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1 Introduction

In a general equilibrium asset pricing model, the existence of a ratio-
nal expectations equilibrium (REE) implies that each trader solves a utility-
optimization problem that incorporates all current information about the mar-
ket. In particular, traders implicitly must: (i) have full knowledge of the prob-
lem including knowing the preferences and holdings of all the other agents,
(ii) be able to deduce their optimal behavior no matter how complex, and (iii)
share common expectations including that all the other agents are themselves
rational and know all these things. In a sense, these agents must be “super-
rational”: they are “experienced masters” in a stable world where the past is
a good indicator of the future, and full rationality of all agents is common
knowledge [1, ch. 1].

This has the advantage of making the REE, in many cases, unique and com-
putationally accessible. However, real traders seldom know this much, because
real markets are always changing unpredictably. Since super-rational agents
cannot evolve, we also cannot use the REE concept to study market states
away from equilibrium, or the dynamics of convergence toward equilibrium.
Important prior work on equilibrium models, including [2,3], has focused solely
on the equilibrium states themselves, and so do not illuminate the nearby dis-
equilibrium states and their evolution.

These disadvantages have been addressed by the agent-based computational
economic (ACE) modeling literature [4–6], which takes a more global view of
the market dynamics. There, agents follow formal, often myopic, rules, which
can evolve by natural selection. This literature examines the resulting emer-
gent properties of the market, including the dynamics of prices and holdings
as the market evolves and agents with poor rules die and those with good
rules prosper.

However, many economists find such agents unrealistic because they are not
utility optimizers and ignore easily available information not included in their
operating rules. Similar criticisms are directed at models, such as in [7], where
prices and demands are driven by exogenously chosen differential equations
rather than endogenously via the actions of utility-optimizing agents.

In this paper we address both sets of disadvantages by studying a standard
general equilibrium asset pricing model from an ACE point of view. We study
a discrete-time Lucas tree economy with one asset and N > 1 infinitely lived
agents who act to optimize an infinite-horizon utility. The asset (stock) is in
fixed supply and pays a random dividend in each period. The asset price is
determined in each period such that total (price-dependent) demand is equal
to total supply. The dividend is assumed to follow a Markov process whose
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distribution is known to the agents, but we need make no further assumptions
about it – it’s distribution may be discrete or continuous.

Agents determine how much to consume and how much to invest in the
stock each period (day) by optimizing a time-separable CRRA utility function.
As in the standard Lucas model, at any time, agent i, 1 ≤ i ≤ N , holds a
certain number of shares of stock si ≥ 0, which can vary over time if the agent
trades. (Short positions are not allowed.) Agents also have fixed parameters βi,
the discount factor, and γi, the risk-aversion parameter. All these are allowed
to vary across the population of agents.

The feature that distinguishes our framework from the classical setting,
aside from heterogeneity, is that agents are “boundedly rational” in the specific
sense that they do not know the holdings or parameters of the other agents.
Therefore they cannot incorporate that information into the solution of their
personal optimization problems. As we will see, this allows us to model the
economy both at and away from equilibrium.

Each agent’s personal Euler equation (see Section 2 below, where we de-
scribe this market more completely) requires the agent to compute, each day,
an expectation involving future market-clearing prices in order to compute
today’s optimal consumption and investment amounts. Tomorrow’s market
clearing price P ′ depends on tomorrow’s unknown dividend D′ (the only source
of randomness in our model). While agents know the probability distribution
of D′, they do not know how the market clearing price P ′(D′) depends on D′

– this depends in part on the other agents.

Therefore, solving the Euler equation requires agents, individually, to hy-
pothesize “best guess” market-clearing pricing functions pi(D

′). This allows
them to compute optimal demands, conditional on pi(·), and to trade if in-
dicated. The market will actually clear today at a price Pm(D), such that
supply equals demand. (Here we make explicit the dependence of Pm(·) on
the dividend D, but in general, in disequilibrium, this function also depends
on all the agents’ holdings, parameters, and pricing functions pi.)

Borrowing terminology from [1], we will say that the market is at a “correct
expectations equilibrium” (CEE), if all agents are using the same pricing func-
tion Pm(·) to solve for optimal demand, and this pricing function is correct
in the sense that the actual resulting market clearing price is Pm(D) in every
period.

This framework has the advantage that agent behavior is well-defined whether
or not the market is at equilibrium. We may now ask:

Q1. Do there exist CEE market states, and if so how are they characterized?
Are they in any sense unique?
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Q2. What are the market dynamics in this framework? Specifically, how do
the asset holdings and market clearing pricing function Pm evolve over
time, both at and away from equilibrium?

Q3. The answer to the previous question will usually depend on whether and
how the individual pricing functions pi get updated when agents observe
that they disagree with actual market clearing prices. This updating will
be some form of learning based on past observed prices. How does the
learning mechanism influence the market dynamics?

Q4. Is the CEE, if it exists, a stable equilibrium for the market dynamics,
toward which markets in disequilibrium will tend asymptotically in time?

In general, we don’t expect to find closed formulas describing the dynamics
of such markets, and so would investigate these questions via numerical sim-
ulation, as in the ACE literature. Remarkably, however, we can give rigorous
and complete answers to all these questions in the special (but quite reason-
able) case that all agents have log utility (γi = 1). In summary, the answers
are as follows.

A1. There is a unique CEE pricing function given by

P ∗(D) =
β

1− β
D, (1)

where β is the discount factor of the most patient agent. CEE stock
holdings are zero for agents with discount factor less than β, and can be
distributed arbitrarily among agents with discount factor equal to β.

A2. Holdings and market pricing functions evolve according to explicit formu-
las given below (equations (11), (12)). In particular, the market dynamics
are deterministic. (Actual market prices of course depend on the random
dividend.)

A3. The market dynamics do not depend on the individual pricing functions
pi, on the learning mechanism used, if any, or on the probability distri-
bution of dividends.

A4. Each CEE is a fixed point of the dynamics. From any disequilibrium ini-
tial condition, markets will converge deterministically and exponentially
fast to a CEE given by equations (1) and (15) .

2 Model framework

Consider the standard Lucas asset pricing model [8,9] with N possibly het-
erogeneous agents and a single risky asset with period t market clearing spot
price denoted Pt. The number of shares of the asset is normalized to be N and
the asset pays a random dividend Dt per share, described by some Markov
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process and so determined solely by the observed state of the world at the
beginning of each period t. All agents are assumed to know the distribution of
dividend payments across states, which can be arbitrary, discrete or continu-
ous, stationary or not.

There is no production in this economy so in time period t agent i will
choose optimal consumption ci,t ≥ 0 and investment in the asset si,t+1 ≥ 0
based upon the agent’s preferences and period budget constraint

ci,t + Pt si,t+1 ≤ wi,t = (Pt +Dt) si,t, for all t, (2)

where wi,t is the agent’s period t wealth.

The order of events is as follows. Agent i begins period t knowing her asset
holdings si,t. Next, today’s stock dividend Dt is announced to all agents. At
this point the agent does not yet know her current wealth because the market
price Pt has yet to be determined through market clearing. Each agent must
first compute her optimal demand as a function of price, si(P ), representing
the optimal number of shares demanded at any given price P . These demand
functions then collectively determine the unique price Pt that clears the market
according to

N∑
i=1

si(Pt) = N. (3)

The actual mechanism of market clearing is not important; we can imagine
that there is some market maker who collects the demand functions from each
agent and publicly declares the market price satisfying (3). (This price will be
unique if, for example, demands are all monotone in P .) This declared market
price is the only source of information about the other agents.

Each agent is assumed to be an expected utility maximizer with constant
relative risk aversion preferences and risk aversion γi > 0. The one-period
utility of consumption is

ui(c) =
c1−γi − 1

1− γi
, γi 6= 1,

or
ui(c) = log c, γi = 1,

and consumption and investment polices must be found that optimize the
time-separable expected utility

max
{ci,τ , si,τ+1}∞τ=t

Et
∞∑
τ=t

βτ−ti ui(ci,τ ) (4)

subject to the budget constraint (2). The agents’ discount factors, βi ∈ (0, 1),
may differ and the expectation in (4) is over the distribution of dividends and
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is conditional upon the information available to the agent at the beginning of
period t.

Denote by st ∈ RN the vector of all agents’ time-t asset holdings. We
explicitly include the time subscript to emphasize that these holdings may
change over time. We describe two different equilibrium concepts which we
label REE and CEE.

Definition 1 A rational expectations equilibrium (REE) for this economy
consists of an aggregate pricing function P ∗(Dt, st) for the risky asset and a
set of agent consumption demand functions ci,t = ci(Dt, st) and asset demand
functions si,t+1 = si(Dt, st) such that, for all future times t, the asset market
clears at Pt = P ∗(Dt, st), the budget constraint is satisfied for each agent, and
the demand functions solve the agents’ optimization problems (incorporating
full knowledge of the market).

Our boundedly rational agents, however, don’t know st, and must optimize
with more limited knowledge. Therefore we use instead the notion of a CEE:

Definition 2 A correct expectations equilibrium (CEE) for this economy
consists of an aggregate pricing function P ∗(Dt) for the risky asset and a set
of agent consumption demand functions ci,t = ci(Dt, si,t) and asset demand
functions si,t+1 = si(Dt, si,t) such that, for all future times t, the asset market
clears at Pt = P ∗(Dt), the budget constraint is satisfied for each agent, and
the demand functions solve the agents’ optimization problems (incorporating
available knowledge).

To clarify the difference between “available knowledge” and “full knowl-
edge”, we need to look at the optimization problem more carefully.

The usual Bellman equation approach leads to the following standard Eu-
ler equation as viewd from time t, which must be satisfied by the optimal
consumption demand function ci,t+1:

Pt = Et

βi
(
ci,t+1

ci,t

)−γi
(Pt+1 +Dt+1)

 . (5)

Using the budget constraint (2) to eliminate c, and using the notation s′i,t =
si,t+1 = si(Dt, si,t), and s′′i,t = si(Dt+1, si,t+1) = si(Dt+1, si(Dt, si,t)), we may
rewrite (5) as

Pt = βEt

[(
si,t(Pt +Dt)− s′i,tPt

s′i,t(Pt+1 +Dt+1)− s′′i,tPt+1

)γ
(Pt+1 +Dt+1)

]
. (6)

Each agent, at equilibrium, must solve for the asset demand function si(D, s)
that satisfies this optimality condition.

6



Now our boundedly rational agents will have a problem computing the con-
ditional expectation in the Euler equation. They need to know the equilibrium
pricing function P ∗ in order to know the probability distribution of tomorrow’s
prices, but this depends on the holdings and preferences of the other agents.
Worse, it depends on knowing that the other agents also know the equilibrium
pricing function, which will not be true in disequilibrium.

For illustration, consider a simple case where agents are super-rational and
the REE is easy to compute. Suppose all agents are identical with log utility
(βi = β, γi = 1, si,t = 1, for all i and t) and all agents are aware of this.
Knowing they are identical, agents can deduce that there will never be any
trading, and so the budget constraint will thus imply that ci,t = Dt and
si,t+1 = si,t = 1 for each agent. The Euler equation (5) simplifies to

Pt = Et

[
βi

(
Dt

Dt+1

)
(Pt+1 +Dt+1)

]
(7)

which is now easy to solve. The REE aggregate pricing function satisfying this
equation is

P ∗(Dt) =
β

1− β
Dt.

and holdings s remain fixed over time.

Note that the demand function s′ has vanished from the Euler equation,
since demand s′ is fixed at s. Since agents know a priori that the market is in
equilibrium, the REE pricing function, and hence the market clearing price,
is known by all agents as soon as the dividend is announced. There is no
need to compute demand functions for a range of prices. This is a significant
simplification of the problem,but its operational validity is questionable: only
if the agents know that all other traders are identical to themselves can they
justify setting ci,t = Dt in their Euler equation [10].

In our boundedly rational world, agents do not know holdings or prefer-
ences of the other agents, nor what pricing functions the other agents are
using. Therefore they cannot know whether the market is at equilibrium –
only whether their own pricing function is correctly predicting market clear-
ing prices.

Our way forward is to allow agents to use private estimates pi(Dt+1) of the
period t+1 aggregate pricing function in their Euler equations (5). We assume
that these functions depend upon D alone. (Although agents are aware that
there are unobserved variables st and functions {pj}j 6=i influencing market
prices away from equilibrium, we can imagine they implicitly operate under
the hypothesis that the market will converge to a CEE, so that the dependence
on these variables will vanish with time. Thus, it is pragmatic for the agents
to use pi(Dt+1) in the Euler equation.)
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At a CEE, the demand functions si depend only on current holdings si,t and
the current dividend Dt, because the asset price Pt is implicitly determined
by Dt. Away from equilibrium this is no longer the case. In order for a market
clearing price to be determined according to equation (3), each agent’s demand
function must include price Pt as an explicit independent variable. Agents
must determine what to demand at any possible price; that will determine this
period’s clearing price, and, in turn, each agent’s actual realized investment.

This framework now provides agents with enough information to derive
optimal consumption and asset demand functions ci,t = ci(Dt, si,t, P | pi) and
si,t+1 = si(si,t, Dt, P | pi), where we indicate explicitly the dependence on the
choice of pricing function pi, which is allowed to change over time, e.g. via
some learning mechanism.

Finally in this section, we make precise the spaces and dynamics we are
studying.

• Let D be the set of possible dividends and P the set of possible asset prices;
in this case both can be taken to be the set R+ of nonnegative real numbers.
• P will denote the set of all possible pricing functions p : D → P. This can

be thought of as a space of random processes depending on the underlying
dividend process Dt.
• S ⊂ RN is the set of all possible holdings vectors s = (s1, . . . , sN)
• A = PN is the set of possible vectors of agents’ individual pricing functions

(p1, . . . , pN).

The market clearing function M : S × A → P , given the agents’ holdings
and pricing functions, returns the resulting market clearing pricing function
implied via (3) by the resulting agents’ optimal demand functions.

The market dynamical state space is

X = {(s, p, a) ∈ S × P ×A : M(s, a) = p}.

An element of X specifies asset holdings s, individual pricing functions a,
and the resulting market pricing function p. (Note we suppress the space D,
since the underlying dividend process is exogenous; effectively we are studying
the dynamics of random processes measurable with respect to the filtration
generated by {Dt}.)

The market dynamical system is the mapping f : X → X corresponding
to updating the state variables by one time step. The holdings vector s will
change due to trading, if any, and the vector a of agent pricing functions will
change due to the particular learning mechanism chosen, if any. The passage
of time is tracked by the trajectory of an f -orbit {fn(x) : n = 0, 1, 2, 3, . . . }
of an initial state x ∈ X, where fn denotes the n-fold composition of f with
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itself.

In this framework, a CEE corresponds to a state (s, p∗, a) where a =
(p∗, p∗, . . . , p∗) and f(s, p∗, a) = (s′, p∗, a) for some s′. If there is no trading,
then (s, p, a) will be a fixed point of f . 1

3 The log utility case

Suppose all N > 1 agents have CRRA utility with a common risk aversion,
γi = γ > 0 for all i, but possibly differing discount factors βi and initial
holdings si,0.

We assume the aggregate supply of stock is N shares, and that agents have
limited information in the sense that they may not make any assumptions
about the preferences or holdings of the other agents when solving for their
optimal consumption in each time period. Agents are presumed to have private
estimates pi(·) of the pricing function, but we impose no assumptions yet on
what these are or how they evolve.

Using the budget constraint to substitute for c, the ith agent’s Euler equa-
tion (5) is given by the following equation, where for convenience we use the
notation D = Dt and D′ = Dt+1:

P

(si,t (P +D)− P si(D, si,t, P ))γ
=

βiEt

[
pi(D

′) +D′

(si(D, si,t, P ) (pi(D′) +D′)− pi(D′) si (D′, si(D, si,t, P ), pi(D′)))γ

]
.

(8)

Here, P represents any current market price, si,t is the time-t number of shares
of stock of agent i, pi is the ith agent’s current pricing function, and si(D, s, P )
is the ith agent’s optimal demand function, which is the unknown here. The
agent’s optimization problem is to find a function si satisfying (8) for all
possible values of P ; the actual market price will be determined after all
agents have done this.

Notice that the unknown demand function si appears in (8) in a highly
nonlinear way. Nonetheless, agents must solve this equation for si in order
to be able to participate in the implicit price-calling auction used to arrive
at the market clearing price. (Though this poses a computational problem in

1 If there is perpetual trading at equilibrium, none of these points will be fixed, but
we could view a CEE as the smallest f -invariant set containing such a point.
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simulations, we assume our agents can solve this mathematical problem at no
cost.)

Remarkably, in the log-utility case γ = 1, it is easy to verify that (8) has
the simple explicit solution

si(D, s, P ) = βi (1 + (D/P )) s. (9)

Unlike the general case γ 6= 1, this solution has the special property that it
does not depend upon the agent’s pricing function pi. This is a very important
feature of log utility and is what makes this special case analytically tractable.

Because the pricing functions pi do not influence agent behavior, the learn-
ing mechanism is rendered irrelevant, and the dynamical system f projects
down to a mapping

g : Y → Y

on the reduced dynamical state space

Y = {(s, p) ∈ S × P : (s, p, a) ∈ X for some a ∈ A},

consisting of just asset holdings and market clearing price functions.

The market clearing price, which we now denote Pm = Pm(Dt), is deter-
mined from the market clearing condition

N∑
i=1

si(si,t, Dt, Pm) = N. (10)

Substituting the demand function (9) for si and solving for the market clearing
price, gives

Pm =

∑N
1 βj sj

N −∑N
1 βj sj

D. (11)

Substituting (11) into the demand function (9) gives the agent’s next period
holdings at market clearing prices as

si,t+1 = si(si,t, D, Pm) = βi

(
N∑N

1 βj sj,t

)
si,t. (12)

The evolution of holdings has now become a deterministic dynamical system
h : S → S given by h = (h1, . . . , hN) where

hi(s1,t, . . . , sN,t) = βi

(
N∑N

1 βj sj,t

)
si,t. (13)

At any time, the market pricing function Pm is determined by the asset hold-
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ings according to (11), so the market dynamical system is completely described
by h. We now need only determine the behavior of h-orbits on S in order to
completely understand the time evolution of our market.

The following theorem establishes that this dynamical system converges
and reports the limiting asset holdings and pricing function.

Theorem 1 Consider a pure exchange economy of N infinitely-lived agents
and N shares of a single risky asset paying stochastic dividend D at the begin-
ning of each period. Each agent maximizes her discounted, expected life-time
utility subject to the period budget constraint ci+P s′i ≤ (P +D) si. All agents
have log utility and have discount factors βi and initial asset holdings s◦i , where∑N
i=1 s

◦
i = N . Agents know the probability distribution of dividends but not the

asset holdings, discount factors, or utility functions of other agents.

For convenience, order the agents by decreasing discount factor and let k
be the number of agents who share the maximum discount factor β, so that

1 > β = β1 = · · · = βk > βk+1 ≥ · · · ≥ βN > 0.

Then the dynamic behavior of holdings and market clearing prices is given
by the deterministic equations (11) and (12). This system converges exponen-
tially fast to

P ∗(D) =
β

1− β
D (14)

and

s∗i =
Ns◦i

s◦1 + · · ·+ s◦k
, i ≤ k, (15a)

= 0, i > k. (15b)

The theorem states that the asset holdings of all agents with less than the
maximum subjective discount factor converge to zero at an exponential rate.
The asset holdings of the remaining most patient agents, with the highest
discount factor, converge to a limit proportional to the initial holdings of
this subset of agents. The patience of these agents is eventually rewarded by
accumulating all of the wealth in the economy while the impatient agents
are driven out of the market as their wealth is asymptotically driven to zero.
Furthermore, the economy eventually collapses to a set of agents with differing
holdings but a common discount factor. The market clearing price globally
converges to the pricing function obtained in the classical and more restricted
case of homogeneous, super-rational agents.

In the special case where agents (unknowingly) have identical discount fac-
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tors but possibly different initial holdings, there is never any trading and the
market clears immediately in the first time step at the familiar rational ex-
pectations equilibrium price

Pm =
β

1− β
D. (16)

3.1 Proof of Theorem 1

Proof: It is easy to verify algebraically that the demand function (9) solves
the Euler equation (8), and therefore (11) and (12) describe the market clear-
ing price and new stock holdings in each time step.

Also, it is easy to see that the market clearing price Pm is given by the
P ∗ in (14) if the stock holdings are such that the only non-zero holdings are
for agents with βi = β. Therefore it remains to prove that holdings globally
converge to the values described by (15).

It is convenient to rewrite the dynamical system (13) in terms of the relative
holdings xi = si/N :

x′i =
βixi∑N
1 βjxj

. (17)

Here xj ∈ [0, 1] for all j and
∑
j xj = 1, so the state (x1, . . . , xN) lies on the

(N − 1)-dimensional unit simplex

∆N = {(x1, . . . , xN) ≥ 0 :
∑
i

xi = 1} (18)

in the positive orthant of RN . Since
∑
j x
′
j = 1, we can describe the dynamics

as an iteration of the mapping T : ∆N → ∆N where the ith coordinate of
T (x) is defined to be x′i given by (17).

If Γ ⊂ ∆N denotes the k-dimensional simplicial face

Γ = {(x1, . . . , xk, 0, . . . , 0) :
k∑
j=1

xj = 1}, (19)

then it is easy to see that every point of Γ is fixed by T . From (17), if xj 6= 0
and βi = βj, then T (xi)/T (xj) = xi/xj. Hence T always preserves the relative
sizes of the coordinates x1, . . . , xk. Therefore the limiting holdings must be
given by (15) if we can show that every forward T -orbit {T n(x)} converges to
Γ.

Define πΓ : ∆N → Γ to be the projection fixing the first k coordinates
and setting the remaining N − k coordinates to zero. Let ∆N+ = {x ∈ ∆N :
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πΓ(x) 6= 0}.

Lemma 2 Define F : ∆N → R by F (x) =
∑
i βixi, where β = β1 and the

βi are ordered as in Theorem 1. Then for any x ∈ ∆N+, F (T n(x)) increases
monotonically with limit β as n→∞.

See the Appendix for the proof of this lemma.

From the lemma above, the limit of F (T n(x)) is β for all x ∈ ∆N+. Since
F is continuous and F−1(β) = Γ, every forward T -orbit starting in ∆N+ must
converge to Γ. From equation (12), we see that if holdings are close to zero
for agents j = k + 1, . . . , N , then we have, approximately,

s′j =
βj
β1

sj, (20)

which gives us, asymptotically, an exponential rate of convergence to zero all
j > k. This completes the proof of Theorem 1. 2

3.2 An illustration with two agents

For the special case of two agents with different discount factors β1 > β2 it
is possible to describe the market dynamics with a simple diagram. The asset
demand functions are

si(s1,t, s2,t) = βi
2si,t

β1s1,t + β2s2,t

, i = 1, 2. (21)

Using the market clearing constraint s1,t + s2,t = 2 gives

s1(s1,t) =
β1s1,t

β2 + (β1 − β2)(s1,t/2)
(22a)

and

s2(s2,t) =
β2s2,t

β1 + (β2 − β1)(s2,t/2)
. (22b)

These two functions are plotted in Figure 1 for the discount factors β1 =
0.95 and β2 = 0.7. Iteration of the upper function for agent 1, the most patient
agent with the higher discount factor, is illustrated with the arrows showing
that asset holdings will converge to s = 2. Similarly, the asset holdings of
the less patient agent 2 will decrease monotonically to zero along the lower
function. This behavior is common to any choice of discount factors as long
as β1 > β2. When β1 = β2 both graphs are along the diagonal and the asset
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holdings of both agents remain fixed and there is no trading.

4 Conclusions

Theorem 1 and the surrounding discussion provide the answers A1 - A4
summarized in the Introduction. Since, in our log-utility case, the decisions of
the agents turn out to be uninfluenced by the chosen pricing functions a ∈ A,
The full dynamical system f : X → X conveniently reduces to a mapping
g : Y → Y on the reduced state space, which provides the answer to question
Q2.

It’s natural to ask about what happens when agents are allowed to have
other risk aversion parameters γi > 0. In general, optimal demands will then
depend on the individual pricing functions a. Therefore, the mapping f : X →
X will not be fully specified until the pricing function updating (learning)
mechanism is specified.

Simulation studies are reported in [11] in this general case, where the learn-
ing mechanism is a simple least squares updating of the pricing function based
on the observed history of market prices. In all cases studied, market prices
are observed to converge to a no trading equilibrium which, in our language,
is a fixed point (s, P ∗, a) of f : X → X, where a = (P ∗, . . . , P ∗).

The simulation studies are numerically challenging because each agent’s
optimal demand must be solved numerically in every time step. However, we
expect further work to help us establish rigorous convergence results for the
case of general risk aversion.

The log utility case makes for an interesting comparison between our two
equilibrium concepts, CEE and REE. Assuming that agents know all the pric-
ing functions, holdings, and preferences of the other agents won’t change their
behavior in each time step. Equations (11) and (12) describe the market price
Pm(D, s) and demands as a function of D and s, so the market is at an REE
all all times, even as holdings evolve. When agents do not observe holdings
s, the pricing function Pm(D) evolves over time and reaches the equilibrium
P ∗(D) only in the limit.
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Appendix. Proof of Lemma

Proof: Let Υ denote the (N − k)-dimensional sub-simplicial face

Υ = {(0, . . . , 0, xk+1, . . . , xN) :
N∑

j=k+1

xj = 1}, (A.1)

and πΥ : ∆N → Υ the projection fixing the last N −k coordinates and setting
the first k to zero.

F (x) is is simply a weighted average of the β’s, weighted by the x’s. Using
the definition of T , we have, for any x,

F (T (x)) =

∑
i β

2
i xi

F (x)
(A.2)

and so F (x)F (T (x)) =
∑
i β

2
i xi. Also, F 2(x) = (

∑
i βixi)

2.

Now F (T (x)) ≥ F (x) follows from Jensen’s inequality

φ(
∑
i

βi xi) ≤
∑
i

φ(βi)xi (A.3)

for the convex function φ(x) = x2. The inequality is strict if both πΓ(x) and
πΥ(x) are nonzero.

Fix x ∈ ∆N+. If πΥ(x) = 0 then x ∈ Γ, T (x) = x, and F (x) = β, so
there is nothing further to prove. Hence suppose πΥ(x) is nonzero. This means
πΓ(T (x)) and πΥ(T (x)) are also nonzero, so F (T n(x)) is a strictly monotone
sequence bounded by β. It must therefore converge to it’s supremum, call it
β∗.

Suppose β∗ < β. By compactness of ∆N , the sequence {T n(x)} has a
convergent subsequence yk = T nk(x) → x∗ ∈ ∆N , and by continuity of
F , F (x∗) = β∗. By the definition of T , (T n(x))i is monotone increasing for
i = 1, . . . , k. Therefore x∗ ∈ ∆N+. Since F (x∗) < β, πΥ(x∗) 6= 0, and so

F (T (x∗)) > F (x∗) = β∗. (A.4)

However, we also have F (T (yk)) ≤ β∗, and since yk → x∗ this contradicts the
continuity of F and T . Therefore we must have β∗ = β. 2
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Fig. 1. For a market with two agents having different discount factors β1 = 0.95 and
β2 = 0.7, we plot the demand function of agent 1 (solid), and the diagonal (dashed).
The demand function of agent 2 is symmetrically below the diagonal because of the
market-clearing requirement s1 + s2 = 2. Iteration of agent 1’s demand function,
describing the passage of time, is illustrated with the arrows. Holdings for agent 1
converge to 2. Symmetrically, holdings for agent 2 converge simultaneously to zero.
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