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Abstract

A novel Proper Orthogonal Decomposition (POD) inverse model developed for a
mesh adaptive ocean model, the Imperial College Ocean Model(ICOM) is herein
presented. The new POD model is validated by application to a gyre flow test case
where it invertis for initial conditions. ( **** Say something quantitative about how
well the model performed here, one short sentence will do). Error estimation (in-
cluding the error in POD reduced modelling and the interpolation error in adaptive
meshes) was used to show that quality of reduced adaptive mesh models was (****
say something quantitative about the results of this estimation).

New criteria are applied for POD adaptivity in this approach. When the optimiza-
tion loses control ( i.e., when in the process of optimisation of the new control
variables depart significantly from the ones on which the POD reduced model is
based upon) the set of POD snapshots are refreshed. when the optimization loses
its control, i.e., when in the process of optimisation the new control variables de-
part significantly from the ones on which the POD reduced model is based upon.
Previously developed numerical approaches (Fang et al. (2007)) are employed to
accurately represent the geostrophic balance and improve the efficiency of the POD
simulation;

The feasibility of the proposed methodology as well as and it’s ability to assessing
the error in POD results are demonstrated in a range of numerical experiments
including:-

keywords: inverse, adjoint, POD; reduced-order modelling; ocean model; finite
element; unstructured adaptive mesh

1 Introduction

Given current concerns on the nature of climate change it is clearly crucially important to
improve the predictive capabilities of ocean models. Data assimilation techniques are an impor-
tant means of meeting this aim. By assimilating observations (such as in-situ measurements and
remote sensing) into models, unknown inputs such as initial and boundary conditions, bottom
friction coefficients, turbulent viscosity, and wind stress etc. can be optimised [1, 2, 3, 4, 5, 6, 7, 8]

A variety of approaches have in the past been used to facilitate assimilation and include statis-
tical interpolation methods, nudging data assimilation, variational (adjoint) methods and the
Kalamn filter. In particular, four-dimensional variational (adjoint) method has proved an effi-

∗ Corresponding author
Email address: f.fang@imperial.ac.uk (F. Fang).

2



cient method for assimilation observed data into simulations [9, 10]. It is capable of producing a
best estimate model solution by fitting a numerical simulation to observational data over both
space and time. The technique is also able to estimate the error sources caused by uncertainties
(boundary conditions, initial condition and parameters) in the model . The solution is derived
by minimising a cost function that contains the misfits between the data and dynamical model,
as well as the covariances specifying spatial and temporal correlations of errors. The 4D-Var
data assimilation has been used widely in both atmospheric and oceanographic models over the
past two decades [11, 12, 9, 13, 14, 15, 16, 17, 7, 8, 14, 18, 4, 6, 19, 20]. However, the major
difficulty in the implementation of 4D-Var data assimilation is the large dimensionality of the
control space (for a discrete realistic model, the size of the control variables is typically in the
range 106 − 108), and hence demands high memory and computational costs.

Computational cost can however, be minimised by decreasing the dimensions of the control
space so as to ensure that the minimisation of the cost function (or error co-variances) is
carried out within a low-dimensional space. This can be achieved through an incremental ap-
proach (Courtier et al., 1994 [21]) whereby a succession of quadratic problems is generated over
increasing time periods. The successive quadratic minimisation problems can then be solved
using a coarse resolution in the in-loop of the minimisation. The dimension of the minimisation
problem can then be decreased by one or two orders of magnitude. Although such an incre-
mental approach is currently used in operational atmospheric models (Rabier et.al. 2000 [22]),
the dimensions of the control space remain quite large in realistic applications.

The use of Empirical Orthogonal Functions (EOF) analysis has been advocated as an approach
that can lead to reduced order ocean modelling (Blayo et al.,1998; Durbiano, 2001 [23]). The
implementation of this method additionally results in a drastic reduction of the dimension of
the control space and thus the minimisation process [24, 25]. Reduced order 4D-Var can also be
used to precondition 4D-Var, and reduce computational cost [26]. It has been further proposed
(Vermeulen and Heemink,2006 [27]) that efficiencies can be enhanced if the adjoint can be
directly implemented in a subspace of the reduced model (determined by the leading EOFs)
and then used to approximate the gradient of the criterion. The minimisation process can thus
be solved completely in reduced space with negligible computational costs.

Proper Orthogonal Decomposition (POD) methodologies, in combination with the Galerkin
projection procedure have also been shown to provide an efficient means of generating reduced
order models ([28]; [29], [30]). This technique essentially identifies the most energetic modes in
a time-dependent system thus providing a means of obtaining a low-dimensional description
of the system’s dynamics. POD has been widely and successfully applied to numerous fields,
including signal analysis and pattern recognition ([31]), fluid dynamics and coherent structures
(Lumley,1967; [32]; [28]; [33]) and image reconstruction ([34]). To improve the accuracy of
reduced models, a goal-oriented approach has been used to optimise the POD bases ([35],
[36]). The dual-weighted POD approach provides an ’enriched’ set of basis functions combining
information from both model dynamics and the data assimilation system. The practical utility
of this approach has been extended to include ocean and climate modelling and the solution
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of inverse problems ([24], [25], [37] and [29]). The POD-based 4D VAR not only reduces the
dimension of control space, but also reduces the size of dynamical model, both in dramatic
ways ([37, 38]).

Our motivation is to produce a novel POD reduced order 4D-Var for an adaptive ocean model. A
POD-based reduced forward model has been developed for ICOM [39] that can simultaneously
resolve both small and large scale ocean flows whilst smoothly varying mesh resolution and
conforming to complex coastlines and bathymetry. In this work, a further step has been made
to introduce the POD approach into an adaptive mesh refinement adjoint model. Using the
POD and Galerkin projection approaches, the reduced forward model is derived in a subspace
(details in [39]). Once the forward reduced model is available, the reduced order adjoint model
can directly obtained from the POD reduced forward model in the subspace, instead of the
original forward model. The minimisation procedure is then carried out in the reduced space.

When adaptive meshes are employed in both the forward and adjoint models, the mesh resolu-
tion requirements for each model may be spatially and temporally different, as the meshes are
adapted according to the flow features of each model. This poses additional challenges for the
implementation of an inverse POD-based reduced adaptive model. Such challenges include (a)
snapshots can be of different length at different time levels; (b) the POD base of the forward
model can differ from the POD base of the adjoint model. To overcome these difficulties, a
standard reference fixed mesh is adopted for both the forward and adjoint reduced models. The
solutions for both are interpolated from their own mesh onto the same reference fixed mesh
at each time level. This allows the same number of base modes for both the reduced forward
and adjoint models. Particular attention is paid to the accuracy of the interpolation used this
purpose.

In this work, an adaptive POD procedure is employed to improve the reduced model by up-
dating the POD basis. The original reduced basis for inverse problems is calculated by a set of
snapshots based on the results from the full forward model with the specified control variables.
The optimised control variables via optimisation techniques could be significantly different from
the original ones. An updated reduced basis is therefore needed when the optimisation proce-
dure loses its control based on an error criterion defined in a cost function (or Trust-Region
POD approach). Ravindran (2002, 2006) [40, 41] proposes an adaptive procedure that succes-
sively updates the reduced-order model to be used via a sequential SQP (sequential quadratic
programming) constrained optimisation algorithm. Cao et al. (2007) introduced an adaptive
POD approach into POD inverse (adjoint) models. The updated POD basis is recalculated
using a refreshed set of snapshots based on the latest results obtained from the full forward
model driven via the optimised control variables.

The remainder of this paper is structured as follows: In the second section the Proper Orthogonal
Decomposition (POD) is described. In the third section the discrete reduced forward and adjoint
models are then derived. The mesh adaptivity technique is discussed in detail in section four.
In section five the above reduced model is applied to and illustrated by some relevant cases.
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Summary and conclusions are drawn in the final section.

2 POD reduced model

The Proper Orthogonal Decomposition (POD) is the most efficient choice among linear decom-
positions in the sense that it can capture the greatest possible kinetic energy. A POD reduced
model for a 3D flow model is described in this section. A 3D flow dynamical model is generally
written as:

∂u

∂t
= f(u, t,x), (1)

where, u is a vector containing all variables to be solved (e.g., velocities u, v, w, pressure p and
temperature T etc.), t is time and x = (x, y, z)T represents the Cartesian coordinate position.

2.1 Proper Orthogonal Decomposition

The model variables u are sampled at defined checkpoints during the simulation period [t1, . . . , tK ],
also referred to as snapshots U = (U1, . . . , UK)T (K being the number of snapshots). The snap-
shots can be obtained either from a mathematical (numerical) model of the phenomenon or
from experiments/observations. The sampled values of variables at the snapshot k are stored
in a vector Uk with N entries (N being the number of nodes), here, U can represent one of
variables u, v, w, p. The average of the ensemble of snapshots is defined as:

Ūi =
1

K

K∑
k=1

Uk,i, 1 ≤ i ≤ N , (2)

Taking the deviation from the mean of variables,forms

Vk,i = Uk,i − Ūi, 1 ≤ i ≤ N . (3)

A collection of all Vk,i constructs a rectangularN byK matrix A. The goal of Proper Orthogonal
Decomposition (POD) is to find a set of orthogonal basis functions which can represent the
most dynamic energy in the original flow system. The N ×N eigenvalue problem is established

AATxk = λkxk; 1 ≤ k ≤ K. (4)

The order N for matrix AAT is far larger than the order K for matrix ATA in realistic ocean
cases. Therefore the K ×K eigenvalue problem is solved

ATAyk = λkyk; 1 ≤ k ≤ K. (5)
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This procedure is equivalent to a Singular Value Decomposition (SVD). The eigenvalues λk

are real and positive and should be sorted in an descending order. The POD basis vectors Φk

associated with the eigenvalues λk are orthogonal and expressed as follows:

Φk = Ayk/σk = Ayk/
√
λk, (6)

where, the kth eigenvalue is a measure of the kinetic energy transferred within the kth basis
mode. If the POD spectrum (energy) decays fast enough, practically all the support of the
invariant measure is contained in a compact set. Roughly speaking, all the likely realisations
in the ensemble can be found in a relatively small set of bounded extent. By neglecting modes
corresponding to the small eigenvalues, the following formula is therefore defined to choose a
low-dimensional basis of size M (M << K),

I(M) =

∑M
i=1 λi∑K
i=1 λi

, (7)

subject to

M = argmin{I(M) : I(M) ≥ γ}, (8)

where, 0 ≤ γ ≤ 1 is the percentage of energy which is captured by the POD basis Φ1, . . . ,Φm, . . . ,ΦM .

2.2 Reduced model

The variables in (1) can be expressed in an expansion of the POD basis functions {Φ1, . . . ,ΦM},
that is,

u(t, x, y, z) = ū +
M∑

m=1

αm(t)Φm(x), (9)

where, ū is the mean of the ensemble of snapshots for the variables u(t), αm (1 ≤ m ≤M) are
the time-dependent coefficients to be determined, and αm(0) are the coefficients at the initial
time level. Substituting (9) into (1) and taking the POD basis function as the test function,
then integrating over the computational domain Ω,

∫
Ω

Φmf

(
(ū +

M∑
m=1

αmΦm(x)), t, x

)
dΩ, (10)

The POD reduced model is then obtained:

∂αm

∂t
=

〈
f

(
(ū +

M∑
m=1

αm(t)Φm(x)), t, x

)
, Φm

〉
, (11)

subject to the initial condition

αm(0) = ((u(0,x)− ū(x)),Φm). (12)
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In the finite element method, the POD basis Φm(x) =
∑N

i=1 NiΦm,i, the equation (11) can
therefore be written as:

∂αm

∂t
=

〈
f

(
(ū +

M∑
m=1

αm(t)
N∑

i=1

NiΦm,i), t, x

)
, Φm

〉
. (13)

where, Ni is the basis function in the finite element, N is the number of nodes in the compu-
tational domain.

3 Reduced order 4D-Var

The aim of 4D-Var is to determine optimal control variables (e.g., initial conditions, U0), hence
optimal solution in equation (1) by minimising the functional defined below:

=(U0) =
1

2
(U0 − Ub)

TB−1(U0 − Ub) +
1

2

NT∑
n=1

(HUn − yn
o )TWo(HU

n − yn
o ), (14)

where, B is the background error covariance matrix, Wo is the observation error covariance
matrix, H is the observation operator, U0 is a vector containing the control variables (here,
initial conditions), Un is a vector containing the solution of variables from the model (the
reduced order model) at the time level n (here, NT is the number of time levels), and yo is
the observation vector. In a POD reduced mode, the initial value U0 and the reduced order
solution Un are expressed as:

U0 = Ū +
M∑

m=1

αm(0)Φm(x), (15)

Un = Ū +
M∑

m=1

αm(tn)Φm(x), (16)

where, x = (x, y, z)T , Ū is the average of the ensemble of snapshots Ū = 1
K

∑K
k=1 Uk (here, K

is the number of snapshots). Equation (14) can be rewritten as:

=(α(0)) =
1

2

((
Ū +

M∑
m=1

αm(0)Φm(x)

)
− Ub

)T

B−1

((
Ū +

M∑
m=1

αm(0)Φm(x)

)
− Ub

)

+
1

2

NT∑
n=1

(
H

(
Ū +

M∑
m=1

αm(tn)Φm(x),

)
− yn

o

)T

W o

(
H

(
Ū +

M∑
m=1

αm(tn)Φm(x),

)
− yn

o

)
.

(17)
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3.1 Discrete reduced order adjoint equations

The discrete forward model of equation (11) at the time level n can be written in a subpace:

Anαn = sn, (18)

where,

sn = Bnαn−1 + f, (19)

where, An and Bn (An,Bn ∈ RM×M , where, M is the number of POD bases) are the matrices
at the time level n which include all the discretization of equation (11), αn = (αn

1 , . . . , α
n
M)

and αn−1 = (αn−1
1 , . . . , αn−1

M ) are the vectors of variables to be solved at the time levels n and
n − 1 respectively, here including the coefficients related to the POD basis functions for state
variables u in equation (1), n is the time index, sn is a discretised source term at the time level
n and f is a source term.

For a nonlinear simulation, the matrices An and Bn can be written as:

An = Ân
0 +

M∑
m=1

αn−1
m Ân

m, (20)

Bn = B̂n
0 +

M∑
m=1

αn−1
m B̂n

m, (21)

where, An,Bn, Ân
0 , B̂

n
0 , Â

n
m, B̂

n
m ∈ RM×M and the components can be expressed as:

Ân
0,i,j =

∫
Ω

Φi(ū Φj + θū Φj) dΩ, 1 ≤ i, j ≤M, (22)

Ân
m,i,j =

∫
Ω

Φi (Φj Φm + θΦj Φm) dΩ, 1 ≤ i, j ≤M, (23)

B̂n
0,i,j =

∫
Ω

Φi(ū Φj + (1− θ)ū Φj) dΩ, 1 ≤ i, j ≤M, (24)

B̂n
m,i,j =

∫
Ω

Φi (Φj Φm + (1− θ)Φj Φm) dΩ, 1 ≤, i, j ≤M. (25)

Equations (20) and (21) can be rewritten as:

An = Ân
0 + Ânαn−1, (26)
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Bn = B̂n
0 + B̂nαn−1, (27)

where, Ân = (Ân
1 , . . . , Â

n
M) and B̂ = (B̂n

1 , . . . , B̂
n
M).

Taking into account equation (18), the discrete forward equation during the simulation period
[t1, . . . , tNT ] (where, NT is the number of time levels) can be written:

Aα = s (28)

where,

A =



ANT −BNT

ANT−1 −BNT−1

. . . . . .

A1


,

α =



αNT

αNT−1

...

α1


,

and

s =



0

0
...

B1α0


+ f.

Differentiating equation (28) with respect to the control variables to be optimised, i.e., the
initial coefficient, α0 = α(0), the tangent linear model is obtained

Āα + Aᾱ = s̄, (29)

where, the bar is defined as the differentiation with respect to the control variables α0

Ā =
∂A

∂α0
=



ĀNT −B̄NT

ĀNT−1 −B̄NT−1

. . . . . .

Ā1


,
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and

ᾱ =
∂α

∂α0
=



ᾱN

ᾱN−1

...

ᾱ1


,

s̄ =
∂s

∂α0
=



0

0
...

B̄1α0


+



0

0
...

B1


,

where, taking into account equations (26) and (27)

Ān =
∂An

∂α0
= Âᾱn−1, (30)

B̄n =
∂Bn

∂α0
= B̂ᾱn−1, (31)

where, n donates time levels, 1 ≤ n ≤ NT . Equation (29) can therefore rewritten



ÂᾱNT−1 −B̂ᾱNT−1

ÂᾱNT−2 −B̂ᾱNT−2

. . . . . .

Âᾱ0





αNT

αNT−1

...

α1


+



ANT −BNT

ANT−1 −BNT−1

. . . . . .

A1





ᾱNT

ᾱNT−1

...

ᾱ1


=



0

0
...

B̂1α0ᾱ0


+



0

0
...

B1ᾱ0


The tangent linear model is then derived

(A + Aextra)
∂α

∂α0
=

∂s

∂α0
(32)

where, A is calculated in [28], Aextra originates from the actual linearision of the nonlinear
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terms and is expressed as:

Aextra =



0 ÂᾱNT − B̂ᾱNT−1

0 ÂᾱNT−1 − B̂ᾱNT−2

. . . . . .

0


The variation of the objective function (14) with respect to the control variables α0 is

∂=
∂α0

=

(
∂α

∂α0

)T
∂=
∂α

(33)

Taking into account equation (32), yields

∂=
∂α0

=

(
∂s

∂α0

)T

(A + Aextra)−T ∂=
∂α

(34)

The gradient of the objective function can then be written

∂=
∂α0

=

(
∂s

∂α0

)T

α∗ (35)

here, α∗ is the adjoint variable and can be calculated by solving the following adjoint equation:

(A + Aextra)Tα∗ =
∂=
∂α

(36)

3.2 Adaptive POD

In this work, since the POD model is based on the solution of the original model for a specified
control variables (e.g., initial and boundary conditions, etc), it could be a poor model when the
updated control variables are significantly different from the one on which the POD model is
based upon. An adaptive POD 4DVAR procedure is proposed to successively update the the
POD basis, therefore the reduced direct and inverse models (details in Ravindran (2002, 2006)
[40, 41]. The inversion procedure starts with an initial estimated control variables. An initial
set of snapshots are obtained by running the full forward model, and the corresponding POD
subspace and reduced model are constructed. The process of updating the reduced-order model
is continued during each inversion iteration until convergence is achieved.
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4 Mesh adaptivity in reduced models

4.1 Description of an adaptive ocean ICOM

In this work, a POD-based reduced model is developed for ICOM that can simultaneously re-
solve both small and large scale ocean flows whilst smoothly varying resolution and conforming
to complex coastlines and bathymetry . With more appropriate focused numerical resolution
(e.g. adaptive and anisotropic resolution of fronts and boundary layers, and optimal represen-
tation of vertical structures in the ocean) ocean dynamics may be accurately predicted during
future climatic change. To accurately represent local flow around steep topography the hydro-
static assumption is not made in this work. Here, the pressure is split into the non-geostrophic
and geostrophci parts which are solved separately. This allows the accurate representation of
hydrostatic/geostrophic balance [42]. A dynamically adapting anisotropic mesh in 3-D is used
here [43, 44] which optimises the size and shape of a tetrahedral mesh using edge collapsing and
splitting, edge swapping, face to edge swapping, and smoothing in a fashion similar to Freitag
and Ollivier- Gooch [?] and Buscaglia and Dari [6?]. Mesh adaptivity or optimisation relies on
the derivation of appropriate error measures, which dictate how the mesh is to be modified [43]

4.2 Mesh adaptive technique in the ICOM ocean model

The mesh adaptivity technique used in this work first constructs a metric tensor which encodes
local error estimates using information from the current solution fields, see [45] for an alternative
approach. The metric tensor is used to calculate the edge lengths of mesh elements. It is
constructed (see below) such that an ideal edge length is unity when measured in metric space.
This therefore gives a guide as to those elements which have edges that are too large or too
small. Since the metric is dependent on both location and direction it is able to exhibit locally
anisotropic information if the solution fields dictate this. Thus inhomogeneous and anisotropic
meshes result from this approach. By defining an objective functional which is formed from
the size and shape of the ‘worst’ element in the mesh, an optimisation technique is used to
improve the overall quality of the mesh. That is, local operations on the mesh connectivity
and node positioning are performed which aim to minimise this functional. The operations
are performed on a three-dimensional tetrahedral mesh by the adaptivity method and include:
edge collapsing/splitting; face to edge and edge to face swapping; edge to edge swapping; and
local node movement or mesh smoothing. Constraints are imposed on these operations so as to
preserve the integrity of non-planar geometrical boundaries. For further details see [43, 44]. The
interpolation error resulting from a piecewise linear approximation of a smooth function ψ may
be written in terms of the functions second derivatives or Hessian H ≡ ∇T∇φ. In particular,
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over a tetrahedral element the quantity

ε = vT |H(x)|v, (37)

gives a guide to this interpolation error at location x and direction v. Note that here the
notation | · | corresponds to the absolute value of the matrix, defined by diagonalising the
matrix and taking the absolute value of the eigenvalues, rather than the determinant. Taking
the maximum of (37) over all locations and all vectors v that lie within the element gives a
bound on the magnitude of the interpolation error on this element. For more details see [44]
and the references therein.

Given a user defined error tolerance, ε̂, a metric tensor may be defined by

M̂ =
1

ε̂
|H|. (38)

To obtain this error tolerance everywhere, length scales in the mesh should therefore take the
value unity when measured in metric space. The mesh optimisation technique described above is
used to achieve this aim as closely as possible. In practise the Hessian must be approximated and
here reconstructed from the piecewise linear solution fields. To simultaneously satisfy separate
error bounds for separate solution fields a metric is obtained for each and these are then
superimposed to yield a combined error metric. Finally, by suitably altering the definition of
this metric, computational constraints on the total number of nodes and maximum/minimum
allowed element sizes and aspect ratios may be imposed. For further details see [43].

4.3 Mesh adaptive technique in POD and error estimate

When adaptive meshes are employed in ocean models, the mesh resolution requirements vary
spatially and temporally, as the meshes are adapted according to the flow features through the
whole simulation. The dimensional size of the variable vectors is different at each time level
since the number of nodes varies during the simulation. Snapshots can therefore be of different
length at different time levels. This unavoidably brings difficulties in the implementation of a
POD-based reduced model for an adaptive model. To overcome these difficulties, a standard
reference fixed mesh is adopted for the reduced model. The solutions from the original full
model are interpolated from their own mesh onto the same reference fixed mesh at each time
level, and then stored in the snapshots. The information at the snapshots is used to find
the optimal POD basis. This allows the same length of base modes to be obtained at each
time level. The resolution of the reference mesh and the interpolation errors between the two
meshes (the adaptive mesh and the fixed reference mesh) may affect the accuracy of the POD
simulation. This will be explained and discussed in detail through the applications presented
below. To reduce the interpolation error, a high order interpolation approach can be adopted.
The feasibility and accuracy of 4D-var simulation can be evaluated by the comparison of the
results obtained through using the adaptive and static meshes in the optimal procedure.
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5 Application and discussion

The above reduced order inverse model developed for an adaptive mesh finite element model
(ICOM) has been applied to 2D gyre flows. The initial conditions are optimised using the
POD reduced adjoint model. The accuracy and validation of the reduced order POD adjoint
model have been evaluated. Error estimate is undertaken through the comparison of the results
obtained from the original(full) and POD reduced models. Furthermore, the adaptive POD
approach is employed to update the POD bases and its efficiency is investigated.

5.1 Description of the case: Gyre

The POD reduced adjoint model is tested in a computational domain, 1000km by 1000km with
a depth of 500 m. The wind forcing on the free surface is given

Uwind = τ0cos(πy/Ly), Vwind = 0.0, (39)

where, τ0 = 0.1Nm−1, here, Ly = 1000km. The Reynolds number is Re = 250, β = 1.8×10−11,
and the reference density ρ0 = 1000 kgm−1.

No-slip boundary conditions are applied to the lateral boundaries. The spin-up period is
200 days. The simulation period is [200, 400] days. The time step is 6 hrs. The non-dimensionalization
is applied by using the length scale Ly = 1000 km.

5.2 Optimisation of initial conditions

The control variables in the case are the initial conditions on the 200th day. The data assimila-
tion experiments are designed by an identical twin technique. The ’true’ flow state is generated
by running the full forward model (ICOM) with a zonal wind forcing on the free surface. The
pseudo-observational data is taken on days 250, 300 and 350 over the computational domain.
The guess values of the initial conditions are given by the background flow (here, taken from
the ’true’ flow fields on days either 215 or 275 in the experiments).

The POD bases are constructed by the snapshots which are taken from the numerical solutions
by forcing the full forward model with the background flow. 40 snapshots with 35 POD bases
for the velocity components u, v, w and pressure are chosen to capture more than 99.5% of
energy.
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To represent the geostrophic balance accurately, the geostrophic pressure is constructed by two
sets of basis functions which are obtained from the basis functions for the velocity components
u and v respectively. The numerical technique developed in [39] is adopted to accelerate the
POD inversion, that is, the matrices in the discretised POD forward and adjoint equations can
be constructed by a set of time-independent sub-matrices prior to running the reduced forward
and adjoint models. This can reduce the computer cost significantly.

An adaptive mesh is adopted in the full model. The mesh for the full model adapts every 19 time
steps with maximum and minimum mesh size of 0.2 and 0.001 (non-dimensional) respectively.
To allow the same length of POD bases at the snapshots for both the reduced forward and
adjoint models, a reference fixed mesh is chosen for the POD inversion (right panel in figure
??). To build up the snapshots, the solutions from the full forward model are interpolated from
the adaptive mesh (left panel in figure ??) onto the reference mesh.

5.3 Discussion

The utility and accuracy of the POD reduced inverse (forward and adjoint) models are evaluated
through error analysis. The error for the inversely modelled results includes: (1) the error of the
POD reduced model; (2) the interpolation error if adaptive meshes are adopted; (3) the error
for the optimised controls.

To estimate the accuracy of the POD forward model, the error for the controls is eliminated. The
POD solution is obtained by running the POD reduced model with the true controls. The error
(misfit between the POD solution and true flow state) at time levels (t = 250, 300, 350 day) is
shown in figure ??. The error is very small during the first half simulation period and increases
as the simulated time accrues. Since adaptive meshes are employed in the full model, the error
shown in figure ?? includes the interpolation error as well.

As discussed in section 3.2, an adaptive POD approach can be used to update the POD bases
and reduced models. It is however found in this study that the updated POD bases could be
worse than the previous ones if the optimised control variables (here, the initial conditions) are
far from the true ones. As an example, the initial guess controls (background flow) is taken
from the true flow field on the 275th day. By fitting the numerical solution to observationbnal
data, the errors of inversely modelled velocity field at the time levels (when the observational
data is assimilated) are reduced to small values (figure ??). The cost function (14) is reduced
by 73 % of its original value during the optimisation procedure. However, the optimised initial
controls during this POD inversion iteration are not what we expect (top panel in figure ??). A
unexpected local minimum is reached in this casce. This inverse problem is ill-posed. Obviously
the optimised initial conditions cannot be used to update the POD bases.
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An appropriate of initial guess controls is needed to improve the inverse solution. The initial
controls (background flows) are taken from the true flow state on the 225th day, The cost
function is reduced by 50 % of its original value at the first POD inversion iteration (here, the
error of the POD reduced model is taken out from the cost function). It is further reduced
by 25 % at the second POD iteration, i.e., after the snapshots are updated. The error for the
velocity field is shown in figure ??. it can be seen that the error of inversely modelled velocity
is reduced after updating the snapshots (right panel). The optimised velocity fields are drawn
in figure ?? and exhibit an overall good agreement with the true ones.

[Fig. 1 about here.]

[Fig. 2 about here.]

[Fig. 3 about here.]

[Fig. 4 about here.]

[Fig. 5 about here.]
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