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ABSTRACT

We examine certain Generalized Hyperbolic (GH) distri-
butions for modeling equity returns, compared to usual
Normal distributions. We describe these GH distributions
and some of their properties, and test them against six years
of daily S&P500 index prices. We estimate Value-at-Risk
from calibrated distributions, and show that the Normal dis-
tribution leads to Va R estimates that significantly underes-
timate the realized empirical values, while the GH distri-
butions do not. Of several GH distribution families con-
sidered, the most successful is the skewed-t distribution.
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1 Introduction

Financial risk management requires an understanding of
the range of possible uncertain future returns. Quantita-
tively this relies on the use of probability distributions to
model these uncertain return outcomes. It has been tradi-
tional, mostly for reasons of technical convenience, to use
Normal distributions for this purpose, calibrating the pa-
rameters (means, covariances) to available data. However,
we now know two things: (1) the Normal distribution is not
a very good model for asset returns, especially in the tails,
and (2) understanding of other probability distributions has
progressed to the point where they can be practically used
to model returns.

The so-called “stylized facts” of observed equity re-
turns enjoy general agreement these days. Among them
are:

e actual return distributions appear fat-tailed (compared
to Normal), and skewed

e volatility appears time-varying and clustered

e returns are serially uncorrelated, but squared returns
are serially correlated.

It is no longer necessary to ignore these facts in practical
risk modeling applications. In this paper we describe the
use of Generalized Hyperbolic (GH) distributions for eq-
uity risk management. These distributions were introduced
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in [1] in other contexts, and in [2] in a financial context. We
will especially focus on a specific subfamily of GH known
as the skewed-t distributions, generalizations of the usual ¢
distributions, and championed by McNeil, et. al. in [3]. We
argue that the multivariate skewed-t distribution is prefer-
able to the Normal in equity risk management applications.
More details of this analysis can be found in [4] and [5].
Also see [6], [7], [8].

A risk model also requires, in addition to the choice of
distribution family, a way to quantify the level of risk. The
Markowitz approach to portfolio management has been to
use standard deviation of the returns distribution as the
risk measure. Other choices, such as Value-at-Risk (VaR),
or Expected Shortfall (S, also called Conditional VaR),
have been studied extensively since the advent of the con-
cept of a coherent risk measure in [9]. However, the choice
of risk measure is less important for portfolio management
than the choice of distribution family. This is due in part
to a result of [10] showing that, for elliptic distributions,
the portfolios on the efficient frontier do not depend on the
choice of risk measure. See also [8].

For portfolio management, the practical utility of non-
normal distributions like G H requires two things:

1. There must be a fast algorithm for calibrating the pa-
rameters to data, and

2. the distribution family must be closed under linear
combinations — the Portfolio Property.

The first requirement is satisfied for the G H family because
of the EM algorithm; see [4] for details. The second re-
quirement is also satisfied for G H — see below.

In this paper we examine the case for GH with eq-
uity index returns. Further work will examine the portfolio
optimization problem.

2 Mean-Variance Mixture Distributions

The Generalized Hyperbolic distributions are part of a
larger family with nice properties called the Normal Mean-
Variance Mixture distributions.

Definition 2.1 Normal Mean-Variance Mixture. The d-
dimensional random variable X is said to have a multivari-



ate normal mean-variance mixture distribution if

X 4 w+ W~ +VWAZ, where (1)

1. Z ~ Ni(0,1y), the standard k-dimensional Normal
distribution,

2. W > 0is a positive, scalar-valued r.v. which is inde-
pendent of Z,

3. A € Rk jg g matrix, and

4. p and ~ are parameter vectors in R?,

From the definition, we can see that

where ¥ = AA’. We easily obtain the following moment
formulas from the mixture definition:

E(X)=p+EW)y, 3)

COV(X) = EW)E + var(W)vy~/, 4)

when the mixture variable TV has finite variance var(W).
The mixture variable W can be interpreted as a shock that
changes the volatility and mean of the normal distribution.

If the mixture variable W is generalized inverse gaus-
sian (GIG) distributed (see below), then X is said to have
a generalized hyperbolic distribution (GH). The GIG dis-
tribution has three real parameters, A, x, ¥, and we write
W ~ N~ (A, x,%) when W is GIG.

Definition 2.2 Generalized Inverse Gaussian distribu-
tion (GIG). The random variable X is said to have a gen-
eralized inverse gaussian (G1G) distribution if its proba-
bility density function is h(x; X\, x,¢) =

X M(WVx)? 2 leap (
2K\ (VX))

for x > 0, and where x,v¢ > 0, and K is a modified
Bessel function of the third kind with index .

—%(Xx‘l + wm) G

Hence the multivariate generalized hyperbolic distri-
bution depends on three real paramters )\, y, ¥, two param-
eter vectors g (the location parameter) and -~y (the skewness
parameter) in R?, and a d x d positive semidefinite matrix
>. We write

X ~ GHd()HXawv 225 E)

If v = 0, then X is said to have a symmetric general-
ized hyperbolic distribution and it is in that case elliptical.

2.1 Some Special Cases

Hyperbolic distributions:

If A = 1, we get the multivariate generalized hy-
perbolic distribution whose univariate margins are one-
dimensional hyperbolic distributions. If A = (d+1)/2, we
get the d-dimensional hyperbolic distribution. However, its
marginal distributions are no longer hyperbolic.

The one dimensional hyperbolic distribution is widely
used in the modelling of univariate financial data, for exam-

ple in [2].
Normal Inverse Gaussian distributions (NIG):
If A = —1/2, then the distribution is known as normal

inverse gaussian (NIG). NIG is also commonly used in
the modelling of univariate financial returns.
Variance Gamma distribution (VG):

If A > 0and x = 0, then we get a limiting case known
as the variance gamma distribution.
Skewed ¢ Distribution:

IfA = —v/2,x = vand ¢ = 0, we get a limit-
ing case which is called the skewed-t distribution by [11],
because it generalizes the usual Student ¢ distribution, ob-
tained from the skewed-t by setting the skewness parameter
~ = 0. This distribution is denoted SkewedTy(v, pu, X, 7).

The Student ¢ distribution is widely used in modelling
univariate financial data since we can model the heaviness
of the tail by controlling the degree of freedom v. It can
be used in the modelling of multivariate financial data too
since the EM algorithm can be used to calibrate it (see [8]
and [4)).

It is also widely used to model dependence by cre-
ating a Student ¢ copula from the Student ¢ distribution.
The Student ¢ copula is popular in the modelling of finan-
cial correlations since it is upper tail and lower tail depen-
dent and is easy to calibrate. However, the Student ¢ copula
is symmetric and exchangeable, which are potential disad-
vantages. E.g. financial events appear to crash together
more often than boom together, so that the upper and lower
tail dependence need not be equal. This, in part, motivates
the use of the skewed-t distribution. See [3].

2.2 The Portfolio Property

A great advantage of the generalized hyperbolic distribu-
tions with this parametrization is they are closed under lin-
ear transformation (see [8]).

Theorem 2.3 Linear Transformations of Generalized
Hyperbolic Distributions. If X ~ GHy(\, x, ¥, b, &, )
and Y = BX + b where B € R¥*4 and b € RF, then
Y ~ GHyp(\ x, %, Bu+ b, BLB', B~).

Here we state as special cases the versions for our pri-
mary interest, the skewed ¢ distributions.

Theorem 2.4 Linear Transformations of Skewed ¢ Dis-
tributions.



If X ~ Skewedly(v,pu,%,v) and’Y = BX +
b where B € RF? qnd b € RF, then Y ~
SkewedTy (v, Bu + b, BLB’', B).

Corollary 2.5 Portfolio Property. If B = w! =
(w1, ,wq), and b = 0, then the portfolio y = w'X
is a one dimensional skewed-t distribution, and

y ~ SkewedT) (v, w” 1, w! Yw, w’v) (6)

This corollary also shows that the marginal dis-
tributions are automatically obtained once we have
calibrated the multivariate distributions, ie., X; ~
SkewedT1 (A, X, 1, pi, Ziiy Vi)-

3 One dimensional VaR: GARCH and GH

Value-at-Risk has been the most widely used risk measure
in the banking industry. In the remainder of this paper we
look at historical data for the S&P500 index to examine
the quality of out-of-sample V' a R forecasts using a Normal
model vs. other GH distributions.

3.1 Value at Risk (VaR)

Definition 3.1 Value at Risk (VaR). VaR at confidence
level a € (0,1) for loss L of a security or a portfolio is
defined to be

VaR, =inf{l e R: FL(l) > a}, (7
where F' is the distribution function of loss.

If the loss distribution function F'is strictly increasing, then
VaR, = F~!(a). In practice, the confidence level ranges
from 95 through 99.5%, though the Basel committee rec-
ommends 99%.

3.2 Data

We use 4,108 observations of adjusted daily close prices for
the S&P500 index, from 4/18/1989 to 7/29/2005. The daily
close prices are converted to daily negative log returns, and
we wish to calibrate our model distributions via maximum
likelihood.

This approach assumes the time series is approx-
imately independent and identically distributed (i.i.d),
which is contrary to the “stylized facts” mentioned above.

Indeed, if we use most recent 1500 daily negative
log return data of SP500 to plot the sample autocorrelation
function (ACF), in Figure 1, we can see that the ACF of
the negative log return series shows little evidence of serial
correlation, while the AC'F' of the squared log return se-
ries does show evidence of serial dependence. A GARCH
model can be introduced to model the persistence in the
volatility and filter the returns.

ACF of negative returns ACF of squared returns

Sample Autocorrelation

ALA'lbl'A‘. = T]

Figure 1. Correlograms for SP500 negative log return se-
ries

3.3 GARCH Filter

Definition 3.2 GARCH(1,1) process. Let Z; be stan-
dard white noise SWN(0,1). The process (X:) is a
GARCH (1,1) if it is covariance stationary and satisfies
the following equations,

X = 0144, ®

2 2 2
o; =aota1Xiq + piop_,

where ag > 0,000 > 0, and 1 > 3 > 0. The innovation Z,
is independent of (Xs)s<t.

McNeil et. al. in [3] argues that a Garch(1,1) model
with student ¢ innovations is enough to remove the depen-
dence in return series, and sometimes normal innovations
are enough too.

We create a filtered return series by subtracting the
mean o of the raw series, and then calibrating the
Garch(1,1) parameters above. The filtered return series
is then defined to be

X, —
Xt:tiﬂo
Ot

©))
and should be approximately ¢.¢.d.

From figure 2, we can see that the AC'F of both fil-
tered return series and squared filtered return series for
SP500 show little evidence of serial correlation. This fil-
tered series can then be used for calibrating parameters of
various model distributions; ¢.i.d. samples from these dis-
tributions can then be defiltered to give model distributions
for the serially dependent returns.

A QQ-plot can be used to compare the empirical
quantiles with quantiles of a designated distribution. We
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Figure 2. Correlograms for SP500 filtered negative log re-
turn series

Quaniles of Dow

Figure 3. QQ-plot of S&P500 and Dow versus Normal

show the QQ-plot against a Gaussian distribution for fil-
tered returns of both the S&P500 and Dow indices in Figure
3 —noting that both series have heavier tails than normal. In
Figure 4 we can see that the skewed-¢ and V G distributions
do much better in the tails.

3.4 Density estimation

The filtered data are now approximately 7.i.d. so that we
can calibrate various generalized hyperbolic distributions

Quanties SP500

Figure 4. QQ-plot of S&P500 versus Skewed ¢ and VG

using the EM algorithm (see [4]). We use the most recent
1500 observations to calibrate hyperbolic, NIG, skewed ¢,
VG, student ¢, and Gaussian distributions. We report the
calibrated parameters and the corresponding log likelihood
in table 1 for the S&P500 index.

Model | A orv X P 1 o? y Lh
Sk.¢ | 13.88 -0.17 | 0.85 | 0.18 | -20.7
VG 5.15 10.1 | -0.20 | 0.97 | 0.23 | -20.9
NIG -05| 40 |6.78 | -0.18 | 1.29 | 0.29 | -20.9
Hyp. 1103 | 0.1 |-0.15|0.02 | 0.004 | -21.8
t | 13.95 0.03 | 0.86 -21.7

G. 0.04 1 -29.5

Table 1. Calibrated parameters of S&P500. Sk. t = skewed
t, Hyp. = Hyperbolic, G. = Gaussian, Lh = log likelihood
+ 2100

From the viewpoint of maximum log likelihood, the
skewed ¢ has the largest log likelihood among all the distri-
butions tested. N /G and hyperbolic are well known in the
modelling of financial data; currently the skewed ¢ is less
common. In addition, the skewed ¢ has the fewest number
of parameters among the four generalized hyperbolic dis-
tributions so that it enjoys comparatively fast calibration'.

'We use a laptop with centrino 1.3G, 1GB PC2700 memory. Software
is Matlab R14. Under the same settings, skewed ¢ needs 280 seconds,
NIG needs 290 seconds, V G needs 390 seconds, while hyperbolic needs
630 seconds.



4 Backtesting of VaR

After we calibrate the filtered negative log return series to
generalized hyperbolic distributions, we can calculate the «
quantile, z, = F~!(a), for the filtered negative log return
series, where F' is some distribution function. If we are
standing at time ¢, we then de-filter the value at risk (VaR)
of filtered returns to estimate the VaR of the negative log
return at time ¢ + 1,

VaRy(Xi41|Fi) = 611120 + o, (10)

where 041 can be forecasted by using equation 8 and it is
known at time t.

We have 4108 observations for both S&P and Dow in-
dex. Results for the Dow are similar, so we report here the
S&P results. We use the most recent N = 3000 observa-
tions to backtest VAR violations. For each day, we use the
previous 1000 observations to train the generalized hyper-
bolic distributions. We recalibrate the model at each day by
initializing the parameters using the previous day’s values,
and recalibrate the model by re-initializing the parameters
every 400 days to avoid overestimation.

At time t+1, where t is from 1000 from 4000, we use
(4-100041, - - - , t—1, T¢) to calibrate the generalized hy-
perbolic distributions and estimate VAR, (X;4+1|F:) for
a = 095 a = 0975, a = 099, and o = 0.995. A
violation occurs if 2441 > VARq(X¢11|F;). The number
of total violations during those IV tests is denoted by n. The
actual violation frequency is n/N, while the expected vio-
lation probability, g, should be 0.05, 0.025, 0.01 and 0.005
respectively.

To evaluate the VaR backtest, we use a likelihood
ratio statistic due to [12]. The null hypothesis is that the
expected violation probability is equal to q. Under the null
hypothesis, the likelihood ratio, given by

—2[(N —n)log(1 - ¢) + nlog(q)]
+2[(N — n)log(l —n/N) + nlog(n/N)],

is asymptotically x?(1) distributed.

We list the results of S&P 500 VaR backtesting in
table 2. We calculate the actual violation probability at
level ¢, where the expected violation probability, g, is
0.05, 0.025, and 0.01 respectively, and its corresponding
p-value? for the likelihood ratio test. We test the normal
distribution and four generalized hyperbolic distributions.
At all levels, the generalized hyperbolic distributions pass
the test, but the Normal distribution fails at all levels below
0.05.2

5 Conclusion

Normal distributions tend to underestimate the risk of ex-
treme events. Generalized hyperbolic distributions have

2We call CHIDIST(x,1) in Excel to calculate the p-value, where x is
the value of likelihood ratio statistic.
3When the p value is less than 0.05, we reject the null hypothesis.

Model | 0.05 p | 0.025 p | 0.01 D

N. | 0.048 | 0.56 | 0.031 | 0.032 | 0.018 | 0.0001

Sk.t | 0.049 | 0.74 | 0.026 | 0.73 | 0.009 0.71

VG | 0.046 | 0.31 | 0.026 | 0.82 | 0.010 0.86

NIG | 0.047 | 0.40 | 0.025 | 0.91 | 0.009 0.71

H. | 0.045 | 0.23 | 0.024 | 0.72 | 0.010 0.85

Table 2. VaR violation backtesting for S&P500. N. = Nor-
mal, Sk. ¢t = Skewed ¢, H. = Hyperbolic.

semi-heavy tails so they can be good candidates for risk
management. We have used a GARC H model to filter
the negative return series to get approximately ¢.¢.d. filtered
negative returns and forecast volatility. After we get i.:.d.
filtered negative returns, we calibrate our generalized hy-
perbolic distributions and calculate the o quantile. Using
the forecasted volatility and « quantile for filtered negative
return series, we can restore the VaR,, for the unfiltered
returns. In backtesting V aRR using both generalized hyper-
bolic distributions and normal distributions, we find that
the generalized hyperbolic distributions pass the VaR test,
while the normal distribution fails.

The special case called the skewed ¢ distribution is not
yet commonly used. However, it has the fewest parameters
among all (non-Normal) generalized hyperbolic distribu-
tions examined, and the fastest observed calibration speed.
In addition, it has the largest log likelihood among all ex-
amined generalized hyperbolic distributions, including stu-
dent ¢, and Normal distributions. Therefore, we feel it is
a promising candidate for future risk management applica-
tions.
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