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Abstract. In this paper, proper orthogonal decomposition (POD) is used to reduce the
formulation of mixed finite element (MFE) for the non-stationary Navier–Stokes equations and
error estimates between a reference solution and POD solution of reduced MFE formulation are
derived. The basic idea of this reduction technique is that ensembles of data are first compiled
from transient solutions computed equation system derived with usual MFE method for the
non-stationary Navier–Stokes equations or from physics system trajectories via drawing samples
of experiments and interpolation (or date assimilation), and then the basis functions of usual
MFE method are substituted with the POD basis functions to reconstruct the elements of the
ensemble so as to derive the optimizing reduced MFE formulation based POD technique for the
Navier–Stokes equations since there are few basis functions in the POD basis ensemble. It is
shown by considering results obtained for numerical simulations of cavity flows that the error
between POD solution of reduced MFE formulation and the reference solution is consistent
with theoretical results. Moreover, it is also shown that this result validates feasibility and
efficiency of POD method.
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1. Introduction. Mixed finite element (MFE) methods are one of the important ap-

proaches for solving system of partial differential equations, for example, the non-stationary

Navier–Stokes equations (see [1], [2], and [3]). However, fully discrete system of MFE solu-

tions for the non-stationary Navier–Stokes equations is of many degrees of freedom. Thus, the

important problem is how to simplify the computational load and save time–consuming calcu-

lations and resource demands in the actual computational process in a way that guarantees a

sufficiently accurate numerical solution. Proper orthogonal decomposition (POD), also known
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as Karhunen–Loève expansions in signal analysis and pattern recognition (see [4]), or principal

component analysis in statistics (see [5]), or the method of empirical orthogonal functions in

geophysical fluid dynamics (see [6], [7]) or meteorology (see [8]), is a technique offering adequate

approximate for representing fluid flow with reduced number of degrees of freedom, i.e., with

lower dimensional models (see [9]) so as to alleviate the computational load and provide CPU

and memory requirements savings, and has found widespread applications in problems related

to the approximation of large–scale models. Although the basic properties of POD method are

well established and studies have been conducted to evaluate the suitability of this technique

for various fluid flows (see [10], [11], and [12]), its applicability and limitations of optimizing

reduced MFE formulation for the Navier–Stokes equations are not well documented.

The POD method mainly provides a useful tool for efficiently approximating a large amount

of data. The method essentially provides an orthogonal basis for representing the given data in

a certain least squares optimal sense, that is, it provides a way to find optimal lower dimensional

approximations of the given data. In addition to being optimal in a least squares sense, POD

has the property that it uses a modal decomposition that is completely data dependent and

does not assume any prior knowledge of the process used to generate the data. This property

is advantageous in situations where a priori knowledge of the underlying process is insufficient

to warrant a certain choice of basis. Combined with the Galerkin projection procedure, POD

provides a powerful method for generating lower dimensional models of dynamical systems that

have a very large or even infinite dimensional phase space. In many cases, the behavior of a

dynamic system is governed by characteristics or related structures, even though the ensemble

is formed by a large number of different instantaneous solutions. POD method can capture

these temporal and spatial structures by applying a statistical analysis to the ensemble of data.

In fluid dynamics, Lumley first employed the POD technique to capture the large eddy coherent

structures in a turbulent boundary layer (see [13]); this technique was further extended in [14],

where a link between the turbulent structure and dynamics of a chaotic system was investi-

gated. In Holmes et al [9], the overall properties of POD are reviewed and extended to widen

the applicability of the method. The method of snapshots was introduced by Sirovich [15], and

is widely used in applications to reduce the order of POD eigenvalue problem. Examples of

these are optimal flow control problems [16–18] and turbulence [9, 13, 14, 19, 20]. In many

applications of POD, the method is used to generate basis functions for a reduced order model

(ROM), which can simplify and provide quicker assessment of the major features of the fluid

dynamics for the purpose of flow control demonstrated by Kurdila et al [18] or design optimiza-

tion shown by Ly et al [17]. This application is used in a variety of other physical applications,

such as in [17], which demonstrates an effective use of POD for a chemical vapor deposition

reactor. Some reduced order finite difference models and MFE formulations and error estimates

for the upper tropical pacific ocean model based on POD (see, [21–25]). And finite difference

scheme based on POD for the non-stationary Navier–Stokes equations (see [26]). However, to

the best of our knowledge, there are no published results to address that POD is used to reduce

the formulation of MFE for the nonlinear non-stationary Navier–Stokes equations and error
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estimates between reference solution and POD solution reduced MFE formulation.

In this paper, POD is used to reduce the formulation of MFE for the nonstationary Navier–

Stokes equations and the error estimates between reference solution and POD solution of opti-

mizing reduced MFE formulation are derived. It is shown by considering results obtained for

numerical simulations of cavity flows that the error between POD solution optimizing reduced

MFE formulation based POD technique and reference solution is consistent with theoretical

results. Moreover, it is also shown that this validates the feasibility and efficiency of POD

method. Though Kunisch and Volkwein have presented some Galerkin proper orthogonal de-

composition methods for parabolic problems and a general equation in fluid dynamics in [27]

and [28], our method is different from their approaches, whose methods consist of Galerkin

projection approaches where the original variables are substituted for linear combination of

POD basis and the error estimates of the velocity field therein are only derived, their POD

basis being generated with the solution of the physical system at all time instances. Especially,

the velocity field is only approximated in [28], while velocity and pressure fields are all simul-

taneously approximated in our present method. While the SVD approach combined with POD

technology is used to treat the Burgers equation in [29] and the cavity flow problem in [12],

the error estimates have not completely been derived, especially, a reduced formulation of MFE

for Navier-Stokes has not yet been derived. Therefore, our method improves upon existing

methods and our POD basis is only generated with the solution of the physical system at the

time instances which are useful and of interest for us.

2. MFE approximation for the nonstationary Navier–Stokes equations
and Snapshots Generate. Let Ω ⊂ R2 be a bounded, connected and polygonal domain.

Consider the following nonstationary Navier–Stokes equations.

Problem (I) Find u = (u1, u2), p such that for T > 0,

(2.1)





ut − ν4u + (u · ∇)u +∇p = f in Ω× (0, T ),

divu = 0 in Ω× (0, T ),

u(x, t) = ϕ(x, t) on ∂Ω× (0, T ),

u(x, 0) = ϕ(x, 0) in Ω,

where u represents the velocity vector, p the pressure, f = (f1, f2) the given body force, ϕ(x, t)

the given vector function and ν the constant inverse Reynolds number.

The Sobolev spaces along with their properties used in this context are standard (see [30]).

For example, for a bounded domain Ω, we denote by Hm(Ω) (m ≥ 0) and L2(Ω) = H0(Ω) the

usual Sobolev spaces equipped with the semi–norm and the norm, respectively,

|v|m,Ω =





∑

|α|=m

∫

Ω

|Dαv|2dxdy





1/2

and ‖v‖m,Ω =

{
m∑

i=0

|v|2i,Ω
}1/2

∀v ∈ Hm(Ω),

where α = (α1, α2), α1 and α2 are two nonnegative integers, and |α| = α1 +α2. Especially, the
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subspace H1
0 (Ω) of H1(Ω) is denoted by

H1
0 (Ω) = {v ∈ H1(Ω);u|∂Ω = 0}.

Note that ‖ · ‖1 is equivalent to | · |1 in H1
0 (Ω). Let L2

0(Ω) =
{

q ∈ L2(Ω);
∫

Ω

qdxdy = 0
}

, which

is the subspace of L2(Ω). It is necessary to introduce the Sobolev’s spaces dependent on time

t in order to discuss the generalized solution for Problem (I). Let Φ be a Hilbert space. For all

T > 0 and integer n ≥ 0, define

Hn(0, T ; Φ) =



v ∈ Φ;

∫ T

0

∑

0≤i≤n

(
di

dti
‖v‖Φ

)2

dt < ∞


 ,

which is endowed with the norm

‖v‖Hn(Φ) =


 ∑

0≤i≤n

∫ T

0

(
di

dti
‖v‖Φ

)2

dt




1
2

,

where ‖ · ‖Φ is the norm of space Φ. Especially, if n = 0,

‖v‖L2(Φ) =

(∫ T

0

‖v‖2Φdt

) 1
2

.

And define

L∞(0, T ; Φ) =
{

v ∈ Φ; esssup
0≤t≤T

‖v‖Φ < ∞
}

,

which is endowed with the norm

‖v‖L∞(Φ) = esssup
0≤t≤T

‖v‖Φ.

The variational formulation for the problem (I) is written as:

Problem (II) Find (u, p) ∈ H1(0, T ;H1(Ω)2)×L2(0, T ;M), u(x, t)|∂Ω = ϕ(x, t) such that

for all t ∈ (0, T ),

(2.2)





(ut, v) + a(u, v) + a1(u, u, v)− b(p, v) = (f, v) ∀v ∈ X,

b(q, u) = 0 ∀q ∈ M,

u(x, 0) = ϕ(x, 0) in Ω,

where X = H1
0 (Ω)2, M = L0(Ω) = {q ∈ L2(Ω);

∫

Ω

qdxdy = 0}, a(u, v) = ν

∫

Ω

∇u · ∇vdxdy,

a1(u, v, w) =
1
2

∫

Ω

2∑

i,j=1

[ui
∂vj

∂xi
wj − ui

∂wj

∂xi
vj ]dxdy, u, v, w ∈ X, b(q, v) =

∫

Ω

q divvdxdy.

Throughout the paper, C indicates a positive constant, and it is possibly different at dif-

ferent occurrences, which is independent of the mesh parameters h, but may depend on Ω, the

Reynolds number, and other parameters introduced in this paper.



MFE FORMULATION AND ERROR ESTIMATES BASED ON POD 5

The following property for trilinear form a1(·, ·, ·) is often used (see [1], [2], or [3]).

(2.3)
a1(u, v, w) = −a1(u,w, v), a(u, v, v) = 0 ∀u, v, w ∈ X,

|a1(u, v, w)| ≤ C‖u‖1/2
0 |u|1/2

1 (|v|1/2
1 ‖v‖1/2

0 |w|1 + |v|1‖w‖1/2
0 |w|1/2

1 ) ∀u, v, w ∈ X,

where C is independent of u, v, and w. The bilinear forms a(·, ·) and b(·, ·) have the following

properties

(2.4) a(v, v) ≥ ν|v|21 ∀v ∈ H1
0 (Ω)2,

(2.5) |a(u, v)| ≤ |u|1|v|1 ∀u, v ∈ H1
0 (Ω)2,

and

(2.6) sup
v∈H1

0 (Ω)2

b(q, v)
|v|1 ≥ β‖q‖0 ∀q ∈ L2

0(Ω),

where β is a constant. Define

(2.7) N = sup
u,v,w∈X

a1(u, v, w)
|u|1 · |v|1 · |w|1 ; ‖f‖−1 = sup

v∈X

(f, v)
|v|1 .

The following result is classical (see [1], [2], or [3]).

Theorem 2.1. If f ∈ H−1(Ω)2, then the problem (II) has at least a solution which,

in addition, is unique provided that ν−2N‖f‖L2(H−1) < 1, and there is the following prior

estimate:

‖∇u‖L2(L2) ≤ ν−1‖f‖L2(H−1) ≡ R, ‖u‖0 ≤ ν−1/2‖f‖L2(H−1) = Rν−1/2.

Let {=h} be a uniformly regular family of triangulation of Ω̄ (see [31] or [32]), indexed by

a parameter h = max
K∈=h

{hK ; hK =diam(K)}, i.e., there is a constant C, independent of h, such

that h ≤ ChK ∀K ∈ =h.

We introduce the following finite element spaces Xh and Mh of X and M , respectively. Let

Xh ⊂ X (which is at least the piecewise polynomial vector space of mth degree, where m > 0

is integer) and Mh ⊂ M (which is the piecewise polynomial space of (m− 1)th degree). Write

X̂h = Xh ×Mh.

We assume that (Xh,Mh) satisfies the following approximate properties: ∀v ∈ Hm+1(Ω)2∩
X and ∀q ∈ M ∩Hm(Ω),

(2.8) inf
vh∈Xh

‖∇(v − vh)‖0 ≤ Chm|v|m+1, inf
qh∈Mh

‖q − qh‖0 ≤ Chm|q|m,

together the so–called discrete LBB(Ladyzhenskaya-Brezzi-Babushka) condition, i.e.,

(2.9) sup
vh∈Xh

b(qh, vh)
‖∇vh‖0 ≥ β‖qh‖0 ∀qh ∈ Mh,

where β is a constant independent of h.
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There are many spaces Xh and Mh satisfying the discrete LBB conditions (see [32]). Here,

we provide some examples as follows.

Example 2.1. The first order finite element space Xh × Mh can be taken as Bernardi–

Fortin–Raugel’s element (see [32]), i.e.,

(2.10)





Xh = {vh ∈ X ∩ C0(Ω̄)2; vh|K ∈ PK , ∀K ∈ =h},
Mh = {ϕh ∈ M ; ϕh|K ∈ P0(K), ∀K ∈ =h},

where PK = P1(K)2 ⊕ span{~ni

3∏
j=1,j 6=i

λKj , i = 1, 2, 3}, ~ni are the unit normal vector to side

Fi opposite the vertex Ai of triangle K, λKi are the barycenter coordinates corresponding to

the vertex Ai (i = 1, 2, 3) on K, and Pm(K) is the space of piecewise polynomials of degree m

on K.

Example 2.2. The first order finite element space Xh × Mh can also be taken as Mini’s

element, i.e.,

(2.11)





Xh = {vh ∈ X ∩ C0(Ω)2; vh|K ∈ PK ∀K ∈ =h},
Mh = {qh ∈ M ∩ C0(Ω); qh|K ∈ P1(K) ∀K ∈ =h},

where PK = P1(K)2 ⊕ {λK1λK2λK3}2.
Example 2.3. The second order finite element space Xh ×Mh can be taken as

(2.12)





Xh = {vh ∈ X ∩ C0(Ω)2; vh|K ∈ PK ∀K ∈ =h},
Mh = {qh ∈ M ∩ C0(Ω); qh|K ∈ P1(K) ∀K ∈ =h},

where PK = P2(K)2 ⊕ {λK1λK2λK3}2.
Example 2.4. The third order finite element space Xh ×Mh can be taken as

(2.13)





Xh = {vh ∈ X ∩ C0(Ω)2; vh|K ∈ PK ∀K ∈ =h},
Mh = {qh ∈ M ∩ C0(Ω); qh|K ∈ P2(K) ∀K ∈ =h},

where PK = P3(K)2 ⊕ span{λK1λK2λK3λKi, i = 1, 2, 3}2.
It has been proved (see [32]) that, for the finite element space Xh×Mh in Example 2.1–2.4,

there exists an operator rh: X → Xh such that, for any v ∈ X,

(2.14)
b(qh, v − rhv) = 0 ∀qh ∈ Mh, ‖∇rhv‖0 ≤ C‖∇v‖0,
‖∇(v − rhv)‖0 ≤ Chk|v|k+1 if v ∈ Hk+1(Ω)2, k = 1, 2, 3.

The spaces Xh×Mh used throughout next part in this paper mean those in Example 2.1–2.4,

which are obviously satisfied discrete LBB condition (2.9).

In order to find the numerical solution for Problem (II), it is necessary to discretize Problem

(II). We introduce a MFE approximation for the spatial variable and FDS for the time deriv-

ative. Let L be the positive integer, denote the time step increment by k = T/L (T being the
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total time), t(n) = nk, 0 ≤ n ≤ L; (un
h, pn

h) ∈ Xh ×Mh the MFE approximation corresponding

to (u(t(n)), p(t(n))) ≡ (un, pn). Then, the fully discrete MFE solution for the problem (I) may

be written as:

Problem (III) Find (un
h, pn

h) ∈ Xh ×Mh such that un
h|∂Ω = ϕh(x, tn) and satisfies

(2.15)





(un
h, v) + ka(un

h, v) + ka1(un−1
h , un

h, v)− kb(pn
h, v) = k(fn, v) + (un−1

h , v) ∀v ∈ Xh,

b(q, un
h) = 0 ∀q ∈ Mh,

u0
h = ϕh(x, 0) in Ω,

where 1 ≤ n ≤ L, ϕh(x, tn) = rhϕ(x, tn)|∂Ω and ϕh(x, 0) = rhϕ(x, t)|t=0.

Put A(uh, vh) = (un
h, vh) + ka(un

h, vh) + ka1(un−1
h , un

h, vh). Since A(uh, uh) = (un
h, uh) +

ka(un
h, uh) + ka1(un−1

h , un
h, uh) = ‖uh‖0 + kν‖∇u‖0, A(·, ·) is coercive in Xh ×Xh. And kb(·, ·)

also satisfies the discrete LBB condition in Xh×Mh, therefore, by MFE theory (see [1] or [32]),

we can obtain the following result.

Theorem 2.2. Under the assumptions (2.8)–(2.9), if k = O(h2), f ∈ (H−1(Ω))2 satisfies

ν−2N‖f‖L2(H−1) < 1, Problem (III) has a unique solution (un
h, pn

h) ∈ Xh ×Mh and satisfies

(2.16)





‖un
h‖20 + kν

n∑

i=1

‖∇ui
h‖20 ≤ kν−1

n∑

i=1

‖f i‖2−1 + ‖ϕ‖0,

‖un − un
h‖0 + k1/2

n∑

i=1

‖∇(ui − ui
h)‖0 + k1/2

n∑

i=1

‖pi − pi
h‖0 ≤ C(hm + k),

where (u, p) ∈ [H1
0 (Ω)∩Hm+1(Ω)]2× [Hm(Ω)∩M ] is the exact solution for the problem (I) and

C is the constant dependent on |un|m+1 and |pn|m.

If ν and the time step increment k are given, by solving Problem (III), we can obtain solution

ensemble {un
1h, un

2h, pn
h}L

n=1 for Problem (III). And then we choose ` (for example, ` = 5, 20, or

30, in general, ` ¿ L) instantaneous solutions Ui(x, y) = (ui
1h, ui

2h, pi
h) (i = 1, 2, · · · , `) (which

are useful and of interest for us) from the L group of solutions (un
1h, un

2h, pn
h) (1 ≤ n ≤ L) for

Problem (III), which are known as snapshots.

3. Optimizing reduced MFE formulation based POD technique for the
Navier–Stokes equations. The POD method has received much attention in recent years

as a tool to analyze complex physical systems. In this section, we use POD technique to deal

with the snapshots in Section 2 and produce an optimal representation in an average sense.

Let X̂ = X ×M . For Ui(x, y) = (ui
1h, ui

2h, pi
h) (i = 1, 2, · · · , `) in Section 2, we set

(3.1) V = span{U1, U2, · · · , U`},

and refer to V as ensemble consisting of the snapshots {Ui}`
i=1 at least one of which is supposed

to be non-zero. Let {ψj}l
j=1 denote an orthogonal basis of V with l = dimV. Then each

member of the ensemble can expressed as

(3.2) Ui =
l∑

j=1

(Ui, ψj)X̂ψj for i = 1, 2, · · · , `,
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where (Ui, ψj)X̂ = (ui
h, ψuj)X + (pi

h, ψpj)0, (·, ·)0 is L2-inner production, and ψuj and ψpj are

orthogonal basis corresponding to u and p, respectively.

Definition 3.1. The method of POD consists in finding the orthogonal basis such that for

every d (1 ≤ d ≤ l) the mean square error between the elements Ui (1 ≤ i ≤ `) and corresponding

d–th partial sum of (3.2) is minimized on average:

(3.3) min
{ψj}d

j=1

1
`

∑̀

i=1

‖Ui −
d∑

j=1

(Ui, ψj)X̂ψj‖X̂

such that

(3.4) (ψi, ψj)X̂ = δij for 1 ≤ i ≤ d, 1 ≤ j ≤ i,

where ‖Ui‖X̂ = [‖∇ui
1h‖20 +‖∇ui

2h‖20 +‖pi
h‖20]

1
2 . A solution {ψj}d

j=1 of (3.3) and (3.4) is known

as a POD basis of rank d.

We introduce the correlation matrix K = (Kij)`×` ∈ R`×` corresponding to the snapshots

{Ui}`
i=1 by

(3.5) Kij =
1
`
(Ui, Uj)X̂ .

The matrix K is positive semi-definite and has rank l. The solution of (3.3) and (3.4) can be

found in [10, 15, or 28], for example.

Proposition 3.2. Let λ1 ≥ λ2 ≥ · · · ≥ λl > 0 denote the positive eigenvalues of K and v1,

v2, · · · , vl the associated eigenvectors. Then a POD basis of rank d ≤ l is given by

(3.6) ψi =
1√
λi

vT
i (U1, U2, · · · , U`)T =

1√
λi

∑̀

j=1

(vi)jUj ,

where (vi)j denotes the j-th component of the eigenvector vi. Furthermore, the following error

formula holds

(3.7)
1
`

∑̀

i=1

‖Ui −
d∑

j=1

(Ui, ψj)X̂ψj‖X̂ =
l∑

j=d+1

λj .

Let Vd = span {ψ1, ψ2, · · · , ψd} and Xd ×Md = Vd with Xd ⊂ X and Md ⊂ M . Set the

Ritz-projection P d: X → Xd and L2-projection ρd: M → Md denoted by, respectively,

(3.8) a(P du, vd) = a(u, vd) ∀vd ∈ Xd

and

(3.9) (ρdp, qd)0 = (p, qd)0 ∀qd ∈ Md,

where u ∈ X and p ∈ M . Due to (3.8) and (3.9) the linear operators P d and ρd are well-defined

and bounded:

(3.10) ‖∇(P du)‖0 ≤ ‖∇u‖0, ‖ρdp‖0 ≤ ‖p‖0 ∀u ∈ X and p ∈ M.
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Lemma 3.2. For every d (1 ≤ d ≤ l) the projection operators P d and ρd satisfy respectively

(3.11)
1
`

∑̀

i=1

‖∇(ui
h − P dui

h)‖0 ≤
l∑

j=d+1

λj

and

(3.12)
1
`

∑̀

i=1

‖∇(pi
h − ρdpi

h)‖0 ≤
l∑

j=d+1

λj .

Proof. For any u ∈ X we deduce from (3.8) that

ν‖∇(ui
h − P dui

h)‖20 = a(ui
h − P dui

h, ui
h − P dui

h)

= a(ui
h − P dui

h, ui
h − vd)

≤ ν‖∇(ui
h − P dui

h)‖0‖∇(ui
h − vd)‖0 ∀vd ∈ Xd.

Furthermore, we obtain that

(3.13) ‖∇(ui
h − P dui

h)‖0 ≤ ‖∇(ui
h − vd)‖0 ∀vd ∈ Xd.

Taking vd =
d∑

j=1

(ui
h, ψuj)Xψuj (where ψuj is the component of ψj corresponding to u) in (3.13),

we can obtain (3.11) from (3.7).

Using Hölder inequality and (3.9) can yield

‖pi
h − ρdpi

h‖20 = (pi
h − ρdpi

h, pi
h − ρdpi

h)

= (pi
h − ρdpi

h, pi
h − qd)

≤ ‖pi
h − ρdpi

h‖0‖pi
h − qd‖0 ∀qd ∈ Md,

consequently,

(3.14) ‖pi
h − ρdpi

h‖0 ≤ ‖pi
h − qd‖0 ∀qd ∈ Md.

Taking qd =
d∑

j=1

(pi
h, ψpj)0ψpj (where ψpj is the component of ψj corresponding to p) in (3.14),

from (3.7) we can obtain (3.12), which completes the proof of Lemma 3.2. ¤
Thus, using Vd = Xd × Md, we can obtain the reduced formulation for Problem (III) as

follows.

Problem (IV) Find (un
d , pn

d ) ∈ Vd such that un
d |∂Ω = ϕn

h and satisfies

(3.15)





(un
d , vd) + ka(un

d , vd) + ka1(un−1
d , un

d , vd)− kb(pn
d , vd)

= k(fn, vd) + (un−1
d , vd) ∀vd ∈ Xd,

b(qd, u
n
d ) = 0 ∀qd ∈ Md,

u0
d = u0

h,
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where 1 ≤ n ≤ L.

Remark 3.3. Problem (IV) is an optimizing reduced MFE formulation based on POD

technique for Problem (III), since it only includes 3d freedom degree while Problem (III) includes

3Np + NK ≈ 5Np (where Np is the number of the vertex in =h and NK the number of the

element in =h) and 3d ¿ 5Np (see examples in Section 5). When one computes actual problems,

one may obtain the ensemble of snapshots from physical system trajectories by drawing samples

from experiments and interpolation (or data assimilation). For example, for weather forecast,

one can use previous weather prediction results to construct the ensemble of snapshots, then

restructure the POD basis for the ensemble of snapshots by above (3.3)–(3.6), and finally

combine it with a Galerkin projection to derive an optimizing reduced order dynamical system,

i.e., one needs only to solve the above Problem (IV) which has only few degrees of freedom,

but it is unnecessary to solve Problem (III). Thus, the forecast of future weather change can

be quickly simulated, which is of major importance for actual real-life applications.

4. Existence and error analysis of solution of the optimizing reduced
MFE formulation based POD technique for the Navier–Stokes equations.
This section is devoted to discussing the existence and error estimates for Problem (IV).

We see from (3.6) that Vd = Xd × Md ⊂ V ⊂ Xh × Mh ⊂ X̂, where Xh × Mh is one of

those spaces in Example 2.1–2.4. Therefore, we have in the following result.

Lemma 4.1. There exists also an operator rd: Xh → Xd such that,for all vh ∈ Xh,

(4.1) b(qd, uh − rduh) = 0 ∀qd ∈ Md, ‖∇rduh‖0 ≤ c‖∇uh‖0,

and, for every d (1 ≤ d ≤ l),

(4.2)
1
`

∑̀

i=1

‖∇(ui
h − rdu

i
h)‖0 ≤ C

l∑

j=d+1

λj .

Proof. We use the Mini’s and the second finite element as examples. Define rd as follows

(4.3) rdvh|K = P dvh|K + γλK1λK2λK3 ∀vh ∈ Xh and K ∈ =h,

where γ =
∫

K

(vh − P dvh)dx/

∫

K

λK1λK2λK3dx. Then, using (3.10) and (3.11), by simply

computing we educe (4.1). ¤
Set V d ≡ Vd|X and

V = {v ∈ X; b(q, v) = 0 ∀q ∈ M}, Vh = {vh ∈ Xh; b(qh, vh) = 0 ∀qh ∈ Mh}.

using dual principle and equations (3.10) and (3.11), we deduce the following result (see [1,

32]).

Lemma 4.2. There exists an operator Rd: V ∪ Vh → V d such that, for all v ∈ V ∪ Vh,

(v −Rdv, vd) = 0 ∀vd ∈ V l, ‖∇Rdv‖0 ≤ C‖∇v‖0,
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and, for every d (1 ≤ d ≤ l),

(4.4)
1
`

∑̀

i=1

‖ui
h −Rdu

i
h‖−1 ≤ C

`

∑̀

i=1

‖∇(ui
h −Rdu

i
h)‖0 ≤ C

l∑

j=d+1

λj ,

where ‖ · ‖−1 denotes the normal of space H−1(Ω)2. ¤
The following Discrete Gronwall Lemma is well–known and very useful in next analysis (see

[1], [2], or [32]).

Lemma 4.3 (Gronwall Lemma). If {an}, {bn}, and {cn} are three positive sequences,

and {cn} is monotone, they satisfy

an + bn ≤ cn + λ̄
n−1∑

i=0

ai, λ̄ > 0, a0 + b0 ≤ c0,

then

an + bn ≤ cn exp(nλ̄), n ≥ 0. ¤
We have the following result for solution of Problem (V).

Theorem 4.4. Under the hypotheses of Theorem 2.2, Problem (V) has a unique solution

(un
d , pn

d ) ∈ Xd ×Md and satisfies

(4.5) ‖un
d‖20 + kν

n∑

i=1

‖∇ui
d‖20 ≤ kν−1

n∑

i=1

‖f i‖2−1 + ‖ϕ‖0.

Proof. Using same technique as the proof of Theorem 2.2, we could prove that Problem (V)

has a unique solution (un
d , pn

d ) ∈ Xd ×Md and satisfies (4.5). ¤
In the following theorem, error estimates of solution for Problem (IV) are derived.

Theorem 4.5. Under the hypotheses of Theorem 2.2, if h2 = O(k), k = O(`−2), and

max
1≤i≤`−1

ti+1 − ti
2k

≤ `, then the error between the solution (un
d , pn

d ) for Problem (V) and the

solution (un
h, pn

h) for Problem (IV) has the following error estimates, for n = 1, 2, · · · , L,

(4.6)

‖un
h − un

d‖0 +
1
n

n∑

i=1

‖∇(ui
h − ui

d)‖0 +
1
n

n∑

i=1

‖pi
h − pi

d‖0

≤ C




l∑

j=d+1

λj


 , if n ∈ {1, 2, · · · , `};

‖un
h − un

d‖0 +
1
n

n∑

i=1

‖∇(ui
h − ui

d)‖0 +
1
n

n∑

i=1

‖pi
h − pi

d‖0

≤ C


k1/2 +

l∑

j=d+1

λj


 , if n 6∈ {1, 2, · · · , `}.

Proof. Subtracting Problem (IV) from Problem (III) taking vh = vd ∈ Xd and qh = qd ∈
Md can yield

(4.7)
(un

h − un
d , vd) + ka(un

h − un
d , vd)− kb(pn

h − pn
d , vd) + ka1(un−1

h , un
h, vd)

−ka1(un−1
d , un

d , vd) = (un−1
h − un−1

d , vd) ∀vd ∈ Xd,
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(4.8) b(qd, u
n
h − un

d ) = 0 ∀qd ∈ Md,

(4.9) u0
h − u0

d = 0.

Note that it follows, for vn
h ∈ Xh, ‖vn

h‖0 ≤ Ch‖∇(vn
h)‖0 and ‖∇(vn

h)‖0 ≤ Ch−1‖vn
h‖0 from

the inverse estimate of finite element methods. We obtain, from (2.3), (2.7), Theorem 2.2, and

Theorem 4.3, by Hölder inequality, that

(4.10)

|a1(un−1
h , un

h, vd)− a1(un−1
d , un

d , vd)| = |a1(un−1
h − un−1

d , un
h, vd)

+a1(un−1
d , un

h − un
d , vd)| ≤ Ch[‖∇(un−1

h − un−1
d )‖0 + ‖∇(un

h − un
d )‖0]‖∇vd‖0

≤ C[‖un−1
h − un−1

d ‖0 + ‖un
h − un

d‖0]‖∇vd‖0,
especially, if vd = P dun

h − un
d , then

(4.11)

|a1(un−1
h , un

h, P dun
h − un

d )− a1(un−1
d , un

d , P dun
h − un

d )|
= |a1(un−1

h − un−1
d , un

h, P dun
h − un

d ) + a1(un−1
d , un

h − un
d , P dun

h − un
d )|

= |a1(un−1
h − un−1

d , un
h, P dun

h − un
h) + a1(un−1

h − un−1
d , un

h, un
h − un

d )

+a1(un−1
d , un

h − un
d , Pun

h − un
h)|

≤ C[‖un−1
h − un−1

d ‖20 + ‖∇(un
h − P dun

h)‖20] + ε‖∇(un
h − un

d )‖20,
where ε is a small positive constant which can be chosen arbitrarily.

Write ∂̄tu
n
h = [un

h − un−1
h ]/k and note that ∂̄tu

n
d ∈ V d and ∂̄tRdu

n
n ∈ V d. From Lemma 4.2,

(4.7), and (4.10), we have that

(4.12)

‖∂̄tu
n
h − ∂̄tu

n
d‖−1 ≤ ‖∂̄tu

n
h − ∂̄tRdu

n
h‖−1 + ‖∂̄tRhun

h − ∂̄tu
n
d‖−1

≤ ‖∂̄tu
n
h − ∂̄tRdu

n
h‖−1 + sup

v∈V

(∂̄tRdu
n
h − ∂̄tu

n
d , v)

‖∇v‖0
= ‖∂̄tu

n
h − ∂̄tRdu

n
h‖−1 + sup

v∈V

(∂̄tu
n
h − ∂̄tu

n
d , Rdv)

‖∇v‖0
= ‖∂̄tu

n
h − ∂̄tRdu

n
h‖−1 + sup

v∈V

1
‖∇v‖0 [b(pn

h − pn
d , Rdv)− a(un

h − un
d , Rdv)

−a1(un−1
h , un

h, Rdv) + a1(un−1
d , un

d , Rdv)]

= ‖∂̄tu
n
h − ∂̄tRdu

n
h‖−1 + sup

v∈V

1
‖∇v‖0 [b(pn

h − ρdpn
h, Rdv)− a(un

h − un
d , Rdv)

−a1(un−1
h , un

h, Rdv) + a1(un−1
d , un

d , Rdv)]

≤ ‖∂̄tu
n
h − ∂̄tRdu

n
h‖−1 + C[‖pn

h − ρdpn
h‖0 + ‖un−1

h − un−1
d ‖0 + ‖∇(un

h − un
d )‖0].

By using (2.9), (4.7), (4.10), (4.12), and Lemma 4.1, we have that

(4.13)

β‖ρdpn
h − pn

d‖0 ≤ sup
vh∈Xh

b(ρdpn
h − pn

d , vh)
‖∇vh‖0 = sup

vh∈Xh

b(pn
h − pn

d , rdvh)
‖∇vh‖0

= sup
vh∈Xh

1
‖∇vh‖0 [(∂̄tu

n
h − ∂̄tu

n
d , rdvh) + a(un

h − un
d , rdv)

+a1(un−1
h , un

h, rdv)− a1(un−1
d , un

d , rdv)]

≤ C[‖∂̄tu
n
h − ∂̄tu

n
d‖−1 + ‖un−1

h − un−1
d ‖0 + ‖∇(un

h − un
d )‖0]

≤ C[‖∂̄tu
n
h − ∂̄tRdu

n
h‖−1 + ‖pn

h − ρdpn
h‖0 + ‖un−1

h − un−1
d ‖0 + ‖∇(un

h − un
d )‖0].



MFE FORMULATION AND ERROR ESTIMATES BASED ON POD 13

Thus, we obtain that

(4.14)
‖pn

h − pn
d‖0 ≤ ‖pn

h − ρdpn
h‖0 + ‖ρdpn

h − pn
d‖0 ≤ C[‖un−1

h − un−1
d ‖0

+‖∇(un
h − un

d )‖0 + ‖∂̄tu
n
h − ∂̄tRdu

n
h‖−1 + ‖pn

h − ρdpn
h‖0].

Taking vd = P dun
h − un

d in (4.7), it follows from (4.8) that

(4.15)

(un
h − un

d , un
h − un

d )− (un−1
h − un−1

d , un
h − un

d ) + ka(un
h − un

d , un
h − un

d )

= (un
h − un

d , un
h − P dun

h) + ka(un
h − P dun

h, un
h − P dun

h)

+kb(pn
h − ρdpn

h, un
h − un

d ) + kb(pn
h − pn

d , un
h − P dun

h)

−ka1(un−1
h , un

h, P dun
h − un

d ) + ka1(un−1
d , un

d , P dun
h − un

d ).

Thus, noting that a(a−b) = [a2−b2 +(a−b)]/2 (for a ≥ 0 and b ≥ 0), by (4.11), (4.14), Hölder

inequality, Cauchy inequality, and Proposition 3.2, we obtain that

(4.16)

1
2

[‖un
h − un

d‖20 − ‖un−1
h − un−1

d ‖20
]
+ νk‖∇(un

h − un
d )‖20

≤ Ck‖un−1
h − un−1

d ‖20 + kε1‖∇(un
h − un

d )‖20 + ε2‖un
h − un

d‖20 + kε‖∇(un
h − un

d )‖20
+Ck[‖∇(un

h − P dun
h)‖20 + ‖pn

h − ρdpn
h‖20 + ‖∂̄tu

n
h − ∂̄tRdu

n
h‖2−1],

where ε1 and ε2 are two small positive constants which can be chosen arbitrarily. Taking

ε+ε1 +Cε2 = ν/2, if h2 = O(k) it follows from (4.16) and the inverse estimate of finite element

methods that

(4.17)

[‖un
h − un

d‖20 − ‖un−1
h − un−1

d ‖20
]
+ νk‖∇(un

h − un
d )‖20

≤ Ck‖un−1
h − un−1

d ‖20 + Ck[‖∇(un
h − P dun

h)‖20 + ‖pn
h − ρdpn

h‖20
+‖∇(un

h −Rdu
n
h)‖20 + ‖∇(un−1

h −Rdu
n−1
h )‖20], 1 ≤ n ≤ L.

When n ∈ {1, 2, · · · , `}, summing (4.17) from n = 1 to n = `, and noting that u0
h − u0

d = 0

could yield that

(4.18)

1
`2
‖u`

h − u`
d‖20 +

νk

`2

∑̀

i=1

‖∇(ui
h − ui

d)‖20 ≤
Ck

`2

∑̀

i=1

‖ui−1
h − ui−1

d ‖20

+Ck

[
1
`

∑̀

i=1

‖∇(ui
h − P dui

h)‖0 +
1
`

∑̀

i=1

‖pi
h − ρdpi

h‖0

+
1
`

∑̀

i=1

‖∇(ui
h −Rdu

i
h)‖0 +

1
`

∑̀

i=1

‖∇(ui−1
h −Rdu

n−1
i )‖0

]2

≤ Ck

`2

∑̀

i=1

‖ui−1
h − ui−1

d ‖20 + Ck




l∑

j=d+1

λj




2

.

Thus, we obtain that

(4.19) ‖u`
h − u`

d‖20 + k
∑̀

i=1

‖∇(ui
h − ui

d)‖20 ≤ Ck
`−1∑
s=0

‖us
h − us

d‖20 + Ck`2




l∑

j=d+1

λj




2

.
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By using discrete Gronwall inequality and noting that `k ≤ C, if k = O(`−2), we obtain that

(4.20) ‖u`
h − u`

d‖20 + k
∑̀

i=1

‖∇(ui
h − ui

d)‖20 ≤ C




l∑

j=d+1

λj




2

.

Noting that h‖∇(ui
h−ui

d)‖0 ≥ C‖ui
h−ui

d‖0 (inverse inequality) and h2 = O(k), we obtain that

(4.21) ‖ui
h − ui

d‖0 +
1
`

∑̀

i=1

‖∇(ui
h − ui

d)‖0 ≤ C
l∑

j=d+1

λj , 1 ≤ i ≤ `.

When n 6∈ {1, 2, · · · , `}, we may as well let tn ∈ (t`−1, t`) and tn be the nearest point to t`.

Expanding un
h and pn

h into Taylor series with respect to ts can yield that

(4.22) un
h = u`

h − ηk
∂uh(ξ1)

∂t
, tn ≤ ξ1 ≤ t`; pn

h = p`
h − ηk

∂ph(ξ2)
∂t

, tn ≤ ξ2 ≤ t`,

where η < ` (since (ti+1 − ti) ≤ 2`k) is the step number from tn to t`. Summing (4.17) from 1

to `, and noting that u0
h − u0

d = 0, from Lemma 4.1–4.2 and Proposition 3.2, we obtain that

(4.23)

‖un
h − un

d‖20 + k

n∑

i=1

‖∇(ui
h − ui

d)‖20 ≤ Ck
`−1∑

i=0

‖ui
h − ui

d‖20 + Cη2`2k3

+Ck

[∑̀

i=1

‖∇(ui
h − P dui

h)‖0 +
∑̀

i=1

‖pi
h − ρdpi

h‖0 +
∑̀

i=1

‖∇(ui
h −Rdu

i
h)‖0

]2

≤ Ck
`−1∑

i=0

‖ui
h − ui

d‖20 + C`2η2k3 + Ck`2




l∑

j=d+1

λj




2

.

If k = O(`−2), by using discrete Gronwall inequality we obtain that

(4.24) ‖un
h − un

d‖0 +
1
n

n∑

i=1

‖∇(ui
h − ui

d)‖20 ≤ C


k1/2 +

l∑

j=d+1

λj


 .

Combining (4.14) and (4.24) can yield (4.6). ¤
Combining Theorem 2.2 and Theorem 4.5 yields the following result.

Theorem 4.6. Under Theorem 2.2 and Theorem 4.5 hypotheses, the error estimate between

the solutions for Problem (II) and the solutions for the reduced order basic Problem (V) is, for

n = 1, 2, · · · , L, m = 1, 2, 3,

‖un − un
d‖0 +

1
n

n∑

i=1

‖∇(ui − ui
d)‖0 +

1
n

n∑

i=1

‖pi − pi
d‖0

≤ C


hm + k +

l∑

j=d+1

λj


 , if n ∈ {1, 2, · · · , `};

‖un − un
d‖0 +

1
n

n∑

i=1

‖∇(ui − ui
d)‖0 +

1
n

n∑

i=1

‖pi − pi
d‖0

≤ C


hm + k1/2 +

l∑

j=d+1

λj


 , if n 6∈ {1, 2, · · · , `}.
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Remark 4.7. The conditions k = O(`−2) and max
1≤i≤`−1

ti+1 − ti
2k

≤ ` in Theorem 4.5 show

that enough snapshots must be taken and that the number of time steps between two snapshots

cannot exceed twice the number of snapshots. Theorem 4.5 and Theorem 4.6 have presented

the error estimates between the solution of the optimizing reduced MFE formulation Problem

(IV) and the solution of usual MFE formulation Problem (III) and Problem (II), respectively.

Since our methods employ some MFE solutions (un
h, pn

h) (n = 1, 2, · · · , L) for Problem (III) as

assistant analysis, the error estimates in Theorem 4.6 are correlated to the spatial grid scale

h and time step size k. However, when one computes actual problems, one may obtain the

ensemble of snapshots from physical system trajectories by drawing samples from experiments

and interpolation (or data assimilation). For example, for weather forecast, one can use pre-

vious weather prediction results to construct the ensemble of snapshots. Thus, the assistant

(un
h, pn

h) (n = 1, 2, · · · , L) could be substituted with the interpolation functions of experimental

and previous results, it is unnecessary to solve Problem (III), and it is only necessary to directly

solve Problem (III) such that Theorem 4.5 is satisfied. Since Problem (IV) is only dependent

on d(d ¿ l ≤ ` ¿ L) and is independent of the spatial grid scale h and time step size k, and,

in general, d(d ¿ l ≤ ` ¿ L), i.e. it is only necessary to solve Problem (IV) with very few

freedom degrees.

5. Some numerical experiments. In this section, we present some numerical exam-

ples of the physical model of cavity flows for Mini’s element and different Reynolds numbers

by the reduced formulation Problem (IV) validating the feasibility and efficiency of the POD

method.

Figure 1. Physics model of the cavity flows: t = 0 i.e., n = 0 initial values on boundary

Let the side length of the cavity be 1 (see Figure 1). We first divide the cavity into 32×32 =

1024 small squares with side length 4x = 4y = 1
32 = h, and then link diagonal of square to

divide each square into two triangles on same direction which consists of triangularization =h.

Take time step increment as 4t = 0.001. Except that u equal to 1 on upper boundary, other

initial value, boundary values, and (f1, f2) are all taken as 0 (see Figure 1).
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We obtain 20 values (i.e., snapshots) outputting at time t = 10, 20, 30, · · · , 200 by solv-

ing usual MFE formulation, i.e., Problem (III). It is shown by computing that the maximal

eigenvalues satisfy max{λu6, λv6, λp6} ≤ 10−3. When t = 200, we obtain the solutions of the

reduced formulation Problem (IV) based POD method of MEF depicted graphically in Figure

2 to Figure 5 on the right-hand side used 6 optimal POD bases if Re = 750 and also used

6 optimal POD bases if Re = 1500, but the solutions obtained with usual MFE formulation

Problem (III) are depicted graphically in Figure 2 to Figure 5 on left-hand side (Since these

figures are equal to solutions obtained with 20 bases, they are also referred to as the figures of

the solution with full bases).

Figure 2. When Re=750, velocity stream line Figure for usual MFE solutions (on left-hand side figure)

and d = 5 the solution of the reduced MFE formulation (on right-hand side figure)

Figure 3. When Re=1500, velocity stream line Figure for usual MFE solution (on left-hand side figure)

and d = 5 solution of the reduced MFE formulation (on right-hand side figure)

Figure 6 shows the errors between solutions obtained with different number of optimal

POD bases and solutions obtained with full bases. Comparing the usual MFE formulation

Problem (III) with the reduced MFE formulation Problem (IV) containing 6 optimal bases
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implementing 3000 times the numerical simulation computations, we find that for usual MFE

formulation Problem (III) the required CPU time is 6 minutes, while for the reduced MFE

formulation Problem (IV) with 6 optimal bases the corresponding time is only three seconds,

i.e., the usual MFE formulation Problem (III) required CPU time is a factor of 120 larger

than the reduced MFE formulation Problem (IV) with 6 optimal bases required CPU time,

while the error between their solutions does not exceed 10−3. It is also shown that finding the

approximate solutions for the nonstationary Navier–Stokes equations with the reduced MFE

formulation Problem (IV) is computationally very effective. And the results for numerical

examples are consistent with those obtained for the theoretical case.

Figure 4. When Re=750, pressure Figure for usual MFE solution (on left-hand side figure)

and d = 5 solution of reduced MFE formulation (on right-hand side Figure)

Figure 5. When Re=1500, pressure figure for usual MFE solutions (on left-hand side Figure)

and d = 5 solution of reduced MFE formulation (on right-hand side Figure)

6. Conclusions. In this paper, we have employed the POD techniques to derive a re-

duced formulation for the nonstationary Navier–Stokes equations. We first reconstruct optimal

orthogonal bases of ensembles of data which are compiled from transient solutions derived by

using usual MFE equation system, while in actual applications, one may obtain the ensem-

ble of snapshots from physical system trajectories by drawing samples from experiments and
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interpolation (or data assimilation). For example, for weather forecast, one can use previous

weather prediction results to construct the ensemble of snapshots to restructure the POD basis

for the ensemble of snapshots by methods of above Section 3. We have also combined the

optimal orthogonal bases with a Galerkin projection procedure, thus yielding a new optimizing

reduced MFE formulation of lower dimensional order and of high accuracy for the nonstation-

ary Navier–Stokes equations. We have then proceeded to derive error estimates between our

optimizing optimizing reduced MFE approximate solutions and the usual MFE approximate

solutions, and have shown using numerical examples that the error between the optimizing

reduced MFE approximate solution and the usual MFE solution is consistent with the theo-

retical error results, thus validating both feasibility and efficiency of our optimizing reduced

MFE formulation. Future research work in this area will aim to extend the optimizing reduced

MFE formulation, applying it to a realistic atmosphere quality forecast system and to more

complicated PDEs. We have shown both by theoretical analysis as well as by numerical exam-

ples that the optimizing reduced MFE formulation presented herein has extensive perspective

applications.

Figure 6. Error for Re=750 on left–hand side, error for Re=1500 on right-hand side

Though Kunisch and Volkwein have presented some Galerkin proper orthogonal decomposi-

tion methods for a general equation in fluid dynamics, i.e., for the nonstationary Navier–Stokes

equations in [28], our method is different from their approaches, whose methods consist of

Galerkin projection approaches where original variables are substituted for linear combination

of POD basis and the error estimates of the velocity field therein are only derived, their POD

basis is generated with the solutions of the physical system at all time instances, while our POD

basis is generated with few solutions of the physical system which are useful and of interest

for us. Especially, velocity field is only approximated in Reference [28], while velocity field and

pressure are all synchronously approximated in our following method, and the error estimates

of velocity field and pressure approximate solutions are also synchronously derived. Thus our

method appears to be more optimal than that in [28].
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