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Summary. In this work, proper orthogonal decomposition (POD) is combined with Petrov-Galerkin

least squares mixed finite element (PLSMFE) method to derive an optimizing reduced PLSMFE for-

mulation for non-stationary conduction-convection problems. Error estimates between the optimizing

reduced PLSMFE solutions based on POD and classical MFE solutions are presented. The optimiz-

ing reduced PLSMFE formulation can circumvent the constraint of Babuška-Brezzi (BB) condition so

that the combination of finite element subspaces can be chosen freely and allow optimal order error

estimates to be obtained. Numerical simulation examples have shown that the errors between the

optimizing reduced PLSMFE solutions and the classical MFE solutions are consistent with theoretical

results. Moreover, they have also shown the feasibility and efficiency of POD method.

Mathematics Subject Classifications (2000): 65N30, 35Q10

1. Introduction

Let Ω ⊂ R2 be a bounded, connected, and polygonal domain. Consider the following the

non-stationary conduction–convection problems, where the coupled equations govern viscous

incompressible flow and heat transfer processes for an incompressible fluid are Boussinesq ap-

proximations to non-stationary Navier–Stokes equations.

Problem (I) Find u = (u1, u2), p and T such that for tN > 0,




ut − ν∆u+ (u · ∇)u+∇p = γjT (x, y, t)∈Ω× (0, tN ),

∇ · u = 0 (x, y, t)∈Ω× (0, tN ),

Tt − γ−1∆T + u · ∇T = 0 (x, y, t)∈Ω× (0, tN ),

u(x, y, t) = 0, T (x, y, t) = ϕ(x, y, t) (x, y, t)∈∂Ω× (0, tN ),

u(x, y, 0) = 0, T (x, y, 0) = ψ(x, y) (x, y)∈Ω,

(1.1)
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where u = (u1, u2) represents the velocity vector, p the pressure, T the temperature, ν = Re−1,

Re the Reynolds number, γ > 0 is the Groshoff number, j = (0, 1) the unit vector, and ϕ(x, y, t)

and ψ(x, y) are the given functions.tN is the final time. For the sake of convenience and without

lost generality, we may as well suppose that ϕ(x, y, t) = 0 in the following theoretical analysis.

The non-stationary conduction–convection problems (I) constitute an important system of

equations in atmospheric dynamics and a compelling dissipative nonlinear system of equations.

Since this system of equations does not only contain velocity vector field and the pressure field,

but also contains the temperature field[1], finding the numerical solution of Problem (I) is not

easy. Though mixed finite element (MFE) method is one of the important approaches for solving

the non-stationary conduction-convection problems, the fully discrete system of MFE solutions

for the non-stationary conduction–convection problems has many degrees of freedom and it

is an important convergence stability condition that the Babuška-Brezzi (BB) inequality[2−4]

holds for the combination of finite element subspaces. Thus, an important problem is how to

circumvent the constraint of the BB inequality and to simplify the computational load and save

time–consuming calculations and resource demands in the actual computational process in a

way that guarantees a sufficiently accurate numerical solution. In order to circumvent the con-

straint of the BB inequality in studies of MFE methods for Stokes equation and Navier-Stokes

Equations, stabilized finite element methods[5−8] have been developed, motivated by stream-

line diffusion (SD) methods[9−10]. A stabilized SD method[11] for the stationary Navier-Stokes

Equations is also proposed. Some Petrov-Galerkin least squares methods for the stationary

Navier-Stokes equations and non stationary conduction convection problems which residuals are

added to were developed[12−13]. Proper orthogonal decomposition (POD) is a technique offering

adequate approximation for representing fluid flow with reduced number of degrees of freedom,

i.e., with lower dimensional models so as to alleviate the computational load and provide CPU

and memory requirements savingsi.POD has be successfully used in different fields including

signal analysis and pattern recognition[14−15], fluid dynamics and coherent structures[16−21], as

well as optimal flow control problems[22−24]. More recently, some reduced order finite differ-

ence models and MFE formulations and error estimates for the upper tropical pacific ocean

model based on POD were presented[25−28], and an optimizing finite difference scheme based

on POD for the non-stationary conduction–convection problems was established[29]. However,

to the best of our knowledge, there are no published results to address the issue where POD is

used to reduce the PLSMFE formulation for the non-stationary conduction–convection prob-

lems and provide error estimates between classical PLSMFE solutions and reduced PLSMFE

solutions. Therefore, in this paper, we combine PLSMFE methods with POD to deal with the

non-stationary conduction–convection problems so that we insure not only the stabilization of

solutions of fully discrete PLSMFE system, but we also simplify the computational load and

save time–consuming calculations and resource demands in the actual computational process in

a way that guarantees a sufficiently accurate numerical solution. We also derive error estimates

between usual PLSMFE solutions and the solutions of optimizing reduced PLSMFE formula-

tion based POD technique. Then we consider the results obtained from numerical simulations



An optimizing reduced PLSMFE formulation 3

of cavity flows to show that the errors between POD solutions of optimizing reduced PLSMFE

formulation and the usual PLSMFE solutions are consistent with theoretical results. Moreover,

we also show the feasibility and efficiency of the POD method.

Though Kunisch and Volkwein have presented some Galerkin POD methods for parabolic

problems[30] and a general equation in fluid dynamics[31], our method is different from their ap-

proaches, whose methods consist of Galerkin projection approaches where the original variables

are substituted for linear combination of POD basis and the error estimates of the velocity

field therein are only derived, while their POD basis is generated with the solution of the phys-

ical system at all time instances. In particular , in our present method the velocity field is

only approximated[31], while velocity and pressure fields are all simultaneously approximated

. Although the singular value decomposition approach combined with POD technique is used

to treat the Burgers equation in [32] and the cavity flow problem in [33], the error estimates

have not completely been derived, in particular, an optimizing reduced formulation of PLSMFE

for the non-stationary conduction–convection problems has not yet been derived. Therefore,

our method improves upon existing methods and POD basis is only generated along with the

numerical solution at a subset of time instances which are useful and of interest for us.

The present paper is organized as follows. In Section 2 we derive usual PLSMFE methods

for the non-stationary conduction–convection problems and generate snapshots from transient

solutions computed from the equation system derived by usual PLSMFE methods. In section 3,

the optimal orthogonal bases are reconstructed from the elements of the snapshots with POD

and an optimizing reduced PLSMFE formulation is developed with lower dimensional number

based on POD for the nonlinear non-stationary conduction–convection problems . In section

4, error estimates between usual PLSMFE solutions and POD solutions of optimizing reduced

PLSMFE formulation are derived. In section 5, some numerical examples are presented illus-

trating that the errors between optimizing the PLSMFE approximate solutions and the usual

PLSMFE solutions are consistent with previously obtained theoretical results, thus validating

both the feasibility and efficiency of POD method. Section 6 provides the main conclusions and

future tentative ideas.

2. Usual PLSMFE approximation for the non-stationary conduction–

convection problems and snapshots generate

The Sobolev spaces along with their properties used in this context are standard[34]. For

example, for a bounded domain Ω, we denote by Hm(Ω) (m ≥ 0) and L2(Ω) = H0(Ω) the usual

Sobolev spaces equipped with the semi–norm and the norm, respectively,

|v|m,Ω =





∑

|α|=m

∫

Ω

|Dαv|2dxdy




1/2

and ‖v‖m,Ω =

{
m∑

i=0

|v|2i,Ω
}1/2

∀v ∈ Hm(Ω),

where α = (α1, α2), α1 and α2 are two nonnegative integers, and |α| = α1 +α2. Especially, the
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subspace H1
0 (Ω) of H1(Ω) is denoted by

H1
0 (Ω) = {v ∈ H1(Ω);u|∂Ω = 0}.

Note that ‖ · ‖1 is equivalent to | · |1 in H1
0 (Ω). Let L2

0(Ω) =
{
q ∈ L2(Ω);

∫

Ω

qdxdy = 0
}

, which

is the subspace of L2(Ω).

Put X = H1
0 (Ω)2, M = L0(Ω) = {q ∈ L2(Ω);

∫

Ω

qdxdy = 0}, W = H1
0 (Ω), and

a(u, v) = ν

∫

Ω

∇u · ∇vdxdy ∀u, v ∈ X,

b(q, v) =
∫

Ω

q divvdxdy ∀v ∈ X, q ∈M,

a1(u, v, w) =
1
2

∫

Ω

2∑

i,j=1

[ui
∂vj
∂xi

wj − ui
∂wj
∂xi

vj ]dxdy ∀u, v, w ∈ X,

a2(u, T, φ) =
1
2

∫

Ω

2∑

i=1

[ui
∂T

∂xi
φ− ui

∂φ

∂xi
T ]dxdy ∀u ∈ X, ∀T, φ ∈W,

D(T, φ) = γ−1

∫

Ω

∇T · ∇φdxdy ∀T, φ ∈W.

Let N be the positive integer, denote the time step increment by k = tN/N . Write tn = kn

and (un, pn, Tn) denotes the semi-discrete approximation of (u(x, y, tn), p(x, y, tn), T (x, y, tn)).

By introducing a finite difference approximation for time derivation of Problem (I), we obtain

the following semi-discrete formulation at discrete times.

Problem (II) Find (un, pn) ∈ X ×M such that for n = 1, 2, · · · , N ,





(un, v) + ka(un, v) + ka1(un, un, v)− kb(pn, v)

= kγ(jTn, v) + (un−1, v) ∀v ∈ X,
b(q, un) = 0 ∀q ∈M,

(Tn, φ) + kD(Tn, φ) + ka2(un, Tn, φ) = (Tn−1, φ) ∀φ ∈W,
u0 = 0, T 0 = ψ(x, y) in Ω.

(2.1)

Using the theory of stationary conduction–convection problems may prove that Problem

(II) has a unique solution, and has the following error estimate[1,35].

Theorem 2.1. If second derivatives utt and Ttt of the solution (u, p, T ) of Problem (I) are

all bounded, then

‖u(tn)− un‖0 + (kν)
1
2

n∑

i=1

|u(ti)− ui|1 + ‖T (tn)− Tn‖0

+(kγ−1)
1
2

n∑

i=1

|T (ti)− T i|1 + k
1
2

n∑

i=1

‖p(ti)− pi‖0 ≤ Ck,

where (u(tn), p(tn), T (tn)) is the value at tn = kn of the solution (u(t), p(t), T (t)) of Problem

(I), C is a constant dependent on (u(t), p(t), T (t)) but independent of k. ¤
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In order to find the numerical solution for Problem (II), it is necessary to discretize Problem

(II). We introduce a MFE approximation for the spatial variable. Let {=h} be a uniformly reg-

ular family of triangulation of Ω̄[35−36], indexed by a parameter h = max
K∈=h

{hK ; hK =diam(K)},
i.e., there is a constant C, independent of h, such that h ≤ ChK (∀K ∈ =h). We introduce the

finite element subspaces Xh ⊂ X, Mh ⊂M , and Wh ⊂W as follows

Xh = {vh ∈ X ∩ C0(Ω̄)2; vh|K ∈ P`(K)2 ∀K ∈ =h},
Mh = {qh ∈M ∩ C0(Ω̄); qh|K ∈ Pκ(K) ∀K ∈ =h},
Wh = {φh ∈W ∩ C0(Ω̄); φh|K ∈ Pι(K) ∀K ∈ =h},

(2.2)

where P`(K) is the space of piecewise polynomials of degree ` on K, ` ≥ 1, κ ≥ 1, and ι ≥ 1

are three integers.

Let (unh, p
n
h, T

n
h ) ∈ Xh×Mh×Wh be the PLSMFE approximation corresponding to (un, pn,

Tn). Then, the fully discrete PLSMFE solution for the problem (II) may be written as:
Problem (III). Find (unh, p

n
h, T

n
h ) ∈ Xh ×Mh ×Wh such that for 1 ≤ n ≤ N ,

(un
h, vh) + ka(un

h, vh) + ka1(u
n
h, u

n
h, vh)− kb(pn

h, vh) + kb(qh, u
n
h)+

X

K∈=h

δK(un
h − kν4un

h + k(un
h · ∇)uh + k∇pn

h, vh − kν4vh + k(un
h · ∇)vh + k∇qh)K

=
X

K∈=h

δK(kγjTn
h + un−1

h , vh − kν4vh + k(un
h · ∇)vh + k∇qh)K

+kγ(jTn
h , vh) + (un−1

h , vh) ∀(vh, qh) ∈ Xh ×Mh,

(Tn
h , φh) + kD(Tn

h , φh) + ka2(u
n
h, T

n
h , φh) = (Tn−1

h , φh) ∀φh ∈Wh,

u0
h = 0, T 0

h = ψ(x, y) in Ω,

(2.3)

where δK = αhK , α > 0 is arbitrary constant.

Write v̂= (v, p) and ŵ = (w, q). Define

Bδ(u, unh; v̂, ŵ) = (v, w) + ka(v, w) + ka1(u, v, w)− kb(p, w) + kb(q, v)

+
∑

K∈=h

δK(v − kν4v + k(u · ∇)v + k∇p, w − kν4w + k(unh · ∇)w + k∇q)K ,

FTδ(ŵ) = kγ(jTnh , w) + (un−1
h , w)

+
∑

K∈=h

δK(un−1
h + kγjTnh , w − kν4w + k(unh · ∇)w + k∇q)K ,

D̃(v;T, φ) = (T, φ) + kD(T, φ) + ka2(v, T, φ).

(2.4)

Then Problem (III) could be rewritten as follows.

Problem (IV) Find ûnh ≡ (unh, p
n
h) ∈ Xh ×Mh such that, for 1 ≤ n ≤ N ,

Bδ(unh, u
n
h; û

n
h, ŵh) = FTδ(ŵh) ∀ŵh ≡ (vh, qh) ∈ Xh ×Mh,

D̃(unh;T
n
h , φh) = (Tn−1

h , φh) ∀φh ∈Wh,

u0
h = 0, T 0

h = ψ(x, y) in Ω,

(2.5)

where δ|K = δk.
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Throughout this paper, C indicates a positive constant, and it is possibly different at differ-

ent occurrences, which is independent of the mesh parameters h and time step increment k, but

may depend on Ω, the Reynolds number, and on other parameters introduced in this paper.

The following properties for trilinear forms a1(·, ·, ·) and a2(·, ·, ·) are often used (see [35]).

a1(u, v, w) = −a1(u,w, v), a1(u, v, v) = 0 ∀u, v, w ∈ X,
|a1(u, v, w)| ≤ C1‖u‖

1
2
0 |u|

1
2
1 (|v|

1
2
1 ‖v‖

1
2
0 |w|1 + |v|1‖w‖

1
2
0 |w|

1
2
1 ) ∀u, v, w ∈ X,

a2(u, T, φ) = −a2(u, φ, T ), a2(u, φ, φ) = 0 ∀u ∈ X, ∀T, φ ∈W,
|a2(u, T, φ)| ≤ C2‖u‖

1
2
0 |u|

1
2
1 (|T |

1
2
1 ‖T‖

1
2
0 |φ|1 + |T |1‖φ‖

1
2
0 |φ|

1
2
1 ) ∀u ∈ X, ∀T, φ ∈W,

(2.6)

where C1 is a constant independent of u, v, and w, and C2 is a constant independent of u, T ,

and φ. The bilinear forms a(·, ·), D(·, ·), and b(·, ·) have the following properties

a(v, v) ≥ ν|v|21 ∀v ∈ X, |a(u, v)| ≤ ν|u|1|v|1 ∀u, v ∈ X, (2.7)

D(φ, φ) ≥ γ−1|φ|21 ∀φ ∈W, |D(T, φ)| ≤ γ−1|T |1|φ|1 ∀T, φ ∈W, (2.8)

sup
v∈X

b(q, v)
|v|1 ≥ β‖q‖0 ∀q ∈M, (2.9)

where β is a constant. Define

N0 = sup
u,v,w∈X

a1(u, v, w)
|u|1 · |v|1 · |w|1 , Ñ0 = sup

u∈X,(T,φ)∈W×W

a2(u, T, φ)
|u|1 · |T |1 · |φ|1 . (2.10)

The following discrete Gronwall lemma is well–known and very useful in context of next

analysis (see [4, 34]).

Lemma 2.2. If {an}, {bn}, and {cn} are three positive sequences, and {cn} is monotone,

they satisfy

an + bn ≤ cn + λ̄

n−1∑

i=0

ai, λ̄ > 0, a0 + b0 ≤ c0,

then

an + bn ≤ cn exp(nλ̄), n ≥ 0. ¤
For Problem (III) or (IV), we have the following result[13].

Theorem 2.3. If h and k are sufficiently small and h = O(k), then there exists h0 > 0 such

that when h < h0 Problem (III) has a unique solution sequence (unh, p
n
h, T

n
h ) ∈ Xh ×Mh ×Wh

and for 0 ≤ n ≤ N ,

‖unh‖20 + k

n∑

i=1

‖uih‖21 +
n∑

i=1

‖δ 1
2 (uih − kν∆uih + k(vih · ∇)uih + k∇pih)‖20,h ≤ RM, (2.11)

‖un − unh‖0 + (kν)
1
2

n∑

i=1

|ui − uih|1 + k
1
2

n∑

i=1

‖pi − pih‖0 + ‖Tn − Tnh ‖0

+(kγ−1)
1
2

n∑

i=1

|T i − T ih|1 ≤ C(h` + hκ + hι),
(2.12)
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where M = tN (R+2khα)γ2‖ϕ(x, y)‖20 exp(2αhtN ), R = ν−1, ‖·‖20,h =
∑

K∈=h

‖·‖20,K , (ûn, Tn) =

(un, pn, Tn) ∈ [W 1,∞
0 (Ω) ∩H`+1(Ω)]2 ×Hκ+1(Ω)× [W 1,∞

0 (Ω) ∩H`+1(Ω)] are the solutions for

the problem (II), C is the constant dependent on |un|`+1, |pn|κ, and |Tn|ι+1. ¤
Combining Theorem 2.1 and Theorem 2.3 could yield the following result.

Theorem 2.4.Under the assumptions of Theorem 2.1 and Theorem 2.3, there are the fol-

lowing error estimates, for 1 ≤ n ≤ N,

‖u(tn)− unh‖0 + (kν)
1
2

n∑

i=1

|u(ti)− uih|1 + k
1
2

n∑

i=1

‖p(ti)− pih‖0

+‖T (tn)− Tnh ‖0 + (kγ−1)
1
2

n∑
i=1

|T (ti)− T ih|1 ≤ C(k + h` + hκ + hι). ¤

If R = ν−1, γ, triangulation parameter h, finite elements Xh, Mh, and Wh and the

time step increment k are given, by solving Problem (III), we can obtain solution ensemble

{un1h, un2h, pnh, Tnh }Nn=1 for Problem (III). And then we choose L (for example, L = 20, N = 200,

in general, L¿ N) instantaneous solutions Ui(x, y) = (ui1h, u
i
2h, p

i
h, T

i
h) (i = 1, 2, · · · , L) (which

are useful and of interest for us) from the N groups of solutions (un1h, u
n
2h, p

n
h, T

n
h ) (1 ≤ n ≤ N)

for Problem (III), which are known as snapshots.

3. Optimizing reduced PLSMFE formulation based POD technique for

the non-stationary Navier–Stokes equations

In this section, we use POD technique to deal with the snapshots in section 2 and develop

an optimizing reduced PLSMFE formulation for the non-stationary Navier–Stokes equations.

Let X̂ = X ×M ×W . For Ui(x, y) = (ui1h, u
i
2h, p

i
h, T

i
h) (i = 1, 2, · · · , L) in section 2, we set

V = span{U1, U2, · · · , UL}, (3.1)

and refer to V as the ensemble consisting of the snapshots {Ui}Li=1 at least one of which is

supposed to be non-zero. Let {ψj}lj=1 denote an orthogonal basis of V with l = dimV. Then

each member of the ensemble can be expressed as

Ui =
l∑

j=1

(Ui, ψj)X̂ψj for i = 1, 2, · · · , L, (3.2)

where (Ui, ψj)X̂ = (uih, ψuj)X + (pih, ψpj)0, (·, ·)0 is L2-inner production, ψuj and ψpj are or-

thogonal bases corresponding to u and p, respectively.

The method of POD consists in finding the orthogonal basis such that for every d (1 ≤ d ≤ l)

the mean square error between the elements Ui (1 ≤ i ≤ L) and corresponding d–th partial

sum of (3.2) is minimized on average:

min
{ψj}d

j=1

1
L

L∑

i=1

‖Ui −
d∑

j=1

(Ui, ψj)X̂ψj‖X̂ (3.3)

such that

(ψi, ψj)X̂ = δij for 1 ≤ i ≤ d, 1 ≤ j ≤ i, (3.4)
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where ‖Ui‖X̂ = [‖∇ui1h‖20 +‖∇ui2h‖20 +‖pih‖20 +‖∇T ih‖20]
1
2 . A solution {ψj}dj=1 of (3.3) and (3.4)

is known as a POD basis of rank d.

We introduce the correlation matrix K = (Kij)L×L ∈ RL×L corresponding to the snapshots

{Ui}Li=1 by

Kij =
1
L

(Ui, Uj)X̂ . (3.5)

The matrix K is positive semi-definite and has rank l. The solution of (3.3) and (3.4) can be

found in [16, 19, 31], for example.

Proposition 3.1. Let λ1 ≥ λ2 ≥ · · · ≥ λl > 0 denote the positive eigenvalues of K and v1,

v2, · · · , vl the associated eigenvectors. Then a POD basis of rank d ≤ l is given by

ψi =
1√
λi
vTi (U1, U2, · · · , UL)T =

1√
λi

L∑

j=1

(vi)jUj , (3.6)

where (vi)j denotes the j-th component of the eigenvector vi. Furthermore, the following error

formula holds

1
L

L∑

i=1

‖Ui −
d∑

j=1

(Ui, ψj)X̂ψj‖X̂ =
l∑

j=d+1

λj . (3.7)

Let Vd = span {ψ1, ψ2, · · · , ψd} and Xd ×Md ×W d = Vd with Xd ⊂ X, Md ⊂ M , and

W d ⊂ W . Set the Ritz-projection P d: X → Xd, L2-projection ρd: M → Md, and Ritz-

projection %d: W →W d denoted by, respectively,

a(P du, vd) = a(u, vd) ∀vd ∈ Xd,

(ρdp, qd)0 = (p, qd)0 ∀qd ∈Md,

D(%dw,wd) = D(w,wd) ∀wd ∈W d,

(3.8)

where u ∈ X, p ∈M , and w ∈W . Due to (3.8) the linear operators P d and ρd are well-defined

and bounded:

‖∇(P du)‖0 ≤ ‖∇u‖0 ∀u ∈ X,
‖ρdp‖0 ≤ ‖p‖0 ∀p ∈M,

‖∇(%dw)‖0 ≤ ‖∇w‖0 ∀w ∈W.
(3.9)

Lemma 3.2. For every d (1 ≤ d ≤ l) the projection operators P d, ρd, and %d satisfy

respectively

1
L

L∑

i=1

‖∇(uih − P duih)‖0 ≤
l∑

j=d+1

λj ,

1
L

L∑

i=1

‖pih − ρdpih‖0 ≤
l∑

j=d+1

λj ,

1
L

L∑

i=1

‖∇(T ih − P dT ih)‖0 ≤
l∑

j=d+1

λj ,

(3.10)
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Proof. For any u ∈ X we deduce from (3.8) that

ν‖∇(uih − P duih)‖20 = a(uih − P duih, u
i
h − P duih) = a(uih − P duih, u

i
h − vd)

≤ ν‖∇(uih − P duih)‖0‖∇(uih − vd)‖0 ∀vd ∈ Xd.

Furthermore,

‖∇(uih − P duih)‖0 ≤ ‖∇(uih − vd)‖0 ∀vd ∈ Xd. (3.11)

Taking vd =
d∑

j=1

(uih, ψuj)Xψuj (where ψuj is the component of ψj corresponding to u) in (3.11),

we can obtain the first inequality of (3.10) from (3.7).

Using Hölder inequality and the second inequality of (3.8) can yield

‖pih − ρdpih‖20 = (pih − ρdpih, p
i
h − ρdpih) = (pih − ρdpih, p

i
h − qd)

≤ ‖pih − ρdpih‖0‖pih − qd‖0 ∀qd ∈Md,

consequently,

‖pih − ρdpih‖0 ≤ ‖pih − qd‖0 ∀qd ∈Md. (3.12)

Taking qd =
d∑

j=1

(pih, ψpj)0ψpj (where ψpj is the component of ψj corresponding to p) in (3.12),

from (3.7) we can obtain the second inequality of (3.10). Using the same technique as the

first inequality of (3.10) can prove the third inequality of (3.10), which completes the proof of

Lemma 3.2. ¤
Thus, using Vd = Xd ×Md ×W d, we can obtain the optimizing reduced PLSMFE formu-

lation for Problem (IV) as follows.

Problem (V) Find (ûnd , T
n
d ) ≡ (und , p

n
d , T

n
d ) ∈ Vd such that





Bδ(und , u
n
d ; û

n
d , ŵ

n
d ) = FTδ(ŵnd ) ∀ŵnd ≡ (vd, qd) ∈ Xd ×Md,

D̃(und ;T
n
d , φd) = (Tn−1

d , φd) ∀φd ∈W d,

u0
d = 0, T 0

d = ψ(x, y) (x, y) ∈ Ω,

(3.13)

where 1 ≤ n ≤ L.

Remark 1. Problem (V) is an optimizing reduced PLSMFE formulation based on POD

technique for Problem (IV), since it only includes 4d degrees of freedom while Problem (IV)

includes 4Np if κ = ` = ι = 1 (where Np is the number of the vertices in =h), Problem

(IV) includes 4Np + 4Ns ≈ 16Np if κ = ` = ι = 2 and 4d ¿ 4Np ¿ 16Np (where Ns is

the number of the sides in =h). And since the residual is introduced, the combination of finite

element subsets need not satisfy the BB stability condition and optimizing order error estimates

will be obtained (see section 4). When one computes real-life problems, one may obtain the

ensemble of snapshots from physical system trajectories by drawing samples from experiments

and interpolation (or data assimilation). For example, for weather forecast, one can use previous

weather prediction results to construct the ensemble of snapshots, then restructure the POD
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basis for the ensemble of snapshots by above (3.3)–(3.6), and finally combine it with a Petrov-

Galerkin least squares projection to derive an optimizing reduced order dynamical system, i.e.,

one needs only to solve the above Problem (V) which has only few degrees of freedom, but it is

unnecessary to solve Problem (IV). Thus, the forecast of future weather change can be quickly

simulated, which is of major importance for actual real-life applications.

4. Existence and error analysis of solution of the optimizing reduced

PLSMFE formulation for the non-stationary conduction–convection

problems

This section is devoted to discussing the existence and error estimates of solutions for

Problem (V).

We see from (3.6) that Vd = Xd ×Md ×W d ⊂ V ⊂ Xh ×Mh ×Wh ⊂ X ×M ×W .

We first derive the following existence result for solutions of Problem (V).

Theorem 4.1. Under the assumptions of Theorem 2.1 and Theorem 2.3, Problem (V) has

a unique solution sequence (und , p
n
d ) ∈ Xd ×Md and satisfies, for 1 ≤ n ≤ N,

[‖und‖20 + k

n∑

i=1

‖uid‖21 + ‖δ1/2(und − kν∆und + kund∇und + k∇pnd )‖20,h]1/2 ≤
√
RM. (4.1)

Proof. We use Brouwer’s fixed point theorem to prove our theorem.

For all vnd ∈ Xd and ‖vnd ‖20 + k
n∑
i=1

‖vid‖21 ≤ RM , consider the following linearized Problem:

Bδ(vnd , v
n
d ; ûnd , ŵd) = Fδ(ŵd) ∀ŵd ∈ Xd ×Md,

u0
d = 0, in Ω,

(4.2)

D̃(vnd ;Tnd , φd) = (Tn−1
d , φd) ∀φd ∈W d,

T 0
d = ψ(x, y) in Ω,

(4.3)

Since D̃(vnd ; ·, ·) is a coercive bilinear functional, linearized problem (4.3) has unique a group

of solutions Tnd ∈ W d (n = 1, 2, · · · , N). For known Tnd , since Bδ(vnd , v
n
d ; ·, ·) is a coercive

bilinear functional, linearized problem (4.2) has unique a group of solutions ûnd = (und , p
n
d )

(n = 1, 2, · · · , N). Thus, there exists a map G : (v̂nd , χ
n
d ) → (ûnd , T

n
d ) (n = 1, 2, · · · , N), where

v̂nd = (vnd , ψ
n
d ).

Taking φd = Tnd in (4.3), from (2.6) we obtain that

‖Tnd ‖20 + 2γ−1k‖∇Tnd ‖20 ≤ ‖Tn−1
d ‖20. (4.4)

Summing (4.4) from 1 to n yields that

‖Tnd ‖20 + γ−1k

n∑

i=1

‖∇T id‖20 ≤ ‖ψ(x, y)‖20. (4.5)
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Taking ŵd = ûnd in (4.2), we obtain that

‖und‖20 + kν|und |21 + ‖δ 1
2 (und − kν∆und + k(vnd · ∇)und + k∇pnd )‖20,h

=
∑

K∈=h

δK(kγjTnd + un−1
d , und − kν∆und + k(vnd · ∇)und + k∇pnd )K

+kγj(Tnd , u
n
d ) + (un−1

d , und )

≤ 1
2
(kRγ2‖Tnd ‖2−1 + kν|und |21) +

1
2
(‖und‖20 + ‖un−1

d ‖20)

+
1
2
‖δ 1

2 (kγTnd + un−1
d )‖20 +

1
2
‖δ 1

2 (und − kν∆und + k(vnd · ∇)und + k∇pnd )‖20,h.

(4.6)

Noting that ‖ · ‖−1 ≤ ‖ · ‖0. From (4.6) we have

‖und‖20 + kν|und |21 + ‖δ 1
2 (und − kν∆und + k(vnd · ∇)und + k∇pnd )‖20,h

≤ kRγ2‖Tnd ‖20 + ‖un−1
d ‖20 + 2‖δ 1

2 kγTnd ‖20 + 2αh‖un−1
d ‖20

≤ k(R+ 2khα)γ2‖ϕ(x, y)‖20 + ‖un−1
d ‖20 + 2αh‖un−1

d ‖20.
(4.7)

Summing (4.7) from 1 to n and noting that u0
d = 0 could yield

‖und‖20 + kν

n∑

i=1

|uid|21 +
n∑

i=1

‖δ 1
2 (uid − kν∆uid + k(vid · ∇)uid + k∇pid)‖20,h

≤ nk(R+ 2khα)γ2‖ϕ(x, y)‖20 + 2αh
n−1∑

i=0

‖uid‖20.
(4.8)

By discrete Gronwall inequality we get that

‖und‖20 + kν

n∑

i=1

|uid|21 +
n∑

i=1

‖δ 1
2 (uid − kν∆uid + k(vid · ∇)uid + k∇pid)‖20,h

≤ nk(R+ 2khα)γ2‖ϕ(x, y)‖20 exp(2αhn).

(4.9)

Note that 1 < ν−1 and kn ≤ tN . From (4.9) we obtain that

‖und‖20 + k

n∑

i=1

|uid|21 +
n∑

i=1

‖δ 1
2 (uid − kν∆uid + k(vid · ∇)uid + k∇pid)‖20,h

≤ RtN (R+ 2khα)γ2‖ϕ(x, y)‖20 exp(2αtN ) ≡ RM.

(4.10)

Let BRM = {(vnd , ψnd , χnd ) ∈ Xd×Md×W d; ‖vnd ‖20 +k
n∑
i=1

|vid|21 ≤ RM}. It is shown by (4.5)

and (4.10) that the map G : BRM → BRM . Thus, it is necessary to prove that F is continuous.

For any (v̂1n
d , χ1n

d ) = (v1n
d , ψ1n

d , χ1n
d ) and (v̂2n

d , χ2n
d ) = (v2n

d , ψ2n
d , χ2n

d ) ∈ BRM , by (4.2) and (4.3)

we obtain two groups of solutions (u1n
d , p

1n
d , T

1n
d ) and (u2n

d , p
2n
d , T

2n
d ) (n = 1, 2, · · · , N) such

that
Bδ(v1n

d , v1n
d ; û1n

d , ŵd) = Fδ(ŵd) ∀ŵd ∈ Xd ×Md,

D̃(v1n
d ;T 1n

d , φd) = (T 1(n−1)
d , φd) ∀φd ∈W d,

u10
d = 0, T 10

d = ψ(x, y) (x, y) ∈ Ω,

‖u1n‖20 + k

n∑

i=1

‖u1i
d ‖21 ≤ RM

(4.11)
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and

Bδ(v2n
d , v2n

d ; û2n
d , ŵd) = Fδ(ŵd) ∀ŵd ∈ Xd ×Md,

D(v2n
d ;T 2n

d , φd) = (T 2(n−1)
d , φd) ∀φd ∈W d,

u20
d = 0, T 20

d = ψ(x, y) (x, y) ∈ Ω,

‖u2n‖20 + k

n∑

i=1

‖u2i
d ‖21 ≤ RM.

(4.12)

By (4.11), (4.12), (2.6), (2.10), (4.5), and inverse inequality, we obtain that

‖T 1n
d − T 2n

d ‖20 + kγ−1|T 1n
d − T 2n

d |21
= (T 1(n−1)

d − T
2(n−1)
d , T 1n

d − T 2n
d )− ka2(v1n

d − v2n
d , T 1n

d , T 1n
d − T 2n

d )

≤ ‖T 1n
d − T 2n

d ‖0‖T 1(n−1)
d − T

2(n−1)
d ‖0 + Ck|v1n

d − v2n
d |1|T 1n

d − T 2n
d |1‖T 1n

d ‖0

≤ 1
2
‖T 1n

d − T 2n
d ‖20 +

1
2
‖T 1(n−1)

d − T
2(n−1)
d ‖20

+Ck|v1n
d − v2n

d |21 +
1
2
kγ−1|T 1n

d − T 2n
d |21.

(4.13)

Therefore, we get that

‖T 1n
d − T 2n

d ‖20 + kγ−1|T 1n
d − T 2n

d |21 ≤ ‖T 1(n−1)
d − T

2(n−1)
d ‖20 + Ck|v1n

d − v2n
d |21. (4.14)

Summing (4.14) from 1 to n can yield that

‖T 1n
d − T 2n

d ‖20 + kγ−1
n∑

i=1

|T 1i
d − T 2i

d |21 ≤ Ck

n∑

i=1

|v1i
d − v2i

d |21. (4.15)

By (4.11) and (4.12), we obtain that, ∀ŵd = (wd, rd) ∈ Xd ×Md,

Bδ(v1n
d , v1n

d , û1n
d , ŵd)−Bδ(v2n

d , v2n
d , û2n

d , ŵd)

= (u1(n−1)
d − u

2(n−1)
d , wd) +

∑

K∈=h

δK(u2(n−1)
d , k(v1n

d − v2n
d ) · ∇wd)K

+
∑

K∈=h

δK(u1(n−1)
d − u

2(n−1)
d , wd − kν∆wd + kv1n

d · ∇wd + k∇rd)K

+
∑

K∈=h

δK(kγj(T 1n
d − T 2n

d ), wd − kν∆wd + kv1n
d · ∇wd + k∇rd)K

+kγ(j(T 1n
d − T 2n

d ), wd) +
∑

K∈=d

δK(kγjT 2n
d , k(v1n

d − v2n
d )∇wd) ≡ S0.

(4.16)

Taking wd = u1n
d − u2n

d and rd = p1n
d − p2n

d , on the one hand, we get that

Bδ(v1n
d , v1n

d , ŵd, ŵd) = ‖wd‖20 + kν|wd|21
+‖δ 1

2 (wd − kν∆wd + kv1n
d · ∇wd + k∇rd)‖20,h.

(4.17)



An optimizing reduced PLSMFE formulation 13

On the other hand, by (4.11) and (4.12) we obtain

Bδ(v
1n
d , v1n

d , ŵd, ŵd) = Bδ(v
1n
d , v1n

d , û1n
d , ŵd)−Bδ(v

1n
d , v1n

d , û2n
d , ŵd)

= Bδ(v
2n
d , v2n

d , û2n
d , ŵd)−Bδ(v

1n
d , v1n

d , û2n
d , ŵd) + S0 = ka1(v

2n
d − v1n

d , u2n
d , wd)

+
X

K∈=h

δK(k(v2n
d − v1n

d )∇u2n
d , wd − kν∆wd + kv1n

d · ∇wd + k∇rd)K

+
X

K∈=h

δK(u2n
d − kν∆u2n

d + kv2n
d · ∇u2n

d + k∇p2n
d , k(v2n

d − v1n
d )∇wd)K + S0

≡ S1 + S2 + S3 + S0.

(4.18)

By (2.10) and (4.12), we obtain that

|S1| = |ka1(v2n
d − v1n

d , u2n
d , wd)| ≤ kRMN0|v2n

d − v1n
d |1|wd|1. (4.19)

By inverse inequality ‖vd‖0,∞ ≤ C|vd|1 and ‖vd‖0 ≤ Ch|vd|1 (for all vd ∈ Xd ⊂ Xh, see [35-36]),

(2.10), (4.12), and (4.13), we obtain that

|S2| = |
∑

K∈=h

δK(k(v2n
d − v1n

d )∇u2n
d , wd − kν∆wd + kv1n

d · ∇wd + k∇rd)K |

≤ Ckh
1
2 ‖v2n

d − v1n
d ‖1‖δ

1
2 (wd − kν∆wd + kv1n

d · ∇wd + k∇rd)‖0,h,
(4.20)

|S3| = |
∑

K∈=h

δK(u2n
d − kν∆u2n

d + kv2n
d · ∇u2n

d + k∇p2n
d , k(v

2n
d − v1n

d )∇wd)K |

≤ Ckh
1
2 |v2n

d − v1n
d |1|wd|1,

(4.21)

|S0| = |(u1(n−1)
d − u

2(n−1)
d , wd) +

∑

K∈=h

δK(u2(n−1)
d , k(v1n

d − v2n
d ) · ∇wd)K

+
∑

K∈=h

δK(u1(n−1)
d − u

2(n−1)
d , wd − kν∆wd + kv1n

d · ∇wd + k∇rd)K

+
∑

K∈=h

δK(kγj(T 1n
d − T 2n

d ), wd − kν∆wd + kv1n
d · ∇wd + k∇rd)K

+kγ(j(T 1n
d − T 2n

d ), wd) +
∑

K∈=h

δK(γjT 2n
d , k(v1n

d − v2n
d )∇wd)|

≤ ‖u1(n−1)
d − u

2(n−1)
d ‖0‖wd‖0 + Ckh|v1n

d − v2n
d |1|wd|1

+Ch
1
2 ‖u1(n−1)

d − u
2(n−1)
d ‖0‖δ 1

2 (wd − kν∆wd + kv1n
d · ∇wd + k∇rd)‖0,h

+Ckh
1
2 ‖T 1n

d − T 2n
d ‖0‖δ 1

2 (wd − kν∆wd + kv1n
d · ∇wd + k∇rd)‖0,h

+khγ‖T 1n
d − T 2n

d ‖0‖wd‖1 + Chkγ|v1n
d − v2n

d |1|wd|1.

(4.22)

If h = O(k), combining (4.19)–(4.22) and (4.15) and using Cauchy inequality could yield that

|S0|+ |S1|+ |S2|+ |S3| ≤ 1
2
‖u1(n−1)

d − u
2(n−1)
d ‖20 +

1
2
‖wd‖0

+Ck2|v1n
d − v2n

d |21 +
kν

2
|wd|21 + Ck‖u1(n−1)

d − u
2(n−1)
d ‖20

+
1
2
‖δ 1

2 (wd − kν∆wd + kv1n
d · ∇wd + k∇rd)‖20,h + Ck3

n∑

i=1

|v1i
d − v2i

d |21.
(4.23)
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Combining (4.23) and (4.17)–(4.18) yields

‖δ 1
2 (u1n

d − u2n
d )− kν∆(u1n

d − u2n
d ) + kv1n

d · ∇(u1n
d − u2n

d )

+k∇(p1n
d − p2n

d )‖20,h + ‖u2n
d − u1n

d ‖20 + kν|u2n
d − u1n

d |21
≤ ‖u1(n−1)

d − u
2(n−1)
d ‖20 + Ck‖u1(n−1)

d − u
2(n−1)
d ‖20 + Ck3

n∑

i=1

|v1i
d − v2i

d |21.
(4.24)

Summing (4.24) from 1 to n we get
n∑

i=1

‖δ 1
2 (u1i

d − u2i
d )− kν∆(u1i

d − u2i
d ) + kv1i

d · ∇(u1i
d − u2i

d )

+k∇(p1i
d − p2i

d )‖20,h + ‖u1n
d − u2n

d ‖20 + kν

n∑

i=1

|u1i
d − u2i

d |21

≤ Ck

n−1∑

i=0

‖u1i
d − u2i

d ‖20 + Ck3n

n∑

i=1

|v1i
d − v2i

d |21.

(4.25)

By discrete Gronwall inequality, we obtain that
n∑

i=1

‖δ 1
2 (u1i

d − u2i
d )− kν∆(u1i

d − u2i
d ) + kv1i

d · ∇(u1i
d − u2i

d ) + k∇(p1i
d − p2i

d )‖20,h

+‖u1n
d − u2n

d ‖20 + kν

n∑

i=1

|u1i
d − u2i

d |21 ≤ Ck3n

n∑

i=1

|v1i
d − v2i

d |21 exp(Cnk).
(4.26)

Since nk ≤ tN , we obtain that
n∑

i=1

‖δ 1
2 (u1i

d − u2i
d )− kν∆(u1i

d − u2i
d ) + kv1i

d · ∇(u1i
d − u2i

d ) + k∇(p1i
d − p2i

d )‖20,h

+‖u1n
d − u2n

d ‖20 + kν

n∑

i=1

|u1i
d − u2i

d |21 ≤ Ck2
n∑

i=1

|v1i
d − v2i

d |21.
(4.27)

Thus, (4.15) and (4.27) show that the map G : BRM → BRM is continuous. By Brouwer’s fixed

point theorem, this implies that G has at least one fixed (ûnd , T
n
d ) = G(ûnd , T

n
d ) (n = 1, 2, · · · , N),

i.e., Problem (IV) has at least one solution sequence (und , p
n
d , T

n
d ) ∈ Xd ×Md ×W d.

If (u1n
d , p

1n
d , T

1n
d ) ∈ Xd×Md×W d and (u21n

d , p2n
d , T

2n
d ) ∈ Xd×Md×W d are two groups of

solutions for Problem (IV), using the same approaches as in (4.15) and (4.27), we derive that

‖T 1n
d − T 2n

d ‖20 + kγ−1
n∑

i=1

|T 1i
d − T 2i

d |21 ≤ Ck

n∑

i=1

|u1i
d − u2i

d |21, (4.28)

n∑

i=1

‖δ 1
2 (u1i

d − u2i
d )− kν∆(u1i

d − u2i
d ) + ku1i

d · ∇(u1i
d − u2i

d ) + k∇(p1i
d − p2i

d )‖20,h

+‖u1n
d − u2n

d ‖20 + kν

n∑

i=1

|u1i
d − u2i

d |21 ≤ Ckh

n∑

i=1

|u1i
d − u2i

d |21.
(4.29)

Therefore there is an h0 = ν/(2C) such that if h ≤ h0, we get that
n∑

i=1

‖δ 1
2 (u1i

d − u2i
d )− kν∆(u1i

d − u2i
d ) + ku1i

d · ∇(u1i
d − u2i

d ) + k∇(p1i
d − p2i

d )‖20,h

+‖u1n
d − u2n

d ‖20 + kν

n∑

i=1

|u1i
d − u2i

d |21 ≤ 0,
(4.30)
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which shows that u1n
d = u2n

d and p1n
d = p2n

d . And by (4.28) we get T 1n
d = T 2n

d . Therefore, the

solutions (und , p
n
d , T

n
d ) (1 ≤ n ≤ N) for Problem (IV) are unique. ¤

In the following theorem, the errors between the solutions (und , p
n
d ) for Problem (V) and the

solutions (unh, p
n
h) for Problem (IV) are derived.

Theorem 4.2. Under the assumptions of Theorem 2.1 and Theorem 2.3, if h and k are

sufficiently small, h = O(k), and k = O(L−2), then the errors between the solutions (und , p
n
d , T

n
d )

for Problem (V) and the solutions (unh, p
n
h, T

n
h ) for Problem (IV) have the following error esti-

mates, for 1 ≤ n ≤ N,

‖unh − und‖0 + ‖Tnh − Tnd ‖0 + (kν)
1
2

n∑

i=1

‖∇(uih − uid)‖0 + k
1
2

n∑

i=1

‖pih − pid‖0

+(kγ−1)
1
2

n∑

i=1

‖∇(T ih − T id)‖0 ≤ C

l∑

j=d+1

λj , if n ∈ {1, 2, · · · , L};
(4.31)

and if snapshots are equably taken,

‖unh − und‖0 + ‖Tnh − Tnd ‖0 + (kν)
1
2

n∑

i=1

‖∇(uih − uid)‖0 + k
1
2

n∑

i=1

‖pih − pid‖0

+(kγ−1)
1
2

n∑

i=1

‖∇(T ih − T id)‖0 ≤ Ck

√
N

4L
+ C

l∑

j=d+1

λj , if n 6∈ {1, 2, · · · , L}.
(4.32)

Proof. Let ŵd = (wnd , r
n
d ), wnd = P dunh − und , and rnd = ρdpnh − pnd . On the one hand, we

have that

Bδ(und , u
n
d , ŵd, ŵd)

= ‖wnd ‖20 + kν|wnd |21 + ‖δ 1
2 (wnd − kν∆wnd + kund∇wnd + k∇rnd )‖20,h.

(4.33)

On the other hand, if write P̂ dû = (P dunh, ρ
dpnh) and ûd = (und , p

d
h), we have that

Bδ(und , u
n
d , ŵd, ŵd) = Bδ(und , u

n
d , P̂

dû, ŵd)−Bδ(und , u
n
d , ûd, ŵd)

= Bδ(und , u
n
d , P̂

dû, ŵd)−Bδ(unh, u
n
d , û

n
h, ŵd) + (un−1

h − un−1
d , wnd )

+
∑

K∈=h

δK(un−1
h − un−1

d + kγj(Tnh − Tnd ), wnd − kν∆wnd + kund∇wnd + k∇rnd )K

+kγj(Tnh − Tnd , w
n
d ) ≡ S̄1 + S̄2 + S̄3 + S̄4,

(4.34)

where, since a(P dunh − unh, w
n
d ) = 0,

S̄1 = (P dunh − unh, w
n
d )− kb(ρdpnh − pnh, w

n
d ),

S̄2 = k[a1(und , P
dunh, w

n
d )− a1(unh, u

n
h, w

n
d ) + b(rnd , P

dunh − unh)],

S̄3 =
∑

K∈=h

δK(P dunh − unh − kν∆(P dunh − unh) + kund∇P dunh − kunh∇unh

+k∇(ρdpnh − pnh), w
n
d − kν∆wnd + kund∇wnd + k∇rnd )K ,

S̄4 = (un−1
h − un−1

d , wnd ) + kγj(Tnh − Tnd , w
n
d ) +

∑

K∈=h

δK(un−1
h − un−1

d

+kγj(Tnh − Tnd ), wnd − kν∆wnd + kund∇wnd + k∇rnd )K .
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Using inverse inequality, Hölder inequality, (2.7), and Cauchy inequality, and noting that h =

O(k), we obtain that

|S̄1| = |(P dunh − unh, w
n
d )− kb(ρdpnh − pnh, w

n
d )|

≤ Ck(|P dunh − unh|21 + ‖ρdpnh − pnh‖20) + ε̃kν|wnd |21,
(4.35)

|S̄2| = k|a1(und , P
dunh, w

n
d )− a1(unh, u

n
h, w

n
d ) + b(rnd , P

dunh − unh)|

= k|a1(und , P
dunh − unh, w

n
d )− a1(wnd , u

n
h, w

n
d ) + a1(P dunh − unh, u

n
d , w

n
d )

−
∑

K∈=h

(wnd − kν∆wnd + kund · wnd +∇rnd , P dunh − unh)K

+
∑

K∈=h

(wnd − kν∆wnd + kund · wnd , P dunh − unh)K |

≤ ε̃(kν|wnd |21 + ‖δ 1
2 (wnd − kν∆wnd + kund · wnd + k∇rnd )‖20,h)

+Ck|P dunh − unh|21 + Ckh|wnd |21,

(4.36)

|S̄3| =
∑

K∈=h

δK(P dunh − unh − kν∆(P dunh − unh) + kund∇(P dunh − unh)

−kwnd∇unh + k(P dunh − unh)∇unh + k∇(ρdpnh − pnh),

wnd − kν∆wnd + kund∇wnd + k∇rnd )K

≤ Ck(|P dunh − unh|21 + ‖ρdpnh − pnh‖20) + Ckh|wnd |21

+ε̃‖δ 1
2 (wnd − kν∆wnd + kund∇wnd + k∇rnd )‖20,h,

(4.37)

|S̄4| ≤ Ck|P dun−1
h − un−1

h |21 +
1
2
(‖wn−1

d ‖20 + ‖wnd ‖20) + Ck‖wn−1
d ‖20

+ε̃‖δ 1
2 (wnd − kν∆wnd + kund∇wnd + k∇rnd )‖20,h

+ε̃kν|wnd |1 + Ck3‖Tnh − Tnd ‖20,

(4.38)

where ε̃ is a constant which can be chosen arbitrarily. Combining (4.33) and (4.34)–(4.38) could

yield that

‖wnd ‖20 + kν|wnd |21 + ‖δ 1
2 (wnd − kν∆wnd + kund∇wnd + k∇rnd )‖20,h

≤ Ck(|P dunh − unh|21 + ‖ρdpnh − pnh‖20 + |P dun−1
h − un−1

h |21)

+3ε̃k(ν|wnd |21 + ‖δ 1
2 (wnd − kν∆wnd + kund∇wnd + k∇rnd )‖20,h)

+Ckh|wnd |21 +
1
2
(‖wn−1

d ‖20 + ‖wnd ‖20) + Ck‖wn−1
d ‖20 + Ck3‖Tnh − Tnd ‖20.

(4.39)
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Taking ε̃ ≤ 1/6, from (4.39) we obtain that

‖wnd ‖20 + kν|wnd |21 + ‖δ 1
2 (wnd − kν∆wnd + kund∇wnd + k∇rnd )‖20,h

≤ Ck(|P dunh − unh|21 + ‖ρdpnh − pnh‖20 + |P dun−1
h − un−1

h |21)

+Ckh|wnd |21 + ‖wn−1
d ‖20 + Ck‖wn−1

d ‖20 + Ck3‖Tnh − Tnd ‖20.

(4.40)

If h is sufficiently small such that Ch ≤ ν/2, we could obtain from above inequality that

2‖wnd ‖20 + kν|wnd |21 + 2‖δ 1
2 (wnd − kν∆wnd + kund∇wnd + k∇rnd )‖20,h

≤ Ck(|P dunh − unh|21 + ‖ρdpnh − pnh‖20 + |P dun−1
h − un−1

h |21)

+2‖wn−1
d ‖20 + Ck‖wn−1

d ‖20 + Ck3‖Tnh − Tnd ‖20.

(4.41)

Let τnd = %dTnh − Tnd . By (2.6), (4.11), (4.12), and inverse inequality, we could get that

‖τnd ‖20 + kγ−1|τnd |21 = (%dTnh − Tnh , τ
n
d ) + (τn−1

d , τnd )

−ka2(unh − und , T
n
h , τ

n
d ) + ka2(und , %

dTnh − Tnh , τ
n
d ) + (Tn−1

h − %dTn−1
h , τnd )

≤ kγ−1

2
|τnd |21 +

1
2
‖τnd ‖20 +

1
2
‖τn−1
d ‖20 + Ck|un − und |21

+Ck‖Tn−1
h − %dTn−1

h ‖20 + Ck|Tnh − %dTnh |21.

(4.42)

Therefore, we have

‖τnd ‖20 + kγ−1|τnd |21 ≤ ‖τn−1
d ‖20

+Ck‖Tn−1
h − %dTn−1

h ‖20 + Ck|Tnh − %dTnh |21 + Ck|un − und |21.
(4.43)

First, we consider the case of n ∈ {1, 2, · · · , L}. Summing (4.43) from 1 to n ∈ {1, 2, · · · , L}
and using Lemma 3.2 could yield that

‖τnd ‖20 + kγ−1
n∑

i=1

|τ id|21 ≤ Ck

n∑

i=1

|ui − uid|21 + CkL2

(
l∑

i=d+1

λi

)2

. (4.44)

Thus, if k = O(L−2),

‖Tn − Tnd ‖20 + kγ−1
n∑

i=1

|Tn − Tnd |21 ≤ Ck

n∑

i=1

|ui − uid|21 + C

(
l∑

i=d+1

λi

)2

. (4.45)

Summing (4.41) from 1 to n ∈ {1, 2, · · · , L} and using Lemma 3.2 yields that

‖wnd ‖20 + kν

n∑

i=1

|wid|21 +
n∑

i=1

‖δ 1
2 (wid − kν∆wid + kuid∇wid + k∇rid)‖20,h

≤ CkL2(
l∑

j=d+1

λj)2 + Ck

n−1∑

i=0

‖wid‖20 + Ck3
n∑

i=1

‖T i − T id‖20.
(4.46)
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By using discrete Gronwall inequality, we obtain that

‖wLd ‖20 + kν

n∑

i=1

|wid|21 +
n∑

i=1

‖δ 1
2 (wid − kν∆wid + kuid∇wid + k∇rid)‖20,h

≤ Ck[L2(
l∑

j=d+1

λj)2 + k2
n∑

i=1

‖T i − T id‖20] exp(Ckn).

(4.47)

If h and k are sufficiently small, k = O(L−2), by using inverse inequality and noting that

nk ≤ kN ≤ T , we get that

‖wnd ‖0 + (kν)
1
2

n∑

i=1

|wid|1 + k
1
2

n∑

i=1

‖rid‖0 ≤ C

l∑

j=d+1

λj + C

[
k3

n∑

i=1

‖T i − T id‖20
]1/2

. (4.48)

Using Lemma 3.2 and (4.45) yields that

‖unh − und‖0 + (kν)
1
2

n∑

i=1

|uih − uid|1 + k
1
2

n∑

i=1

‖pih − pid‖0

≤ C

l∑

j=d+1

λj + Ck3/2
n∑

i=1

|uih − uid|1.
(4.49)

If k are sufficiently small, for example, Ck ≤ (ν)
1
2 /2, by (4.49) we obtain that

‖unh − und‖0 + (kν)
1
2

n∑

i=1

|uih − uid|1 + k
1
2

n∑

i=1

‖pih − pid‖0 ≤ C

l∑

j=d+1

λj . (4.50)

Combining (4.50) and (4.45) can yield (4.31).

Next, we consider the case of n 6∈ {1, 2, · · · , L}. If n 6∈ {1, 2, · · · , L}, we may as well suppose

that tn ∈ (tL−1, tL) and tn be the nearest point to tL. Expanding unh, p
n
h, and Tnh into Taylor

series with respect to tL could yield that

unh = uLh − ηk
∂uh(ξ1)
∂t

ξ1 ∈ [tn, tL],

pnh = pLh − ηk
∂ph(ξ2)
∂t

ξ2 ∈ [tn, tL],

Tnh = TLh − ηk
∂Th(ξ3)
∂t

ξ3 ∈ [tn, tL],

(4.51)

where η is the step number from tn to tL. If snapshots are equably taken, then η ≤ N/(2L).

Summing (4.43) and (4.41) from 1 to L − 1, n, and using (4.51), if |∂uh(ξ1)
∂t |, |∂ph(ξ2)

∂t |, and

|∂Th(ξ3)
∂t | are bounded, by discrete Gronwall inequality and Lemma 3.2, we obtain that

‖τnd ‖20 + kγ−1
n∑

i=1

|τ id|21 ≤ Ck

n∑

i=1

|ui − uid|21 + Ck(L
l∑

j=a+1

λj)2 + CLk3N2/(2L)2. (4.52)

‖wnd ‖20 + kν

n∑

i=1

|wid|21 + k

n∑

i=1

‖rid‖20

≤ Ck(L
l∑

j=a+1

λj)2 + CLk3N2/(2L)2 + Ck3
n∑

i=1

‖T i − T id‖20.
(4.53)
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If k = O(L−2), by (4.52) and (4.53) we get that

‖τnd ‖0 + kγ−1
n∑

i=1

|τ id|1 ≤ Ck1/2

[
n∑

i=1

|wid|21
]1/2

+ C

l∑

j=a+1

λj + Ck

√
N

4L
, (4.54)

‖wnd ‖0 + (kν)
1
2

n∑

i=1

|wid|1 + k
1
2

n∑

i=1

‖rid‖0

≤ C

l∑

j=a+1

λj + Ck

√
N

4L
+ Ck3/2

[
n∑

i=1

‖τ id‖20
]1/2

.

(4.55)

Combining (4.54) and (4.55), by Lemma 3.2, we obtain (4.32). ¤
Combining Theorem 2.4 and Theorem 4.3 yields the following result.

Theorem 4.4. Under Theorem 2.4 and Theorem 4.3 hypotheses, the error estimates between

the solutions (u(t), p(t), T (t)) for Problem (I) and the solutions (und , p
n
d , T

n
d ) for the reduced order

basic Problem (V) are, for n = 1, 2, · · · , N ,

‖u(tn)− und‖0 + ‖T (tn)− Tnd ‖0 + (kν)
1
2

n∑

i=1

‖∇(ui − uid)‖0 + k
1
2

n∑

i=1

‖pi − pid‖0

+(kγ−1)
1
2

n∑

i=1

‖∇(T i − T id)‖0 ≤ C(hκ + h` + hι + k) + C

l∑

j=d+1

λj , if n ∈ {1, 2, · · · , L};

‖u(tn)− und‖0 + ‖T (tn)− Tnd ‖0 + (kν)
1
2

n∑

i=1

‖∇(ui − uid)‖0 + k
1
2

n∑

i=1

‖pi − pid‖0

+(kγ−1)
1
2

n∑

i=1

‖∇(T i − T id)‖0 ≤ C(hκ + h` + hι + k + k

√
N

4L
)

+C
l∑

j=d+1

λj , if n 6∈ {1, 2, · · · , L}.

Remark 2. The conditions k = O(L−2) and the coefficient
√

N
4L in Theorem 4.3 and

Theorem 4.4 show that enough snapshots must be taken, but if only
√

N
4L < 10, then error

estimates are almost optimal. For example, if only one snapshot is taken from each 10 transient

solutions, error estimates could be satisfactory. Therefore, it is unnecessary to take the total

transient solutions at all time instances tn as snapshot for instance in [30–31]. Theorem 4.3 and

Theorem 4.4 have presented the error estimates between the solutions of the optimizing reduced

PLSMFE formulation Problem (V) and the solutions of usual PLSMFE formulation Problem

(III) and Problem (II), respectively. Since our methods employ some usual PLSMFE solutions

(unh, p
n
h, T

n
h ) (n = 1, 2, · · · , L) for Problem (III) as assistant analysis, the error estimates in

Theorem 4.4 are correlated to the spatial grid scale h and time step size k. However, when

one computes actual problems, one may obtain the ensemble of snapshots from physical system

trajectories by drawing samples from experiments and interpolation (or data assimilation). For

example, for weather forecast, one can use previous weather prediction results to construct

the ensemble of snapshots. Thus, the assistant analysis (unh, p
n
h, T

n
h ) (n = 1, 2, · · · , L) could
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be substituted by the interpolation functions of experimental and previous results, it is not

necessary to solve Problem (III), and it is only necessary to directly solve Problem (V) which

includes very few degrees of freedom since it is only dependent on d and is independent of the

spatial grid scale h and time step size k, and, in general, d (d¿ l ≤ L¿ N).

5. Some numerical experiments

In this section, we present some numerical examples of the physical model of cavity flows

for first order element (i.e., ` = κ = ι = 1) and different Reynolds numbers by the optimizing

reduced PLSMFE formulation Problem (V) validating the feasibility and efficiency of the POD

method.

Figure 1. Physics model of the cavity flows: t = 0 i.e., n = 0 initial values on boundary

Figure 2. When Re=2000, temperature figure for classical PLSMFE solution (on left-hand side figure)

and when d = 5 the optimizing reduced PLSMFE solution based on POD (on right-hand side figure)

Let the side length of the cavity be 1 (see Figure 1). We first divide the cavity into 32×32 =

1024 small squares with side length 4x = 4y = 1
32 , and then link diagonal of square to divide

each square into two triangles on same direction which consists of triangularization =h (h =
√

2
32 ).

We take time step increment as 4t = 0.001. Let the initial value and boundary value of u and

v equal to 0 on boundary of the cavity are also taken as 0. And let T = 0 on left and lower
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boundary of cavity, ∂T∂y = 0 on supper boundary of cavity, and T = 4y(1−y) on right boundary

of cavity (see Figure 1). Put γ = 10 and Re = 2000 or 5000.

Figure 3. When Re=5000, temperature figure for classical PLSMFE solution (on left-hand side figure)

and when d = 5 the optimizing reduced PLSMFE solution based on POD (on right-hand side figure)

Figure 4. When Re=2000, pressure Figure for classical PLSMFE solution (on left-hand side figure)

and when d = 5 the optimizing reduced PLSMFE solution based on POD (on right-hand side Figure)

Figure 5. When Re=5000, pressure stream line figure for classical PLSMFE solutions (on left-hand side Figure)

and when d = 5 the optimizing reduced PLSMFE solution based on POD (on right-hand side Figure)

We obtain 20 values (i.e., snapshots) outputting at time t = 10, 20, 30, · · · , 200 by solving

classical PLSMFE formulation, i.e., Problem (IV). It is shown by computing that the eigenvalues∑20
i=6 λi ≤ 3×10−3. When t = 200, we obtain the solutions of the reduced formulation Problem



22 Z.D. Luo, J. Chen, I.M. Navon

(IV) based POD method of MEF depicted graphically in Figure 2 to Figure 7 on right-hand

side used 5 optimal POD bases if Re = 2000 and Re = 5000, while the solutions obtained with

classical PLSMFE formulation Problem (III) are depicted graphically in Figure 2 to Figure 7

on left-hand side (Since these figures are equal to solutions obtained with 20 bases, they are

also known as the figures of solution with full bases).

Figure 6. When Re=2000, velocity stream line figure for classical PLSMFE solutions (on left-hand side Figure)

and when d = 5 the optimizing reduced PLSMFE solution based on POD (on right-hand side Figure)

Figure 7. When Re=5000, velocity stream line figure for classical PLSMFE solutions (on left-hand side Figure)

and when d = 5 the optimizing of the reduced PLSMFE solution based on POD (on right-hand side Figure)

Figure 8 shows the errors between solutions obtained with different number of optimal

POD bases and solutions obtained with full bases. Comparing classical PLSMFE formulation

Problem (III) with the reduced PLSMFE formulation Problem (IV) containing five optimal

bases implementing 3000 times numerical simulation computations, we find that classical for

PLSMFE formulation Problem (III) CPU time required is five minutes, while the optimizing

reduced PLSMFE formulation Problem (IV) with five optimal bases required CPU time is

only three seconds, i.e., classical PLSMFE formulation Problem (III) required CPU time is

by a factor of 120 larger than the optimizing reduced PLSMFE formulation Problem (IV)
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with five optimal bases required CPU time, while the errors between their solutions do not

exceed 4× 10−3. It is also shown that finding the approximate solutions for the non-stationary

conduction–convection problems with the optimizing reduced PLSMFE formulation Problem

(IV) is very effective. And the results obtained for numerical examples are consistent with

theoretical those.

Figure 8. Error for Re=2000 on left–hand side, error for Re= 5000 on right-hand side

6. Conclusions

In this paper, we have employed the POD techniques to derive an optimizing reduced

PLSMFE formulation for the non-stationary conduction–convection problems. We first recon-

struct optimal orthogonal bases of ensembles of data which are compiled from transient solutions

derived by using usual PLSMFE equation system, while in actual applications, one may obtain

the ensemble of snapshots from physical system trajectories by drawing samples from experi-

ments and interpolation (or data assimilation). For example, for weather forecast, one can use

previous weather prediction results to construct the ensemble of snapshots to restructure the

POD basis for the ensemble of snapshots by methods of above section 3. We have also combined

the optimal orthogonal bases with a Petrov-Galerkin least squares projection procedure, thus

yielding a new optimizing reduced PLSMFE formulation of lower dimensional order and of high

accuracy for the non-stationary conduction–convection problems. We have then proceeded to

derive error estimates between our optimizing reduced PLSMFE approximate solutions and

the usual PLSMFE approximate solutions, and have shown using numerical examples that the

errors between the optimizing reduced PLSMFE approximate solutions and the usual PLSMFE

solutions are consistent with the theoretical error results, thus validating both feasibility and

efficiency of our optimizing reduced PLSMFE formulation. Future research work in this area

will aim to extend the optimizing reduced PLSMFE formulation, applying it to a realistic at-

mosphere quality forecast system and to more complicated PDEs. From theoretical analysis

and numerical examples, we have shown that the optimizing reduced PLSMFE formulation

presented herein has extensive perspective applications.

Though Kunisch and Volkwein have presented some Galerkin proper orthogonal decompo-
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sition methods for a general equation in fluid dynamics, i.e., for the non-stationary conduction–

convection problems in [31], our method is different from their approaches, whose methods

consist of Galerkin projection approaches where original variables are substituted for linear

combination of POD basis and the error estimates of the velocity field therein are only derived,

their POD basis is generated with the solutions of the physical system at all time instances,

while our POD basis is generated with few solutions of the physical system which are useful

and of interest for us. In particular,the velocity field is only approximated in Reference [31],

while velocity field and pressure are all synchronously approximated in our method, and the

error estimates of both velocity field and pressure approximate solutions are also synchronously

derived. Thus our method appears to be more optimal than that in [31].
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