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Abstract

Let N be a prime and let A be a quotient of J0(N) over Q asso-
ciated to a newform f such that the special L-value of A (at s = 1)
is non-zero. Suppose that the algebraic part of special L-value is di-
visible by an odd prime q such that q does not divide the numerator
of N−1

12 . Then the Birch and Swinnerton-Dyer conjecture predicts that
q2 divides the algebraic part of special L value of A, as well as the
order of the Shafarevich-Tate group. Under a mod q non-vanishing
hypothesis on special L-values of twists of A, we show that q2 does
divide the algebraic part of the special L-value of A and the Birch
and Swinnerton-Dyer conjectural order of the Shafarevich-Tate group
of A. This gives theoretical evidence towards the second part of the
Birch and Swinnerton-Dyer conjecture. We also give a formula for the
algebraic part of the special L-value of A over suitable quadratic imag-
inary fields which shows that this algebraic part is a perfect square
away from two.

1 Introduction and results

Let A be an abelian variety over a number field F . Let L(A/F, s) denote
the associated L-function, and assume that L(A/F, 1) 6= 0. Let Ω(A/F )
denote the quantity CA,∞ in [Lan91, § III.5]; it is the “archimedian volume”
of A over embeddings of F in R and C (e.g., if F = Q, then it is the
volume of A(R) computed using invariant differentials on the Néron model
of A). Let Mfin denote the set of finite places of F . Let A denote the
Néron model of A over the ring of integers of F and let A0 denote the
largest open subgroup scheme of A in which all the fibers are connected.

∗The author was partially supported by National Science Foundation Grant No.
0603668.
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If v ∈ Mfin, then let Fv denote the associated residue class field and let
cv(A/F ) = [AFv(Fv) : A0

Fv
(Fv)]. Let X(A/F ) denotes the Shafarevich-

Tate group of A over F . If F = Q, then we will often drop the symbol “/F”
in the notation (thus X(A/Q) will be denoted X(A), etc.). If B is an
abelian variety over F , then we denote by B∨ the dual abelian variety of B,
and by B(F )tor the torsion subgroup of B(F ). Suppose that L(A/F, 1) 6= 0.
Then the second part of the Birch and Swinnerton-Dyer conjecture says the
following (see [Lan91, § III.5]):

Conjecture 1.1 (Birch and Swinnerton-Dyer).

L(A/F, 1)
Ω(A/F )

=
|X(A/F )| ·

∏
v∈Mfin

cv(A/F )

|A(F )tor| · |A∨(F )tor|
. (1)

We denote by |X(A/F )|an the order of |X(A/F )| predicted by the
conjecture above (here, “an” stands for “analytic”).

If M is a positive integer, then let X0(M) denote the modular curve
over Q associated to Γ0(M), and let J0(M) be its Jacobian. Let T denote
the subring of endomorphisms of J0(M) generated by the Hecke operators
(usually denoted T` for ` - M and Up for p | M). If g is a newform in
S2(Γ0(M),C), then let Ig = AnnTg and let Ag denote the quotient abelian
variety J0(M)/IfJ0(M) over Q, which was introduced by Shimura in [Shi94].
We also denote by L(g, s) the L-function associated to g and by L(Ag, s)
the L-function associated to Ag.

Now fix a prime N and a newform f on Γ0(N) such that L(Af , 1) 6= 0.
Then by [KL89], Af (Q) has rank zero, and X(Af ) is finite. Thus the second
part of the Birch and Swinnerton-Dyer conjecture becomes:

Conjecture 1.2 (Birch and Swinnerton-Dyer).

L(Af , 1)
Ω(Af )

=
|X(Af )| · cN(Af )
|Af (Q)| · |A∨

f (Q)|
, (2)

It is known that L(Af , 1)/Ω(Af ) is a rational number and we call this
number the algebraic part of the special L-value of Af . Let q be an odd
prime that does not divide numr(N−1

12 ) but divides L(Af ,1)
Ω(Af ) . Note that the

denominator of L(Af ,1)
Ω(Af ) divides numr(N−1

12 ) (by [Aga07, §1]), and so it makes

sense to talk about whether q divides L(Af ,1)
Ω(Af ) or not.

Proposition 1.3. Let q be as above. Then q divides |X(Af )|an. If the
Birch and Swinnerton-Dyer conjecture (2) is true, then q2 divides |X(Af )|
as well as L(Af ,1)

Ω(Af ) .
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Proof. By [Eme03], q does not divide
∏

p|N cp(Af ) or |Af (Q)| · |A∨
f (Q)|.

Thus if q divides L(Af ,1)
Ω(Af ) then q divides |X(A)|an. Now assume the Birch and

Swinnerton-Dyer conjecture (2), so that q divides |X(A)|. As mentioned
towards the end of §7.3 in [DSW03], if A∨

f [q] is irreducible for all maximal
ideals q of T with residue field of characteristic q, then the q primary part
of X(A∨

f ) (and hence that of X(Af )) has order a perfect square. In our
case, this irreducibility holds by [Maz77, Prop. 14.2], and thus q2 divides
the value of |X(Af )|. Moreover, as mentioned above, q does not divide any
of the other quantities on the right side of (2), hence we see that q2 divides
L(Af ,1)
Ω(Af ) , which is the left side.

Thus by Proposition 1.3, if q divides L(Af ,1)
Ω(Af ) or |X(Af )|an, but does

not divide numr(N−1
12 ), then q2 (not just q) is expected to divide L(Af ,1)

Ω(Af )

and |X(Af )|an.
Let K be a quadratic imaginary field of discriminant −D. Let εD =

(−D
· ) denote the associated quadratic character. Suppose that D is coprime

to N . Then f ⊗ εD is a newform of level ND2. By a refinement of a
theorem Waldspurger (see [LR97]), there exist infinitely many prime-to-
N discriminants −D such that L(Af⊗εD

, 1) 6= 0. Suppose D is such that
L(Af⊗εD

, 1) 6= 0.
If 〈 , 〉 : M ×M ′→C, is a pairing between two Z-modules M and M ′,

each of the same rank m, and {α1, . . . , αm} and {β1, . . . , βm} are bases of M
and M ′ (respectively), then by disc(M ×M ′→C), we mean the absolute
value of det(〈αi, βj〉); this value is independent of the choices of bases made
in its definition. We have a pairing

H1(X0(N),Z)⊗C× S2(Γ0(N),C)→C (3)

given by (γ, g) 7→ 〈γ, g〉 =
∫
γ 2πig(z)dz and extended C-linearly. At various

points in this article, we will consider pairings between two Z-modules; un-
less otherwise stated, each such pairing is obtained in a natural way from (3).

We have an involution induced by complex conjugation on H1(Af ,Z),
and we denote by H1(Af ,Z)− the subgroup of elements of H1(Af ,Z) on
which the involution acts as −1. Let Sf = S2(Γ0(N),Z)[If ], and let Ω−

Af
=

disc(H1(Af ,Z)−× Sf→C). Then
L(Af⊗εD

,1)

(i
√

D)dΩ−Af

is an integer (e.g., by Prop 2.1

below).

Theorem 1.4. Recall that the level N is assumed to be prime, and q is an
odd prime which does not divide numr(N−1

12 ), but divides L(Af ,1)
Ω(Af ) . Suppose
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there exists a fundamental discriminant −D that is coprime to N , with
D > 4, such that L(Af⊗εD

, 1) 6= 0 and q does not divide
L(Af⊗εD

,1)

(i
√

D)dΩ−Af

. Then

q2 divides L(Af ,1)
Ω(Af ) and |X(Af )|an.

Now L(Af ,1)
Ω(Af ) · L(Af⊗εD

,1)

(i
√

D)dΩ−Af

= L(Af /K,1)
Ω(Af /K) up to powers of 2, and the latter

is the special L-value of Af obtained by viewing Af as an abelian variety

over K. Thus
L(Af⊗εD

,1)

(i
√

D)dΩ−Af

is the extra contribution arising from the change

of base from Q to K. If one assumes the second part of the Birch and
Swinnerton-Dyer conjecture (over K), then provided q does not divide the
order of the component groups over K (which is likely since the q in the
theorem does not divide the component groups over Q by [Eme03]), the
only way q can divide

L(Af⊗εD
,1)

(i
√

D)dΩ−Af

is if q divides the extra contribution to

X(Af/K) arising from the change of base from Q to K. Since there is no
clear reason for q to divide this extra contribution for all K, and since we
have infinite choice of K’s, one expects that the hypothesis on the existence
of D as in the theorem above is true, although we do not know any results
in this direction. Assuming this “reasonable” hypothesis, in view of Propo-
sition 1.3, Theorem 1.4 provides theoretical evidence towards the Birch and
Swinnerton-Dyer conjectural formula (2).

We shall prove Theorem 1.4 in Section 2. In the course of the proof, we
will also show the following:

Proposition 1.5. Recall that the level N is prime. Let K be a quadratic
imaginary field with discriminant −D such that D > 4 and D is coprime
to N . Then L(Af /K,1)

Ω(A/K) is a perfect square away from the prime 2.

Lastly, we have the following result:

Proposition 1.6. Recall again that the level N is assumed to be prime.
Suppose r is an odd prime that does not divide numr(N−1

12 ) and there is a
normalized eigenform g ∈ S2(Γ0(N),C) such that L(Ag, 1) = 0 and f is
congruent to g modulo a prime ideal over r in the ring of integers of the
number field generated by the Fourier coefficients of f and g.
(i) If the first part of the Birch and Swinnerton-Dyer conjecture is true
for Ag, then r2 divides |X(Af )|.
(ii) Suppose that there exists a fundamental discriminant −D prime to N ,
with D > 4 such that L(Af⊗εD

, 1) 6= 0 and r does not divide
L(Af⊗εD

,1)

(i
√

D)dΩ−Af

.
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Then r2 divides L(Af , 1)/Ω(Af ) and the Birch and Swinnerton-Dyer con-
jectural value of |X(Af )|. In particular L(Af ,1)

Ω(Af ) ≡ L(Ag ,1)
Ω(Ag) mod r2.

Proof. If the first part of the Birch and Swinnerton-Dyer conjecture (on
rank) is true for Ag, then considering that L(Ag, 1) = 0, we see that Ag has
positive Mordell-Weil rank. Part (i) now follows from [Aga07, Thm 6.1].
By [Aga07, Prop. 1.3], the hypotheses of the proposition implies that q
divides L(Af , 1)/Ω(Af ). Thus part (ii) follows from the Theorem above.

As mentioned above, the hypothesis on the existence of D as in the
proposition above seems “reasonable”. Subject to this hypothesis, the propo-
sition above shows some consistency between the predictions of the two parts
of the Birch and Swinnerton-Dyer conjecture.

There is a general philosophy that congruences between eigenforms
should lead to congruences between algebraic parts the corresponding spe-
cial L-values, and there are theorems in this direction (see [Vat99] and the
references therein for more instances). However, these theorems prove con-
gruences modulo primes, but not their powers. To our knowledge, part (ii)
of Proposition 1.6 above is the first result of of a form in which the algebraic
parts of the special L-value are congruent modulo the square of a congruence
prime.

Acknowledgement: This paper owes its existence to Löıc Merel. He pointed
out to us that Gross’ formula [Gro87] should have some implications for the
squareness of the order of the Shafarevich-Tate group, and also indicated
the relevance of [Reb06]. The author’s task was to work out the details
and figure out what were the precise implications that could be drawn. We
would like to thank Löıc Merel for suggesting this project as well as for
several discussions regarding it.

2 Proofs

In this section, we prove Theorem 1.4 and Proposition 1.5. We use the
notation as in [Reb06]; details of some of the facts we use here routinely
may be found in loc. cit.

Let−D be a fundamental discriminant prime toN such that L(Af⊗εD
, 1) 6=

0. Let H+ and H− denote the subgroup of elements of H1(X0(N),Z) on
which the complex conjugation involution acts as 1 and −1 respectively.
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The modular symbol ∑
b mod D

εD(b)
{
− b

D
,∞

}
is an element of H− and will be denoted by eD. Since the level N is prime,
the Hecke algebra T is semi-simple, and hence we have an isomorphism
T⊗Q ∼= T/If ⊗Q⊕B of T⊗Q-modules for some T⊗Q-module B. Let
π denote element of T⊗Q that is the projection on the first factor.

Proposition 2.1.
L(Af⊗εD

, 1)
(i
√
D)dΩ−

Af

=
∣∣∣π( H−

TeD

)∣∣∣.
Proof. The proof is very similar to the proof of Theorem 2.1 in [Aga07]. The
main thing to note is that if f1, . . . , fd are the Galois conjugates of f , then
L(Af⊗εD

, 1) =
∏

i L(fi ⊗ εD, 1) =
∏

i
〈eD,fi〉
i
√

D
(see, e.g., [Man71, Thm 9.9]).

Hence, up to a power of 2,

L(Af⊗εD
, 1)

(
√
−D)dΩ−

Af

=
∏

i〈eD, fi〉
disc(π(H−)× Sf→C)

=
∏

i〈eD, fi〉
disc(π(TeD)× Sf→C)

· |π(H−) : π(TeD)|.

One can see in a manner similar to the proof of formula (6) in the proof of
Theorem 2.1 in [Aga07] that the first factor above is 1 (in that proof, replace
e by eD and in the analog of the proof of Lemma 2.3 in [Aga07], use the fact
that L(f ⊗ ε, 1) 6= 0).

Let {E0, E1, . . . , Eg} be a set of representatives for the isomorphism
classes of supersingular elliptic curves in characteristic N , where g is the
genus of X0(N). We denote the class of Ei by [Ei]. Let P denote the
divisor group supported on the [Ei] and let P0 denote the subgroup of
divisors of degree 0. For i = 1, 2, . . . , g, let Ri = End Ei. Each Ri is a
maximal order in the definite quaternion algebra ramified at N and ∞,
which we denote by B and in fact, every conjugacy class of of a maximal
order of B is represented by an element of {R1, R2, . . . , Rg}. Let O−D denote
the order of discriminant −D, h(−D) the number of classes of O−D, u(−D)
the order of O∗

−D/〈±1〉 (u(−D) = 1 in our case since D > 4), and hi(−D)
the number of optimal embeddings of O−D in Ri modulo conjugation by R∗

i .
Following [Gro87], we define

χD =
1

2u(−D)

g∑
i=0

hi(−D)[Ei] ∈ P ⊗Q.
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Let wi = |AutEi| = |R∗
i /〈±1〉|. Define the Eisenstein element in P ⊗Q as

aE =
g∑

i=0

[Ei]
wi

.

Let χ0
D = χD − 12

p−1 deg(eD)aE. Let n = numr(p−1
12 ); then nχ0

D ∈ P0.
Let H denote the complex upper half plane, and let {0, i∞} denote the

projection of the geodesic path from 0 to i∞ in H ∪ P1(Q) to X0(N)(C).
We have an isomorphism

H1(X0(N),Z)⊗R
∼=−→ HomC(H0(X0(N),Ω1),C),

obtained by integrating differentials along cycles (see [Lan95, § IV.1]). Let
e be the element of H1(X0(N),Z) ⊗ R that corresponds to the map ω 7→
−

∫
{0,i∞} ω under this isomorphism. It is called the winding element. By the

Manin-Drinfeld Theorem (see [Lan95, Chap. IV, Theorem 2.1] and [Man72]),
e ∈ H1(X0(N),Z)⊗Q. Also, since the complex conjugation involution on
H1(X0(N),Z) is induced by the map z 7→ −z on the complex upper half
plane, we see that e is invariant under complex conjugation. Thus e ∈
H1(X0(N),Z)+ ⊗Q.

Consider the T[1/2]-equivariant isomorphism

Φ : P0[1/2]⊗T[1/2] P0[1/2]→H+[1/2]⊗T[1/2] H
−[1/2] (4)

obtained from [Reb06, Prop. 4.6] (which says that both sides of (4) are iso-
morphic to S2(Γ0(N),Z)[1/2], and whose proof relies on results of [Eme02]).
By [Reb06, Thm 0.2], we have ΦQ(χ0

D⊗TQ
χ0

D) = e⊗TQ
eD, where the sub-

script Q stands for tensoring with Q (this follows essentially from [Gro87,
Cor 11.6], along with its generalization [Zha01, Thm 1.3.2]). Thus ΦQ in-
duces an isomorphism

T[1/2](nχ0
D⊗T[1/2]nχ

0
D) ∼= T[1/2]ne⊗T[1/2]T[1/2]neD. (5)

Note that ne ∈ H+ by II.18.6 and II.9.7 of [Maz77].

Proposition 2.2.∣∣∣π( H+[1/2]
T[1/2]ne

)∣∣∣ · ∣∣∣π( H−[1/2]
T[1/2]neD

)∣∣∣ =
∣∣∣π( H+[1/2]⊗TH

−[1/2])
T[1/2]ne⊗TT[1/2]neD

)∣∣∣
Proof. By [Maz77, §15], if m is a Gorenstein maximal ideal of T with odd
residue characteristic, then H+

m and H−
m are free Tm-modules of of rank one.
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Since the level is prime, the only non-Gorenstein ideals are the ones lying
over 2, a prime that we are systematically inverting anyway.

Let m be a maximal ideal of T with odd residue characteristic. Let x
be a generator of H+

m as a free Tm-module, and let y be a generator of H−
m

as a free Tm-module. Then there exists t1 ∈ Tm such that ne = t1x and
t2 ∈ Tm such that neD = t2y. We have
|π(H+

m⊗TmH
−
m )/π(Tmne⊗TmTmneD)|

= |π(Tmx⊗TmTmy)/π(Tmt1x⊗TmTmt2y)|
= |π(Tm(x⊗Tmy))/t1t2π(Tm(x⊗Tmy))|
= |π(Tm)/t2t1π(Tm)|
= |π(Tm)/t1π(Tm)| · |π(t1Tm)/t2π(t1Tm)|.

Claim |π(t1Tm)/t2π(t1Tm)| = |π(Tm)/t2π(Tm)|.

Proof. Consider the map ψ : π(Tm)→π(t1Tm)/t2π(t1Tm) given as follows:
if t ∈ Tm, then π(t) 7→ π(t1t). If π(t) is in the kernel of ψ, then π(t1t) =
π(t2t1t′) for some t′ ∈ Tm. Then π(t1(t − t2t

′)) = 0, and since π(t1) 6= 0
(as L(Af , 1) 6= 0), we have π(t) = π(t2t′). Thus the kernel of ψ is t2π(Tm),
which proves the lemma.

Using the claim and the series of equalities above, we have
|π(H+

m⊗TmH
−
m )/π(Tmne⊗TmTmneD)|

= |π(Tm)/t1π(Tm)| · |π(Tm)/t2π(Tm)|
= |π(Tmx)/t1π(Tmx)| · |π(Tmy)/t2π(Tmy)|
= |π(H+

m )/π(Tmne)| · |π(H−
m )/π(TmneD)| =

∣∣∣π(
H+

m
Tmne

)∣∣∣ · ∣∣∣π(
H−

m
TmneD

)∣∣∣.
Since this is true for every m with odd residue characteristic, we get the

statement in the proposition.

Proposition 2.3.∣∣∣π( P0[1/2]⊗T[1/2]P0[1/2]
T[1/2](nχ0

D⊗T[1/2]nχ0
D)

)∣∣∣ =
∣∣∣π( P0[1/2]

T[1/2]nχ0
D

)∣∣∣2. (6)

Proof. By [Eme02, Thm 0.5], if m is a Gorenstein maximal ideal of T, then
P0

m is a free Tm-module of rank one; let x be a generator. Then nχ0
D = tx

for some t ∈ Tm. Hence in a manner similar to the steps in the proof of
Proposition 2.2, we have∣∣∣π( P0

m⊗T[1/2]P0
m

Tm(nχ0
D⊗T[1/2]nχ0

D)

)∣∣∣ =
∣∣∣π(Tmx⊗T[1/2]Tmx

Tm(tx⊗T[1/2]tx)

)∣∣∣ =
∣∣∣π( Tm

t2Tm

)∣∣∣
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=
∣∣∣π( Tm

tTm

)∣∣∣2 =
∣∣∣π( P0

m

Tmnχ0
D

)∣∣∣2.
Since this holds for every maximal ideal m of odd residue characteristic, we
get the proposition.

By formula (4), formula (5), Proposition 2.2, and Proposition 2.3, we
have ∣∣∣π( H+[1/2]

T[1/2]ne

)∣∣∣ · ∣∣∣π( H−[1/2]
T[1/2]neD

)∣∣∣ =
∣∣∣π( P0[1/2]

T[1/2]nχ0
D

)∣∣∣2 (7)

Let Ω+
Af

= disc(H1(Af ,Z)+×Sf→C); it differs from Ω(Af ) by a power
of 2 (by [Aga07, Lemma 2.4]). By the proofs of Theorems 2.1 and 3.1
of [Aga07], we have ∣∣∣π( H+

T(ne)

)∣∣∣ = n ·
L(Af , 1)

Ω+
Af

.

Using this and Proposition 2.1, equation (7) says that up to powers of 2,

L(Af , 1)
Ω+

Af

·
L(Af⊗εD

, 1)
(i
√
D)dΩ−

Af

=
1
n2

·
∣∣∣π( P0[1/2]

T[1/2]nχ0
D

)∣∣∣2. (8)

This proves Proposition 1.5 (assuming L(Af/K, 1) 6= 0; if L(Af/K, 1) = 0,
then Proposition 1.5 is trivial).

Also, if an odd prime q divides L(Af , 1)/Ω(Af ) (which differs from

L(Af , 1)/Ω+
Af

by a power of 2) and q does not divide
L(Af⊗εD

,1)

(i
√

D)dΩ−Af

, then by (8),

q2 divides L(Af , 1)/Ω(Af ). By [Eme03], we have |Af (Q)| = |A∨
f (Q)| and

this order divides numr(N−1
12 ). Thus if q does not divide numr(N−1

12 ), then
from (2), q2 divides the conjectured value of |X(Af )|. This proves Theo-
rem 1.4.
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