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Abstract

We establish the well-posedness of the infinite Prandtl number model for convection with
temperature-dependent viscosity, free-slip boundary condition and zero horizontal fluxes.

1 Introduction

One of the most useful models in fluid and geophysical fluid dynamics is the Boussinesq model for
convection which takes the (non-dimensional) form: (see, e.g., [9])

1
Pr

(∂tu + u · ∇u)−∇ · (ν(θ)∇u) +∇p = Ra θk,

∇ · u = 0, (1)
∂tθ −∇ · (k(θ)∇θ) + u · ∇θ = 0,

on the domain Ω = T2 × [0, 1]. The temperature θ satisfies the Dirichlet boundary condition:

θ(x, y, 0) = 1, θ(x, y, 1) = 0, (2)

corresponding to heating at the bottom and relative cooling at the top. The velocity u satisfies the
free-slip condition [9]:

u3(x, y, 1) = u3(x, y, 0) = 0,
∂3u1(x, y, 1) = ∂3u1(x, y, 0) = 0, (3)
∂3u2(x, y, 1) = ∂3u2(x, y, 0) = 0,

which is suitable for many geophysical application where the top and bottom boundaries are some-
what artificial and hence free-slip may be more appropriate to avoid artificial boundary layer [9].
Here Pr denotes the Prandtl number which is the ratio of the kinematic viscosity to the thermal
diffusivity and Ra the Rayleigh number which is the ratio of relative heating to the overall dissi-
pation. Note that, in general, the (non-dimensionalized) viscosity ν and the (non-dimensionalized)
thermal diffusivity k depend on the temperature. Such dependence could be of great importance
due to the large temperature contrast in certain applications.

In the mantle flow, the viscosity depends strongly on the temperature. For example, a typical
function that is used in the geophysics literature is ν(θ) = exp(−a|θ|) [9, p. 319], where a quantifies
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the viscosity contrast, e.g., η = exp(−a) = exp(−5log(10)) = 10−5. We will assume that the
viscosity is uniformly bounded and globally Lipschitz, i.e.

η ≤ ν(θ) ≤ 1, |ν ′| ≤ a. (4)

The existence of global weak solution in 3D and strong solution in 2D are established under
mild assumptions on the viscosity and diffusivity and no-slip boundary condition [5].

In applications such as mantle convection, the inertial is relatively small since the Prandtl
number is large. Therefore we can formally drop the inertial term in the Boussinesq system and
arrive at the following infinite Prandtl number model (for simplicity, we also neglect the temperature
dependence of the conductivity)

−∇ · (ν(θ)∇u) +∇p = Ra θk,
∇ · u = 0, (5)
∂tθ −∆θ + u · ∇θ = 0

along with the boundary conditions (2) and (3) and with the viscosity ν depending on |θ| only. The
interested reader may find a rigorous justification of such a model for the case of constant viscosity
and no-slip boundary condition [10].

The system as it is postulated is not well-posed since the the solution to the Stokes system is not
unique for a given temperature field. Indeed, if u is a solution to the Stokes problem, u+(U1, U2, 0)
is also a solution for any constants U1, U2 which correspond to averaged horizontal velocities of the
fluids, assuming u1 and u2 have zero averages. These constants cannot be determined from the
infinite Prandtl number model directly. However, it is easy to check that these averaged horizontal
velocities are constants in time for the full Boussinesq system for convection. Hence we may impose
zero horizontal fluxes ∫

Ω
u1 dx =

∫
Ω
u2 dx = 0 (6)

which is intuitively consistent with the situation in mantle convection.
The temperature-independent viscosity case has been analyzed extensively, e.g., in [2, 3]. A

rather detailed analysis is possible in that case since the Stokes equation is linear and hence tech-
niques from potential theory can be used. In fact, in the constant viscosity setting, one of the real
challenges is the estimation of a constant called the Nusselt number defined by

Nu = lim sup
T→∞

1
T |Ω|

∫ T

0

∫
Ω
|∇θ(x, t)|2 dxdt

that quantifies the ratio of heat transported due to the convection and that due to the conduction.
Since convection is a nonlinear transport process in our equation, Nu also describes the degree of
nonlinearity present in our equation and is typically of order of some power of Ra (the so-called
power law). Estimating the exact value of the power occupies a large part of the current interests
of researchers in this area.

The situation is different and more difficult with a temperature dependent viscosity since this
introduces a second-order nonlinearity. On top of this, unlike well-studied second-order nonlinear-
ities such as the p-Laplacian, what we have here is not monotonic in the temperature variable.
Therefore, a variation in the temperature can potentially cause a large variation in the velocity
field. The main result of this short note is to show the regularity of the solution to the system we
consider, and therefore its well-posedness. We will apply classical energy method [4, 8] together
with an extension of the problem to a periodic domain.
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Throughout this note, c will denote a generic constant depending on the parameters (Ra, initial
data, the form of viscosity etc) but independent of the solution. We also use <∼ to denote inequality
up to a scalar multiplication.

2 Well-posedness of the infinite Prandtl number model

In this section, we show the well-posedness for the system (2)–(6). In order to overcome the difficulty
of a second order non-monotonic nonlinearity, we work with a space having higher regularity (H2

in space). We would usually encounter the difficulty of boundary layers which is circumvented here
by an appropriate periodic extension. Such a periodic extension is applicable due to the free-slip
boundary condition.

Let w = θ − (1− z) be a perturbative variable. Then, (5) can be re-expressed in terms of w:

−∇ · (ν(w + (1− z))∇u) +∇p = Rakw,

∇ · u = 0 (7)
∂tw −∆w + u · ∇w − u3 = 0

with w = u3 = ∂3u1 = ∂3u2 = 0 on z = 0, 1, and
∫
Ω u1 =

∫
Ω u2 = 0.

2.1 Extension to a periodic domain

In this section, we will show that due to the free-slip boundary condition, a solution to (7) can
be extended to the periodic domain Ωext = T2 × Z and satisfy a slightly modified version of the
original equation. Here Z = [−1, 1] with −1 and 1 identified (and hence periodic in z). On Ω, this
new version reduces to the original one. Therefore, our strategy will be to solve a periodic problem
on the extended domain with an extended initial data. We then verify that the restriction of the
solution of the extended problem to the original domain yields the desired solution of the original
problem.

The extension (in the z variable) that we have in mind is odd in w and u3 but even in u1, u2

and p, i.e., we extend u, p, and w = θ − (1− z) to Ωext = T2 × Z in the following way:

w(x1, x2,−x3) = −w(x1, x2, x3),
u3(x1, x2,−x3) = −u3(x1, x2, x3),
u2(x1, x2,−x3) = u2(x1, x2, x3),
u1(x1, x2,−x3) = u1(x1, x2, x3),
p(x1, x2,−x3) = p(x1, x2, x3).

We then identify the two ends of [−1, 1] to complete the periodic extension and denote the one-
dimensional torus Z. This means that if w and u3 are smooth in Ω, then they are continuous
up to the first derivatives across the boundary points x3 ∈ Z due to their homogeneous Dirichlet
boundary conditions. For u1 and u2, they are continuous across the boundary points x3 ∈ Z due
to the even extension. Since their normal derivative is zero, we also have that they are continuous
up to the first derivatives across the boundary points x3 ∈ Z.

Note that the kth order normal derivative of an odd (even) function at a point x0 has the same
(different) sign as its value at the point −x0 if k is odd (even), and the sign flips if k is even (odd).
Then, it can be easily verified that u and w satisfy the following system on the extended domain
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Ωext = T2 × Z where Z = [−1, 1] with −1 and 1 identified (and hence periodic in z).

−∇ · (ν(w + g(z))∇u) +∇p = Rakw,

∇ · u = 0 (8)
∂tw −∆w + u · ∇w − u3 = 0

with periodic boundary condition and average zero on Ωext . Here g is the odd extension of 1− z
given by

g(z) =
{

1− z 0 ≤ z ≤ 1
−1− z −1 ≤ z < 0

so that g(−z) = −g(z).
Although g has a jump discontinuity at z = 0, the extended ν does not have any discontinuity

since it depends on |θ| = |w + g| and both w and g are odd and |w + g|
∣∣
z=±0

= 1. An important
observation that we will use in the sequel is that the extension of w extends ν(w+ g) in a way that
the Hölder continuity and Lipshitz continuity of ν are preserved.

2.2 Existence

In this section, we obtain several a priori estimates for the solutions of (8) with a goal of showing
existence.

The following lemma is straightforward from the Stokes equation and the assumption that the
viscosity is bounded below (independent of θ).

Lemma 2.1 If u solves (8), then
‖∇u‖ ≤ C‖w‖,∀t.

Proof We test the Stokes system with u to obtain

η

∫
Ωext

|∇u|2 ≤
∫

Ωext

ν(θ)|∇u|2

≤ Ra

∫
Ωext

wu3

≤ Ra‖w‖‖u3‖
≤ cRa‖w‖‖∂3u3‖.

The Poincaré inequality is applicable due to the zero average assumption.
It is also easy to derive the following standard a priori estimate for solutions to the extended

system (8).

Lemma 2.2
‖w‖L∞(0,T ;L2) + ‖w‖L2(0,T ;H1) ≤ c.

Proof We multiply the temperature equation by w and integrate over Ωext to deduce

1
2

∫
Ωext

∂t(w2) + ‖∇w‖2 =
∫

Ωext

u3w

≤ ‖u3‖‖w‖
≤ c‖∇u3‖‖w‖
≤ c‖w‖2
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where we have used Lemma 2.1 and the Poincaré inequality which is valid for u3 since we enforce
the average zero condition.

The desired result follows from the Poincaré inequality (applicable due to the average zero
assumption on w) and the Gronwall inequality.

These estimates apply to θ as well since θ and w differ from each other by 1− z.
Next we obtain an estimate for the time derivative of w.

Lemma 2.3
‖∂tw‖L2(0,T ;H−1)

<∼ 1 + ‖∇w‖L2(0,T ;L2).

Proof For φ ∈ H1
per(Ωext) with average zero, we have∫

φ∂tw = −
∫
∇w · ∇φ+

∫
(wu · ∇φ+ u3φ)

<∼

(
‖∇w‖+ ‖u3‖+

(∫
(uw)2

)1/2
)
‖∇φ‖

<∼

(
‖∇w‖+ ‖u3‖+ ‖u‖2

L6‖w‖2
L3

)
‖∇φ‖

<∼

(
‖∇w‖+ ‖u3‖+ ‖∇u‖2‖w‖‖∇w‖

)
‖∇φ‖

<∼ (1 + ‖∇w‖) ‖∇φ‖

where we have used the previous lemmas (L∞(H1) on u and L∞(L2) on w). The desired result
follows from this inequality.

These lemmas lead to the existence of a weak solution for w(0) ∈ L2 which can be rigorously
verified using standard Galerkin method together with the Aubin-Lions compactness lemma [4, 8]
which implies the strong convergence of the approximate w in Lq(L2), q ∈ [0,∞). Thus we have
the following theorem on the existence of weak solutions. Details can be found in [6].

Theorem 2.4 For w(0) ∈ L2(Ωext),
∫
Ωext

w(0) = 0, there exists (u, w) such that

1. w ∈ L∞(0, T ;L2) ∩ L2(0, T,H1
per),

∫
Ωext

w = 0,

2. ∂tw ∈ L2(0, T ;H−1), w
∣∣
t=0

= w(0),

3. u ∈ L∞(0, T ;H1
per),

∫
Ωext

u = 0, ∇ · u = 0

and satisfies the weak formulation: ∫
Ωext

ν(θ)∇u : ∇v = Ra

∫
Ωext

wv3 (9)∫
Ωext

∂twψ +
∫

Ωext

∇w · ∇ψ +
∫

Ωext

u · ∇wψ −
∫

Ωext

u3ψ = 0 (10)

for almost all t and all (v, ψ) ∈ (H1
per)

3 ×H1
per such that ∇ · v = 0 and

∫
Ωext

v = 0,
∫
Ωext

ψ = 0.
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3 Stability and Uniqueness

In the case of a temperature independent viscosity, the well-posedness can be shown easily from
what has so far been proved. This is not necessarily so for the temperature dependent case because
fluctuations of the velocity now depends strongly on fluctuations of the temperature. We can have a
glimpse into the strong dependence on the temperature field through the following stability result.

Lemma 3.1 For any (wi,ui, pi), i = 1, 2 solutions to (8), the following inequality holds:

‖(w1 − w2)(t)‖2 ≤ ‖(w1 − w2)(0)‖2 exp(c
∫ t

0
(1 + ‖∇w2(τ)‖+ ‖∇w2(τ)‖2‖∇2u2(τ)‖4) dτ).

Proof Let (wi,ui, pi), i = 1, 2 be solutions to (8). Let ζ = w1 − w2 and v = u1 − u2. Then,

∂tζ + u1 · ∇ζ + v · ∇w2 − v3 −∆ζ = 0.

Testing against ζ we obtain∫
1
2
∂t|ζ|2 +

∫
|∇ζ|2 =

∫
vw2 · ∇ζ +

∫
v3ζ

so that ∫
∂t|ζ|2 +

∫
|∇ζ|2 <∼

∫
|vw2|2 + ‖v3‖2

<∼ ‖v‖2
L6‖w2‖2

L3 + ‖v3‖2

<∼ ‖∇v‖2‖w2‖‖∇w2‖+ ‖v3‖2

<∼ ‖∇v‖2(1 + ‖∇w2‖)

where we have applied the Poincaré inequality and the L∞(L2) estimates on the perturbative
temperature.

From the velocity equation we have

−∇ · (ν(w1 + g)∇v)−∇ · ((ν(w2 + g)− ν(w1 + g))∇u2) +∇(p1 − p2) = Rakζ.

Note that due to the Gagliardo-Nirenberg and Sobolev inequalities,∫
|ζ|2|∇u|2 ≤ ‖ζ‖2

3‖∇u‖2
6 ≤ C‖ζ‖‖∇ζ‖‖∇2u‖2.

Therefore, testing the difference of the velocity equations against v, and utilizing the global Lips-
chitz assumption on the viscosity, we have

η

∫
|∇v|2 ≤

∫
ν(w1 + g)|∇v|2

= Ra

∫
ζv3 −

∫
(ν(w2 + g)− ν(w1 + g))∇u2 · ∇v

≤ Ra

∫
ζv3 +

a2

η

∫
ζ2|∇u2|2 +

η

4

∫
|∇v|2

≤ η−1Ra2‖ζ‖2 +
η

4

∫
|∇v3|2 + Cη−1a2‖ζ‖‖∇ζ‖‖∇2u2‖2 +

1
4

∫
ν(w1 + g)|∇v|2

≤ η−1Ra2‖ζ‖2 + Cη−1a2‖ζ‖‖∇ζ‖‖∇2u2‖2 +
1
2

∫
ν(w1 + g)|∇v|2.
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Hence,
d

dt
‖ζ‖2 + ‖∇ζ‖2 <∼ (1 + ‖∇w2‖+ ‖∇w2‖2‖∇2u2‖4)‖ζ‖2.

The result then follows by Gronwall’s inequality.

Note the terms in the exponential factor. The presence of the ‖∇2u2‖ term is specific to the
temperature dependent viscosity case; therefore, our aim in the next section is to show that this
term is bounded which further implies the uniqueness of course.

3.1 Regularity

In this subsection we show that a weak solution has further regularity provided that the initial data
belongs to H2

per(Ωext). We can approach this in many different ways. Ideally, in each estimation
process, we would obtain a bound that is as tight as possible because such estimates might be used
to improve the Nusselt number bound. This goal is not met in this paper and remains a subject
for future research.

We will first consider the global regularity of the temperature field.

Lemma 3.2 Let w = θ − (1 − z) be a solution to the extended infinite Prandtl number model on
the extended domain Ωext. Then

‖∇2w(t)‖2 +
∫ t

0
e−C(τ−t)‖∇3w(τ)‖ dτ <∼ e

Ct(‖∇2w(0)‖2 + 1).

Proof In the following, we present the necessary a priori estimates which can be justified rigorously
through Galerkin approximation if needed [6].

We take the Laplacian of the temperature equation in (8) and test against ψ to obtain∫
Ωext

(
ψ∂t∆w + (∇∆w) · ∇ψ + (u · ∇∆w)ψ + 2(∇u : ∇2w)ψ + (∆u · ∇w)ψ − ψ∆u3

)
dx = 0.

Setting ψ = ∆w, we obtain, after utilizing the periodicity in all directions,

1
2
d

dt
‖∆w‖2 + ‖∇∆w‖2 +

∫
(2(∇u : ∇2w)∆w + (∆u · ∇w)∆w −∆u3∆w) = 0.

Integrating by parts in the second and third term and applying the Cauchy-Schwarz inequality we
deduce

1
2
d

dt
‖∆w‖2 + ‖∇∆w‖2 <∼

∫
Ωext

(
|∇u||∇2w|2 + |∇u| |∇w| |∇∆w|+ |∇u||∇2w|2 + |∇u3| |∇∆w|

)
dx

<∼

∫
Ωext

(
|∇u| |∇w|2 + |∇u||∇2w|2 + |∇u3|2

)
dx +

1
2
‖∇∆w‖2

<∼ ‖∇w‖2
∞‖∇u‖2 + ‖∇u‖‖∇2w‖2

4 + ‖∇u‖2 +
1
2
‖∇∆w‖2

<∼ ‖∇2w‖‖∇3w‖‖∇u‖2 + ‖∇u‖‖∇2w‖
1
2 ‖∇3w‖

3
2 + ‖∇u‖2 +

1
2
‖∇∆w‖2

where we have also applied the Agmon and Gagliardo-Nirenberg type inequalities

‖∇w‖∞ <∼ ‖∇2w‖
1
2 ‖∇3w‖

1
2 , and ‖∇2w‖4 <∼ ‖∇2w‖

1
4 ‖∇3w‖

3
4 .
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Therefore, when combined with the L∞(H1) estimates on the velocity and elliptic regularity, we
deduce

d

dt
‖∆w‖2 + ‖∇∆w‖2 <∼ ‖∇2w‖2 + 1

which implies the desired result by Gronwall’s inequality.

This a priori estimate implies the L∞(H2) a priori estimate on the velocity field which would
further imply uniqueness.

Lemma 3.3 For solution to the infinite Prandtl number model, we have

‖u‖L∞(0,T ;H2)
<∼ ‖∇2w‖L∞(0,T ;H2) + 1. (11)

Proof Note that since the extended ν has a matching derivative at the origin, we can take the
weak derivative of the extended viscosity ν(θ). Therefore, we have the following weak formulation∫

ν(w + g(x3))∇∂ku : ∇v + ∂kν(w + g(x3))∇u : ∇v = Ra

∫
∂kwv3.

Setting v = ∂ku, we obtain

η

∫
|∇∂ku|2 <∼

∫
|∂kν(w + g)| |∇u|2 +Ra

∫
|w| |∂kku3|

≤
∫
|∂kν(w + g)| |∇u|2 + η−1Ra2

∫
|w|2 +

η

4

∫
|∂kku3|2.

Exactly as in the proof of Lemma 3.1, we have∫
|∂kν(w + g)| |∇u|2 ≤ |ν|Lip

∫
|∂k|w + g|| |∇u|2

<∼ a(‖∇w‖6 + 1)‖∇u‖2
3

<∼ a(‖∇2w‖+ 1)‖∇u‖‖∇2u‖.

Consequently,

η‖∇∂ku‖2 ≤ c(‖∇2w‖2 + 1) +
η

2
‖∇2u‖2.

Combining the estimates for all directions k gives the result.

Combining the a priori estimates we deduce the well-posedness of the periodic problem (with
zero mean). The well-posedness of the original problem also follows and we have the following main
result.

Theorem 3.4 Suppose that the extended initial data belongs to H2
per(Ωext), then there exists a

unique solution to the infinite Prandtl number system (8) in the extended domain. As a consequence,
if the the initial data for the original problem (7) belongs to H2(Ω), then there exists a unique
solution to the infinite Prandtl number model under the zero horizontal fluxes constraint (6).
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Proof We have already proved the first half of the theorem regarding the periodic case on the
extended domain Ωext.

Now suppose ‖∇2w(0)‖L2(Ω) < ∞ and satisfies the homogeneous Dirichlet boundary con-
ditions, we extend w to Ω oddly in z = x3. It is easy to see that the extended w(0) be-
longs to H2

per(Ωext) by going through the Fourier representation in x and y if necessary. There-
fore the result on the periodic case applies. In particular we will have a unique solution w ∈
L∞(0, T ;H2

per(Ωext))
⋂
L2(0, T ;H3

per(Ωext)) and u ∈ L∞(0, T ; (H2
per(Ωext))3).

Due to the special structure of the system, it is easy to see that −w(t;x, y,−z), p(t;x, y,−z),
(u1(t;x, y,−z), u2(t;x, y,−z),−u3(t;x, y,−z)) is also a solution to the extended system with the
same initial data. Therefore, w and u3 are odd in z = x3 while u1 and u2 are even in z = x3 by
the uniqueness. This implies that

w|z=0 = 0,
u3|z=0 = 0,

∂3uj |z=0 = 0, j = 1, 2.

The boundary condition at z = 1 can be verified similarly.
Hence the restriction of w and u onto Ω solves the original initial boundary value problem (7).

4 Conclusion and Remarks

In this paper, we proved the well-posedness of the infinite Prandtl number model for convection
with a temperature dependent viscosity under zero horizontal flux assumption. With an application
to mantle convection in mind, we considered a free-slip boundary condition and reformulated the
equation in a periodic domain.

The infinite Prandtl number model with free-slip boundary condition without fixing the hor-
izontal fluxes is not well-posed due to non-uniqueness. Indeed, the procedure that we presented
above can be repeated to show the existence of solution for the same (non-linear) Stokes equations
coupled with the following temperature equation

∂tw −∆w + u · ∇w − u3 + U1∂xw + U2∂yw = 0

where U1, U2 represent averaged horizontal velocities while u has zero mean in the horizontal
directions.

The existence of a weak solution can be shown without the periodic extension (and hence can
be applied to other boundary conditions as well). In this case, in the weak formulation (9, 10)
we should use Ω instead of Ωext, and the space that we should use for velocity is V = {v ∈
(H1(Ω))3

∣∣v periodic in x, y;∇ · v = 0;
∫
Ω v1 dx =

∫
Ω v2 dx = 0; v3

∣∣
z=0,1

= 0} and for the pertur-
bative temperature w we use H1

per,0 = {w ∈ H1(Ω)
∣∣w periodic in x, y;w

∣∣
z=0,1

= 0}. More details
can be found in [6].

The assumption that the viscosity depends on the absolute value of the temperature is not
essential either. In fact, we can show a weak maximum principle for the temperature field for the
weak solution. Hence if the initial data is uniformly bounded in space (bounded below by zero in
particular for physical relevance), we can show the existence of a weak solution that is uniformly
bounded (below by zero in particular) [6].

The well-posedness of the problem is the first step towards further investigation of convection
in temperature dependent viscosity environment. For instance, we need to consider enhancement

9



of heat transport in the vertical direction due to convection over conduction (quantified by the
Nusselt number [2, 3]). An upper bound on the Nusselt number for the model under investiagtion
which scales like Ra

1
2 was derived in [6]. We also need to consider accurate and effective numerical

schemes for the system, especially long time behaviors (see [1] for the case of constant viscosity and
long time behavior, [7] for finite time approximation).

We only considered the case of free-slip which is relevant for mantle convection. The free-slip
boundary condition allows us to study the problem in a periodic setting after a periodic extension.
Other physically interesting boundary conditions such as no-slip and mixed free-slip/no-slip still
need to be investigated. Also, we have focused on the temperature dependence of the viscosity
while neglecting the temperature dependence of the conductivity which fits common belief in the
geophysical community [9]. It would be interesting to consider temperature dependent viscosity
and conductivity and study the sensitivity of the solutions with respect to the temperature in order
to determine the relative importance of the dependence on the temperature.
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