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Abstract

A comparative analysis of observation targeting methods based on total energy
singular vectors (TESVs) and Hessian singular vectors (HSVs) is performed with
a finite volume global shallow-water model, along with its first and second order
adjoint model. A 4D-Var data assimilation framework is considered that allows for
adaptive observations distributed in both time and space domain. To obtain the
HSVs a generalized eigenvalue problem was solved using the generalized Jacobi-
Davidson algorithm. A full 4D-Var procedure without incremental approximation
was used leading to an accurate second order adjoint and derivation of a consistent
Hessian matrix. Numerical experiments involving TESV and HSV as alternative
targeting strategies were carried out to assess the potential benefits of targeting
methods using second order adjoint information.

The results obtained point to an advantage of using HSV as a tool for observation
targeting where interaction between targeted observations taken at distinct instants
in time has a significant impact on efficiency of both adaptive strategies. Additional
metrics such as similarity indices between HSV and TESV also point to the same
conclusion.



1 Introduction

Singular vectors identify directions in phase space which provide the maximum growth

over a finite period in time with respect to specified norms.

Several techniques have been put forward to identify optimal sites for additional ob-

servations. Adjoint based techniques such as sensitivity to initial conditions and singular

vectors (have been proposed) have been tested for such tasks by many groups of re-

searchers.

As summarized by Langland (2006) targeted observing is a process in which supple-

mentary atmospheric observations are assimilated to improve analyses in selected regions

of the atmosphere, and reduce the uncertainty in forecasts of weather events that have

large societal or economic impact.

Initial efforts were carried out by Lorenz and Emanuel (1998), Berliner et al. (1999),

Barkmeijer et al. (1998), Leutbecher (2003), Langland et al. (1999), Pu and Kalnay

(1999) , Morss et al. (2001), Baker and Daley (2000). It has become evident through

the work of Barkmeijer et al. (1998, 1999) that use of Hessian singular vectors (HSVs)

where the Hessian of the cost function (if the background error and observation errors are

uncorrelated) is equal to the inverse of the analysis error covariance matrix (Rabier and

Courtier 1992, Fisher and Courtier 1995) holds promise for improving adaptive targeting

observations. A methodology of interactive adaptive observations distributed in both

time and space was introduced by Daescu and Carmichael (2003) and Daescu and Navon

(2004) while the impact of data interaction on targeted observations with a 4-D Var data

assimilation and forecast system was presented by Daescu et al. (2007). See also the

relevant work of Bergot and Doerenbecher (2002), Bergot (2001), Buizza and Montani

(1999), Palmer et al. (1998), Langland and Baker (2004) and Langland (2005).

The advantage of using HSVs (apart from the overhead to have to solve a generalized

eigenvalue problem) is that initial time HSVs evolve into leading vectors of the propagated

analysis error covariance at verification time.
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Barkmeijer et al. (1998, 1999) have shown that the Hessian of the cost function in

a variational data assimilation scheme can be used to compute SVs that incorporate an

estimate of the full analysis error covariance at initial time. The resulting SVs, referred

to as Hessian SVs or (HSVs), are consistent with the data assimilation scheme used

to construct the forecast initial conditions. The HSVs also reflect the background and

observational error correlations assumed by the data assimilation scheme (Gelaro et al.

2002).

The computational cost of obtaining the HSVs is several times greater than that of

the TESVs, since they require solving a generalized eigenvalue problem (Davidson 1975),

which precludes the use of the Lanczos algorithm. For a complete survey of second order

methods in data assimilation see Le Dimet et al. (2002). In the present paper we present

a comparison of TESVs and HSVs for observation targeting using a global shallow-water

equations (SWE) model. See Lin and Rood (1997), Lin and Rood (1996), Lin et al. (1994)

and Lin (2004) as well as Akella and Navon (2006).

The paper plan is the following.

In section 2 a brief description of the fvSW global model is provided along with the first

and second order adjoint required for the HSV research. The generalized Jacobi-Davidson

algorithm and its application in the frame work of the JDQZ package as developed by

Sleijpen et al. (1996) and Bai, Sleijpen and Van der Vorst (1999) is briefly described in

section 3. In section 4 we review the application of TESV and HSV methods for targeting

observations and describe the scenarios of interaction of fixed and adaptive observations.

Detailed numerical results are presented in section 5 looking at the differences between

HSVs and TESVs in a framework of adaptive observations targeting. Discussion of results

of similarity index between TESVs and HSVs is presented in section 6. Conclusions and

summary along with further research directions are presented in Section 7.
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2 Brief description of Lin Rood fvSW along with its

first and second order adjoint models

The numerical model used in this paper is a finite volume two-dimensional global shallow-

water (SW) model. The SW equations in spherical coordinates in the vorticity divergence

form assume the following form

∂h

∂t
+∇ · (Vh) = 0 (1)

∂u

∂t
= Ωv − 1

a cos θ

∂

∂λ
[κ + ϕ] (2)

∂v

∂t
= −Ωu− 1

a

∂

∂θ
[κ + ϕ] (3)

where h represents the fluid height (above the surface height, hs), V = (u, v) represent the

zonal and meridional wind velocity components respectively. The free surface geopotential

height is given by ϕ = ϕs + gh = ghs + gh, κ = 1
2
V · V is the kinetic energy, and

Ω = 2ω sin θ +∇×V is the absolute vorticity, ω is the angular velocity of the earth.

The finite volume shallow water equations model of Lin and Rood (1997) has been used

for integrating the above SW equations. The advection schemes have been implemented

in two dimensions by using a sequential operator-split approach, details of which have

been provided in Lin and Rood (1996). A two grid combination based on C-grid and

D-grids has been used while advancing from time step tn to tn+1. In the first half of the

time step, the advective winds (time centered winds on the C-grid: (u∗; v∗) ) are updated

the C-grid, and in the other half of the time step, the prognostic variables (h; u; v) are

updated on the D-grid (in this study, we will use the same advection scheme on both the

grids).

The explicit finite-volume flux-form semi-Lagrangian (FFSL) scheme of Lin and Rood

(1997) at a 5◦ × 5◦ resolution and a constant time step 4t = 900s are used. As a

reference initial state xref
0 the 500mb ECMWF ERA-40 data valid for March 15, 2002 06h
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is considered. The model state at the initial time and after 24h integration is displayed

in Fig. 1.

4-D Var data assimilation experiments are setup in a twin experiments framework. A

background field xb is prescribed using a shift method in the reference initial state. The

background state at the initial time and after 24h integration is displayed in Fig. 2. The

24h forecast error xref
v − xb

v = M(xref
0 − x(xb)) in a total energy metric exhibits a large

magnitude over the domain Dv = [120◦W, 100◦W ] × [34◦N, 51◦N ] that is defined as the

verification domain at tv=24h (which is defined to be the verification time).Here xref
v is

the verifying analysis at tv.

In Fig. 3, we show the errors between the background field and the reference state at

the initial time and the 24h forecast, respectively, evaluated in the total energy norm

< δx(λ, θ), δx(λ, θ) >=
1

2
[(δu)2 + (δv)2] +

1

φ0

(δφ)2, (4)

where

δx(λ, θ) = x(λ, θ)−xref (λ, θ), φ0 is the mean geopotential height of the reference data

at the initial time.

The adjoint method application in variational data assimilation provides a way of

obtaining the exact gradient of the cost function (which uses the prognostic variables of

the model) with respect to the model initial conditions. The first order adjoint model

satisfies two properties. It is the transpose of the tangent linear model (TLM) and also

it allows for obtaining the exact gradient of the cost function with respect to the control

variables. In this paper 4-D Var data assimilation is performed in the assimilation window

[0, 6] h and it is assumed that routine observations are only available at t=6h on a coarse

10◦×10◦ grid. The error in the forecast initiated from the analysis obtained is also shown

in Fig. 4. From this figure it can be seen that after data assimilation the error over the

entire domain is reduced, however it still remains the largest error over the verification

domain. Hence adaptive observations are necessary.
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Other than the first order adjoint method additional information may be obtained by

using the second order adjoint method. Here a second order adjoint model (SOA) was

used which has been developed for the above mentioned global S-W equations model.

One integration of the SOA model yields a value of the Hessian (the matrix of second

partial derivatives) multiplied by a vector or a column of the Hessian of the cost function

with respect to the initial conditions. The SOA model yields the Hessian of the cost

function which is related to the inverse of the analysis error covariance matrix that may

be approximated by the inverse Hessian matrix of the cost functional in the 4-D Var, i.e

to solve

(PM)∗E(PM)υ = σ2A−1υ (5)

in the optimization interval tv − ti.

The specification of the metrics E and A−1 at time tv and ti, respectively, is discussed

by Palmer et al. (1998). Here P is a diagonal projection operator on verification domain

Dv satisfying P∗P = P2 = P. The generalized eigenvalue problem above can be solved

using the JDQZ package (See Sleijpen et al. 1996, Fokkema et al. 1998).

The proposed Jacobi-Davidson method (Sleijpen and Van der Vorst 1996) can solve

the generalized eigenvalue problem without using explicit knowledge of the operators on

both sides of the equation. We make use of this algorithm to determine Hessian singular

vectors using the 4-D Var variational assimilation Hessian as a constraint at initial time.

3 Description of HSV and TESV and the generalized

eigenvalue problem

Consider the 2-D global shallow-water equations model, its tangent linear model can be

written as δxt = M(t, 0)δx0, where δxt is the evolution of perturbation at time t, δx0 is

the initial perturbation at initial time 0, and M(t, 0) is a linearized version of the original

non-linear operator. In the present case we consider perturbations of the state vector δx

which consists of (δφ; δu; δv) at initial time.
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In order to compute the fastest growing perturbations at a target time, it is necessary

to define an inner product of the linear vector space of perturbations. We define the inner

product (x, y) =< x,Ey >, where < · ; · > denotes a Euclidean inner product and E

denotes the total energy norm. For x = (φ; u; v), it yields the form

||x||2E = (x, y) =< x,Ex >=

∫

Σ

[
1

2
u2 +

1

2
v2 +

φ2

φ0

]dΣ (6)

It is obvious that E is a positive-definite diagonal matrix.

Singular vectors depend on norms that are used to measure their amplitude at initial

and final time.

Singular vectors optimized for total energy at verification time in the verification region

are employed to identify sensitive regions of the atmosphere, where initial-condition error

is likely to contribute most to the forecast error.

In this paper we consider SVs, which maximize the ratio at optimization time t

||xt||2E
||x0||2A−1

=
< xt,Ext >

< x0,A−1x0 >
=

< Mx,EMx0 >

< x0,A−1x0 >
=

< x0,M
∗EMx0 >

< x0,A−1x0 >
= λ2 (7)

where the superscript ” ∗ ” represents the transpose.

This suggests solving the generalized eigenvalue problem

M∗EMυi = λ2
i A

−1υi (8)

The generalized eigenvectors υi and the generalized eigenvalues λi are respectively

called the SVs and singular values of M (with respect to A−1 norm). They are orthogonal

and form a complete basis. Any xi can therefore be expressed as a linear combination of

the SVs υi. The leading SVs are sometimes called optimal perturbations and the time

during which perturbation grows is considered the optimization time.

In practice, one can only compute a small number of SVs compared with the huge

dimension of the model variables. In order to make the SVs more relevant to limited

target area domain, Barkmeijer (1992) introduced a local projection operator P, which
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sets model variables to zero outside the concerned domain. Then the ratio is generalized

as

λ2 =
< Pxt,EPxt >

< x0,A−1x0 >
(9)

The eigenvalue problem becomes

(PM)∗E(PM)υi = λ2
i A

−1υi (10)

In the computation of the TESVs, the total energy metric is used at initial and op-

timization time, i.e. E and A−1 are identical. In the case of HSVs, the inverse of the

analysis error covariance matrix is used to define the norm at initial time. The operator

A−1 is specified to be equal to the full Hessian of the 4-D Var cost function. It has turned

out that of the simple metrics considered, the total energy metric is the most consistent

with the analysis-error statistics. In Barkmeijer et al. (1998) a method is proposed to

make the singular vector computation fully consistent with the analysis error statistics by

employing the Hessian of the 3-D Var cost function.

The HSVs are calculated with an initial-time norm based on the Hessian of the 4-

D Var cost function which provides an estimate of the analysis error covariance. For

observation targeting, the norm defined with the inverse of the analysis error covariance

is the adequate choice as structures with equal amplitude represent equally likely initial

errors, given the fact that the analysis error is normally distributed (Barkmeijer et al.

1998; Palmer et al. 1998).

Both types of singular vectors are normalized to have unit total energy at initial time.

The weight given to the contribution from singular vector j is its singular value σj in order

to emphasize the structures that are likely to contribute most to the forecast error. The

function F ranks geographical locations (λ, θ)) according to the sensitivity of the forecast

to errors of the initial condition at that location. The target region is defined as the set

D = {(λ, θ)|F (λ, θ) > Fc}, (11)
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in which F exceeds a threshold value Fc. The value of Fc is adjusted in order to obtain a

target region with a pre-specified area (details see Daescu and Navon, 2003).

It was found by Leutbecher et al. (2002) that the HSV targeting is superior to the

TESV targeting results.

4 Computational aspects of the Hessian singular vec-

tors

Barkmeijer et al. (1998) introduced Hessian singular vectors and showed how they could

be derived from the iterative solution of a generalized eigenvalue problem.

In computation of singular vectors one has to specify a norm at initial time t0 and

at optimization time t, where singular vectors υ are considered maximizing the ratio (9),

where (· , ·) is the Euclidean inner product. A−1 and E are symmetric positive definite

operators and P is a projection operator setting a vector to zero outside a given domain.

The singular vectors are solutions of the generalized eigenvalue problem (10). The

adjoint operators M∗ and P∗ are determined with respect to the Euclidean inner product.

In calculation of HSV the operator A−1 is equal to the Hessian of the 4-D Var cost

function with respect to the control variables while A−1 is not known in matrix form

and determining its square root is not feasible. Barkmeijer et al. (1999) have shown

that one can solve (10) by a generalized Davidson algorithm. This algorithm can solve

(10) efficiently and requires only the capability of solving y = Sx where S is any of

the operators M,P,E or A−1. No explicit knowledge of any operator is needed. We

will briefly outline the algorithm of the package JDQZ used for solving the generalized

eigenvalue problem (10) in appendix A. (See Fokkema et al. 1998, Sleijpen and Van der

Vorst 1996, Sleijpen et al. 1996, also Leutbecher 2003).
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5 Numerical experiments

In this section adaptive targeting strategies using the leading total energy singular vectors

(TESVs) and the leading Hessian singular vectors (HSVs) are analyzed for the global fi-

nite volume shallow water equations model and the experimental settings are described in

above section 2. We assume that at each time step in the assimilation window [0,6]h five

adaptive observations are selected using a singular vector targeting strategy. A compar-

ative performance analysis is presented for different experiments: In the first experiment

we assume that only routine observations are available to the data assimilation process.

In the second and third experiments we assume that both routine observations as well

as adaptive observations are available for the TESV and HSV targeting methods, re-

spectively. However the routine observations are only available on a 10◦ × 10◦ coarser

mesh. For each experiment and for each of the targeting methods the data assimilation

procedure is performed using the M1QN3 large-scale limited-memory unconstrained min-

imization routine, which based on a limited-memory quasi-Newton method. (see Liu and

Nocedal 1989, Gilbert and Lemarechal 1989). For each targeting method, the minimiza-

tion process of the cost functional J (over the entire domain) provides the analysis initial

condition xa
0. The evolution of the normalized forecast error reduction Jv(x

a
0)/Jv(x0) at

the verification time over the verification domain is also monitored. The total energy

norm is used to define the inner product < · , · >E and to quantify the forecast error

formula at verification time.

To implement the TESV and HSV method, 10 leading singular values and their as-

sociated singular vectors were computed at each targeting instant using the ARPACK

package (Lehoucq et al. 1998) and the JDQZ package implementing the Davidson gener-

alized eigenvalue solver (Sleijpen et al. 1996 and Sleijpen, Van der Vorst and Bai 1999)

respectively. The evolution of the first total energy singular vector and Hessian singular

vector for the 500mb geopotential height field for an optimization interval [t,24]h with

t=2h,4h,6h are shown in Fig. 5.
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Similarly, the time evolution of the first total energy singular vector and Hessian

singular vector of the zonal wind field and of the meridional wind field are shown in Figs.

6 and 7, respectively.

We begin our analysis by presenting the results obtained for TESV and HSV methods.

The evolution of the sensitivity field corresponding to the Hessian singular vectors method

and the total energy singular vectors method are shown in Fig. 8. Adaptive observations

using total energy singular method are marked with ′4′ while adaptive locations marked

with ′◦′ in Fig. 8 were selected from the Hessian singular vector method.

For each targeting method, the distribution of the forecast error at the verification

time over the verification domain after data assimilation takes place is shown in the total

energy norm in Fig. 9. The forecast error using the background estimate as the initial

conditions is also displayed in Fig. 9 as a reference.

The potential forecast improvement using adaptive observations is limited by various

factors such as the accuracy and formulation of the background estimate, the configuration

of the existing observational network, the length of the verification time, and the number

of additional observational resources allocated, etc. As it can be seen in Fig. 11 the HSV

method provides the best forecast over Dv at tv, but there is only little improvement as

compared to the TESV method outside of Dv. Even in some other domain the error is

bigger than TESV method. One should notice that by using adaptive observations we

only attempt to improve the forecast over a given sub-domain at a given future time.

6 Similarity Index between TESVs and HSVs

In adaptive observations information about analysis errors impacts on both observing

locations and the optimal sampling strategy (Baker and Daley 2000).

Using HSVs which are consistent with the data assimilation used to construct the

forecast initial conditions in a full 4-D Var setup should enhance results of adaptive

observations targeting.
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To assess the differences between the subspaces spanned by the leading TESVs and

HSVs we use a projection matrix to exhibit the difference between TESVs and HSVs

(Buizza 1994). The projection matrix is defined as,

mi,j(TESV,HSV ) = [< υi(TESV ),Eυj(HSV ) >]2 (12)

Each element of above projection matrix is the squared scalar product of the ith TESV

and the jth HSV. It represents the amount of energy of the jth HSV that is explained

by the ith TESV. The sum of the matrix elements with a fixed index represents how well

the jth HSV can be reconstructed from a linear combination of the first ith TESV.

In Table 1 if the projection matrix element is less than 1 then it is set to be 0. The

projection matrix (Table 1) shows that at initial time the seventh HSV resembled by the

eighth TESV, the seventh HSV resembled by the ninth TESV, these two SVs are the

’meteorological’ ones in the sense of Buizza et al. (1993) for HSV. At time (ti=6h) the

fourth HSV resembled by the sixth TESV, this SVs is the ’meteorological’ ones.

Also we can use another measure of similarity based on projection of a set of singular

vectors on another is provided by the similarity index of the TESV and HSV (Buizza

1994), that is,

s(TESV,HSV ; N) =
1

N

N∑
i,j=1

mi,j(TESV,HSV ) (13)

(which measures the similarity between the unstable subspaces spanned by the first N

SVs of TESV and HSV). The index goes from 1 for parallel unstable subspaces to 0 when

the subspaces are orthogonal.

Figure 12 shows the similarity index (based on the total energy norm) of the 10 leading

TESVs and HSVs at initial time for different forecast hour. Results are presented for the

leading 3, 5, 7, 9, and 10 SVs for every hour of the study period.

Also we carried out experiments about the leading 10 SVs for the initial time and final

time (24 hours forecast) as in Gelaro et al (2002). The average similarity index between
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the TESV and HSV unstable subspaces is about 0.03 when the subspaces were spanned

by the leading ten singular vectors at initial time. However after evolving for 24 hours

, the similarity index increased to 0.19. These outputs are very similar to the results

obtained by Gelaro.

7 Summary and conclusions

In this study leading TESVs and HSVs singular vectors techniques have been employed

to identify optimal sites for taking additional observations. These methods are tested

in the context of 4-D Var data assimilation using a finite volume global shallow-water

equations model. We first carried out a comparison between TESVs and HSVs. The

method described in this paper uses the full Hessian (or second derivative) of the cost

function of the variational data assimilation with respect to the initial conditions as con-

trol parameters to obtain the leading HSVs. These are related to the inverse analysis error

covariance matrix (Fisher 2001). In this way the calculation of singular vectors can be

made consistent with the 4-D Var calculation of the analyzed state. To obtain the HSVs

a generalized eigenvalue problem was solved using the Jacobi-Davidson algorithm (David-

son 1975) methodology. The algorithm is implemented the JDQZ package developed by

Sleijpen et al. (1996) and Sleijpen, Van der Vorst and Bai (1999).

As shown in Daescu and Navon (2004), in order to fully account for the temporal

dimension of the 4-D Var scheme, multiple targeting instants must be considered in the

assimilation window. The present work represents a first step in the design of optimal

sampling strategies for time distributed adaptive observations in the framework of 4-D

Var. In particular, it is shown that the combined results of TESV and HSV targeted

observations taken at distinct instants in time yield a significant impact on the efficiency

of the adaptive targeting strategies.

Results of our analysis carried out in the 4-D Var framework for a global 2D shallow-

water model shows that Hessian singular vectors may serve to provide an improved model
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forecast as compared to using only the leading total energy singular vectors.

Our future research will focus on the extending of present targeting methods using

Hessian singular vectors for operational atmospheric models. A rigorous theoretical frame-

work to account for time distributed adaptive observations remains to be formulated.

Further studies will also be related to the impact of the structure of the background

error covariance on the outcome of above experiments.
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Appendix A A Brief summary of Jacobi-Davidson al-

gorithm as implemented in JDQZ.

The Jacobi-Davidson method constructs accurate approximations (µ, λ, x) of the gener-

alized eigenvalue problem

µAx = λBx (A-1)

where A and B are (n × n) matrices, x is a non-trivial n-vector. µ, λ) belong to a

1-D complex, projective plane. We scale µ to 1 and λ ∈ C. The idea of Jacobi-Davidson

method (see Sleijpen and Van der Vorst 1996) is to construct a correction for a given

eigenvector approximation in a subspace orthogonal to the given approximation.

The small projected problem is then reduced to a generalized Schur form by the QZ

method of Moler and Stewart (1973). The JDQZ method used for solving the gener-

alized eigenvalue problem produces a partial generalized Schur form of the generalized

eigenproblem.

By using implicit restarts techniques and preconditioning one finally obtains the re-

sulting algorithm JDQZ (see Fokkema et al. (1998), Sleijpen et al. (1996), Fokkema and

Van Gijzen (1999) JDQZ manual).

This algorithm is available in FORTRAN and is also enhanced with a deflation tech-

nique allowing several solutions of the eigenproblem to be computed.

For practical applications see the manual of Fokkema and Van Gijzen (1999) describing

in some detail the FORTRAN code of JDQZ which is calling the libraries of LAPACK

and BLAS.

The user should supply three problem dependent routines, namely a vector matrix

multiplier with operator A called AMUL, one for multiplication with B called BMUL and

a routine for performing the preconditioning operation which must be called PRECON.
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The preconditioning will speed the convergence of JDQZ, but is not impacting on the

final result.

In the present paper the Hessian singular vector calculation is controlled using the

JDQZ package. The calculation will stop when the maximum number of iterations has

been performed, or when the maximum number singular vectors have been calculated.

JDQZ calculates the Hessian singular vectors as the solutions to the following generalized

eigenvector equation

M∗P∗EPMx = λJ′′x (A-2)

where M denotes the tangent linear model, M∗ is the transpose of M, E defines the

inner product at optimization time, P is a projection operator over a verification domain,

outside the domain the value will be set to 0, and J′′ is the Hessian of 4-D Var cost function

which is the inner product at initial time. The algorithm requires operators which apply

M∗P∗EPM and J′′ to arbitrary vectors. These operations are represented in the code by

the subroutines AMUL and BUML respectively. Subroutine BMUL calculates a Hessian-

vector product as a second order adjoint model for the input vector.

JDQZ starts with an initial matrix V. The columns of V are orthonormalized with

respect to the initial time inner product. That is, they are made to satisfy V∗J′′V = I.

Next, the following small ordinary eigenvalue problem is solved

V∗M∗P∗EPMVy = θy (A-3)

The eigenvalues of this problem are the Ritz values (i.e. approximations to the eigen-

values) of (refeigen). The residual, r = M∗P∗EPMVy − θJ′′Vy for the leading uncon-

verged Ritz value is selected. The residual is orthogonal to the columns of M in the

Euclidean sense.

A vector which is orthogonal with respect to the Hessian is produced by first cal-

culating an approximate solution to the linear equation J′′υ = r, and then explicitly

orthonormalizing υ. The accuracy of the solution is determined by TOL (the required

21



reduction in the norm of the error), and MAXSTEP (the maximum number of iterations

to be performed.

Once the vector υ has been determined, it is included as a new column of V, and the

process is repeated. It can be shown that if the linear equation J′′υ = r is solved exactly,

then the algorithm is equivalent to a Lanczos algorithm. If it is solved approximately, the

algorithm resembles the Jacobi-Davidson method.

22



Figure Captions

Figure 1. The configuration of the model state for the reference run (xref
0 ): 500mb

geopotential height and velocities field at the initial time and after a 24h forecast.

Figure 2. The configuration of the background state (xb): 500mb geopotential height

and velocities field at the initial time and after a 24h forecast.

Figure 3. Distribution of the forecast error in total energy norm at the initial time

and t=24h using the reference state and the background estimate as the initial condition

respectively. The verification domain Dv = [120◦W 100◦W]× [34◦N 51◦N] is shown with

solid line.

Figure 4. Distribution of the forecast error in total energy norm at t=24h using the

analysis state in data assimilation which is performed with observations from fixed loca-

tions only (10◦ × 10◦ coarse grid) as the initial condition. The verification domain Dv =

[120◦W 100◦W]× [34◦N 51◦N] is shown with solid line.

Figure 5. Time evolution of the first total energy singular vector and Hessian singular

vector in 500mb geopotential height field for the optimization interval [ti,24]h respectively.

Results shown for ti =2h,4h,6h.

Figure 6. Time evolution of the first total energy singular vector and Hessian singular

vector in zonal wind field for the optimization interval [ti,24]h respectively. Results shown

for ti =2h,4h,6h.
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Figure 7. Time evolution of the first total energy singular vector and Hessian singular

vector in zonal wind field for the optimization interval [ti,24]h respectively. Results shown

for ti =2h,4h,6h.

Figure 8. Time evolution of the sensitivity field and adaptive observation locations us-

ing the leading Hessian singular vectors method (marked with ’◦’) (HSV) and using the

leading total energy singular vectors method (marked with ’4’) (TESV). Results shown

for ti =2h,4h,6h.

Figure 9. Distribution of the forecast error at the verification time over the verification

domain when data assimilation is performed using both routine and adaptive observa-

tions provided by the different targeting methods, respectively. For reference, the results

between the reference state and the background state and the results obtained by using

routine observations only are also displayed.

Figure 10. Top: The minimization of the cost function J when both routine and adaptive

observations provided by different targeting methods respectively, are assimilated. Mid-

dle: During the minimization process the evolution of the gradient. Normalized values

are shown on a logarithmic scale. Bottom: During the iterative process, for each tar-

geting method the forecast error reduction at the verification time over Dv is quantified

by evaluating the ratio Jv(x
a
0)/Jv(x0). For reference, the results obtained using routine

observations only are also displayed.

Figure 11. Distribution of the forecast error in total energy norm at the verification

time when data assimilation is performed with routine and adaptive observations pro-
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vided by different targeting methods, respectively. Significant forecast improvement may

be observed over the verification domain. However outside the verification domain little

forecast improvement can be observed.

Figure 12. Subspace similarity for the leading 3, 5, 7, 9, 10 TESVs and HSVs at different

forecast time. See text for details.

Table 1. The projection matrix for TESV and HSV. The indices on the first row refer to

HSV and the indices on the first column to TESV. Each entry mi,j of the matrix gives the

square scalar product between the ith TESV and the jth HSV. That is, the percentage of

energy of the jth HSV explained by the ith TESV. The last row gives the percentage of

energy of the jth HSV by all leading 10 TESVs. Top: projection matrix at ti=0h Bottom:

projection matrix at ti=6h.
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Unstable sub-space projection matrix for TESVs and HSVs at ti=0h

1 2 3 4 5 6 7 8 9 10
1 3 0 3 0 2 1 8 0 2 0
2 6 0 0 0 0 3 0 0 0 0
3 2 2 0 0 2 0 1 0 4 2
4 0 0 4 1 0 0 1 0 1 1
5 4 0 2 4 9 8 5 0 5 0
6 0 0 0 0 0 0 8 0 0 0
7 1 0 0 0 0 4 5 1 3 0
8 1 0 0 2 1 5 11 0 1 1
9 1 0 0 2 2 1 10 0 0 5
10 0 0 1 0 0 0 0 0 7 8

total 22 4 13 12 18 25 53 4 26 15

Unstable sub-space projection matrix for TESVs and HSVs at ti=6h

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0
3 0 3 1 4 4 5 1 0 1 0
4 0 4 0 0 1 0 0 0 0 0
5 0 0 0 0 0 0 0 0 1 0
6 3 8 0 20 0 2 2 2 0 0
7 3 1 4 3 2 5 0 1 0 3
8 1 2 0 2 0 0 1 0 0 0
9 0 2 0 0 0 1 0 0 0 1
10 0 1 0 0 0 0 2 0 0 0

total 9 25 10 31 11 15 8 5 3 7

Table 1.
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