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Abstract. We consider the infinite family of Feynman graphs known as the “banana

graphs” and compute explicitly the classes of the corresponding graph hypersurfaces

in the Grothendieck ring of varieties as well as their Chern–Schwartz–MacPherson
classes, using the classical Cremona transformation and the dual graph, and a blowup

formula for characteristic classes. We outline the interesting similarities between these

operations and we give formulae for cones obtained by simple operations on graphs.
We formulate a positivity conjecture for characteristic classes of graph hypersurfaces

and discuss briefly the effect of passing to noncommutative spacetime.

1. Introduction

Since the extensive study of [15] revealed the systematic appearance of multiple zeta
values as the result of Feynman diagram computations in perturbative quantum field the-
ory, the question of finding a direct relation between Feynman diagrams and periods of
motives has become a rich field of investigation. The formulation of Feynman integrals
that seems most suitable for an algebro-geometric approach is the one involving Schwinger
and Feynman parameters, as in that form the integral acquires directly an interpretation
as a period of an algebraic variety, namely the complement of a hypersurface in a projective
space constructed out of the combinatorial information of a graph. These graph hyper-
surfaces and the corresponding periods have been investigated in the algebro-geometric
perspective in the recent work of Bloch–Esnault–Kreimer ([10], [11]) and more recently,
from the point of view of Hodge theory, in [12] and [26]. In particular, the question of
whether only motives of mixed Tate type would arise in the quantum field theory context
is still unsolved. Despite the general result of [8], which shows that the graph hypersur-
faces are general enough from the motivic point of view to generate the Grothendieck ring
of varieties, the particular results of [15] and [11] point to the fact that, even though the
varieties themselves are very general, the part of the cohomology that supports the period
of interest to quantum field theory might still be of the mixed Tate form.

One complication involved in the algebro-geometric computations with graph hyper-
surfaces is the fact that these are typically singular, with a singular locus of small codi-
mension. It becomes then an interesting question in itself to estimate how singular the
graph hypersurfaces are, across certain families of Feynman graphs (the half open ladder
graphs, the wheels with spokes, the banana graphs etc.). Since the main goal is to de-
scribe what happens at the motivic level, one wants to have invariants that detect how
singular the hypersurface is and that are also somehow adapted to its decomposition in
the Grothendieck ring of motives. In this paper we concentrate on a particular example
and illustrate some general methods for computing such invariants based on the theory of
characteristic classes of singular varieties.

Part of the purpose of the present paper is to familiarize physicists working in pertur-
bative quantum field theory with some techniques of algebraic geometry that are useful
in the analysis of graph hypersurfaces. Thus, we try as mush as possible to spell out
everything in detail and recall the necessary background.
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In §1, we begin by recalling the general form of the parametric Feynman integrals for
a scalar field theory and the construction of the associated projective graph hypersurface.
We recall the relation between the graph hypersurface of a planar graph and that of
the dual graph via the standard Cremona transformation. We then present the specific
example of the infinite family of “banana graphs”. We formulate a positivity conjecture
for the characteristic classes of graph hypersurfaces.

For the convenience of the reader, we recall in §2 some general facts and results, both
about the Grothendieck ring of varieties and motives, and about the theory of characteristic
classes of singular algebraic varieties. We outline the similarities and differences between
these constructions.

In §3 we give the explicit computation of the classes in the Grothendieck ring of the
hypersurfaces of the banana graphs. We conclude with a general remark on the relation
between the class of the hypersurface of a planar graph and that of a dual graph.

In §4 we obtain an explicit formula for the Chern–Schwartz–MacPherson classes of
the hypersurfaces of the banana graphs. We first prove a general pullback formula for
these classes, which is necessary in order to compute the contribution to the CSM class of
the complement of the algebraic simplex in the graph hypersurface. The formula is then
obtained by assembling the contribution of the intersection with the algebraic simplex and
of its complement via inclusion–exclusion, as in the case of the classes in the Grothendieck
ring.

We give then, in §5, a formula for the CSM classes of cones on hypersurfaces and
use them to obtain formulae for graph hypersurfaces obtained from known one by simple
operations on the graphs, such as doubling or splitting an edge, and attaching single-edge
loops or trees to vertices.

Finally, in §6, we look at the deformations of ordinary φ4 theory to a noncommutative
spacetime given by a Moyal space. We look at the ribbon graphs that correspond to
the original banana graphs in this noncommutative quantum field theory. We explain
the relation between the graph hypersurfaces of the noncommutative theory and of the
original commutative one. We show by an explicit computation of CSM classes that in
noncommutative QFT the positivity conjecture fails for non-planar ribbon graphs.

Acknowledgment. The first author is partially supported by NSA grant H98230-07-
1-0024. The second author is partially supported by NSF grant DMS-0651925. We thank
the Max–Planck–Institute and Florida State University, where part of this work was done.
We also thank Abhijnan Rej for exchanges of numerical computations of CSM classes of
graph hypersurfaces.

1.1. Parametric Feynman integrals. We briefly recall some well known facts (cf. §6-2-3
of [23], §18 of [9], and §6 of [27]) about the parametric form of Feynman integrals.

Given a scalar field theory with Lagrangian written in Euclidean signature as

(1.1) L(φ) =
1
2
(∂φ)2 +

m2

2
φ2 + Lint(φ),

where the interaction part is a polynomial function of φ, a one-particle-irreducible (1PI)
Feynman graph of the theory is a connected graph Γ which cannot be disconnected by
removing a single edge, and with the following properties. All vertices in V (Γ) have
valence equal to the degree of one of the monomials in the Lagrangian. The set of edges
E(Γ) = Eint(Γ) ∪ Eext(Γ) consists of internal edges having two end vertices and external
ones having only one vertex. A Feynman graph without external edges is called a vacuum
bubble.

In perturbative quantum field theory, the Feynman integrals associated to the loop
number expansion of the effective action for a scalar field theory are labeled by the 1PI
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Feynman graphs of the theory, each contributing a corresponding integral of the form

(1.2) U(Γ, p) =
Γ(n−D`/2)

(4π)`D/2

∫
[0,1]n

δ(1−
∑

i ti)
ΨΓ(t)D/2VΓ(t, p)n−D`/2

dt1 · · · dtn.

Here n = #Eint(Γ) is the number of internal edges of the graph Γ, D ∈ N is the spacetime
dimension in which the scalar field theory is considered, and ` = b1(Γ) is the number of
loops in the graph, i.e. the rank of H1(Γ, Z). The function ΨΓ is a polynomial of degree
` = b1(Γ). It is given by the Kirchhoff polynomial

(1.3) ΨΓ(t) =
∑
T⊂Γ

∏
e/∈E(T )

te,

where the sum is over all the spanning trees T of Γ. The function VΓ(t, p) is a rational
function of the form

(1.4) VΓ(t, p) =
PΓ(t, p)
ΨΓ(t)

,

where PΓ is a homogeneous polynomial of degree ` + 1 = b1(Γ) + 1 of the form

(1.5) PΓ(p, t) =
∑
C⊂Γ

sC

∏
e∈C

te,

Here the sum is over the cut-sets C ⊂ Γ, i.e. the collections of b1(Γ) + 1 edges that divide
the graph Γ in exactly two connected components Γ1∪Γ2. The coefficient sC is a function
of the external momenta attached to the vertices in either one of the two components

(1.6) sC =

 ∑
v∈V (Γ1)

Pv

2

=

 ∑
v∈V (Γ2)

Pv

2

,

where the Pv are defined as

(1.7) Pv =
∑

e∈Eext(Γ),t(e)=v

pe,

where the pe are incoming external momenta attached to the external edges of Γ and
satisfying the conservation law

(1.8)
∑

e∈Eext(Γ)

pe = 0.

The divergence properties of the integral (1.2) can be estimated in terms of the “superfi-
cial degree of divergence”, which is measured by the quantity n−D`/2. The integral (1.2)
is called logarithmically divergent when n−D`/2 = 0. The example of the banana graphs
we concentrate on below has n = ` + 1, so that we find n−D`/2 = (1−D/2)` + 1 < 0 for
D > 2 and ` ≥ 2. In this case, we write the integral (1.2) in the form

(1.9) U(Γ, p) =
Γ(n−D(n− 1)/2)

(4π)(n−1)D/2

∫
σn

PΓ(p, t)−n+D(n−1)/2 ωn

ΨΓ(t)n(−1+D/2)
,

where ωn is the volume form and the domain of integration is the topological simplex

(1.10) σn = {(t1, . . . , tn) ∈ Rn
+ |
∑

i

ti = 1}.

The 1PI condition on Feynman graphs comes from the fact of considering the pertur-
bative expansion of the effective action in quantum field theory, which reduces the combi-
natorics of graphs to just those that are connected and 1PI. In terms of the expression of
the Feynman integral, the 1PI condition is reflected in the fact that only the propagators
for internal edges appear. The parametric form we described above therefore depends on
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this assumption. However, for the algebro-geometric arguments that constitute the main
content of this paper, the 1PI condition is not strictly necessary.

1.2. Feynman graphs, varieties, and periods. The graph polynomial ΨΓ(t) of (1.3)
also admits a description as determinant

(1.11) ΨΓ(t) = det MΓ(t)

of an `× `-matrix MΓ(t) associated to the graph ([27], §3 and [9], §18), of the form

(1.12) (MΓ)kr(t) =
n∑

i=1

tiηikηir,

where the n × `-matrix ηik is defined in terms of the edges ei ∈ E(Γ) and a choice of a
basis for the first homology group, lk ∈ H1(Γ, Z), with k = 1, . . . , ` = b1(Γ), by setting

(1.13) ηik =


+1 edge ei ∈ loop lk, same orientation

−1 edge ei ∈ loop lk, reverse orientation

0 otherwise,

after choosing an orientation of the edges.
Notice how the result is independent of the choice of the orientation of the edges and

of the choice of the basis of H1(Γ, Z). In fact, a change of orientation in a given edge
results in a change of sign to one of the columns of the matrix ηki, which is compensated
by the change of sign in the corresponding row of the matrix ηir, so that the determinant
det MΓ(t) is unaffected. Similarly, a change in the choice of the basis of H1(Γ, Z) has the
effect of changing MΓ(t) 7→ AMΓ(t)A−1 for some A ∈ GL(`, Z) and the determinant is
again unchanged.

The graph hypersurface XΓ is by definition the zero locus of the Kirchhoff polynomial,

(1.14) XΓ = {t = (t1 : . . . : tn) ∈ Pn−1 |ΨΓ(t) = 0}.

Since ΨΓ is homogeneous, it defines a hypersurface in projective space.
The domain of integration σn defines a cycle in the relative homology Hn−1(Pn−1,Σn),

where Σn is the algebraic simplex (the union of the coordinate hyperplanes, see (1.16)
below). The Feynman integral (1.2), (1.9) then can be viewed ([11],[10]) as the evaluation
of an algebraic cohomology class in Hn−1(Pn−1 r XΓ,Σ r Σ ∩ XΓ) on the cycle defined
by σn. In this sense, it can be viewed as the evaluation of a period of the algebraic
variety given by the complement of the graph hypersurface. To understand the nature
of this period, one is faced with two main problems. One is eliminating divergences
(regularization and renormalization of Feynman integrals), and the other is understanding
what kind of motives are involved in the part of the hypersurface complement Pn−1 r XΓ

that is involved in the evaluation of the period, hence what kind of transcendental numbers
one expects to find in the evaluation of the corresponding Feynman integrals. A detailed
analysis of these problems was carried out in [11]. The examples we concentrate on in
this paper are not especially interesting from the motivic point of view, since they are
expressible in terms of pure Tate motives (cf. [10]), but they provide us with an infinite
family of graphs for which all computations are completely explicit.

1.3. Dual graphs and Cremona transformation. In the case of planar graphs, there
is an interesting relation between the hypersurface of the graph and the one of the dual
graph. This will be especially useful in the explicit calculation we perform below in the
special case of the banana graphs. We recall it here in the general case of arbitrary planar
graphs.
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The standard Cremona transformation of Pn−1 is the map

(1.15) C : (t1 : · · · : tn) 7→
(

1
t1

: · · · : 1
tn

)
.

This is a priori defined away from the algebraic simplex of coordinate axes

(1.16) Σn = {(t1 : · · · : tn) ∈ Pn−1 |
∏

i

ti = 0} ⊂ Pn−1,

though we see in Lemma 1.2 below that it is well defined also on the general point of Σn,
its locus of indeterminacies being only the singularity subscheme of Σn.

Let G(C) denote the closure of the graph of C. Then G(C) is a subvariety of Pn−1×Pn−1

with projections

(1.17) G(C)
π1

����
��

��
�

π2

��?
??

??
??

Pn−1 C //______ Pn−1

Lemma 1.1. Using coordinates (s1 : · · · : sn) for the target Pn−1, the graph G(C) has
equations

(1.18) t1s1 = t2s2 = · · · = tnsn.

In particular, this describes G(C) as a complete intersection of n − 1 hypersurfaces in
Pn−1 × Pn−1 with equations tisi = tnsn, for i = 1, . . . , n− 1.

Proof. The equations (1.18) clearly cut out G(C) over the open set U ⊂ Pn where all t-
coordinates are nonzero. Since every component of a scheme defined by n−1 equations has
codimension ≤ n−1, it suffices to show that equations (1.18) define a set of codimension >
n−1 over the complement of U . Now assume that at least one of the t-coordinates equal 0.
Without loss of generality, suppose tn = 0. Intersecting with the locus defined by (1.18)
determines the set with equations

t1s1 = · · · = tn−1sn−1 = tn = 0 ,

which has codimension n > n− 1, as promised. �

It is not hard to see that the variety G(C) has singularities in codimension 3. It is
nonsingular for n = 2, 3, but singular for n ≥ 4.

The open set U as above is the complement of the divisor Σn of (1.16). The inverse
image of Σn in G(C) can be described easily. It consists of the points

((t1 : · · · : tn), (s1 : · · · : sn))

such that
{i | ti = 0} ∪ {j | sj = 0} = {1, . . . , n} .

This locus consists of 2N − 2 components of dimension n − 2: one component for each
nonempty proper subset I of {1, . . . , n}. The component corresponding to I is the set of
points with ti = 0 for i ∈ I and sj = 0 for j 6∈ I.

The situation for n = 3 is well represented by the famous picture of Figure 1. The
three zero-dimensional strata of Σ3 are blown up in G(C) as we climb the diagram from
the lower left to the top. The proper transforms of the one dimensional strata are blown
down as we descend to the lower right. The horizontal rational map is an isomorphism
between the complements of the triangles. The inverse image of Σ3 consists of 23 − 2 = 6
components, as expected.

Of course the situation is completely symmetric: the algebraic simplex (1.16) may be
embedded in the target Pn as well (with equation

∏
i si = 0). One has π−1

1 (Σn) = π−1
2 (Σn).
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Figure 1. The Cremona transformation in the case n = 3.

Let Sn ⊂ Pn−1 be the subscheme defined by the ideal

(1.19) ISn
= (t1 · · · tn−1, t1 · · · tn−2tn, . . . , t1t3 · · · tn, t2 · · · tn).

The scheme Sn is the singularity subscheme of the divisor with simple normal crossings
Σn of (1.16), given by the union of the coordinate hyperplanes. We can place Sn in both
the source and target Pn−1. Finally, let L be the hyperplane defined by the equation

(1.20) L = {(t1 : · · · : tn) ∈ Pn−1 | t1 + · · ·+ tn = 0}.

We then can make the following observations.

Lemma 1.2. Let C, G(C), Sn, and L be as above.
(1) Sn is the subscheme of indeterminacies of the Cremona transformation C.
(2) π1 : G(C) → Pn−1 is the blow-up along Sn.
(3) L intersects every component of Sn transversely.
(4) Σn cuts out a divisor with simple normal crossings on L.

Proof. (1) Notice that the definition (1.15) of the Cremona transformation, which is a
priori defined on the complement of Σn still makes sense on the general point of Σn.
Thus, the indeterminacies of the map (1.15) are contained in the singularity locus Sn of
Σn defined by (1.19). It consists in fact of all of Sn since after ‘clearing denominators’,
the components of the map defining C given in (1.15) can be rewritten as:

(1.21) (t1 : · · · : tn) 7→ (t2 · · · tn : t1t3 · · · tn : · · · : t1 · · · tn−1) ,

so that one sees that the indeterminacies are precisely those defined by the ideal (1.19).
(2) Using (1.21), the map π1 : G(C) → Pn may be identified with the blow-up of Pn

along the subscheme Sn defined by the ideal ISn
of (1.19). The generators of this ideal are

the partial derivatives of the equation of the algebraic simplex. Thus, Sn is the singularity
subscheme of Σn. It consists of the union of the closure of the dimension n − 2 strata of
Σn. Again, note that the situation is entirely symmetrical: we can place Sn in the target
Pn as well, and view π2 as the blow-up along Sn.

(3) and (4) are immediate from the definitions. �
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dual graph

dual graph

Figure 2. Dual graphs of different planar embeddings of the same graph.

Given a connected planar graph Γ, one defines its dual graph Γ∨ by fixing an embedding
of Γ in R2 ∪ {∞} = S2 and constructing a new graph in S2 that has a vertex in each
component of S2rΓ and one edge connecting two such vertices for each edge of Γ that is in
the common boundary of the two regions containing the vertices. Thus, #E(Γ∨) = #E(Γ)
and #V (Γ∨) = b0(S2 r Γ). The dual graph is in general non-unique, since it depends on
the choice of the embedding of Γ in S2, see e.g. Figure 2.

We recall here a well known result (see e.g. [10], Proposition 8.3), which will be very
useful in the following.

Lemma 1.3. Suppose given a planar graph Γ with #E(Γ) = n, with dual graph Γ∨. Then
the graph polynomials satisfy

(1.22) ΨΓ(t1, . . . , tn) = (
∏

e∈E(Γ)

te) ΨΓ∨(t−1
1 , . . . , t−1

n ),

hence the graph hypersurfaces are related by the Cremona transformation C of (1.15),

(1.23) C(XΓ ∩ (Pn−1 r Σn)) = XΓ∨ ∩ (Pn−1 r Σn).

Proof. This follows from the combinatorial identity

ΨΓ(t1, . . . , tn) =
∑

T⊂Γ

∏
e/∈E(T ) te

= (
∏

e∈E(Γ) te)
∑

T⊂Γ

∏
e∈E(T ) t−1

e

= (
∏

e∈E(Γ) te)
∑

T ′⊂Γ∨
∏

e/∈E(T ′) t−1
e

= (
∏

e∈E(Γ) te)ΨΓ∨(t−1
1 , . . . , t−1

n ).

The third equality uses the fact that #E(Γ) = #E(Γ∨) and #V (Γ∨) = b0(S2 rΓ), so that
deg ΨΓ + deg ΨΓ∨ = #E(Γ), and the fact that there is a bijection between complements
of spanning tree T in Γ and spanning trees T ′ in Γ∨ obtained by shrinking the edges of T
in Γ and taking the dual graph of the resulting connected graph.

Written in the coordinates (s1 : · · · : sn) of the target Pn−1 of the Cremona transfor-
mation, the identity (1.22) gives

ΨΓ(t1, . . . , tn) = (
∏

e∈E(Γ∨)

s−1
e )ΨΓ∨(s1, . . . , sn)

from which (1.23) follows. �

We then have the following simple geometric observation, which follows directly from
Lemma 1.2 and Lemma 1.3 above.
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Γ Γ Γ
3 4 5

Figure 3. Examples of banana graphs

Corollary 1.4. The graph hypersurface of the dual graph is XΓ∨ = π2(π−1
1 (XΓ)), with

πi : G(C) → Pn−1, for i = 1, 2, as in (1.17). The Cremona transformation C restricts to a
(biregular) isomorphism

(1.24) C : XΓ r Σn → XΓ∨ r Σn.

The map π2 : G(C) → Pn−1 of (1.17) restricts to an isomorphism

(1.25) π2 : π−1
1 (XΓ r Σn) → XΓ∨ r Σn.

Notice that the formula (1.22) can be used as a source of examples of combinatorially
inequivalent graphs that have the same graph hypersurface. In fact, the graph polynomial
ΨΓ∨(s1, . . . , sn) is the same independently of the choice of the embedding of the planar
graph Γ in the plane, while the dual graph Γ∨ depends on the choice of the embedding
of Γ in the plane. Thus, different embeddings that give rise to different graphs Γ∨ pro-
vide examples of combinatorially inequivalent graphs with the same graph hypersurface.
This has direct consequences, for example, on the question of lifting the Connes–Kreimer
Hopf algebra of graphs [17] at the level of the graph hypersurfaces or their classes in the
Grothendieck ring of motives. An explicit example of combinatorially inequivalent graphs
with the same graph hypersurface, obtained as dual graphs of different planar embeddings
of the same graph, is given in Figure 2.

We see a direct application of this general result for planar graphs in §3.1 below, where
we derive a relation between the classes in the Grothendieck ring. In general, this relation
alone is too weak to give explicit formulae, but the example we concentrate on in the next
section shows a family of graphs for which a complete description of both the class in
the Grothendieck ring and the CSM class follows from the special form that the result of
Corollary 1.4 takes.

1.4. An example: the banana graphs. In this paper we concentrate on a particular
example, for which we can carry out complete and explicit calculations. We consider an
infinite family of graphs called the “banana graphs”. The n-th term Γn in this family is
a vacuum bubble Feynman graph for a scalar field theory with an interaction term of the
form Lint(φ) = φn. The graph Γn has two vertices and n parallel edges between them, as
in Figure 3.
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A direct computation using the Macaulay2 program [20] for characteristic classes de-
veloped in [4] shows, for the first three examples in this series of graphs depicted in Figure
3, the following invariants (see §2 for precise definitions).

n 3 4 5

ΨΓ t1t2 + t2t3 + t1t3 t1t2t3 + t1t2t4+ t1t2t3t4 + t1t2t3t5+
t1t3t4 + t2t3t4 t1t2t4t5 + t1t3t4t5 + t2t3t4t5

c(XΓ) 2H2 + 2H 5H3 + 3H2 + 3H 4H4 + 14H3 + 4H2 + 4H

Mil(XΓ) 0 −4H3 60H4 − 10H3

χ(XΓ) 2 5 4

Here H denotes the hyperplane class and c(XΓ) is the Chern–Schwartz–MacPherson
class of the hypersurface pushed forward to the ambient projective space. We also show the
Milnor class, which measures the discrepancy between the Chern–Schwartz–MacPherson
class and the Fulton class, that is, between the characteristic class of the singular hyper-
surface XΓ = {ΨΓ = 0} and the class of a smooth deformation. We also display the value
of the Euler characteristic, which one can read off the CSM class. The reader can pause
momentarily to consider the CSM classes reported in the three examples above and notice
that they suggest a general formula for this family of graphs, where the coefficient of Hk

in the CSM class for the n-th hypersurface XΓn is given by the formula

(1.26)


(

n

k

)
−
(

n− 1
k

)
=
(

n− 1
k − 1

)
if k is even(

n

k

)
+
(

n− 1
k

)
if k is odd

for 1 < k < n, and n− 1 for k = 1. Thus, for example, for n ≥ 3 the Euler characteristic
χ(XΓn) of the n-th banana hypersurface fits the pattern

(1.27) χ(XΓn
) = n + (−1)n.

This is indeed the correct formula for the CSM class that will be proved in §4 below.
The sample case reported here already exhibits an interesting feature, which we encounter
again in the general formula of §4 and which seems confirmed by computations carried out
algorithmically on other sample graphs from different families of Feynman graphs, namely
the unexpected positivity of the coefficients of the Chern–Schwartz–MacPherson classes.
Notice that a similar instance of positivity of the CSM classes arises in another case of
varieties with a strong combinatorial flavor, namely the case of the Schubert varieties
considered in [7]. At present we do not have a conceptual explanation for this positivity
phenomenon, but we can state the following tentative guess, based on the sparse numerical
and theoretical evidence gathered so far.

Conjecture 1.5. The coefficients of all the powers Hk in the CSM class of an arbitrary
graph hypersurface XΓ are non-negative.
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For the general element Γn in the family of the banana graphs, the graph hypersurface
XΓn

in Pn−1 is defined by the vanishing of the graph polynomial

(1.28) ΨΓn
= t1 · · · tn(

1
t1

+ · · ·+ 1
tn

).

This is easily seen, since in this case spanning trees consist of a single edge connecting the
two vertices. Equivalently, one can see this in terms of the matrix MΓ(t).

Lemma 1.6. For the n-th banana graph Γn, the matrix MΓn
(t) is of the form

(1.29) MΓn(t) =



t1 + t2 −t2 0 0 · · · 0
−t2 t2 + t3 −t3 0 0
0 −t3 t3 + t4 −t4 0
0 0 −t4 t4 + t5 0
...

...
...

0 0 0 0 · · · tn−1 + tn


.

Proof. In fact, if we choose as a basis of the first cohomology of the graph Γn the obvious
one consisting of the ` = n− 1 loops ei ∪−ei+1, with i = 1, . . . , n− 1, we obtain that the
n× (n− 1)-matrix ηik is of the form

ηik =


1 0 0 0 0 · · ·

−1 1 0 0 0 · · ·
0 −1 1 0 0 · · ·
0 0 −1 1 0 · · ·
0 0 0 −1 1 · · ·

 .

Thus, the matrix (MΓ)rk(t) =
∑

i tiηriηik has the form (1.29). It is easy to check that this
indeed has determinant given by (1.28). In fact, from (1.29) one sees that the determinant
satisfies

detMΓn
(t) = (tn−1 + tn) det MΓn−1(t) − t2n−1 detMΓn−2(t).

It then follows by induction that the determinant satisfies the recursive relation

(1.30) detMΓn
(t) = tn detMΓn−1(t) + t1 · · · tn−1.

In fact, assuming the above for n− 1 we obtain

det MΓn
(t) = tn det MΓn−1(t) + t2n−1 det MΓn−2(t) + t1 · · · tn−1 − t2n−1 detMΓn−2(t).

It is then clear that detMΓn(t) = ΨΓn(t), with the latter given by the formula (1.28),
since this also clearly satisfies the same recursion (1.30). �

The dual graph Γ∨n is just a polygon with n vertices and we can identify the hypersurface
XΓ∨n in Pn−1 with the hyperplane L defined in (1.20).

We rephrase here the statement of Corollary 1.4 in the special case of the banana graphs,
since it will be very useful in our explicit computations of §§3 and 4 below.

Lemma 1.7. The n-th banana graph hypersurface is XΓn = π2(π−1
1 (L)), with πi : G(C) →

Pn−1, for i = 1, 2, as in (1.17). The Cremona transformation C restricts to a (biregular)
isomorphism

(1.31) C : Lr Σn → XΓn r Σn.

The map π2 : G(C) → Pn−1 of (1.17) restricts to an isomorphism

(1.32) π2 : π−1
1 (Lr Σn) → XΓn

r Σn.
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Figure 4. Banana graphs with external edges

In order to compute the Feynman integral (1.9), we view the banana graphs Γn not as
vacuum bubbles, but as endowed with a number of external edges, as in Figure 4. It does
not matter how many external edges we attach. This will depend on which scalar field
theory the graph belongs to, but the resulting integral is unaffected by this, as long as we
have nonzero external momenta flowing through the graph.

Lemma 1.8. The Feynman integral (1.9) for the banana graphs Γn is of the form

(1.33) U(Γ, p) =
Γ((1−D/2)(n− 1) + 1)C(p)

(4π)(n−1)D/2

∫
σn

(t1 · · · tn)(
D
2 −1)(n−1)−1 ωn

ΨΓ(t)(
D
2 −1)n

,

with the function of the external momenta given by C(p) = (
∑

Pv)2, with v being either
one of the two vertices of the graph Γn and Pv =

∑
e∈Eext(Γn),t(e)=v pe.

Proof. The result is immediate from (1.9), using n = ` + 1 and the fact that the only
cut-set for the banana graph Γn consists of the union of all the edges, so that

PΓ(t, p) = C(p) t1 · · · tn.

�

For example, in the case with n = 2 and D ∈ 2N, D ≥ 4, the integral (up to a divergent
Gamma factor Γ(2−D/2)4π−D/2) reduces to the computation of the convergent integral∫

[0,1]

(t(1− t))D/2−2dt =
((D

2 − 2)!)2

(D − 3)!
.

In general, apart from poles of the Gamma function, divergences may arise from the
intersections of the domain of integration σn with the graph hypersurface XΓn .

Lemma 1.9. The intersection of the domain of integration σn with the graph hypersurface
XΓn

happens along σn ∩ Sn in the algebraic simplex Σn.

Proof. The polynomial ΨΓ(t) ≥ 0 for t ∈ Rn
+ and by the explicit form (1.28) of the

polynomial, one can see that zeros will only occur when at least two of the coordinates
vanish, i.e. along the intersection of σn with the scheme of singularities Sn of Σn (cf.
Lemma 3.8 below). �

One procedure to deal with this source of divergences is to work on blowups of Pn−1

along this singular locus (cf. [11], [10]). In [26] another possible method of regularization
for integrals of the form (1.33) which takes care of the singularities of the integral on σn

(the pole of the Gamma function needs to be addressed separately) was proposed, based
on replacing the integral along σn with an integral that goes around the singularities along
the fibers of a circle bundle. In general, this type of regularization procedures requires a
detailed knowledge of the singularities of the hypersurface XΓ to be carried out, and that
is one of the reasons for introducing invariants of singular varieties in the study of graph
hypersurfaces.
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2. Characteristic classes and the Grothendieck ring

In order to understand the nature of the part of the cohomology of the graph hy-
persurface complement that supports the period corresponding to the Feynman integral
(ignoring divergence issues momentarily), one would like to decompose Pn−1 r XΓ into
simpler building blocks. As in §8 of [11], this can be done by looking at the class [XΓ] of
the graph hypersurface in the Grothendieck ring of motives. One knows by the general re-
sult of Belkale–Brosnam [8] that the graph hypersurfaces generate the Grothendieck ring,
hence they are quite arbitrarily complex as motives, but one still needs to understand
whether the part of the decomposition that is relevant to the computation of the Feynman
integral might in fact be of a very special type, e.g. a mixed Tate motive as the evidence
suggests. The family of graphs we consider here is very simple in that respect. In fact,
one can see very explicitly that their classes in the Grothendieck ring are combinations
of Tate motives (cf. the formula (3.13) below). One can see this also by looking at the
Hodge structure. For the graph hypersurfaces of the banana graphs this is described in §8
of [10].

Here we describe two ways of analyzing the graph hypersuraces through an additive
invariant, one as above using the class [XΓ] in the Grothendieck ring, and the other using
the pushforward of the Chern–Schwartz–MacPherson class of XΓ to the Chow group (or
homology) of the ambient projective space Pn−1. While the first does not depend on an
ambient space, the latter is sensitive to the specific embedding of XΓ in the projective
space Pn−1, hence it might conceivably carry a little more information that is useful in
relation to the computation of the Feynman integral on Pn−1 r XΓ. We recall here below
a few basic facts about both constructions. The reader familiar with these generalities can
skip directly to the next section.

2.1. The Grothendieck ring. Let VK denote the category of algebraic varieties over a
field K. The Grothendieck ring K0(VK) is the abelian group generated by isomorphism
classes [X] of varieties, with the relation

(2.1) [X] = [Y ] + [X r Y ],

for Y ⊂ X closed. It is made into a ring by the product [X × Y ] = [X][Y ].
An additive invariant is a map χ : VK → R, with values in a commutative ring R,

satisfying χ(X) = χ(Y ) if X ∼= Y are isomorphic, χ(X) = χ(Y ) + χ(X r Y ) for Y ⊂ X
closed, and χ(X × Y ) = χ(X)χ(Y ). The Euler characteristic is the prototype example
of such an invariant. Assigning an additive invariant with values in R is equivalent to
assigning a ring homomorphism χ : K0(VK) → R.

Let MK be the pseudo-abelian category of (Chow) motives over K. We write the
objects of MK in the form (X, p,m), with X a smooth projective variety over K, p =
p2 ∈ End(X) a projector, and m ∈ Z accounting for the twist by powers of the Tate motive
Q(1). Let K0(MK) denote the Grothendieck ring of the category MK of motives. The
results of [19] show that, for K of characteristic zero, there exists an additive invariant
χ : VK → K0(MK). This assigns to a smooth projective variety X the class χ(X) =
[(X, id, 0)] ∈ K0(MK), while for X a general variety it assigns a complex W (X) in the
category of complexes over MK , which is homotopy equivalent to a bounded complex
whose class in K0(MK) defines the value χ(X). This defines a ring homomorphism

(2.2) χ : K0(VK) → K0(MK).

If L denotes the class L = [A1] ∈ K0(VK) then its image in K0(MK) is the Lefschetz
motive L = Q(−1) = [(Spec(K), id,−1)]. Since the Lefschetz motive is invertible in
K0(MK), its inverse being the Tate motive Q(1), the ring homomorphism (2.2) induces a
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ring homomorphism

(2.3) χ : K0(VK)[L−1] → K0(MK).

Thus, in the following we can either regard the classes [XΓ] of the graph hypersurfaces in
the Grothendieck ring of varieties K0(VK) or, under the homomorphism (2.2), as elements
in the Grothendieck ring of motives K0(MK). We will no longer make this distinction
explicit in the following.

2.2. CSM classes as a measure of singularities. The Chern class of a nonsingular
complete variety V is the ‘total homology Chern class’ of its tangent bundle. We write
c(V ) := c(TV ) ∩ [V ]∗ to indicate the result of applying the Chern class of the tangent
bundle of V to the fundamental class [V ]∗ of V . (We use the notation [V ]∗ rather than the
more common [V ] in order to avoid any confusion with the class of V in the Grothendieck
group.)

The class c(V ) resides naturally in the Chow group A∗V . For the purpose of this paper,
the reader will miss nothing by replacing A∗V with ordinary homology.

The Chern class of a variety V is a class of evident geometric significance: for ex-
ample, the degree of its zero-dimensional component agrees with the topological Euler
characteristic of V . This follows essentially from the Poincaré-Hopf theorem:∫

c(TV ) ∩ [V ]∗ = χ(V ) .

It is natural to ask whether there are analogs of the Chern class defined for possibly
singular varieties, for which a tangent bundle is not necessarily available.

Somewhat surprisingly, one finds that there are several possible definitions, each ‘natu-
ral’ for different reasons, and all agreeing with each other in the nonsingular case. If X is
a complete intersection in a nonsingular variety V , it is reasonable to consider the Fulton
class

cvir(X) :=
c(TV )

c(NXV )
∩ [X]∗ ,

where NXV denotes the normal bundle to X in V . Up to natural identifications, this is
the Chern class of a smoothing of X (when a smoothing exists), and in particular it agrees
with c(X) if X is nonsingular. It is an interesting fact that this class is independent of
the realization of X as a complete intersection: that is, it is independent of the ambient
nonsingular variety V . In other words, c(TV )

c(NXV ) behaves as the class of a ‘virtual tangent
bundle’ to X. Its definition can in fact be extended (and in more than one way) to
arbitrary varieties, see §4.2.6 in [18].

The class cvir(X) is in a sense unaffected by the singularities of X: for a hypersurface
X in a nonsingular variety V , it is determined by the class of X as a divisor in V .

A much more refined invariant is the Chern-Schwartz-MacPherson (CSM) class of X,
which depends more crucially on the singularities of X, and which we will use as a measure
of the singularities by comparison with cvir(X).

The name of the class retains some of its history. In the mid-60s, M.-H. Schwartz
([29], [30]) introduced a class extending to singular varieties Poincaré-Hopf-type results,
by studying tangent frames emanating radially from the singularities. Independently of
Schwartz’ work, Grothendieck and Deligne conjectured a theory of characteristic classes
fitting a tight functorial prescription, and in the early 70s R. MacPherson constructed a
class satisfying this requirement ([25]). It was later proved by J.-P. Brasselet and M.-
H. Schwartz ([14]) that the classes agree.

In this paper we denote the Chern-Schwartz-MacPherson class of a singular variety X
simply by c(X) (the notation cSM (X) is frequently used in the literature).
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The properties satisfied by CSM classes may be summarized as follows. First of all, c(X)
must agree with its namesake when X is a complete nonsingular variety: that is, c(X) =
c(TX) ∩ [X]∗ in this case. Secondly, associate with every variety X an abelian group
F (X) of ‘constructible functions’: elements of F (X) are finite integer linear combinations
of functions 1Z (defined by 1Z(p) = 1 if p ∈ Z, 1Z(p) = 0 if p 6∈ Z), for subvarieties Z of X.
The assignment X 7→ F (X) is covariantly functorial: for every proper map Y → Z there
is a push-forward f∗ : F (Y ) → F (X), defined by taking topological Euler characteristic of
fibers. More precisely, for W ⊆ Y a closed subvariety, one defines f∗(1W ) = χ(W∩f−1(p)),
and extends this definition to F (Y ) by linearity.

Grothendieck and Deligne conjectured the existence of a unique natural transformation
c∗ from the functor F to the homology functor such that c∗(1X) = c(TX) ∩ [X]∗ if X is
nonsingular. MacPherson constructed such a transformation in [25]. The CSM class of
X is then defined to be c(X) := c∗(1X). Resolution of singularities in characteristic zero
implies that the transformation is unique, and in fact determines c(X) for any X.

As an illustration of the fact that the CSM class assembles interesting invariants of a
variety, apply the property just reviewed to the constant map f : X → {pt}. In this case,
the naturality property reads f∗c∗(1X) = c∗f∗(1X), that is,

f∗c(X) = c∗(χ(X)1pt)

(using the definition of push-forward of constructible function). Taking degrees, this shows
that ∫

c(X) = χ(X) ,

precisely as in the nonsingular case: the degree of the CSM class of a (possibly) singular
variety equals its topological Euler characteristic.

It follows that, if X is a hypersurface with one isolated singularity, then the degree of
the class

Mil(X) := c(X)− cvir(X)

equals (up to a sign) the Milnor number of the singularity.
For hypersurfaces with arbitrary singularities, as the graph hypersurfaces we consider

in the present paper typically are, the degree of the CSM class equals Parusiński’s gener-
alization of the Milnor number, [28]. The class Mil(X) is called ‘Milnor class’, and has
been studied rather carefully for X a complete intersection, [13].

For a hypersurface, the Milnor class carries essentially the same information as the
Segre class of the singularity subscheme of X (see [5]). In this sense, it is a measure of the
singularities of the hypersurface. For example, the largest dimension of a nonzero term in
the Milnor class equals the dimension of the singular locus of X.

The graph hypersurfaces in this paper are hypersurfaces of projective space, hence it is
convenient to view the CSM class and the Milnor class of X as classes in projective space.
This pushforward is understood in the table in §1.4, and will be often understood in the
explicit computations of §4.

2.3. CSM classes versus classes in the Grothendieck ring. CSM classes are defined
in [25] by relating them to a different class, called ‘Chern-Mather class’, by means of a local
invariant of singularities known as the ‘local Euler obstruction’. As noted above, once the
existence of the classes has been established, then their computation may be performed
by systematic use of resolution of singularities and computations of Euler characteristics
of fibers.

The following direct construction streamlines such computations, by avoiding any com-
putation of local invariants or of Euler characteristics. This is observed in [1] and [2], where
it is used to provide an alternative proof of the Grothendieck-Deligne conjecture, and as
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the basis of a generalization of the functoriality of CSM classes to possibly non-proper
morphisms.

Given a variety X, let Zi be a finite collection of locally closed, nonsingular subvarieties
such that X = qiZi. For each i, let νi : Wi → Zi be a resolution of singularities of the
closure of Zi in X, such that the complement Zi r Zi pulls back to a divisor with normal
crossings Ei on Wi. Then

c(X) =
∑

i

νi∗c(TWi(− log Ei)) ∩ [Wi]∗ .

Here the bundle TWi(− log Ei) is the dual of the bundle Ω1
Wi

(log Ei) of differential forms
on Wi with logarithmic poles along Ei. Each term

(2.4) νi∗c(TWi(− log Ei)) ∩ [Wi]∗

computes the contribution c(1Zi
) to the CSM class of X due to the (possibly) non-compact

subvariety Zi.
We will use this formulation in terms of duals of sheaves of forms with logarithmic poles

to obtain the results of §4 below.
By abuse of notation, we denote by c(Z) ∈ A∗V the class so defined, for any locally

closed subset Z of a large ambient variety V . With this notion in hand, note that if Y ⊆ X
are (closed) subvarieties of V , then

c(X) = c(Y ) + c(X r Y ) ,

where push-forwards are, as usual, understood. This relation is very reminiscent of the
basic relation (2.1) that holds in the Grothendieck group of varieties (see §2.1). At the
same time, CSM classes satisfy a ‘product formula’ analogous to the definition of product
in the Grothendieck ring ([24], [1]).

Moreover, CSM classes satisfy an ‘embedded inclusion-exclusion’ principle. Namely, if
X1 and X2 are subvarieties of a variety V , then

c(X1 ∪X2) = c(X1) + c(X2)− c(X1 ∩X2).

This is clear both from the construction presented above and from the basic functoriality
property.

In short, there is an intriguing parallel between operations in the Grothendieck group of
varieties and manipulations of CSM classes. This parallel cannot be taken too far, since the
‘embedded’ Chern-Schwartz-MacPherson treated here is not an invariant of isomorphism
classes.

Example 2.1. Let Z1 and Z2 be, respectively, a linearly embedded P1 and a nonsingular
conic in P2. Denoting by H the hyperplane class in P2, we find

c(Z1) = (H + 2H2) · [P2]∗ and c(Z2) = (2H + 2H2) · [P2]∗

while of course [Z1] = [Z2] as classes in the Grothendieck group.

Thus, in particular, the CSM class c(X) does not define an additive invariant in the
sense of §2.1 and does not factor through the Grothendieck group, as the example above
shows.

In certain situations it is however possible to establish a sharp correspondence between
CSM classes and classes in the Grothendieck group. For the next result, we adopt the
rather unorthodox notation H−r for the class [Pr]∗ of a linear subspace of a given projective
space. Thus, 1 stands for the class of a point, [P0]∗, and the negative exponents are
consistent with the fact that if H denotes the hyperplane class then Hr · [Pr]∗ = [P0]∗.
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Proposition 2.2. Let X be a subset of projective space obtained by unions, intersections,
differences of linearly embedded subspaces. With notation as above, assume

c(X) =
∑

aiH
−i .

Then the class of X in the Grothendieck group of varieties equals

[X] =
∑

aiTi,

where T = [Gm] is the class of the multiplicative group, see §3.

Thus, adopting a variable T = H−1 in the CSM environment, and T = T in the
Grothendieck group environment, the classes corresponding to subsets as specified in the
statement would match precisely.

Proof. The formula holds for a linearly embedded X = Pr, since

c(Pr) = ((1 + H)r+1 −Hr+1) · [Pr]∗ = ((1 + H)r+1 −Hr+1) ·H−r =
(1 + H−1)r+1 − 1

H−1

and (see (3.1) below)

[Pr] =
(1 + T)r+1 − 1

T
.

Since embedded CSM classes and classes in the Grothendieck group both satisfy inclusion-
exclusion, this relation extend to all sets obtained by ordinary set-theoretic operations
performed on linearly embedded subspaces, and the statement follows. �

Proposition 2.2 applies, for example, to the case of hyperplane arrangements in PN : for
a hyperplane arrangement, the information carried by the class in the Grothendieck group
of varieties is precisely the same as the information carried by the embedded CSM class.
These classes reflect in a subtle way the combinatorics of the arrangement.

In a more general setting, it is still possible to enhance the information carried by the
CSM class in such a way as to establish a tight connection between the two environments.
For example, CSM classes can be treated within a framework with strong similarities with
motivic integration, [3].

In any case, one should expect that, in many examples, the work needed to compute a
CSM class should also lead to a computation of a class in the Grothendieck group. The
computations in §3 and §4 in this paper will confirm this expectation for the hypersurfaces
corresponding to banana graphs.

3. Banana graphs and their motives

In this section we give an explicit formula for the classes [XΓn
] of the banana graph

hypersurfaces XΓn
in the Grothendieck ring. The procedure we adopt to carry out the

computation is the following. We use the Cremona transformation of (1.17). Consider the
algebraic simplex Σn placed in the Pn−1 on the right-hand-side of the diagram (1.17). The
complement of this Σn in the graph hypersurface XΓn

is isomorphic to the complement of
the same union Σn in the corresponding hyperplane L in the Pn−1 on the left-hand-side
of (1.17), by Lemma 1.7 above. So this provides the easy part of the computation, and
one then has to give explicitly the classes of the intersections of the two hypersurfaces
with the union of the coordinate hyperplanes. The final formula for the class [XΓn ] has a
simple expression in terms of the classes of tori Tk, with T := [A1]− [A0] the class of the
multiplicative group Gm. Then Tn−1 is the class of the complement of Σn inside Pn−1.

In the following we let 1 denote the class of a point [A0]. We use the standard notation
L for the class [A1] of the affine line (the Lefschetz motive). We also denote, as above, by
Σn the union of coordinate hyperplanes in Pn−1 and by Sn its singularity locus.
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First notice the following simple identity in the Grothendieck ring.

(3.1) [Pr] =
r∑

i=0

Lr =
1− Lr+1

1− L
=

(1 + T)r+1 − 1
T

.

This expression can be thought of as taking place in a localization of the Grothendieck
ring, but in fact this is not really necessary if we take these fractions as just shorthand for
their unambiguous expansions.

We introduce the following notation. Suppose given a class C in the Grothendieck ring
which can be written in the form

(3.2) C = a0[P0] + a1[P1] + a2[P2] + · · ·
To such a class we assign a polynomial

(3.3) f(P ) = a0 + a1P + a2P
2 + · · ·

Remark 3.1. Notice that the formal variable P does not define an element in the
Grothendieck ring, since one sees easily that P iP j 6= P i+j . In fact, the variables P i

satisfy a different multiplication rule, which we denote by • and which is given by

(3.4) P i • P j = P i+j + P i+j−1 + · · ·+ P j − P i−1 − · · · − 1

and which recovers in this way the class [Pi × Pj ]. This follows from Lemma 3.2, by
converting each of the two factors into the corresponding expressions in T, multiplying
these as classes in the Grothendieck ring, and then converting the result back in terms of
the variables P i.

Lemma 3.2. Let C be a class in the Grothendieck ring that can be written in terms of
classes of projective spaces in the form (3.2). One can convert it into a function of the
class T of the form

(3.5) C =
(1 + T)f(1 + T)− f(1)

T
,

where f is as in (3.3).

Proof. One obtains (3.5) from (3.2) using the expression (3.1) of [Pr] in terms of T. In
fact, (3.5) gives the expression of [Pr] as a function of T when applied to f(P ) = P r. �

Conversely, we have a similar way to convert classes in the Grothendieck ring that can
be expressed as a function of the torus class into a function of the classes of projective
spaces.

Lemma 3.3. Suppose given a class C in the Grothendieck ring that can be written as a
function of the torus class T, by a polynomial expression C = g(T). Then one obtains an
expression of C in terms of the classes of projective spaces [Pr] by first taking the function

(3.6)
(P − 1)g(P − 1) + g(−1)

P

and then replacing P r by the class [Pr] in the expansion of (3.6) as a polynomial in the
formal variable P .

Proof. The result is obtained by solving for f in (3.5), which yields the formula (3.6). �

Next we define an operation on classes of the form C = g(T), which one can think of
as “taking a hyperplane section”. Notice that literally taking a hyperplane section is not
a well defined operation at the level of the Grothendieck ring, but it does make sense on
classes that are constructed from linearly embedded subspaces of a projective space, as is
the case we are considering.
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Lemma 3.4. The transformation

(3.7) H : g(T) 7→ g(T)− g(−1)
T + 1

gives an operation on the set of classes in the Grothendieck ring that are polynomial func-
tions of the torus class T. In terms of classes [Pr] it corresponds to mapping [P0] to zero
and [Pr] to [Pr−1] for r ≥ 1.

Proof. One can see that, for g(T) = [Pr] = (1+T)r+1−1
T , we have

g(T)− g(−1)
T + 1

=
(1+T)r+1−1

T − 1
T + 1

=
(1 + T)r − 1

T
= [Pr−1],

or 0 if r = 0, so that the operation (3.7) indeed corresponds to taking a hyperplane section.
The operation is linear in g, viewed as a linear combination of classes of projective spaces,
so it works for arbitrary g. �

We then have the following preliminary result.

Lemma 3.5. The class of Σr+1 ⊂ Pr in the Grothendieck ring is of the form

(3.8) [Σr+1] =
(1 + T)r+1 − 1− Tr+1

T
=

r∑
i=1

(
r + 1

i

)
Tr−i.

Intersecting with a transversal hyperplane L then gives

(3.9) [L ∩ Σr+1] =
(1 + T)r − 1

T
− Tr−1 + Tr−2 − Tr−3 + · · · ± 1.

Proof. The class of the complement of Σr+1 in Pr is the torus class Tr. In fact, the
complement of Σr+1 consists of all (r + 1)-tuples (1: ∗ : · · · :∗), where each ∗ is a nonzero
element of the ground field. It then follows directly that the class of Σr+1 has the form
(3.8), using the expression (3.1) for the class [Pr]. One then applies the transformation H
of (3.7) to obtain

[L ∩ Σr+1] =
(

(1+T)r+1−1−Tr+1

T − −1−(−1)r+1

−1

)
/(T + 1)

= (1+T)r−1
T − Tr−(−1)r

T+1

from which (3.9) follows. �

Definition 3.6. The trace Σ′
r+1 ⊂ Pr−1 of the algebraic simplex Σr+1 ⊂ Pr is the in-

tersection of Σr+1 with a general hyperplane. It is a union of r + 1 hyperplanes in Pr−1

meeting with normal crossings.

For instance, Σ′
4 consists of the transversal union of four lines as in Figure 5 and by

(3.9) its class is

[Σ′
4] =

(1 + T)3 − 1
T

− T2 + T− 1 = 4T + 2.

The first part of the computation of the class of the graph hypersurface XΓn
for the

banana graph Γn is then given by the following result.

Proposition 3.7. Let XΓn ⊂ Pn−1 be the hypersurface of the n-th banana graph Γn. Then

(3.10) [XΓn r Σn] = Tn−2 − Tn−3 + Tn−4 − · · ·+ (−1)n.
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Figure 5. The trace Σ′
4 ⊂ P2 of the algebraic simplex Σ4 ⊂ P3

Proof. We know by Lemma 1.7 that XΓn rΣn
∼= LrΣn via the Cremona transformation,

with L = Pn−2 the hyperplane (1.20). This hyperplane intersects Σn transversely, so that
(3.9) applies and gives

[Lr Σn] = [L]− [L ∩ Σn] =
Tn−1 − (−1)n−1

T + 1
.

�

Next we examine how the graph hypersurface XΓn
intersects the algebraic simplex Σn.

Lemma 3.8. The graph hypersurface XΓn intersects the algebraic simplex Σn ⊂ Pn−1

along the singularity subscheme Sn of Σn.

Proof. One can see this directly by comparing the defining equation (1.28) of XΓn
with

the ideal ISn
of (1.19) of the singularity subscheme Sn of Σn. �

The class in the Grothendieck ring of the singular locus Sn of Σn is given by the
following result.

Lemma 3.9. The class of Sr+1 ⊂ Pr is given by

(3.11) [Sr+1] = [Σr+1]− (r + 1)Tr−1 =
r∑

i=2

(
r + 1

i

)
Tr−i.

Proof. Each coordinate hyperplane Pr−1 in Σr+1 ⊂ Pr intersects the others along its own
algebraic simplex Σr. Thus, to obtain the class of Sr+1 from the class of Σr+1 in the
Grothendieck ring we just need to subtract the class of the r + 1 complements of Σr in
the r + 1 components of Σr+1. We then have

[Sr+1] = [Σr+1]− (r + 1)Tr−1 =
(1 + T)r+1 − 1− (r + 1)Tr − Tr+1

T
.

This gives the formula (3.11). �

We then have the following result.
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Theorem 3.10. The class in the Grothendieck ring of the graph hypersurface XΓn
of the

banana graph Γn is given by

(3.12) [XΓn ] =
(1 + T)n − 1

T
− Tn − (−1)n

T + 1
− n Tn−2.

Proof. We write the class [XΓn
] in the form

[XΓn
] = [XΓn

r Σn] + [Sn].

Using the results of Lemma 3.9 and Proposition 3.7 we write this as

=
Tn−1 − (−1)n−1

T + 1
+

(1 + T)n − 1− nTn−1 − Tn

T
,

from which (3.12) follows. �

The formula (3.12) expresses the class [XΓn
] as

[XΓn ] = [Σ′
n]− nTn−2,

i.e. as the class of the union Σ′
n of n hyperplanes meeting with normal crossings (as in

Definition 3.6), corrected by n times the class of an n− 2-dimensional torus.

Example 3.11. In the case n = 3 of Figure 3, (3.12) shows that the class of the hyper-
surface XΓ3 ⊂ P2 is equal to the class of the union of four transversal lines, minus three
times a 1-dimensional torus, i.e. that we have

[XΓ3 ] = 4T + 2− 3T = T + 2 = [P1].

This can also be seen directly from the fact that the equation

ΨΓ3 = t1t2 + t2t3 + t1t3 = 0

defines a nonsingular conic in the plane.

Example 3.12. In the case n = 4 of Figure 3, the hypersurface XΓ4 is a cubic surface in
P3 with four singular points. The class in the Grothendieck ring is

[XΓ4 ] = T2 + 5T + 5.

In terms of the Lefschetz motive L, the formula (3.12) reads equivalently as

(3.13) [XΓn ] =
Ln − 1
L− 1

− (L− 1)n − (−1)n

L
− n (L− 1)n−2.

In the context of parametric Feynman integrals, it is the complement of the graph
hypersurface in Pn−1 that supports the period computed by the Feynman integral. Thus,
in general, one is interested in the explicit expression for the motive of the complement.
It so happens that in the particular case of the banana graphs the expression for the class
of the hypersurface complement is in fact simpler than that of the hypersurface itself.

Corollary 3.13. The class of the hypersurface complement Pn−1 r XΓn is given by

(3.14)
[Pn−1 r XΓn ] = Tn−(−1)n

T+1 + n Tn−2

= Tn−1 + (n− 1)Tn−2 + Tn−3 − Tn−4 + Tn−5 + · · · ± 1.

Proof. By (3.1) we see that the first term in (3.12) is in fact the class [Pn−1], hence the
class [Pn−1 r XΓn ] = [Pn−1]− [XΓn ] is given by (3.14) �

Corollary 3.14. The Euler characteristic of XΓn is given by the formula (1.27).
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Proof. The Euler characteristic is an additive invariant, hence it determines a ring ho-
momorphism from the Grothendieck ring of varieties to the integers. Moreover, tori have
zero Euler characteristic, so that χ(Tr) = 0 for all r ≥ 1. Then the formula (3.14) for the
class of the hypersurface complement shows that

χ(Pn−1 r XΓn
) = χ(Tn−1) + (n− 1)χ(Tn−2) + χ(Tn−3)− · · · ± 1 = (−1)n−1.

Since χ(Pn−1) = n we obtain

χ(XΓn
) = χ(Pn−1)− χ(Pn−1 r XΓn

) = n + (−1)n

as in (1.27). �

In §4 below, we derive the same Euler characteristic formula in a different way, from
the calculation of the CSM class of XΓn

.

Remark 3.15. Notice that, if we expand in (3.12) the first term in the form [Pn−1] =
Tn−1+nTn−2+. . . , we see that the dominant term in [XΓn

] is Tn−2. This is not surprising,
since for the banana graphs the hypersurfaces XΓn are rational.

Remark 3.16. The previous remark explains the appearance of a term nTn−2 in the
expression (3.14). The remaining terms are an alternating sum of tori. This term can be
viewed as

(3.15)
Tn − (−1)n

T + 1
=

g(T)− g(−1)
T + 1

,

for g(T) = Tn. According to Lemma 3.4, this is the class of the hyperplane section of
the complement of the algebraic simplex Σn+1 in Pn. However, how geometrically one
can associate a Pn to a graph hypersurface XΓn ⊂ Pn−1 is unclear, so that a satisfactory
conceptual explanation of the occurrence of (3.15) in (3.14) is still missing.

For completeness we also give the explicit formula of the class (3.14) written in terms
of classes [Pr].

Corollary 3.17. In terms of classes of projective spaces the class [Pn−1 r XΓn
] is given

by

(3.16) [Pn−1 r XΓn
] =

n−1∑
k=0

(
n + 1
k + 2

)
(−1)n−1−k [Pk] + n

n−2∑
k=0

(
n− 1
k + 1

)
(−1)n−2−k [Pk].

Proof. The formula (3.16) is obtained easily using the transformation rules of Lemma 3.3
to go from expressions in T to expressions in [Pr], so that

(Tn − (−1)n)/(T + 1) 7→
(
(P − 1) (P−1)n−(−1)n

P + n(−1)n−1
)

/P

=
(
(P − 1)n+1 − (n + 1)(−1)nP − (−1)n+1

)
/P 2

=
∑n−1

k=0

(
n+1
k+2

)
(−1)n−1−k [Pk],

and for the second term

n Tn−2 7→ n
(
(P − 1)(P − 1)n−2 + (−1)n−2

)
/P

= n
(
(P − 1)n−1 − (−1)n−1

)
/P

= n
∑n−2

k=0

(
n−1
k+1

)
(−1)n−2−k [Pk].

�
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3.1. Classes of dual graphs. In the result obtained above, we used essentially the rela-
tion between the graph hypersurface XΓn

and the hypersurface of the dual graph, which is,
in this case, a hyperplane. More generally, although one cannot obtain an explicit formula,
one can observe that for any given planar graph the relation between the hypersurface XΓ

of the graph and that of the dual graph XΓ∨ gives a relation between the classes in the
Grothendieck ring, which can be expressed as follows.

Proposition 3.18. Let Γ be a planar graph with n = #E(Γ) and let Γ∨ be a dual graph.
Then the classes in the Grothendieck ring satisfy

(3.17) [XΓ]− [XΓ∨ ] = [Σn ∩XΓ]− [Σn ∩XΓ∨ ].

Proof. The result is a direct consequence of Corollary 1.4. �

4. CSM classes for banana graphs

We now give an explicit formula for the Chern–Schwartz–MacPherson class of the hy-
persurfaces of the banana graphs, for an arbitrary number of edges.

The computation of the CSM class is substantially more involved than the computation
of the class in the Grothendieck ring we obtained in the previous section, although the two
carry strong formal similarities, due to the fact that both are based on a similar inclusion–
exclusion principle. In fact, the information carried by the CSM class is more refined than
the decomposition in the Grothendieck ring of varieties, as it captures more sophisticated
information on how the building blocks are embedded in the ambient space. This will be
illustrated rather clearly by our explicit computations. In particular, the explicit formula
for the CSM class uses in an essential way a special formula for pullbacks of differential
forms with logarithmic poles.

In order to avoid any possible confusion between homology classes and classes in the
Grothendieck ring (even though the context should suffice to distinguish them), we use
here as in §2.2 the notation [Pr]∗ for homology classes or classes in the Chow group (in
an ambient Pn−1), while reserving the symbol [Pr] for the class in the Grothendieck ring,
as already used in §3 above. The homology class [Pr]∗ can be expressed in terms of the
hyperplane class H and the ambient Pn−1 as [Pr]∗ = Hn−1−r[Pn−1]∗.

4.1. Characteristic classes of blowups. Let D be a divisor with simple normal cross-
ings and nonsingular components Di, i = 1, . . . , r, in a nonsingular variety M . Then
TM(− log(D)) denotes the sheaf of vector fields with logarithmic zeros (i.e. the dual of
the sheaf Ω1

M (log D) of 1-forms with logarithmic poles). In terms of Chern classes one has
(cf. e.g. [3])

c(TM(− log D)) =
c(TM)

(1 + D1) · · · (1 + Dr)
.

This formula has useful applications in the calculation of CSM classes, especially because
it behaves nicely under pushforwards as shown in [3] and [2]. What we need here is a more
surprising pullback formula, which can be stated as follows.

Theorem 4.1. Let π : W → V be the blowup of a nonsingular variety V along a nonsin-
gular subvariety B, with exceptional divisor F . Let Ej, j ∈ J , be nonsingular irreducible
hypersurfaces of V , meeting with normal crossings. Assume that B is cut out by some of
the Ej’s. Denote by Fj the proper transform of Ej in W . Then the sheaf of 1-forms with
logarithmic poles along E is preserved by the pullback, namely

(4.1) Ω1
M (log(F +

∑
Fj)) = π∗Ω1

M (− log(
∑

Ej)).
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Proof. There is an inclusion π∗Ω1
M (log(

∑
Ej)) ⊂ Ω1

M (log(F +
∑

Fj)), and it suffices to
see that this is an equality locally analytically. To this purpose, choose local coordinates
x1, . . . , xn in V , so that Ej is given by (xj), j = 1, . . . , k. Assume B has ideal (x1, . . . , x`),
and choose local parameters y1, . . . , yn in W so that π is expressed by

x1 = y1

x2 = y1y2

· · ·
x` = y1y`

x`+1 = y`+1

· · ·
xn = yn

Then local sections of π∗Ω1(log(
∑

Ej)) are spanned by
dy1

y1
,

dy1

y1
+

dy2

y2
, · · · ,

dy1

y1
+

dy`

y`
,

dy`+1

y`+1
, · · · ,

dyn

yn

These clearly span the whole of Ω1(log(F +
∑

Fj)), as claimed. Thus, we obtain (4.1). �

One derives directly from this result the following formula for Chern classes.

Corollary 4.2. Under the same hypothesis as Theorem 4.1, the Chern classes satisfy

(4.2)
c(TW )

(1 + F )
∏

j∈J(1 + Fj)
∩ [W ] = π∗

(
c(TV )∏

j∈J(1 + Ej)
∩ [V ]

)
.

In other words, if B is cut out by a selection of the components Ej , then the pullback of
the total Chern class of the bundle of vector fields with logarithmic zeros along E equals
the one of the analogous bundle upstairs.

The main consequence of Theorem 4.1 and Corollary 4.2 which is relevant to the case
of graph hypersurfaces is given by the following application.

Definition 4.3. Let V be a nonsingular variety, and let Ej, j ∈ J , be nonsingular divisors
meeting with normal crossings in V . A proper birational map π : W → V is a blowup
adapted to the divisor with normal crossings if it is the blowup of V along a subvariety
B ⊂ V cut out by some of the Ej’s.

Notice that W carries a natural divisor with normal crossings, that is, the union of the
exceptional divisor F and of the proper transforms Fj of the divisors Ej . The blowup
maps the complement of W to this divisor isomorphically to the complement in V of the
divisor ∪Ej . It makes sense then to talk about a sequence of adapted blowups, by which we
mean that each blowup in the sequence is adapted to the corresponding normal crossing
divisor. We then have the following consequence of Theorem 4.1 and Corollary 4.2 above.

Corollary 4.4. Let V be a nonsingular variety, and Ej be nonsingular divisors meeting
with normal crossings in V . Let U denote the complement of the union E = ∪j∈JEj. Let
π : W → V be a proper birational map dominated by a sequence of adapted blowups. In
particular, π maps π−1(U) isomorphically to U . Then

(4.3) c(1π−1(U)) = π∗c(1U ).

Proof. Let π̃ : Ṽ → V be a sequence of adapted morphisms dominating π:

Ṽ
α //

π̃   @
@@

@@
@@

@ W

π

��
V
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The divisor Ẽ = π̃−1(∪Ej) is then a divisor with normal crossings, and π̃−1(U) is its
complement in Ṽ . By Corollary 4.2, we have the identity

c(T Ṽ (− log Ẽ)) ∩ [Ṽ ] = π̃∗(c(TV (− log E)) ∩ [V ]) = α∗π∗(c(TV (− log E)) ∩ [V ]).

As in (2.4) of §2.3, this is saying that

c(1π̃−1(U)) = α∗π∗(c(1U )).

The statement then follows by pushing forward through α (applying MacPherson’s theo-
rem), since α∗α

∗ = 1 as α is proper and birational. �

The identity of CSM classes happens in the homology (or Chow group) of W . Notice
that we are not assuming here that W is nonsingular. One also has π∗c(1π−1(U)) = c(U)
in the homology (Chow group) of V , by MacPherson’s theorem [25] on functoriality of
CSM classes. What is surprising about (4.3) is that for this class of morphisms one can
do for pullbacks what functoriality usually does for pushforward.

4.2. Computing the characteristic classes. In this section we give the explicit formula
for the CSM class of the graph hypersurface XΓn

of the banana graph Γn. The procedure
is somewhat similar conceptually to the one we used in the computation of the class in
the Grothendieck ring, namely we will use the inclusion–exclusion property of the Chern
class and separate out the contributions of the part of XΓn

that lies in the complement
of the algebraic simplex Σn ⊂ Pn−1 and of the intersection XΓn ∩Σn, using the Cremona
transformation to compute the contribution of the first and inclusion-exclusion again to
compute the class of the latter.

As above, let Sn be the singularity subscheme of Σn. We begin by the following pre-
liminary result.

Proposition 4.5. The CSM class of Sn is given by

(4.4) c(Sn) = ((1 + H)n − 1− nH −Hn) · [Pn−1]∗.

Proof. Since Sn is defined by the ideal (1.19) of the codimension two intersections of the
coordinate planes of Pn−1, one can use the inclusion-exclusion property to compute (4.4).
Equivalently, one can use the result of [1], which shows that, for a locus that is a union of
toric orbits, the CSM class is a sum of the homology classes of the orbit closures. Thus,
one can write the CSM class of Pn−1 as the sum of the CSM class of Sn, the homology
classes of the coordinate hyperplanes, and the homology class of the whole Pn−1, i.e.

c(Pn−1) = (c(Sn) + nH + 1) · [Pn−1]∗,

where the two latter terms correspond to the classes of the closures of the higher dimen-
sional orbits. Since c(Pn−1) = ((1 + H)n −Hn) · [Pn−1]∗, this gives (4.4). �

We now concentrate on the complement XΓn rΣn. We again use Lemma 1.7 to describe
this, via the Cremona transformation, in terms of Lr Σn, with L the hyperplane (1.20).
We have the following result.

Lemma 4.6. Let π1 : G(C) → Pn−1 be as in (1.17). Then

(4.5) c(π−1
1 (Lr Σn)) = π∗1(c(Lr Σn)).

Proof. By Corollary 4.4, it suffices to show that the restriction of π1 to π−1(L) is adapted
to L ∩ Σn. By (2) and (3) of Lemma 1.2, we know that π−1

1 (L) is the blowup of L along
L ∩ Sn, that is, the singularity subscheme of L ∩ Σn. The blowup of a variety along
the singularity subscheme of a divisor with simple normal crossings is dominated by the
sequence of blowups along the intersections of the components of the divisor, in increasing
order of dimension. This sequence is adapted, hence the claim follows. Equivalently, notice
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that π1 : G(C) → Pn−1 is itself dominated by a sequence adapted to Σn. Moreover, L and
its proper transform intersect all centers of the blowups in the sequence transversely. This
also shows that the restriction of π1 to π−1

1 (L) is adapted to L ∩ Σn. �

We have the following result for the CSM class of L r Σn in terms of the homology
(Chow group) classes [Pr]∗.

Lemma 4.7. The CSM class of Lr Σn is given by

(4.6) c(Lr Σn) = [Pn−2]∗ − [Pn−3]∗ + · · ·+ (−1)n[P0]∗.

Let h denote the homology class of the hyperplane section in the source Pn−1 of diagram
(1.17). Then (4.6) is written equivalently as

(4.7) c(Lr Σn) = (1 + h)−1h · [Pn−1]∗.

Proof. The divisor Σn has n components with homology class h, hence so does L ∩ Σn.
Since the CSM class of a divisor with normal crossings is computed by the Chern class of
the bundle of vector fields with logarithmic zeros along the components of the divisor, we
find

c(Lr Σn) =
c(TL) ∩ [L]∗

(1 + h)n
=

(1 + h)n−1

(1 + h)n
h · [Pn−1]∗.

�

We then have the following result that gives the formula for c(XΓn).

Theorem 4.8. The (push-forward to Pn−1 of the) CSM class of the banana graph hyper-
surface XΓn

is given by

(4.8) c(XΓn) = ((1 + H)n − (1−H)n−1 − nH −Hn) · [Pn−1]∗.

Proof. Using inclusion-exclusion for CSM classes we have

c(XΓn
) = c(XΓn

∩ Σn) + c(XΓn
r Σn).

By Lemma 3.8, we know that XΓn ∩Σn = Sn, hence the first term is given by (4.4). Thus,
we are reduced to showing that

(4.9) c(XΓn r Σn) = (1− (1−H)n−1) · [Pn−1]∗.

Combining Lemmata 4.6 and 4.7, we find

c(XΓn r Σn) = π2∗π
∗
1

(∑n−1
i=1 (−1)i−1hi · [Pn−1]∗

)
= π2∗

(∑n−1
i=1 (−1)i−1hi · [G(C)]∗

)
,

where we view h as a divisor class on G(C), suppressing the pullback notation. Let H
denote the hyperplane class in the target Pn−1 of diagram (1.17), as well as its pullback
to G(C). Notice that, by (1.18), G(C) is a complete intersection of n− 1 hypersurfaces of
homology class h + H in Pn−1 × Pn−1. Thus, we obtain

c(XΓn r Σn) = π2∗

(
n−1∑
i=1

(−1)i−1hi(h + H)n−1 · [Pn−1 × Pn−1]∗

)
.

Finally, we have to evaluate the pushforward via π2. We can write

c(XΓn r Σn) =
n−1∑
i=1

aiH
i · [Pn−1]∗,

where we need to evaluate the integers ai. Since

ai =
∫

Hn−1−i · c(XΓn
r Σn),
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by the projection formula we obtain

ai =
∫

Hn−1−i
n−1∑
i=1

(−1)i−1hi(h + H)n−1 · [Pn−1 × Pn−1]∗.

In Pn−1×Pn−1, the only nonzero monomial in h, H of degree 2n− 2 is hn−1Hn−1, which
evaluates to 1. Therefore, we have

ai = (−1)i−1 · coefficient of hn−1−iHi in (h + H)n−1 = (−1)i−1

(
n− 1

i

)
.

We then obtain

c(XΓn
r Σn) =

∑n−1
i=1 aiH

i · [Pn−1]∗

=
∑n−1

i=1 (−1)i−1
(
n−1

i

)
Hi · [Pn−1]∗

= (1− (1−H)n−1) · [Pn−1]∗.

�

This gives a different way of computing the topological Euler characteristic of XΓn ,
which we already derived from the class in the Grothendieck ring in Corollary 3.14.

Corollary 4.9. The Euler characteristic of the banana graph hypersurface XΓn is given
by the formula (1.27).

Proof. For a projective hypersurface X the value of the Euler characteristic χ(X) can be
read off the CSM class as the coefficient of the top degree term. Thus, from (4.8) we
obtain χ(XΓn) = n + (−1)n. �

Remark 4.10. The coefficient of Hk in the CSM class is as prescribed in (1.26). In
particular, these coefficients are positive for all n ≥ 2 and 1 ≤ k ≤ n − 1. Thus, banana
graphs provide an infinite family of graphs for which Conjecture 1.5 holds.

Remark 4.11. As pointed out in §2.3, CSM classes are defined (as classes in the Chow
group of an ambient variety) for locally closed subsets. It follows from Theorem 4.8 that
the CSM class of the complement of XΓn

in Pn−1 is

c(Pn−1 r XΓn
) = ((1−H)n−1 + nH) ∩ [Pn−1]∗.

4.3. The CSM class and the class in the Grothendieck ring. We discuss here the
formal similarity, as well as the discrepancy, between the expression for the CSM class and
the formula for the class in the Grothendieck ring of the graph hypersurface XΓn

.
As noted in Propostion 2.2, the CSM class and the class in the Grothendieck group

carry the same information for subsets of projective space consisting of unions of linear
subspaces. The algebraic simplex, as well as its trace on a transversal hyperplane, are
subsets of this type. Thus, some of the work performed in §§3 and 4 is redundant.

The class [XΓn
] of the graph hypersurface XΓn

of the banana graph Γn can be separated
into two parts, only one of which –the part that comes from the simplex– is linearly
embedded. These two parts are responsible, respectively, for the formal similarity and for
the discrepancy between the expression for the class [XΓn ] and the one for c(XΓn).

In fact, denoting the unorthodox H−1 of Proposition 2.2 by a variable T , the CSM class
of XΓn

has the form

(4.10) c(XΓn) =
(1 + T )n − 1

T
− (T − 1)n−1 − n Tn−2.
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The central term is the one that differs from the expression (3.12). Adopting the same
variable T for the class T of a torus, the discrepancy is measured by the amount

Tn − (−1)n

T + 1
− (T − 1)n−1.

5. Classes of cones

We make here a general observation which may be useful in other computations of CSM
classes and classes in the Grothendieck ring for graph hypersurfaces. One can observe
that often the graph hypersurfaces XΓ happen to be cones over hypersurfaces in smaller
projective spaces.

There are simple operations one can perform on a given graph, which ensure that the
resulting graph will correspond to a hypersurface that is a cone. Here is a list:

• Subdividing an edge.
• Connecting two graphs by a pair of edges.
• Appending a tree to a vertex (in this case the resulting graph will not be 1PI).

One can see easily that in each of these cases the resulting hypersurface is a cone, since in
the first two cases the resulting graph polynomial ΨΓ will depend on two of the variables
only through their linear combination ti + tj , while in the last case ΨΓ does not depend
on the variables of the edges in the tree.

It may then be useful to provide an explicit formula for computing the CSM class and
the class in the Grothendieck ring for cones. The result can be seen as a generalization of
the simple formula for the Euler characteristic.

Lemma 5.1. Let Ck(X) be a cone in Pn+k of a hypersurface X ⊂ Pn. Then the Euler
characteristic satisfies

χ(Ck(X)) = χ(X) + k.

Proof. Consider first the case of C(X) = C1(X). We have

C(X) = (X × P1)/(X × {pt}) = (X × A1) ∪ {pt},
from which, by the inclusion-exclusion property of the Euler characteristic we immediately
obtain χ(C(X)) = χ(X) + 1. The result then follows inductively. �

The case of the CSM class is given by the following result.

Proposition 5.2. Let i : X ↪→ Pm be a subvariety, and let j : C(X) ↪→ Pm+1 be the cone
over X. Let H denote the hyperplane class and let

i∗c(X) = f(H) ∩ [Pm]∗
be the CSM class of X expressed in the Chow group (homology) of the ambient Pm. Then
the CSM class of the cone (in the ambient Pm+1) is given by

(5.1) j∗c(C(X)) = (1 + H)f(H) ∩ [Pm+1]∗ + [P0]∗.

Proof. Let j∗c(C(X)) = g(H) ∩ [Pm+1]∗. Notice that X may be viewed as a general
hyperplane section of C(X). Then, by Claim 1 of [6] we have

f(H) ∩ [Pm]∗ = i∗c(X) = H · (1 + H)−1 ∩ j∗c(C(X)) = H(1 + H)−1g(H) ∩ [Pm+1]∗.

This implies

(5.2) (1 + H)f(H) ∩ [Pm]∗ = g(H) ∩ [Pm]∗.

This determines all the coefficients in g(H) with the exception of the coefficient of Hm+1.
The latter equals the Euler characteristic of C(X), hence by Lemma 5.1 this is χ(C(X)) =
χ(X) + 1. Thus, we have

coefficient of Hm+1 in g(H) = 1 + coefficient of Hm in f(H) .
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Together with (5.2), this implies (5.1). �

This result applies to some of the operations on graphs described above. Here, as in
the rest of the paper, we suppress the explicit pushfoward notation i∗ and j∗ in writing
CSM classes in the Chow group or homology of the ambient projective space.

Corollary 5.3. Let Γ be a graph with n edges, and let Γ̂ be the graph obtained by subdi-
viding an edge or by attaching a tree consisting of a single edge to one of the vertices. If
the CSM class of the hypersurface XΓ is of the form c(XΓ) = f(H) ∩ [Pn−1]∗, with f a
polynomial of deg(f) ≤ n− 1 in the hyperplane class, then the class of XΓ̂ is given by

c(XΓ̂) = ((1 + H)f(H) + Hn) ∩ [Pn]∗ .

Proof. The result follows immediately from Proposition 5.2, since in the first case the
graph polynomial ΨΓ̂ depends on a pair of variables ti, tj only through their sum ti + tj ,
hence XΓ̂ is a cone over XΓ inside Pn. In the second case the graph polynomial ΨΓ̂ is
independent of the variable of the additional edge and the result follows by the same
argument, since XΓ̂ is then also a cone over XΓ. �

The case of attaching an arbitrary tree to a vertex of the graph is obtained by iterating
the second case of Corollary 5.3.

There are further cases of simple operations on a graph which can be analyzed as an
easy consequence of the formulae for cones:

• Adjoining a loop made of a single edge connecting a vertex to itself.
• Doubling a disconnecting edge in a non-1PI graph.

In these cases the resulting graph hypersurface is obtained by first taking a cone over the
original hypersurface in one extra dimension and then taking the union with a transversal
hyperplane, respectively given by the vanishing of the coordinate corresponding to the
loop edge or by the vanishing of the sum ti + tj coming from the pair of parallel edges.
We then have the following result.

Corollary 5.4. Let Γ be a graph with n edges, and let Γ′ be the graph obtained by attaching
a looping edge to a vertex of Γ, or let Γ be a non-1PI graph and let Γ′ be obtained from
Γ by doubling a disconnecting edge. Suppose that the CSM class of XΓ is of the form
c(XΓ) = f(H)∩ [Pn−1]∗, for a polynomial of degree ≤ n− 1 in the hyperplane class. Then
the CSM class of XΓ′ is given by

(5.3) c(XΓ′) = (f(H) + ((1 + H)n −Hn)H + Hn) ∩ [Pn]∗ .

Proof. In this case, XΓ′ is obtained by taking the union of the cone over XΓ with a general
hyperplane L. Since the intersection of a general hyperplane and XΓ′ is nothing but XΓ

itself, the inclusion-exclusion property for CSM classes discussed in §2.3 gives

(5.4)
c(XΓ′) = c(XΓ̂) + c(L)− c(XΓ)

= ((1 + H)f(H) + Hn + ((1 + H)n −Hn)H −Hf(H)) ∩ [Pn]∗

as claimed. �

A general remark that may be worth making is the consequence of these results for the
positivity question of Conjecture 1.5.

Corollary 5.5. If XΓ has positive CSM class, and Γ is obtained from Γ by any of the
operations listed above (subdividing edges, doubling disconnecting edges, attaching trees
and single-edge loops), then XΓ also has positive CSM class.
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Figure 6. Joining two 1PI graphs by a pair of edges.

The case of joining two graphs by a pair of edges operation mentioned above generalizes
the one of doubling a disconnecting edge but is more difficult to deal with explicitly. Given
a pair of 1PI graphs Γ1 and Γ2 and two additional edges joining them as in Figure 6, the
graph polynomial becomes of the form
(5.5)
ΨΓ(t) = (t1 + t2)ΨΓ1(t3, . . . , tn1+2)ΨΓ2(tn1+3, . . . , tn1+n2+2) + ΨΓ1,Γ2(t3, . . . , tn1+n2+2),

where n1 = #E(Γ1) and n2 = #E(Γ2). Here the first term corresponds to the spanning
trees of Γ that contain either the edge t1 or t2, while the second term comes from the
spanning trees that contain both of the additional edges t1 and t2. The resulting hyper-
surface XΓ ⊂ Pn1+n2+1 is once again a cone since it depends on the variables t1 and t2
only through their sum. However, in this case one does not have a direct control on the
form of the CSM class in terms of those of XΓ1 ⊂ Pn1−1 and XΓ2 ⊂ Pn2−1. Thus, we do
not treat this case here.

We can proceed similarly to give the relation between classes in the Grothendieck ring.
This is in fact easier than the case of CSM classes.

Proposition 5.6. With notation as in Corollaries 5.3 and 5.4, we have

(5.6)
[XΓ̂] = (1 + T) · [XΓ] + [P0]

[XΓ′ ] = T · [XΓ] + [Pn−1] + [P0].

Proof. The class of a cone in the Grothendiek ring is just

[C(X)] = [(X × A1) ∪ {pt}] = [X][A1] + [A0].

The result then follows immediately. �

As we have already noticed in our computation of the class in the Grothendieck ring and
of the CSM class in the special case of the banana graphs, the formulae look nicer when
written in terms of the hypersurface complement, rather than of the hypersurface itself.
The same happens here. When we reformulate the above in terms of the complements
of the hypersurfaces in projective space we find the following immediate consequence of
additivity and of the formulae obtained previously.

Corollary 5.7. With notation as in Corollaries 5.3 and 5.4, assume that c(Pn−1 rXΓ) =
g(H) ∩ [Pn−1]∗. Then

(5.7)
c(Pn r XΓ̂) = (1 + H)g(H) ∩ [Pn]∗

c(Pn r XΓ′) = g(H) ∩ [Pn]∗
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Figure 7. Graph obtained from Γ4 by adding loops and subdividing
edges.

Similarly, the classes in the Grothendieck group satisfy

(5.8)
[Pn r XΓ̂] = (1 + T) · [Pn−1 r XΓ]

[Pn r XΓ′ ] = T · [Pn−1 r XΓ].

We give two explicit examples obtained from the banana graphs by applying the oper-
ations discussed above.

Example 5.8. Attach a looping edge to the banana graph Γ4 of Figure 3 and then sub-
divide the new edge. This gives the graph in Figure 7. The CSM class of the hypersurface
XΓ4 is

(3H + 3H2 + 5H3) ∩ [P3]∗
by Theorem 4.8. According to Corollary 5.4, adding a loop gives a graph whose hypersur-
face has CSM class

((3H +3H2 +5H3)+((1+H)4−H4)H +H4)∩ [P4]∗ = (4H +7H2 +11H3 +5H4)∩ [P4]∗.

Subdividing the new edge (or any other edge) produces a hypersurface whose CSM class
is given by

((1+H)(4H+7H2+11H3+5H4)+H5)∩[P5]∗ = (4H+11H2+18H3+16H4+6H5)∩[P5]∗.

This is the CSM class corresponding to the graph in the picture. In the Grothendieck
group of varieties, the class of the complement of the hypersurface XΓ4 is

T3 + 3T2 + T− 1.

It follows immediately that the class of the complement of the hypersurface of the graph
in Figure 7 is then

T(T + 1)(T3 + 3T2 + T− 1) = T5 + 4T4 + 4T3 − T.

Example 5.9. Splitting one edge in a banana graph (see Figure 8) produces a partic-
ularly simple class in the Grothendieck group for the complement of the corresponding
hypersurface. The class for the ‘banana split’ graph is

Tn + nTn−1 + nTn−2 − (−1)n.
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Figure 8. Banana split graph.

6. Banana graphs in Noncommutative QFT

Recently there has been growing interest in investigating the renormalization properties
and the perturbative theory for certain quantum field theories on noncommutative space-
times. These arise, for instance, as effective limits of string theory [16], [31]. In particular,
in dimension D = 4, when the underlying R4 is made noncommutative by deformation to
R4

θ with the Moyal product, it is known that the φ4 theory behaves in a very interesting
way. In particular, the Grosse–Wulkenhaar model was proved to be renormalizable to all
orders in perturbation theory (for an overview see [21]). We do not recall here the main
aspects of noncommutative field theory, as they are beyond the main purpose of this paper,
but we mention the fact, which is very relevant to us, that a parametric representation for
the Feynman integrals exists also in the noncommutative setting (cf. [22], [32]). When the
underlying spacetime becomes noncommutative, the usual Feynman graphs are replaced
by ribbon graphs, which account for the fact that, in this case, in the Feynman rules
the contribution of each vertex depends on the cyclic ordering of the edges, cf. [21]. For
example, in the ordinary commutative case, among the banana graphs Γn we consider in
this paper the only ones that can appear as Feynman graphs of the φ4 theory are the one
loop case (with two external edges at each vertex), the two loop case (with one external
edge at each vertex) and the three loop case as a vacuum bubble. Excluding the vacuum
bubble because of the presence of the polynomial PΓ(t), we see that the effect of making
the underlying spacetime noncommutative turns the remaining two graphs into the graphs
of Figure 9. Notice how the two loop ribbon graph now has two distinct versions, only one
of which is a planar graph. The usual Kirchhoff polynomial ΨΓ(t) of the Feynman graph,
as well as the polynomial PΓ(t, p), are replaced by new polynomials involving pairs of
spanning trees, one in the graph itself and one in another associated graph which is a dual
graph in the planar case and that is obtained from an embedding of the ribbon graph on
a Riemann surface in the more general case. Unlike the commutative case, these polyno-
mials are no longer homogeneous, hence the corresponding graph hypersurface only makes
sense as an affine hypersurface. The relation of the hypersurface for the noncommutative
case and the one of the original commutative case (also viewed as an affine hypersurface)
is given by the following statement.

Proposition 6.1. Let Γ̃ be a ribbon graph in the noncommutative φ4-theory that cor-
responds in the ordinary φ4-theory to a graph Γ with n internal edges. Then instead of
a single graph hypersurface XΓ one has a one-parameter family of affine hypersurfaces
XΓ̃,s ⊂ An, where the parameter s ∈ R+ depends upon the deformation parameter θ of
the noncommutative R4

θ and on the parameter Ω of the harmonic oscillator term in the
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Figure 9. Banana graphs in noncommutative φ4-theory

Grosse–Wulkenhaar model. The hypersurface corresponding to the value s = 0 has a
singularity at the origin 0 ∈ An whose tangent cone is the (affine) graph hypersurface XΓ.

Proof. This follows directly from the relation between the graph polynomial for the ribbon
graph Γ̃ given in [22] and the Kirchhoff polynomial ΨΓ. It suffices to see that (a constant
multiple of) the Kirchhoff polynomial is contained in the polynomial for Γ̃ for all values
of the parameter s, and that it gives the part of lowest order in the variables ti when
s = 0. �

In the specific examples of the banana graphs Γ̃2 and Γ̃3 of Figure 9, the polynomials
have been computed explicitly in [22] and they are of the form

(6.1) ΨΓ̃2
= (1 + 4s2)(t1 + t2 + t21t2 + t1t

2
2),

where the parameter s = (4θΩ)−1 is a function of the deformation parameter θ ∈ R of
the Moyal plane and of the parameter Ω in the harmonic oscillator term in the Grosse–
Wulkenhaar action functional (see [21]). One can see the polynomial ΨΓ2(t) = t1 + t2
appearing as lowest order term. Similarly for the two graphs Γ̃3 that correspond to the
banana graph Γ3 one has ([22])

(6.2)
ΨΓ̃3

(t) = (1 + 8s2 + 16s4)(t1t2 + t2t3 + t1t3 + t21t2t3 + t1t
2
2t3 + t1t2t

2
3)

+ 16s2(t22 + t21t
2
3)

for the planar case, while for the non-planar case one has

(6.3)
ΨΓ̃3

(t) = (1 + 8s2 + 16s4)(t1t2 + t2t3 + t1t3 + t21t2t3 + t1t
2
2t3 + t1t2t

2
3)

+ 4s2(t22 + t21t
2
3 + t21 + t22t

2
3 + t23 + t21t

2
2 + 1 + t21t

2
2t

2
3).

In both cases, one readily recognizes the polynomial ΨΓ3(t) = t1t2 + t2t3 + t1t3 as the
lowest order part at s = 0. Notice how, when s 6= 0 one finds other terms of order less
than or equal to that of the polynomial ΨΓ3(t), such as t22 in (6.2) and 1 + t21 + t22 + t23 in
(6.3). Notice also how, at the limit value s = 0 of the parameter, the two polynomials for
the two different ribbon graphs corresponding to the third banana graph Γ3 agree.

For each value of the parameter s = (4θΩ)−1 one obtains in this way an affine hyper-
surface, which is a curve in A2 or a surface in A3, and that has the corresponding affine
XΓn

as tangent cone at the origin in the case s = 0. The latter is a line in the n = 2 case
and a cone on a nonsingular conic in the case n = 3.
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As a further example of why it is useful to compute invariants such as the CSM classes
for the graph hypersurfaces, we show that the CSM class of the hypersurface defined by
the polynomial (6.2) detects the special values of the deformation parameter s = (4θΩ)−1

where the hypersurface XΓ̃3
becomes more singular and gives a quantitative estimate of

the amount by which the singularities change.
The CSM class is naturally defined for projective varieties. In the case of an affine

hypersurface defined by a non-homogeneous equation, one can choose to compactify it in
projective space by adding an extra variable and making the equation homogeneous and
then computing the CSM class of the corresponding projective hypersurface. However, in
doing so one should be aware of the fact that the CSM class of an affine variety, defined by
choosing an embedding in a larger compact ambient variety, depends on the choice of the
embedding. An intrinsic definition of CSM classes for non-compact varieties which does
not depend on the embedding was given in [2], [1]. However, for our purposes here it suffices
to take the simpler viewpoint of making the equation homogeneous and then computing
CSM classes. If we adopt this procedure, then by numerical calculations performed with
the Macaulay2 program of [4] we obtain the following result.

Proposition 6.2. Let XΓ̃3
⊂ P3 denote the affine surface defined by the equation (6.2)

and let X̄Γ̃3
⊂ P3 be the hypersurface obtained by making the equation (6.2) homogeneous.

For general values of the parameter s = (4θΩ)−1 the CSM class is given by

(6.4) c(X̄Γ̃3
) = 14H3 + 4H.

For the special value s = 1/2 of the parameter, the CSM class becomes of the form

(6.5) c(X̄Γ̃3
)|s=1/2 = 5H3 + 5H2 + 4H,

while in the limit s → 0 one has

(6.6) c(X̄Γ̃3
)|s=0 = 11H3 + 4H.

It is also interesting to notice that, when we consider the second equation (6.3) for
the non-planar ribbon graph associated to the third banana graph Γ3, we see an example
where the graph hypersurfaces of the non-planar graphs of noncommutative field theory no
longer satisfy the positivity property of Conjecture 1.5 that appears to hold for the graph
hypersurfaces of the commutative field theories. In fact, as in the case of the equation for
the planar graph (6.2), we now find the following result.

Proposition 6.3. Let XΓ̃3
⊂ P3 denote the affine surface defined by the equation (6.3)

and let X̄Γ̃3
⊂ P3 be the hypersurface obtained by making the equation (6.3) homogeneous.

For general values of the parameter s = (4θΩ)−1 the CSM class is given by

(6.7) c(X̄Γ̃3
) = 33H3 − 9H2 + 6H.

The special case s = 1/2 is given by

(6.8) c(X̄Γ̃3
)|s=1/2 = 9H3 − 3H2 + 6H

Notice that, in the case of ordinary Feynman graphs of commutative scalar field theories,
all the examples where the CSM classes of the corresponding hypersurfaces have been
computed explicitly (either theoretically or numerically) are planar graphs. Although it
seems unlikely that planarity will play a role in the conjectured positivity of the coefficients
of the CSM classes in the ordinary case, the example above showing that CSM classes of
graph hypersurfaces of non-planar ribbon graphs in noncommutative field theories can
have negative coefficients makes it more interesting to check the case of non-planar graphs
in the ordinary case as well. It is well known that, for an ordinary graph to be non-planar,
it has to contain a copy of either the complete graph K5 on five vertices or the complete
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bipartite graph K3,3 on six vertices. Either one of these graphs corresponds to a graph
polynomial that is currently beyond the reach of the available Macaulay2 routine and
a theoretical argument that provides a more direct approach to the computation of the
corresponding CSM class does not seem to be easily available. It remains an interesting
question to compute these CSM classes, especially in view of the fact that the original
computations of [15] of Feynman integrals of graphs appear to indicate that the non-
planarity of the graph is somehow related to the presence of more interesting periods (e.g.
multiple as opposed to simple zeta values). It would be interesting to see whether it also
has an effect on invariants such as the CSM class.
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[19] H. Gillet, C.Soulé, Descent, motives and K-theory. J. Reine Angew. Math. 478 (1996), 127–176.

[20] D.R. Grayson, M.E. Stillman, Macaulay 2, a software system for research in algebraic geometry,
available at http://www.math.uiuc.edu/Macaulay2/

[21] H. Grosse, R. Wulkenhaar, Renormalization of noncommutative quantum field theory, in “An

invitation to Noncommutative Geometry” pp.129–168, World Scientific, 2008.
[22] R. Gurau, V. Rivasseau, Parametric Representation of Noncommutative Field Theory, Commun.

Math. Phys. Vol. 272 (2007) N.3, 811–835

[23] C. Itzykson, J.B. Zuber, Quantum Field Theory, Dover Publications, 2006.
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