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Abstract

We address the problem of optimal Central Bank intervention in

the exchange rate market when interventions create feedback in the

rate dynamics. In particular, we extend the work done on optimal im-

pulse control by Cadenillas and Zapatero (1999, 2000) to incorporate

temporary market reactions to Bank interventions. We obtain new ex-

plicit optimal impulse control strategies that account for these market

reactions.

Keywords: optimal impulse control, quasi-variational inequalities,

foreign exchange intervention.

1 Introduction

In countries dependent on foreign trade and foreign capital, the Central

Bank is normally in charge of exchange rate policy. This usually means that
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the Central Bank has the ability to intervene in the markets in order to

keep their currency rates within a band, or close to a target rate set by the

Bank’s policy makers.

Intervention can take two different (compatible) forms: adjustment of

domestic interest rate levels, which influences the attractiveness of foreign

investments; and direct purchases or sales of foreign currency reserves in the

foreign exchange market.

The first form of intervention can be modeled as a continuous (classical)

control problem, and the second as an impulse control problem. In this

paper we focus only on the second type of intervention, interpreting a market

intervention as a way to change the exchange rate by a desired amount via

sales or purchases of reserves over a time short enough to be reasonable

modeled as an instantaneous impulse.

The problem is to find an optimal intervention strategy keeping the

exchange rate near a target level, set by the bank, while minimizing cost of

intervention. Since the exchange rate will always drift away from the target

rate between interventions, one approach to control intervention costs has

been to set a “target zone” or band, and act to keep the exchange rate

within this band. Various papers in the economics literature have considered

this problem, e.g. Krugman (1991); Froot and Obstfeld (1991); Flood and

Garber (1991).

The first person to apply the theory of stochastic impulse control to this

problem was Jeanblanc-Picque (1993), later extended by Korn (1997). Both

considered an exogenously specified target band within which the exchange

rate is to be contained, and found the optimal sizes of interventions required
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when the exchange rate reaches the boundary of the target band.

An important insight was obtained by Mundaca and Oksendal (1998)

and Cadenillas and Zapatero (1999, 2000), who realized that it is not nec-

essary to exogenously set a target band, but rather that the correct target

band can be derived endogenously as part of the solution to the optimization

problem. The cost function is a combination of a cost of intervention and

a running cost given by an increasing function of the distance between the

target rate and the current rate. Mundaca and Oksendal used a standard

brownian motion model for the underlying exchange rate; Cadenillas and

Zapatero used a geometric brownian motion and explicitly computed, for

certain examples, the optimal intervention levels and intervention amounts.

They expressly assume, however, that investors do not observe or an-

ticipate the interventions of the Bank, so that the process driving the rate

dynamics is not affected by interventions. To do otherwise, they said, would

allow investors to learn and anticipate the Bank’s moves, and “would yield

different dynamics for the exchange rate and would probably make the model

intractable” (Cadenillas and Zapatero, 2000).

However, it would be more realistic to be able to solve a model allowing

for the market to notice and react to large price-moving interventions by the

Central Bank. In this paper we overcome the intractability mentioned above

to solve the problem with the same level of explicitness as do Cadenillas and

Zapatero, but allowing for a market reaction to interventions. We assume

that the rate dynamics changes to a different process for a random period

of time T after each intervention (where T is assumed independent of the

rate process), after which it reverts to the pre-intervention process. For
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example, we could imagine that the volatility of the exchange rate might

move to a new, higher level for a period of time after an intervention, to

reflect heightened market uncertainty about the path of rates in the near

term.

We still must retain the assumption that investors do not anticipate

interventions by the Bank. This is much milder than the assumption that

investors do not react to interventions. Indeed, we might expect that the

Bank itself will be revising the parameters used in it’s exchange rate model

as time passes, so that the optimal solution today would not persist due to

the incorporation of new information in the Bank’s model. If this happens,

investors are unlikely to have much confidence in forecasts of the next Bank

intervention. Hence it is not necessary to assume that interventions are

invisible to the market in order to reasonably ignore the market effect of

investor prediction of future intervention times.

We solve our problem by applying the theory of stochastic impulse con-

trol and, as we are able to obtain analytical results, we can compare the

policies with and without a reaction period. In the spirit of Cadenillas and

Zapatero, and since we can provide numerical solutions, we also include

comparative statics analysis about the effects of the changes of parameters

on the optimal intervention strategy.

We consider a currency with exchange rate dynamics modeled by a gen-

eral Itô diffusion, such as a geometric Brownian Motion, which temporarily

changes to a different Itô diffusion during a “reaction period” that lasts for

a finite random time T after each intervention. The Central Bank tries to

keep this exchange rate close to a given target, and there is a running cost
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associated to the difference between the exchange rate and the target. How-

ever, there are also fixed and, optionally, proportional costs associated with

each intervention. In addition, we assume that the Bank is not allowed to

intervene during the temporary reaction period. The objective of this paper

is to find the optimal level of intervention, as well as the optimal sizes of the

interventions, so as to minimize the total cost.

We shall prove that when the exchange rate lies in a specific interval - the

continuation region - the Central Bank must not intervene. However, when

the exchange rate reaches the boundary of that interval – when it enters

the intervention region– then the Central Bank must intervene (as soon as

the reaction time has expired), pushing the exchange rate to yet another

interval, the preferred region inside the continuation region. (In case there

are no proportional intervention costs, the preferred interval degenerates to

a single point.)

The structure of the paper is as follows: in section 2 we formulate the

problem by introducing the exchange rate dynamics and the Central Bank

objective; in section 3 we state the quasi-variational inequalities for this

problem and state sufficient conditions of optimality for this impulse control

problem; in section 4 we solve the problem of Central Bank intervention,

with and without recovery period, and we perform some comparative statics

analysis. In section 5 we present the proof of the main theorem, and we close

the paper with some conclusions.
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2 Problem Statement

Let us denote by Xt;y = Xy(t) the exchange rate process, representing do-

mestic currency units per unit of foreign currency at time t ∈ [0,∞), with

initial value X0;y = y. Suppose that in the absence of intervention Xt;y

follows the stochastic process given by the time-homogeneous SDE

(2.1) dXt;y = µ1(Xt;y)dt+ σ1(Xt;y)dWt,

where Wt is a one-dimensional Brownian motion in a probability space

(Ω,F , P ), and µ1, σ1 are Lipschitz functions on R. If µ1(x) > 0 the cur-

rency experiences a devaluatory pressure and if µ1(x) < 0 a pressure to

appreciate. As a typical example for numerical illustration, we will look at

the special case of geometric brownian motion when µ1 and σ1 are linear,

but our results apply to this more general setting.

Suppose that the dynamics of the exchange rate process reacts temporar-

ily after an intervention takes place: for a random, bounded length of time

T ≥ 0 after an intervention, we suppose that the process is driven by a

new drift µ2 and volatility σ2 (also assumed Lipschitz), after which time the

drift and volatility revert to the original functions. We denote by X̃t;y the

diffusion process followed during this reaction time of length T after each

intervention:

dX̃t;y = µ2(X̃t;y) dt+ σ2(X̃t;y) dWt.

For simplicity we impose the restriction that new interventions are not al-

lowed during this reaction period.

Consider the impulse control ν

ν = (τ1, τ2, ...; ξ1, ξ2, ....) ,
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where (τi) is an infinite increasing sequence of stopping times, and each

ξi : Ω → R is Fτi-measurable. Intuitively, τi indicates the time of the ith

intervention of size ξi.

For a fixed constant 0 < T̄ , the reaction times are an iid sequence

Ti ∈ [0, T̄ ], assumed also independent of the process Wt. We suppose E[Ti] >

0 (since otherwise Ti = 0 and there is no market reaction at all). The

controlled process Xν
t;y, starting at value y, can be written as

dXν
y (t) = dXy(t) 0 ≤ t < τ1(2.2)

Xν
y (τj) = Γ

(
Xν
y (τ−j ), ξj

)
j = 1, 2, ...

dXν
y (t) = dX̃Xν

y (τj)(t) τj ≤ t ≤ τj + Tj

dXν
y (t) = dXXν

y (τj+T )(t) τj + Tj < t < τj+1

for a given function Γ (x, ξj); in particular, we will assume Γ(x, ξ) = x − ξ,

meaning that the intervention at x consists of a downward impulse of size

ξ ∈ R (upward if ξ is negative). Moreover, given the nature of our problem,

we will only consider controls forcing Xν
x(τj) to remain positive.

We consider the performance function

Jν(x) = E

[∫ ∞
0

e−rtf(Xν
x(t))dt+

∑
i

e−rτiK
(
Xν
x(τ−j ), ξj

)]

where K(x, ξ) is a given function that represents the cost of intervention

depending on the state x at intervention and the intervention size ξ. (In

examples we often take K(x, ξ) to be either a constant K or a constant

plus proportional costs K1 +K2|ξ|.) The constant r represents the discount

factor, assumed fixed here, and f is a continuous running cost function, for

example measuring the deviation from a target value.
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The Central Bank wants to use a policy that minimizes the performance

function over all possible admissible controls. Therefore, we define the Value

Function as

V (x) = inf
v∈V

Jν(x)

where V is the set of admissible controls. This value function depends on

the precise definition of admissible – in application it is enough that V

includes all reasonable controls that might be considered in practice. For

our purposes we define V as follows.

Definition 2.1 An impulse control

ν = (τ1, τ2, ...; ξ1, ξ2, ....) ,

is admissible (ν ∈ V) if

(2.3) Xν
x(τi) > 0 for all i,

(2.4) τi+1 − τi ≥ Ti for all i,

(2.5) E

[∫ ∞
0

e−rtf(Xν
x(t)) dt

]
<∞,

and

(2.6) lim
t→∞

E

[∫ ∞
0

(e−rtXν
x(t))2 dt

]
<∞.

Condition (2.4) means that the central bank will not intervene while

the market is still reacting to the previous intervention. This implies that

τn →∞ as n→∞ almost surely: since the Ti have positive mean, the law

of large numbers applies and τn ≥
∑n−1

i=1 Ti → ∞. Conditions (2.5) and
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(2.6) are mild boundedness conditions that will be easily satisfied by any

practical intervention policy and running cost function.

Additionally, let’s define K̃ as the running cost immediately after an

intervention takes place provided that the process restarts from x̄ and that

it remains under the second diffusion regime for a period of time T

K̃(x̄) = E

[∫ T

0
e−rtf(X̃x̄(t))dt

]
.

(Since the sequence (Ti) is iid and independent of X̃, K̃ does not depend on

which intervention has occurred. We write T for a generic random variable

with the same distribution as Ti.)

3 Quasi-variational Inequalities

To solve the impulse control problem formulated above, We will use the

quasi-variational inequalities (QVI) approach (Bensoussan and Lions, 1984),

which involves constructing the value function V (x) as a solution to a system

of inequalities described below. The value function V (x) then determines

the optimal control strategy, called the QVI-control associated to V . Once

we have proved that solutions of the QVI yield the optimal intervention

strategy, this reduces the control problem to the much easier problem of

solving the QVI. We state the general results here and illustrate their use

in the next section.

First, we require an optimal intervention operator M adapted to our

situation. Let R+ = {x ∈ R : x > 0}.

Definition 3.1 For a function φ : R+ → R, and x ∈ R+, ξ ∈ R, define
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operators M and M as follows:

(3.1) M(φ, x, ξ) = K(x, ξ) + K̃(x− ξ) + E
[
e−rTφ(X̃x−ξ(T ))

]
and

(3.2) Mφ(x) = inf
ξ
{M(φ, x, ξ) : x− ξ > 0}.

whenever these are well-defined.

We also need the partial differential operator L given by

(3.3) Lφ =
1
2
σ2

1(x)
∂2

∂x2
φ+ µ1(x)

∂

∂x
φ− rφ.

This operator will be useful in two ways. First, Ito’s formula applied to

any function of the form e−rtφ(Xx(t)), where X is the uncontrolled process

(2.1), gives, for any two times S < U ,

e−rtφ(Xx(t))|US =
∫ U

S
e−rtLφ(Xx(t)) dt(3.4)

+
∫ U

S
e−rtσ1(Xx(t))φ′(Xx(t)) dWt.(3.5)

Second, when there are no interventions, V takes the form

(3.6) V (x) = E

[∫ ∞
0

e−rtf(Xx(t))dt
]

which, if f is bounded and continuous (e.g. Oksendal (2003), ch. 9), satisfies

the equation

(3.7) LV (x) + f(x) = 0.

10



We will see that the solution of our impulse control problem splits the

domain of x in two regions, an intervention and a continuation region. In the

intervention region, where it is optimal to intervene, it should be the case

that V (x) = MV (x). On the other hand, the interval where intervention

is not optimal because MV (x) > V (x), is referred to as the continuation

region, and we have LV (x) + f(x) = 0 in that region. This suggests that

the Value function should satisfy a set of inequalities, which are commonly

known as the Quasi-Variational Inequalities.

Definition 3.2 We say that the function φ satisfies the quasi-variational

inequalities (Q.V.I.) if φ satisfies the following three conditions:

(3.8) Lφ(x) + f(x) ≥ 0,

(3.9) φ(x) ≤Mφ(x),

(3.10) (Lφ(x) + f(x))(φ(x)−Mφ(x)) = 0.

From a solution of the quasi-variational inequalities, we construct the

following control:

Definition 3.3 Let φ be a continuous solution of the QVI. Then, the follow-

ing impulse control is called a QVI-control associated to φ (if it exists):

for every n ∈ N ,

τn := inf{t > τn−1 + Tn−1 : φ(Xν
x(t−)) =Mφ(Xν

x(t−))}

ξn := arg min
{
K(Xν

x(τ−n ), ξ) + K̃(Xν
x(τ−n )− ξ)

+E
[
e−rTφ(X̃Xν

x (τ−n )−ξ(T )|Fτn−
]

: ξ ∈ R, Xν
x(τ−n )− ξ > 0

}
,

where τ0 = 0.
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The arg min above might not be unique, so we do not claim there is only

one QVI-control – though in practice we do observe uniqueness.

The following main theorem permits us to verify that a solution of the

Q.V.I. and the admissible control attached to it solve the impulse control

problem. Denote by L2 the operator defined by

(3.11) L2φ(x) =
1
2
σ2

2(x)
∂2

∂x2
φ(x) + µ2(x)

∂

∂x
φ(x)− rφ(x).

Theorem 3.4 Let φ ∈ C1(R+) be a solution of the QVI and suppose there

is a finite subset N ⊂ R+ such that φ ∈ C2(R+ − N ). If φ satisfies the

growth conditions

(3.12) E

∫ ∞
0

(e−rtσi(Xν
x(t))φ′(Xν

x(t)))2 dt <∞, i = 1, 2,

(3.13) lim
t→∞

E
[
e−rtφ(Xν

x(t))
]

= 0,

and

(3.14) E

[∫ ∞
0

e−rt|L2φ(Xν
x(t))| dt

]
<∞,

for every process Xν
x(t) corresponding to an admissible impulse control ν,

then for every x ∈ R+

V (x) ≥ φ(x).

Moreover, if the QVI-control corresponding to φ is admissible then it is an

optimal impulse control, and for every x ∈ R+

(3.15) V (x) = φ(x).

The theorem is proved in Section 5.
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4 Solving the Q.V.I.

We now illustrate how theorem 3.4 is used in the context of finding the

Central Bank’s optimal impulse control strategy, where we assume for con-

venience that exchange rates evolve as geometric brownian motion. As a

warm-up, we first describe the case T = 0 when there is no market reaction

period. This is the case described by Cadenillas and Zapatero (1999).

4.1 The case without market reaction

A Central Bank desires to keep the exchange rate close to a target ρ using

an impulse control strategy. The admissible controls are the same as above,

except that since T = 0 here we need to replace condition (2.4) with the

admissibility condition

(4.1) P

(
lim
i→∞

τi ≤ t
)

= 0 ∀ t ≥ 0.

Let Xt represent domestic currency units per unit of foreign currency at

time t and suppose that the dynamics of Xt are given by

Xν
x(t) = x+

∫ t

0
µXν

x(s) ds+
∫ t

0
σXν

x(s) dWs +
∞∑
i=1

1{τi<t}ξi,

where ν = (τi, ξi)∞i=1 is an admissible impulse control. This means that

Xν
x(t) follows a geometric Brownian motion in the absence of interventions.

The Central Bank wants to find the optimal impulse control that mini-

mizes the following functional that depends on the control ν

Jν(x) = E

[∫ ∞
0

e−rtf(Xν
x(t)) dt+

∑
i

e−rτig(ξi)1{τi<∞}

]
,
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where

f(x) = (x− ρ)2,

and for ease of exposition in this illustration we take g(ξi) = K, for some

positive constant K, meaning that there are only fixed intervention costs.

The Value Function for this example is

V (x) = inf
ν
Jν(x)

where the infimum is taken over all admissible controls.

Cadenillas and Zapatero (1999) show that the optimal control consists in

forcing an intervention each time the exchange rate process hits the bound-

ary of a band [a, b], and the optimal intervention consists in jumping to a

value α, where a < α < b. (When there are proportional intervention costs

as well, they show that the strategy is to jump to the boundary of a band

properly contained in [a, b].)

They show that the Value Function is

V (x) =


φ(α) +K if x < a

φ(x) = Axγ1 +Bxγ2 +
(

1
r−σ2−2µ

)
x2 − 2ρ

r−µx+ ρ2

r if a ≤ x ≤ b

φ(α) +K if x > b

where γ1,2 = −µ+0.5σ2±
√

(µ−0.5σ2)2+2rσ2

σ2 . The unknown parametersA,B, a, α, b

are found using continuity, optimality, and smooth pasting conditions (as we

will explain in the next subsection). Note that V solves LV (x) + f(x) = 0

in the continuation region, a < x < b. In the intervention region, as there

are no intervention costs, we have that MV (x) = V (α) +K.
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4.2 The case with market reaction

We assume for this example that we have the same intervention and running

costs as above, but now after each intervention the volatility parameter

changes to σ2, perhaps larger than σ, for a time T > 0, representing a

temporary new market regime in reaction to the intervention. During this

reaction time additional intervention is not allowed.

Our method for finding the optimal impulse control strategy is to propose

the form of the optimal control ν (up to some unknown parameters), and

use ν to construct a solution φ to the QVI for which ν is the QVI-control.

If, for the proper choice of parameters, φ and ν satisfy the smoothness and

growth conditions of theorem 3.4, and if ν is admissible, we will be able to

conclude by theorem 3.4 that φ is the value function for the problem and ν

is our desired optimal strategy.

The proposal is that we should intervene each time the exchange rate

process leaves an interval (a, b), as soon as at least time T has elapsed since

the last intervention, and that the optimal intervention consists in shifting

the exchange rate to α, where a < α < b. The constants a, b, and α are as

yet unknown.

If indeed it is optimal to intervene only outside the interval (a, b), then

we will expect φ to satisfy the partial differential equation (3.8) inside the

interval. (The interval (a, b) is called the “continuation region” because

the exchange rate freely follows the original SDE in this interval, after any

reaction period.)

Therefore, solving

Lφ(x) + f(x) = 0

15



we obtain, for a < x < b,

φ(x) = Axγ1 +Bxγ2 +
(

1
r − σ2 − 2µ

)
x2 − 2ρ

r − µ
x+

ρ2

r

where γ1,2 = −µ+0.5σ2±
√

(µ−0.5σ2)+2rσ2

σ2 , and A and B are yet to be found.

We need to compute the running cost K̃ incurred during the reaction

period T :

K̃(x) = E

[∫ T

0
e−rt(X̃x(t)− ρ)2 dt

]
.

Given that X̃x(t) follows a Geometric Brownian Motion with drift µ and

volatility σ2, the above integral can be computed analytically, because since

T is independent of the process Wt, the expectation over T can be computed

separately:

K̃(x) = E

[∫ T

0
e−rt(x2e2(µt− 1

2
σ2
2t+σ2Wt) − 2e−rt(e(µt− 1

2
σ2
2t+σ2Wt)ρx+ ρ2) dt

]
= E

[∫ T

0
e−rt

(
x2e2µ t+σ2

2 t − 2 ρ xeµ t + ρ2
)
dt

]
where we have used E[eσ2Wt ] = e

1
2
σ2
2t.

The boundary conditions at the intervention points a, b can be found

using continuity and the condition φ = Mφ, with the operator M defined

by equation (3.2), and α denoting a minimizer in the definition of M:

α = arg min
(
K + K̃(α) + E[e−rTφ(X̃α(T ))]

)
.

We obtain

(4.2) φ(a) = K + K̃(α) + E
[
e−rTφ(X̃α(T ))

]
where for each fixed T , E

[
e−rTφ(X̃α(T ))

]
is given by

e−rT
{∫ b

a
φ(x)p(x;α) dx+ φ(a)

∫ a

−∞
p(x;α) dx+ φ(b)

∫ ∞
b

p(x;α) dx
}
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and p(x;α) is the probability density of a Log-Normal distribution as log(X̃α(T ))

is normally distributed with mean lnα+µT − 1
2σ

2
2T and standard deviation

σ2

√
T . A similar equation applies for φ(b),

(4.3) φ(b) = K + K̃(α) + E
[
e−rTφ(X̃α(T ))

]
.

In addition we have the “smooth pasting requirement” (the C1 condi-

tion), needed for the application of theorem 3.4

(4.4) φ′(a) = 0,

(4.5) φ′(b) = 0,

and the optimality of α, which implies solving

(4.6)
d

dα

(
K̃(α) + E

[
e−rT

∫ +∞

−∞
p(x;α)φ(x) dx

])
= 0,

where the expectation here is over the distribution of T , which is an implicit

parameter in p(x;α).

The above equations can be solved to obtain the parameters A,B, a, b

and α, and the Value function has the same structure as in the case without

market reaction, but with these different parameters:

V (x) =


K + K̃(α) + E[e−rTφ(X̃α(T ))] if x < a

φ(x) = Axγ1 +Bxγ2 +
(

1
r−σ2−2µ

)
x2 − 2ρ

r−µx+ ρ2

r if a ≤ x ≤ b

K + K̃(α) + E[e−rTφ(X̃α(T ))] if x > b

Note that by construction this function is continuous at a and b, and we

denote the common value by

Θ := φ(a) = φ(b) = K + K̃(α) + E[e−rTφ(X̃α(T ))].
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Finally, to complete the solution, we must verify the hypotheses of the-

orem 3.4 to conclude that this is indeed the Value Function, and that the

proposed policy is optimal:

Theorem 4.1 Let A,B, a, b, α be a solution of the system of equations (4.2)

- (4.6) with a < α < b, and let Θ be the constant defined above. Consider

the C1 function V (x) : (0,∞)→ [0,∞) defined by

(4.7) V (x) = φ(x) = Axγ1 +Bxγ2 +
(

1
r − σ2 − 2µ

)
x2 − 2ρ

r − µ
x+

ρ2

r

for a < x < b, and V (x) = Θ otherwise.

If

(4.8) a < ρ− (rΘ)1/2 and b > ρ+ (rΘ)1/2,

and

(4.9) V (α) < Θ,

then V (x) is the Value Function; namely,

V (x) = inf
ν
Jν(x)

and the optimal policy is the QVI-control corresponding to V , given by

τi = inf{t >= τi−1 + Ti−1 : Xν(t) /∈ (a, b)}

and

Xν(τi) = Xν(τ−i )− ξi = α.

Proof: We start by showing that V satisfies the Q.V.I.:
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First QVI Inequality: From the definition of V ,

LV (x) + f(x) = −rΘ + (x− ρ)2

when x < a or x > b, and

LV (x) + f(x) = Lφ(x) + (x− ρ)2

when a ≤ x ≤ b.

By construction of φ, Lφ(x) + (x− ρ)2 = 0 in the interval [a, b]; outside

the interval we have that Lφ(x) + (x− ρ)2 > 0 because of conditions (4.8).

Second QVI Inequality: From the definitions ofM and α, we haveMV (x) =

K + K̃(α) + E[e−rTV (α)] = Θ for all x. Therefore, MV (x) = V (x) for

x /∈ [a, b]. We need to show that V (x) ≤ Θ for all x ∈ (a, b), from which we

can conclude MV (x) ≤ V (x).

To see this, notice that on the interval (a, b), the third derivative V ′′′ is

of the form c1x
d1 +c2x

d2 , which can have at most one zero on R+. Therefore

the second derivative V ′′ can change sign at most twice in (a, b). Because

V (a) = V (b) = Θ and V ′(a) = V ′(b) = 0, this means V (x)−Θ cannot take

both signs on [a, b] – this would imply at least three sign changes for the

second derivative – so we must either have V (x) ≤ Θ or V (x) ≥ Θ for all x.

Because of (4.9), it must be the former.

Third QVI Inequality: Holds as a result of the above arguments.

To verify the remaining conditions of theorem 3.4, first note that V ′(x)

is bounded, so condition (3.12) holds via the admissibility condition (2.6).

Condition (3.13) is immediately satisfied because V is bounded. Condition

(3.14) is satisfied because V ′′ is bounded, even though discontinuous at a

and b.
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Finally, the QVI control given above is admissible: condition (2.3) holds

since X is lognormal and α > 0; condition (2.4) holds by construction; and

conditions (2.5) and (2.6) hold because X and X̃ are lognormal and Xν is

bounded inside [a, b] except for possible excursions for a duration at most

T̄ .

4.3 Numerical Example:

Consider ρ = 1.4, r = 0.06, µ = 0.1, σ = 0.3, σ2 = 0.4, K = 0.5, and a fixed

recovery time T = 1.

A searching algorithm was implemented to obtain the parametersA,B, a, b

and α that solve the system of equations (4.2) - (4.6). The key element that

allows solving the expectation E
[
e−rTφ(X̃α(T ))

]
on equations (4.2), (4.3),

and (4.6) is realizing that φ(x) is constant outside (a, b). For fixed T , the

expectation can then be expressed as:

e−rT
{∫ b

a
φ(x)p(x;α) dx+ φ(a)

∫ a

−∞
p(x;α) dx+ φ(b)

∫ ∞
b

p(x;α) dx
}
.

These integrals can be computed for a given trial set of parameters A,B, a, b

and α. Note that the Log-Normal probability density depends on α and T .

If T is random with a given probability density, additional integration is

required. Finally, it is important to mention that the evaluation of the

expectation for the case of fixed and proportional transactions costs is still

possible with some modifications.

Table 1 and figure 1 compare the policy results with and without the

reaction period. The coefficients A and B are found to be −1.330 and

−93.064 when T = 0 and −1.193 and −92.759 when T = 1. (Conditions
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(4.8) are easily verified.)

The new regime after interventions requires a modification in the policy

observed by the Central Bank: the intervention points are different, notice

that the band is widened; in addition, the amount of intervention is also

different, as the new restarting value α indicates. The presence of a market

reaction leads to the need for greater patience by the Central Bank, less

frequent but larger interventions, and greater optimal costs.

4.4 Comparative Statics Analysis

One of the main advantages of obtaining analytical solutions is that com-

parative analysis can be performed. If a Central Bank knows what type of

reaction to expect from the market after performing interventions – namely,

an increase (decrease) in volatility, or an increase (decrease) in the trend on

the dynamics of its currency – then the optimal policy can be found.

In table 2 we present the optimal policy in four different scenarios. Both

the bands and the intervention sizes depend on the nature of the reaction

of the market during the reaction time after interventions. It is reasonable

to suppose volatility increases after interventions and, as we showed above,

this implies a wider band than in the case without market reaction. For

comparison purposes we also computed the case when the volatility decreases

during the reaction period; in this case the band shrinks. It could also be

the case that the trend of the currency is modified as a temporary outcome

of the intervention; perhaps reflecting the sentiment of the market with

respect to the confidence on the Central Bank’s actions. It is interesting to

observe that the band widens if the drift trend increases or decreases and,
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as expected, the optimal restarting point is closer to the long term target

ρ = 1.4 when the drift is lowered during the reaction period.

In table 3 we show the effect of varying T for the case when the market

reaction is a temporary volatility increase to σ2 = 0.4. Observe that as T

increases the band widens. We conclude the analysis with the optimal policy

when the reaction time T is uniformly distributed between 0 and 1.

5 Proof of Theorem

Before we prove the theorem, we need the following lemma:

Lemma 5.1 Let ν be an admissible control, and let σ be an intervention

time for ν. If the function φ satisfies φ ≤ Mφ and the growth condition

(3.12), then we have the inequality

e−rσ
(
φ(Xν

x(σ−))− φ(Xν
x(σ))

)
≤ e−rσK + E

[∫ σ+T

σ
e−rt(L2φ(Xν

x(t)) + f(Xν
x(t)) dt|Fσ

]
,

with equality if φ =Mφ, and where L2 is the operator defined by

(5.1)
1
2
σ2

2(x)
∂2

∂x2
+ µ2(x)

∂

∂x
− r.

Proof: Application of Ito’s formula (3.4) to e−rtφ(Xν
x(t)) gives

e−r(σ+T )φ(Xν
x(σ + T )) = e−rσφ(Xν

x(σ)) +
∫ σ+T

σ
e−rtL2φ(Xν

x(t)) dt

+
∫ σ+T

σ
e−rtσ2(Xν

x(t))φ′(Xν
x(t)) dWt,

because between times σ and σ+T the controlled process follows the second

diffusion. Taking conditional expectations we obtain

(5.2) E
[
e−r(σ+T )φ(Xν

x(σ + T )) | Fσ
]

= e−rσφ(Xν
x(σ))
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+E
[∫ σ+T

σ
e−rtL2φ(Xν

x(t)) dt+
∫ σ+T

σ
e−rtσ2(Xν

x(t))φ′(Xν
x(t)) dWt | Fσ

]
= e−rσφ(Xν

x(σ)) + E

[∫ σ+T

σ
e−rtL2φ(Xν

x(t)) dt | Fσ
]

where the stochastic integral vanishes by condition (3.12) and that fact that

the Ito integral is a martingale.

Now, the inequality φ ≤Mφ says that for any positive z and y,

φ(z)− E
[
e−rTφ(X̃ν

y (T ))
]
≤ K + K̃(y)

= K + E

∫ T

0
e−rtf(X̃ν

y (t)) dt,

Therefore, using z = Xν
x(σ−), y = Xν

x(σ), this equation can be written

as

φ(Xν
x(σ−))− E

[
e−rTφ(Xν

x(σ + T )) | Fσ
]

≤ K + E

[∫ σ+T

σ
e−r(t−σ)f(Xν

x(t)) dt | Fσ
]

Multiplying by e−rσ we obtain

e−rσφ(Xν
x(σ−))− E

[
e−r(σ+T )φ(Xν

x(σ + T ))|Fσ
]

≤ e−rσK + E

[∫ σ+T

σ
e−rtf(Xν

x(t))dt|Fσ
]
,

therefore using (5.2) we have

e−rσφ(Xν
x(σ−))− e−rσφ(Xν

x(σ)) ≤ E

[∫ σ+T

σ
e−rtL2φ(Xν

x(t)) dt | Fσ
]

+ e−rσK + E

[∫ σ+T

σ
e−rtf(Xν

x(t)) dt | Fσ
]
,

which is the desired result.

We now prove theorem 3.4.
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Proof: Consider any admissible control v = {(τn,∆Xn)}n∈N , and let

τ0 = 0.

Define the stopping time τ∗(t) = max{τi : τi ≤ t}; note τ∗(t) → ∞ as

t→∞ almost surely since τi →∞ a.s.

We need to estimate the quantity

(5.3) e−rτ
∗(t)φ(Xν

x(τ∗(t)))− φ(x) = A+B

where A and B are the finite sums given by

A =
∞∑
i=1

1{τi≤t}
(
e−rτiφ(Xν

x(τ−i ))− e−rτi−1φ(Xν
x(τi−1))

)
and

B =
∞∑
i=1

1{τi≤t}e
−rτi

(
φ(Xν

x(τi)− φ(Xν
x(τ−i ))

)
.

For the term in the first summation A, in the event {τi ≤ t}, when i =

2, 3, . . . , n, an application of Ito’s formula gives

e−rτiφ(Xν
x(τ−i ))− e−rτi−1φ(Xν

x(τi−1)) =
∫ τi−1+T

τi−1

e−rsL2φ(Xν
x(s)) ds

+
∫ τi

τi−1+T
e−rsLφ(Xν

x(s)) ds

+
∫ τi−1+T

τi−1

e−rsφ′(Xν
x(s))σ2(Xν

x(s)) dWs

+
∫ τi

τi−1+T
e−rsφ′(Xν

x(s))σ1(Xν
x(s)) dWs.
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Using QVI inequality (3.8), Lφ+ f ≥ 0, this expression becomes

e−rτiφ(Xν
x(τ−i ))− e−rτi−1φ(Xν

x(τi−1)) ≥
∫ τi−1+T

τi−1

e−rsL2φ(Xν
x(s)) ds

+
∫ τi

τi−1+T
e−rs(−f(Xν

x(s)) ds

+
∫ τi−1+T

τi−1

e−rsφ′(Xν
x(s))σ2(Xν

x(s)) dWs

+
∫ τi

τi−1+T
e−rsφ′(Xν

x(s))σ1(Xν
x(s)) dWs,

with equality when Lφ+ f = 0. For i = 1 we have, similarly,

e−rτiφ(Xν
x(τ−i ))− e−rτi−1φ(Xν

x(τi−1))

=
∫ τi

τi−1

e−rsLφ(Xν
x(s)) ds+

∫ τi

τi−1

e−rsφ′(Xν
x(s))σ1(Xν

x(s)) dWs,

≥
∫ τi

τi−1

e−rs(−f(Xν
x(s))) ds+

∫ τi

τi−1

e−rsφ′(Xν
x(s))σ1(Xν

x(s)) dWs.

For the term in the second summation B of equation (5.3), we use lemma

5.1 so that in the event {τi ≤ t} we have

e−rτi
(
φ(Xν

x(τi)− φ(Xν
x(τ−i ))

)
≥ −e−rτiK − E

[∫ τi+T

τi

e−rs (L2φ(Xν
x(s)) + f(Xν

x(s)) ds|Fτi
]
,

with equality when φ =Mφ.

Therefore, reversing the sign and writing the i = 1 and i > 1 terms

separately, equation (5.3) becomes

(5.4) φ(x)− e−rτ∗(t)φ(Xν
x(τ∗(t))) ≤ I1 + I2

where I1 and I2 correspond the terms i = 1 and i = 2, . . . , n; namely,

I1 = 1{τ1≤t}

(
e−rτ1K + E

[∫ τ1+T

τ1

e−rs(L2φ(Xν
x(s)) + f(Xν

x(s))) ds|Fτ1
]

+
∫ τ1

τ0

e−rsf((Xν
x(s))) ds−

∫ τ1

τ0

e−rsφ′(Xν
x(s))σ1(Xν

x(s)) dWs

)
,
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I2 =
∞∑
i=2

1{τi≤t}

{[
e−rτiK + E

[∫ τi+T

τi

e−rs(L2φ(Xν
x(s)) + f(Xν

x(s))) ds|Fτi
]]

−
∫ τi−1+T

τi−1

e−rsL2φ(Xν
x(s)) ds+

∫ τi

τi−1+T
e−rsf(Xν

x(s)) ds

−
∫ τi−1+T

τi−1

e−rsφ′(Xν
x(s))σ2(Xν

x(s)) dWs −
∫ τi

τi−1+T
e−rsφ′(Xν

x(s))σ1(Xν
x(s)) dWs

}
.

We now take expectations on both sides of equation (5.4)

(5.5) φ(x)− E
[
e−rτ

∗(t)φ(Xν
x(τ∗(t)))

]
≤ E[I1] + E[I2],

and realize that the expectations of the stochastic integrals vanish because

of condition (3.12). If we collect all terms of the right hand side where the

integrand is f(Xν
x(t)), we have

E

[
1{τ1≤t}

(
E

[∫ τ1+T

τ1

e−rsf(Xν
x(s)) ds|Fτ1

]
+
∫ τ1

τ0

e−rsf((Xν
x(s))) ds

)]
+ E

[ ∞∑
i=2

1{τi≤t}

(
E

[∫ τi+T

τi

e−rs(f(Xν
x(s))) ds|Fτi

]
+
∫ τi

τi−1+T
e−rsf(Xν

x(s)) ds

)]

= E

[∫ τ∗(t)+T

0
e−rsf(Xν

x(s)

]
,

where we have used τ0 = 0 and

E

[
E[
∫ τi+T

τi

e−rs(f(Xν
x(s))) ds] | Fτi

]
= E

[∫ τi+T

τi

e−rs(f(Xν
x(s))) ds

]
.
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Collecting all terms where the integrand is L2φ(Xν
x(t)) in equation (5.5)

we obtain

1{τ1≤t}E
(
E

[∫ τ1+T

τ1

e−rs(L2φ(Xν
x(s))) ds|Fτ1

])
+

∞∑
i=2

1{τi≤t}

{
E

(
E

[∫ τi+T

τi

e−rs(L2φ(Xν
x(s))) ds|Fτi

])

− E

[∫ τi−1+T

τi−1

e−rsL2φ(Xν
x(s)) ds

]}

= E

[∫ τ∗(t)+T

τ∗(t)
e−rsL2φ(Xν

x(s)) ds

]
.

Hence, equation 5.5 becomes

(5.6) φ(x)− E
[
e−rτ

∗(t)φ(Xν
x(τ∗(t)))

]
≤ E[

∫ τ∗(t)

0
e−rsf(Xν

x(s)) ds+
∫ τ∗(t)+T

τ∗(t)
e−rs(f(Xν

x(s)) + L2φ(Xν
x(s))) ds

+
∞∑
i=1

1{τi≤t}e
−rτiK].

Now, let t go to infinity, notice that condition (3.13) tells us that the

left-hand side becomes

lim
t→∞

φ(x)− E[e−rτ
∗(t)φ(Xν

x(τ∗(t)))] = φ(x),

while condition (3.14), the admissibility condition (2.5), and the dominated

convergence theorem imply that

E

[∫ τ∗(t)+T

τ∗(t)
e−rs(f(Xν

x(s)) + L2φ(Xν
x(s))) ds

]
→ 0 as t→∞.

Therefore,

φ(x) ≤ E

[ ∞∑
i=1

1{τi<∞}e
−rτiK +

∫ ∞
0

e−rsf(Xν
x(s)) ds

]
.
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Hence we have shown that

φ(x) ≤ Jv(x).

As this is true for any control v, we have

φ(x) ≤ V (x).

Now, the above inequalities become equalities for the QVI-control associated

to φ.

6 Conclusions

We have addressed the problem of Central Bank intervention in the ex-

change rate market incorporating the effect of a temporary market reaction,

of random duration, affecting the dynamics of the exchange rate process.

The reaction time T can have any bounded non-negative distribution pro-

vided it is stationary and independent of the rate process. Using the Quasi-

Variational Inequalities approach to impulse control problems, we presented

a verification theorem that allows us to find the optimal policy and the Value

Function for the problem. The main technical innovation is the use of a new

optimal intervention operator M adapted to this setting.

We obtained an explicit solution of the problem for geometric brownian

motion, and showed how the optimal policies are influenced by the presence

of the reaction period after interventions. If volatility is assumed to jump up

temporarily after interventions, the result is that the target band widens and

the optimal costs increase. The band narrows if interventions are assumed

to cause a decrease in volatility; a change of drift in either direction causes
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the band to widen slightly. Thus, in most cases, Banks should optimally

intervene a little less often than they would if interventions were completely

invisible to the FX market.

It would be interesting to extend these results in various ways. Can

the assumption that no interventions are allowed during the reaction period

be relaxed or removed? What if the reaction time is not independent of

the process? What if the drift and volatility during the reaction time are

random rather than fixed? These are topics for further work.
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Table 1: Optimal Policy with and without a recovery period.

Reaction Period a b α

None (T = 0) 0.622 2.307 1.249

T = 1 0.581 2.365 1.212
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Table 2: Optimal policy for different market reactions.

Type of reaction a b α

No reaction (σ1 = σ2 = 0.30, µ2 = µ1 = 0.10) 0.622 2.307 1.249

Volatility increases (σ2 = 0.40, µ2 = 0.10) 0.581 2.365 1.212

Volatility decreases (σ2 = 0.10, µ2 = 0.10) 0.678 2.230 1.235

Drift increases (σ2 = 0.30, µ2 = 0.15) 0.618 2.314 1.186

Drift decreases (σ2 = 0.30, µ2 = 0.05) 0.621 2.309 1.275

Table 3: Optimal Policy for different reaction time periods when volatility

increases during the reaction time.

Reaction Period a b α

None (T = 0) 0.622 2.307 1.249

T = 1 0.581 2.365 1.212

T = 2 0.516 2.461 1.072

T ∼ U [0, 1] 0.602 2.336 1.242
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without reaction period
with reaction period

Figure 1: Value function with one and two volatility regimes. The optimal

strategy is more expensive if there are two volatility regimes and a positive

reaction period.
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