemble can be found
in a relatively small set of bounded extent. By neglecting modes corresponding to the small
eigenvalues, the following formula is therefore defined to choose a low-dimensional basis of size
M (M << K),

I(M) =

∑M
i=1 λi

∑K
i=1 λi

, (11)

subject to

M = argmin{I(M) : I(M) ≥ γ}, (12)

where, 0 ≤ γ ≤ 1 is the percentage of energy which is captured by the POD basis Φ1, . . . , Φm, . . . , ΦM .

3.3 POD reduced model for ICOM

The variables in (1) and (2) can be expressed as an expansion of the POD basis functions for
u, v, w, p, that is,

u(t, x, y, z)= ū +
Mu
∑

m=1

αm,u(t)Φm,u(t, x, y, z),

v(t, x, y, z)= v̄ +
Mv
∑

m=1

αm,v(t)Φm,v(t, x, y, z),

w(t, x, y, z)= w̄ +
Mw
∑

m=1

αm,w(t)Φm,w(t, x, y, z),

p(t, x, y, z)= p̄ +
Mp
∑

m=1

αm,p(t)Φm,p(t, x, y, z). (13)

Substituting (13) into (1) and (2) and taking the POD basis function as the test function, then
integrating over the computational domain, the POD reduced model is obtained:
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∂αmu,u

∂t
= Fu(t, α1,u, . . . , αMu,u, α1,v, . . . , αMv ,v, α1,w, . . . , αMw ,w, α1,p, . . . , αMp,p),

∂αmv ,v

∂t
= Fv(t, α1,u, . . . , αMu,u, α1,v, . . . , αMv ,v, α1,w, . . . , αMw ,w, α1,p, . . . , αMp,p),

∂αmw ,w

∂t
= Fw(t, α1,u, . . . , αMu,u, α1,v, . . . , αMv ,v, α1,w, . . . , αMw ,w, α1,p, . . . , αMp,p),

∂αmp,p

∂t
= Fp(t, α1,u, . . . , αMu,u, α1,v, . . . , αMv,v, α1,w, . . . , αMw,w, α1,p, . . . , αMp,p), (14)

where, 1 ≤ mu ≤ Mu, 1 ≤ mv ≤ Mv, 1 ≤ mw ≤ Mw, 1 ≤ mp ≤ Mp, and Mu, Mv, Mw, Mp are
the number of the basis functions for u, v, w, p, respectively. The initial conditions for solving
(14) are

αmu,u(0, x, y, z)= ((u(0, x, y, z) − ū(x, y, z)), Φmu,u),

αmv ,v(0, x, y, z)= ((v(0, x, y, z) − v̄(x, y, z)), Φmv ,v),

αmw ,u(0, x, y, z)= ((w(0, x, y, z) − w̄(x, y, z)), Φmw ,w),

αmp,u(0, x, y, z)= ((p(0, x, y, z) − p̄(x, y, z)), Φmp,p).

(15)

The errors for the above POD model are bounded by the following expression (details of the
derivation can be found in Luo et al. (2007) [19]):

||ufull − u||2 ≤
√

λu(Mu+1),

||vfull − v||2 ≤
√

λv(Mv+1),

||wfull − w||2 ≤
√

λw(Mw+1),

||pfull − p||2 ≤
√

λp(Mp+1), (16)

where, λu(Mu+1) is the (Mu + 1)th eigenvalue for AuA
T
u , λv(Mv+1) is the (Mv + 1)th eigenvalue

for AvA
T
v , λw(Mw+1) is the (Mw + 1)th eigenvalue for AwAT

w and λp(Mp+1) is the (Mp + 1)th
eigenvalue for ApA

T
p ; the matrices for each variable, Au, Av, Aw and Ap can be calculated by

equation (5).
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4 Geostrophic pressure, adaptive meshes and Efficiency in POD simulation

4.1 Geostrophic pressure

One important issue in ocean modelling is the treatment of Coriolis term in the momentum
equation. To allow the accurate representation of the geostrophic pressure, the pressure in (2)
is divided into two parts: p = png + pg. The geostrophic pressure has to satisfy the geostrophic
balance:

−∇pg = fk∇u. (17)

Taking the divergence of equation (17), an elliptic equation for geostrophic pressure is obtained

−∇2pg =
∂(−fv)

∂x
+

∂(fu)

∂y
. (18)

To accurately represent geostrophic pressure its basis functions are split into two sets: Φpgu

and Φpgv which are associated with the u- and v-velocity components. The geostrophic pressure
that satisfies equation (18) can be obtained from a quadratic finite element representation
(figure 1) whilst linear finite element representations are used for the velocity components.
Furthermore the geostrophic pressure can be represented by a summation of the two sets of
geostrophic basis functions, which are calculated by solving the following elliptic equations
using a conjugate gradient iterative method:

−∇2Φpgu,m =
∂(fΦm,u)

∂y
,

−∇2Φpgv,m =
∂(−fΦm,v)

∂x
. (19)

where, Φpgu,m and Φpgv,m are the basis functions respectively for velocity components u and v.
m = (1, . . . , M) indicates a set of basis functions, M is the total number of basis functions.
The geostrophic pressure can therefore be expressed as:

pg = p̄g +
M
∑

m=1

αm,uΦm,u +
M
∑

m=1

αm,vΦm,v. (20)

In addition the average geostrophic pressure is calculated from:

−∇2p̄g =
∂(−f v̄)

∂x
+

∂(fū)

∂y
. (21)

where, ū =
∑K

k=1 uKand v̄ =
∑K

k=1 vk. It is shown in Figure 2 that the numerical results are
significantly improved by using the new numerical method described above. This method can
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also be easily extended to represent buoyancy with temperature and salinity dependence by
introducing more basis functions for which balance these buoyancy terms.

[Fig. 2 about here.]

4.2 Adaptive meshes in POD

When adaptive meshes are employed in ocean models, the mesh resolution requirements vary
spatially and temporally, as the meshes are adapted according to the flow features through the
whole simulation. The dimensional size of the variable vectors is different at each time level
since the number of nodes varies during the simulation. Snapshots can therefore be of different
length at different time levels. This unavoidably brings difficulties in the implementation of a
POD-based reduced model for an adaptive model. To overcome these difficulties, a standard
reference fixed mesh is adopted for the reduced model. The solutions from the original full
model are interpolated from their own mesh onto the same reference fixed mesh at each time
level, and then stored in the snapshots. The information at the snapshots is used to find the
optimal POD basis. This allows obtaining the same length of base modes at each time level.
The resolution of the reference mesh and the interpolation errors between the two meshes (the
adaptive mesh and the fixed reference mesh) may affect the accuracy of the POD simulation.
This will be explained and discussed in detail through the applications presented below. To
reduce the interpolation error, a high order interpolation approach can be adopted.

4.3 Acceleration of the POD simulation

For simplicity, suppose the discrete forward model to be solved at the time level n assumes the
form:

Anαn = sn, (22)

where,

sn = Bn + f, (23)

where, An and Bn are the matrices at the time level n, αn = (αn
1 , . . . , α

n
m, . . . , αn

M) is the vector
variables to be solved at the time level n, here including the coefficients related to the basis
functions for the velocity components and the pressure, i.e, αn

m = (αn
m,u, α

n
m,v, α

n
m,w, αn

m,p), sn is
a discretised source term at the time level n. Note that it is time-consuming to calculate the
time dependent matrix An at each finite element and node over the computational domain at
each time level. To speed up the POD simulation, a new numerical technique is introduced,
that is, the time-dependent matrix An is constructed by a set of sub-matrices independent of
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time. For a nonlinear simulation, the matrices An and Bn can be written as:

An = Â0 +
M
∑

m=1

αn−1
m Âm, (24)

Bn = B̂0 +
M
∑

m=1

αn−1
m B̂m, (25)

where, the matrices Â0, B̂0 Âm and B̂m are time independent, and derived in the Appendix
A. Equations (24) and (25) can be rewritten as:

An = Â0 + Ânαn−1, (26)

Bn = B̂0 + B̂nαn−1, (27)

where, Â = (Â1, . . . , Âm, . . . , ÂM), B̂ = (B̂1, . . . , B̂m, . . . , B̂M), which are independent of time.
Therefore, instead of calculating the time-dependent matrix An at each time level, one needs
to calculate those sub-matrices Ân and B̂n once prior to the POD simulation. This significantly
speeds up the POD simulation.

5 Application cases and numerical results

The utility of the new POD reduced order model is herein assessed and validated in three 2D,
time-dependent test case; - flow past a cylinder, flow past a cylinder on a β plane and a gyre.

5.1 Case 1: flow past a cylinder

The 2D case is composed of a cylinder with a radius of 1 in the computational domain i
element deep, 29 long and 10 wide. An inlet boundary with a velocity of 1 (non-dimensional)
flows parallel to the domain length towards the right of the domain. The centre of the cylinder is
placed 5 from the inlet boundary. The Reynolds number (Re) is 100 and the boundary condition
applied to the cylinder and both lateral sides is set to no-slip with a spin-up period of 8 and a
time step of 0.02 (non-dimensional).

The initial conditions are defined by running the full model from the ’static’ state during
the spin-up period [0,8] (non-dimensional). In this case, an adaptive mesh is adopted in the full
model. To guarantee the same length of POD bases at the snapshots, a reference fixed mesh is
chosen for the POD simulation ( right panel in figure 3). The information from the full model
is interpolated from the adaptive mesh (right panel in figure 3) onto the reference mesh (right
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panel). The mesh for the full model adapts every 20 time steps with maximum and minimum
mesh sizes of 0.1 and 0.04 respectively. The maximum mesh aspect ratio is 1000.

In this case, 20 snapshots and 10 basis functions are chosen for u, v, w and p, for which 95
percent of energy is captured. Figure 3 shows the velocity field (vector) obtained from the
full (left panel) and POD (right panel) models. It is apparent that the results (especially the
details of eddies nearby the cylinder) from both models are in good agreement. For details,
figure 4 shows the blow up of the velocity field around the cylinder at the time level t = 10.
It is observed that the results obtained by running the reduced model and the full model
provide almost identical details of local flow . By carrying out a comparison between the results
from the full and reduced models, the overall error of numerical POD solutions is less than
max{√λu11,

√
λv11} ≤ 0.8 (here, λu11 and λv11 are the 11th eigenvalues respectively for the

velocity components u and v. The whole simulation of running the reduced model is completed
within 9 minutes, whilst it takes 40 minutes of CPU time for running the full forward model.

5.2 Case 2: flow past a cylinder on a β plane (β = 7.5)

The POD model developed here is further applied to a flow past a cylinder on a β plane.
The schematic of the model domain and the boundary conditions are the same as that in the
previous case. The β effect on the flow is considered in this case. The Coriolis parameter is
given by f = βy, here β = 7.5. The Reynolds number is Re = 200. The spin-up period is 0.4.
The simulation period is 2 and the time step is chosen to be 0.002.

Figure 3 shows the velocity field (vector) obtained from the full (left panel) and POD (right
panel) models. It can be seen from both the full and reduced simulations that two separated
jets form downstream of the cylinder, as described in reference ??. 40 snapshots and 30 basis
functions, here, are chosen for u, v, w and p, in which 99.9999 percent of energy is captured.
The maximum error of numerical POD solutions is less than max{√λu31,

√
λv31} ≤ 10−3 (here,

λu31 and λv31 are the 31th eigenvalues respectively for the velocity components u and v. It takes
only 3 hrs to complete the simulation by running the reduced model which is considerably less
than the CPU time (38-39 hrs) required to run the full forward model. The computational cost
is thus significantly reduced by 92% (i.e. by a factor of 13).

[Fig. 3 about here.]

[Fig. 4 about here.]

[Fig. 5 about here.]
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5.3 Case 3: Gyre

To simulate a wind driven barotropic circulation, the computational domain is taken to be a
square box of 1000km with a depth of 500 m. A maximum zonal wind stress of τ0 = 0.1Nm−1

is applied in a cosine of latitude profile. The Reynolds number is Re = 250, β = 1.8 × 10−11

and the reference density ρ0 = 1000 kgm−1. The problem is non-dimensionalised, so that the
domain is a box of 1, and a depth of 0.0005 with one element in the vertical. Incorporating
the β−plane approximately gives a non-dimensional rotation vector of Ω = (0, 257.143, 0) and
non-dimensional wind stress of τ0 = 163.2653. The time step is 3.78 × 10−4, equivalent to
6 hrs. No-slip boundary conditions are applied to the lateral boundaries. The spin-up period
is 0.3024 (200 days). The simulation period is [200, 400] days.

As discussed above, the POD simulation could end up having results far from the true val-
ues (figure 2) if the geographic pressure is represented improperly. In this work, to accurately
represent the geostrophic balance, the geostrophic pressure is calculated using the novel ap-
proach described in section 4. Comparison of velocity field between the full and POD models
is provided in figure 6. The velocity fields at the different time levels exhibit an overall good
agreement with those from the full model.

[Fig. 6 about here.]

To judge the quality of the POD model developed here, an error estimate is provided. The
percentage of energy represented by the POD bases is listed in table 1. 99% of the energy
can be captured when 60 POD bases are chosen with 81 snapshots, and 97% of the energy is
captured when 30 POD bases and 41 snapshots are used. About 91% of energy is captured if
half the number of leading POD bases is chosen. In general, the more POD bases and snapshots
are chosen, the better the energy is represented. A list of CPU times required for running the
reduced model is provided in table 2. It usually takes less than 3 hrs to complete the simulation
by running the reduced model. For all the setting, compared with the CPU (30 hrs) required
for running the full model, the CPU for running the reduced model decreases by a factor
of 10 whilst about 98.5% of the energy is captured. It is noted that that 99% of percent of
CPU required for the reduced model is used to setup the POD bases and calculate the time-
independent sub-matrices (details in the section 4.3) for preparation of running the simulation.
The actual CPU time required to running the reduced model during the simulation period is
less than 1 minute.

[Table 1 about here.]

[Table 2 about here.]
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The error of numerical results obtained by a different number of POD bases can be calculated
as in equation (16). Figure 7 illustrates the eigenvalues and the error associated with a corre-
sponding number of POD bases for the velocity components u and v. It is indicated that the
first 25% of the leading POD bases has a significant impact on POD results. The error of POD
results decreases by 70% − 80% of its original values whilst the energy captured can achieve
above 76% if the first 25% of the leading POD bases are chosen.

The Root Mean Squared Error (RMSE) and correlation coefficient of results between the full
and POD models at different time levels are provided in figures 9 and 8. It can be seen that as
the simulated time accrues, the POD error increases, whilst the correlation decreases. During
the first half of the simulation period, the POD results are in general satisfactory since the
correlations are mostly larger than 0.8 and the RMSE is less than 2.5 ms−1. It is also shown
that an increase in the number of snapshots and POD bases leads to an improvement in the
correlation coefficient and reduction in the RMSE (figure 10).

[Fig. 7 about here.]

[Fig. 8 about here.]

[Fig. 9 about here.]

[Fig. 10 about here.]

6 Summary and conclusions

A POD reduced model has been developed for a finite element adaptive mesh refinement ocean
model (here, ICOM). To the best of our knowledge, this is the first attempt to apply the POD
approach to an adaptive finite-element ocean model. To be able to obtain the same length of
POD snapshots at each time level, a reference fixed mesh is chosen for the POD reduced model.
The results from the full model are interpolated from the adaptive mesh onto the reference mesh
for each of the snapshots and stored to find the optimal POD bases. It is noted in our case
that the results from the POD model become oscillatory and unstable as the Reynolds number
increases beyond 1000. To improve the stability of the POD model, a H1 norm is suggested to
redefine the norms involved in the POD definition so that derivatives of the snapshots as well
as that of the basis functions are included in the POD average (Iollo et al. (2000)) [38].

The POD reduced model is applied to 2D time-dependent ocean cases. The Coriolis effect is
taken into account in the POD model. An accurate representation of the geostrophic balance
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can be achieved by two sets of basis functions for the geostrophic pressure, which are obtained
by the basis functions for the velocity components u and v, respectively.

An error analysis has also been carried out for the validation and accuracy of the adaptive
POD model. It is shown that the results from the reduced model coincide with those from
the full model. The correlation of results between the reduced and full models can achieve
80− 99%, whilst the RMSE results is less than 2.5 ms−1 and 97% of energy can be captured if
a suitable number of POD bases is chosen (say, if half of the leading POD bases is chosen with
81 snapshots). The error for leading POD results decreases by 70%− 80% of its original values
if the first 25% of leading POD bases are chosen. An increase in the number of snapshots and
POD bases leads to an improvement in the correlation coefficient and reduction in the RMSE.

To increase the efficiency of the POD simulation, a new numerical technique is introduced, that
is, one can generate a priori time-independent decomposition of the matrix in the discretised
POD equations prior to running the reduced model. It is proved that the computer cost required
for running the reduced model can decreased by a factor of 30.

Further research will address the following issues of a goal oriented POD to optimise the weights
of POD bases, Gappy POD which allows the consideration of incomplete data sets, and adjoint
POD for data assimilation with adaptivity both in mesh as well as in the updating of the
reduced order model controlls.

Appendix A

The second-order Crank-Nicolson time stepping algorithm is used, and the sub-matrices are:
(1) the A0 matrices in u momentum equation;
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Â0,i,3M+j =
1

2
∆t

N
∑

k=1

∂pk

∂x
,
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(2) the A0 matrices in v momentum equation;
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(3) the A0 matrices in w momentum equation;
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(A-3)

(4) the A0 matrices in continuity equation;
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(5) the B0 matrices in u momentum equation;
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(6) the B0 matrices in v momentum equation;
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ūk
∂Φv,j,k

∂x
+ v̄k

∂Φv,j,k

∂y
+ w̄k

∂Φv,j,k

∂z
+

∂2Φv,j,k

∂x2
+

∂2Φv,j,k

∂y2
+

∂2Φv,j,k

∂z2
+

∂v̄k

∂y
Φv,j,k

]

,

B̂0,M+i,2M+j =
∂v̄k

∂z
Φw,j,k

B̂0,M+i,3M+j =
1

2
∆t

N
∑

k=1

∂pk

∂y
,

(A-6)

(7) the B0 matrices in w momentum equation;
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(8) the Am matrices;
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(9) the Bm matrices;
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where, M represents the number of basis functions, N is the number of nodes, 1 ≤ i, j ≤ M .
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Fig. 1. Linear and quadratic mixed finite element. •: u, v, w, png ; ◦: pg
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Fig. 2. Effect of geostrophic balance on results from POD simulation (left panel: with the new
geostrophic pressure method; right panel: without the new geostrophic pressure method).

25



Fig. 3. Case1: comparison of velocity field between the full and reduced models (Re = 100) (left panel:
the full model; right panel: the reduced model; top panel: at the initial time level t = 8; middle panel:
at the time level t = 10; bottom panel: at the time level t = 12).
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Fig. 4. Case1: Blowup of the velocity field in figure 3 around the cylinder at the time level t = 10.
(left panel: the full model; right panel: the reduced model)
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Fig. 5. Case2–cylinder on a β plane (β = 7.5, Re = 100): comparison of velocity field between the full
and reduced models (left panel: the full model; right panel: the reduced model; top panel: at the initial
time level t = 0.4; middle panel: at the time level t = 0.8; bottom panel: at the time level t = 2).
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Fig. 6. Case3: comparison of velocity field between the full and reduced models (Re = 250) (left panel:
the full model; right panel: the reduced model; top panel: at the time level t = 200 days; middle panel:
at the time level t = 300 days; bottom panel: at the time level t = 400 days.
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Fig. 7. Case3: Eigenvalues and errors for velocity components u and v (top panel: eigenvalues; bottom
panel: error left panel: 41 snapshots; right panel: 81 snapshots).
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Fig. 8. Case3: Correlation at time levels (left panel: 41 snapshots; right panel: 81 snapshots).
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Fig. 9. Case3: RMS at time levels (left panel: 41 snapshots; right panel: 81 snapshots).
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Fig. 10. Case3: Comparison of correlation and RMS with different snapshot numbers (left panel:
Correlation; right panel: RMS).
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number of POD bases Energy (%) Energy (%)

(41 snapshots) (81 snapshots)

10 for 41 bases 77.373 (for u) 88.614 (for u)

20 for 81 bases 76.003 (for v) 89.723 (for v)

81.103 (for p) 92.880 (for p)

20 for 41 bases 91.448 (for u) 97.025 (for u)

40 for 81 bases 91.693 (for v) 97.738 (for v)

94.343 (for p) 98.614 (for p)

30 for 41 bases 97.386 (for u) 99.458 (for u)

60 for 81 bases 97.624 (for v) 99.600 (for v)

98.584 (for p) 99.766 (for p)

Table 1: Energy captured by the POD bases for velocity components, u, v and pressure p.
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number of POD bases CPU (hrs) CPU (hrs)

(41 snapshots) (81 snapshots)

10 for 41 bases 0.77 (reduced by 97%) 1.4 (reduced by 95%)

20 for 81 bases

20 for 41 bases 1.30 (reduced by 95%) 2.47 (reduced by 92%)

40 for 81 bases

30 for 41 bases 2.00 (reduced by 93%) 11.0 (reduced by 63%)

60 for 81 bases

Table 2: a list of CPU times required for running the reduced model and the reduced percent of CPU
compared with that (30 hrs) required for running the full model.Note the actual CPU time required
to running the reduced model during the simulation period is less than 1 Minuit after the POD bases
and the time-independent sub-matrices (section 4.3) are calculated.
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