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Abstract

We investigate the well-posedness of a coupled Stokes-Darcy model with Beavers-Joseph in-
terface boundary conditions. In the steady-state case, the well-posedness is established under
the assumption of small coefficient in the Beavers-Joseph interface boundary condition. In the
time-dependent case, the well-posedness is established via appropriate time discretization of
the problem and a novel scaling of the system under isotropic media assumption. Such cou-
pled systems are crucial to the study of subsurface flow problems, in particular, flows in karst
aquifers.

1 Introduction

Groundwater systems are of great importance to our daily lives. In many states within the United
States as well as in many other nations, groundwater is a major source of drinkable and industrial
water. Groundwater systems are so tightly bonded with the lives of human beings that they are
also very susceptible to contamination. Great concerns have grown about the sustainability of
groundwater systems and their self-cleansing ability.

Among groundwater systems, karst aquifers are one important type. Such aquifers are mostly
made up of a matrix, i.e., a porous medium, that holds the water. This is usually referred to as the
first porosity. However, underground fissures and conduits and surface sinkholes and springs play a
major role in fluid transport in karst aquifers, even though they occupy much smaller space relative
to the more homogeneously porous matrix in which the first porosity dominates. Traditional models
for studying groundwater such as dual porosity models oversimplify the intricate, heterogeneous
system and can accurately handle fluid transport mechanisms only in the matrix. It is impractical
to use them for studying complicated systems like karst aquifers. The important second and third
porosities are ignored from these models despite the simple fact that they are the major underground
highways for water. Now, scientists are beginning to shed light on using the Navier-Stokes equations
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to tackle the highly structured second and tertiary porosities which are prevalent in real-world karst
aquifers.

Numerous previous studies have endeavored to study the interaction between the free flow in
the second and tertiary porosity (say conduits) and the confined flow in the matrices. Most of
them are divided into three major categories: using the domain decomposition method [25, 8, 7, 9],
using the Lagrange multiplier approach [12, 18] or the two-grid method [21]. To sum up, in free
flow, the Navier-Stokes equations or their linearized version, the Stokes equations, are commonly
used. In the matrix, one popular choice is to use Darcy’s law. For the coupled Navier-Stokes-Darcy
or the linearized Stokes-Darcy models, two boundary conditions are well-accepted: the continuity
of the normal velocity across the interface which is a consequence of the conservation of mass,
and the balance of force normal to the interface (2.7). In the three-dimensional case, two more
interface conditions are needed. Here, we adopt the classical empirical Beavers-Joseph interface
boundary condition which was proposed in the seminal work [3]. Roughly speaking, Beavers and
Joseph proposed that the tangential component of the normal stress of the flow in the conduit at
the interface is proportional to the jump of the tangential velocity across the interface (2.7).

Although there is abundant empirical evidence supporting the validity of the Beavers-Joseph
interface boundary, we are not aware of any rigorous mathematical work based on this interface
boundary condition. The main mathematical difficulty in adopting the Beavers-Joseph interface
boundary condition seems to be the fact that this condition makes an indefinite leading order
contribution to the total energy budget. Previous mathematical works on the coupled Stokes-Darcy
system all used simplified interface boundary conditions such as the Beavers-Joseph-Saffman-Jones
interface boundary condition [18] which basically neglects the contribution of the flow in the porous
media to the interface boundary condition (2.8), or even a simpler interface boundary condition
[7] (which is similar to a “free-slip” boundary condition) that is obtained by setting a coefficient
to zero in the Beavers-Joseph interface boundary condition (2.7). All these simplified interface
boundary conditions imply that the contribution of the interface boundary condition to the total
energy budget is dissipative and hence analysis are possible. One of the main contributions of this
paper is a novel scaling (may be interpreted as pre-conditioning) for the coupled system so that the
indefinite contribution from the interface term is controlled by the dissipation terms to the leading
order (a G̊arding type estimate). This essentially leads to the well-posedness of the system.

There exists substantial evidence supporting the usage of simplified interface boundary con-
ditions. For instance, Saffman [26] and Jones [17] proposed the simplified interface boundary
condition which bears their names based on consideration of very special cases and an ad hoc
asymptotic analysis. Saffman considered one-dimensional flow under a uniform pressure gradient
(which means no mass exchange between the conduit and the matrix) in uniform media (isotropic
and homogeneous and hence constant hydraulic conductivity) and in the zero permeability limit.
The simplified interface condition was mathematically validated by Jäger and Mikelic̀ [15] in the
sense that the leading order interface boundary condition is the Beavers-Joseph-Saffman-Jones
boundary condition in the zero permeability limit under the similar assumptions as in Saffman’s
work plus the additional assumption that the flow is periodic in the horizontal direction (2D case).
However, these assumptions may not necessarily hold in the sophisticated system such as a real-
world karst aquifer. Fluid exchange between the conduit and the matrix, heterogenous and not
necessarily small hydraulic permeability, and non-periodic boundary conditions are common in real-
world problems and thus must be incorporated into the modeling to obtain useful results. We are
not sure if the simplified Beavers-Joseph-Saffman-Jones interface boundary condition remains true
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in this kind of environment. Therefore it is natural to consider the coupled Stokes-Darcy system
with the complete Beavers-Joseph interface boundary condition.

We also point out that all previous works emphasized the time-independent, steady state case.
With real-world application in mind, especially the influence of precipitations which is reflected in
the time dependent inflow-outflow boundary conditions in the conduit (see (2.6)), we mainly focus
on the time-dependent problems, although the time-independent case is also considered. It turns
out that the time dependency is a blessing in our analysis since the dissipation terms are only able
to control the leading order indefinite contribution from the Beavers-Joseph interface term.

The rest of the paper is organized as follows. We present the linear Stokes-Darcy model in
their primitive variables as well as its weak formulation in Section 2 with the full Beavers-Joseph
interface boundary conditions. Section 3 is devoted to the stationary case. The well-posedness as
well as a brief discussion of error estimates for finite element approximations are given in Section 3
when the coefficient in the Beavers-Joseph interface boundary condition is small enough. We tackle
the time-dependent case in Section 4 where a backward-Euler time discretization and a suitable
scaling of the Darcy system are utilized to show the well-posedness. As a byproduct, we also derive
a fully discrete scheme and show that it converges. However, a convergence rate is not given here.
We consider convergence rates for finite element approximation in [5].

2 The Stokes-Darcy system with the Beavers-Joseph interface
condition

We begin with giving a full description of the problem we consider. Figure 2.1 depicts a simplified

Figure 2.1: Typical components of a karst aquifer.

typical karst aquifer system. The free flow is confined in the underground conduit, denoted by
Ωc, which connects a sinkhole to a spring. Surrounding the conduit are porous media such as soil,
gravel, sand, etc. The porous media as a whole are regarded as the matrix that holds water. The

3



region occupied by the matrix is denoted by Ωm. The flow in the matrix Ωm is governed by

S
∂φm
∂t

+∇ · vm = 0

vm = −K∇φm

 in Ωm (2.1)

which includes, in the first equation, the saturated flow model and, in the second equation, Darcy’s
law [2]. In (2.1), S denotes the mass storativity coefficient, K(x) denotes the hydraulic conductivity
tensor of the porous media, which is assumed to be symmetric and positive definite but could be
location dependent (heterogeneous), and the unknown φm denotes the hydraulic (piezometric) head,
defined as φm := z + pm

ρg , where pm represents the dynamic pressure, z the height, ρ the density,
and g the gravitational constant. Here the subscript m emphasizes that these variables are for the
matrix. We may omit this subscript where the context is clear. Combining the two equations in
(2.1), we recover the heat equation for the hydraulic head:

S
∂φm
∂t

+∇ · (−K∇φm) = 0 in Ωm. (2.2)

In the sequel, we will refer to (2.2) simply as the Darcy equation. We impose the following boundary
conditions along the boundary of the matrix:{

φm = 0 on Γg
(K∇φm) · n = 0 on Γ0,

(2.3)

the first of which naturally implies that the hydraulic head is zero at the ground surface and the
second, by virtue of Darcy’s law (the second equation in (2.1)), is the condition of no-flow across
the boundary that is presumably a reasonable fictitious boundary condition useful for analysis and
simulation purposes.

In the conduit Ωc, the other domain of the problem, the Navier-Stokes equations govern the
free flow:

∂vc
∂t

+ (vc · ∇)vc = ∇ ·
(
− pI + 2νD(vc)

)
− gk

∇ · vc = 0

 in Ωc, (2.4)

where vc denotes the flow velocity, p the kinematic pressure, D(v) = 1
2(∇v+(∇v)T ) the deformation

tensor, and k the unit vector in z direction. Here the subscript c emphasizes that these variables are
for the conduit. We may omit this subscript where the context is clear. In this paper, we assume
that the value of the Reynolds number is small so that we are able to replace the Navier-Stokes
system by the linear Stokes system

∂vc
∂t

= ∇ · (−pI + 2νD(vc))− gk,
∇ · vc = 0,

}
in Ωc. (2.5)

At the sinkhole and the spring, we use nonhomogeneous Dirichlet boundary conditions to specify
inflow and outflow velocities:{

vc × n = 0 and vc · n = γsi(t)ηsi(x) = fsi on Γsi
vc × n = 0 and vc · n = γsp(t)ηsp(x) = fsp on Γsp,

(2.6)
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where γ, η, and f are given functions defined at the spring and the sinkhole, and n is the unit
vector outer normal to Γsi and Γsp. These boundary conditions are usually what is measured in
the field or in the lab. The time dependence built into the data in (2.6) allows one to model flood
and drought seasons.

In addition to the boundary conditions (2.3) and (2.6) imposed along the boundary of the
matrix or conduit, respectively, we apply the following interface boundary conditions that couple
the solutions in the two domains:

vc · ncm = vm · ncm
−nTcmT(vc, p)ncm = g(φm − z)

−τTi T(vc, p)ncm =
αν
√

3√
trace(Π)

τTi (vc − vm), i = 1, 2

 on Γcm, (2.7)

where {τ 1, τ 2} represents a local orthonormal basis for the tangent plane to Γcm, ncm denotes the
unit normal to Γcm pointing from the conduit to the matrix, T(vc, p) := −pI + 2νD(v) denotes
the stress tensor, α denotes a constant and Π represents the permeability, which has the following
relation with the hydraulic conductivity, K = Πg

ν . It should be noticed that Π and K differ by a
factor of a constant. Thus, all assumptions on K such as the symmetric positive definiteness also
carry over to Π. In short, Π and K are equivalent in terms of analytical purpose.

The first two interface boundary conditions in (2.7) are quite natural, as we discussed earlier.
The first condition guarantees the conservation of mass, i.e., the exchange of fluid between the two
domains is conservative. The second condition represents the balance of two driving forces, the
kinematic pressure in the matrix and the normal component of the normal stress in the free flow,
in the normal direction along the interface.

The last interface equation in (2.7) is the complete form of the well-known Beavers-Joseph
condition [3]

τTi (−2νD(vc))ncm =
αν
√

3√
trace(Π)

τT1 (vc − vm), i = 1, 2,

that addresses the important issue of how the porous media affects the conduit flow at the interface.
This empirical condition essentially claims that the tangential component of the normal stress that
the free flow (The flow part governed by the Stokes equations, i.e. the conduit in our setting.)
incurs along the interface is proportional to the jump in the tangential velocity over the interface.
Here, α is a parameter depending on the properties of the porous material as well as the geometrical
setting of the coupled problem. However, whether the Beavers-Joseph interface condition leads to
a well-posed problem is still unclear. Simplified variants of Beavers-Joseph interface conditions
are prevalently used, among which the most accepted one is the Beavers-Joseph-Saffman-Jones
condition [17, 26]. This interface condition drops the term τTi (vm) on the right hand side and
reads

τTi (−2νD(vc))ncm =
αν
√

3√
trace(Π)

τTi vc, i = 1, 2. (2.8)

The above interface condition is used in previous work; see [18]. In [7], the authors omit the whole
right-hand side of the Beavers-Joseph interface boundary condition. Saffman’s simplification is
deduced in the case of the simple geometrical setting with a straight interface and statistically
one dimensional flows (solutions homogeneous in the direction tangent to the interface in the
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statistical average). In this specific case suggested by Saffman, and under the further assumptions
of uniformity of the pressure gradient in the porous medium and the free flow and the homogeneity
of the hydraulic conductivity, the ad hoc asymptotic analysis of the linear Stokes-Darcy model
will arrive at the conclusion that, along the interface, the velocity of the porous medium side is
a higher-order term compared to that on the conduit flow side as the permeability in the porous
medium tends to zero. This simplification is also justified in a more mathematically rigorous way
in [15] under similar setting and assumptions and the additional hypothesis of periodicity in the
horizontal direction. Nevertheless, we will not invoke any of the simplifying assumptions so that
we will use the full form of the Beavers-Joseph condition included in (2.7); this will allow us to
later investigate the reasonableness of various simplifications.

2.1 Weak formulation of the time-dependent Stokes-Darcy model

From now on we will omit the subscripts (original notation with subscript c denoting conduit, and
subscript m denoting matrix) for all functions involved since the domain that they belong to is
clear within each context.

To phrase the weak formulation of the coupled problem, we need to define the affine space

Hc,f := {w ∈ (H1(Ωc))3 | w · n = fsi on Γsi, w · n = fsp on Γsp,
and w × n = 0 on Γsi ∪ Γsp}

and the function spaces

Hc,0 := {w ∈ (H1(Ωc))3 | w = 0 on Γsi ∪ Γsp},

Hp := {ϕ ∈ H1(Ωm) | ϕ = 0 on Γg},

Q := L2(Ωc),

W := Hc,0 ×Hp,

and
V := Hc,div ×Hp, (2.9)

where Hc,div := {w ∈ Hc,0 | divw = 0}. Here, W and V are Hilbert spaces with respect to the
norm

‖w‖W :=
1√
2

(‖w‖2H1 + ‖ϕ‖2H1)1/2, ∀w = (w, ϕ) ∈W. (2.10)

On Γcm, we consider the trace space (see [20, vol. I, p. 66])

Λ := H1/2
00 (Γcm).

This space is a non-closed subspace of H1/2(Γcm) and has a continuous zero extension to H1/2(∂Ωc).
The space H1/2

00 (Γcm) could instead be equivalently defined as the restriction of Hc,0(Ωc) to Γcm,
i.e., H1/2

00 (Γcm) = Hc,0(Ωc)|Γcm . For H1/2
00 (Γcm), we have the following continuous imbedding result:

H1/2
00 (Γcm) $ H1/2

0 (Γcm) = H1/2(Γcm) $ H−1/2(Γcm) $
(
H1/2

00 (Γcm)
)′
,
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where H1/2
0 (Γcm) is the closure in H1/2(Γcm) of the space C∞c (Γcm) of infinitely differentiable

compactly supported functions. In order to understand the dual of H1/2
00 (Γcm), we need to note

thata

H−1/2(∂Ωc)|Γcm * H−1/2(Γcm) and

H−1/2(∂Ωc)|Γcm ⊂
(
H1/2

00 (Γcm)
)′
.

(2.11)

Henceforth, we use the notational convention that u = (u, φ), v = (v, ψ) and w = (w, ϕ). They
all belong to W.

In order to introduce the weak formulation of the coupled Stokes-Darcy system, we first define
the bilinear form. aη(·, ·) : W ×W→ R by

aη(u,v) = 2ν
∫

Ωc
Du : DvdΩc +

η

S

∫
Ωm

(K∇φ) · ∇ψdΩm

+g
∫

Γcm

φv · ncmdΓcm −
η

S

∫
Γcm

u · ncmψdΓcm

+
∫

Γcm

να
√

3√
trace(Π)

Pτ (u + K∇φ) · vdΓcm,

(2.12)

where Pτ (·) is the projection onto the local tangential plane that can be explicitly defined as
Pτ (v) := v − (v · ncm)ncm and where η is a scaling parameter that we will exploit in the sequel.

Without further assumptions on the regularity of the domain spaces of aη(·, ·), we have that
∇φ ∈ L2(Ωm) and thus does not have a well-defined trace on ∂Ωm for a general hydraulic conduc-
tivity tensor K. Nevertheless, if the hydraulic conductivity is isotropic everywhere, i.e., when the
permeability tensor Π(x) = k(x)I, where k is a scalar function and I is the identity matrix, then
the last term of aη(·, ·) is well defined in the sense that

√
3να

∫
Γcm

1√
trace(Π)

(Pτ (u) + Pτ (K∇φ)) · Pτ (v)dΓcm

=
√

3να
∫

Γcm

1√
trace(Π)

(Pτ (u) +
g

ν
kPτ (∇φ)) · Pτ (v)dΓcm

= να

∫
Γcm

{
1√
k
Pτ (u) · Pτ (v) +

g

ν

should be understood as an

(H
1/2
00 (Γcm))′,H1/2

00 (Γcm) duality︷ ︸︸ ︷√
k∇τφ · Pτ (v)

}
dΓcm,

where we have used the fact that the tangential projection of the gradient is the tangential derivative
of a function defined on the boundary surface. More specifically, the gradient of φ restricted on
∂Ωm can be represented by ∂φ

∂nn + ∂φ
∂τ1

τ 1 + ∂φ
∂τ2

τ 2, where n is the local normal direction and τ 1

and τ 2 are the chosen orthonormal basis of the local tangential plane. Thus, the projection of the
gradient to the tangent plane is given by ∂φ

∂τ1
τ 1 + ∂φ

∂τ2
τ 2 which is exactly the tangential derivative,

i.e., it is the gradient of the function φ|∂Ωm . Since φ ∈ Hp, we have that φ|∂Ωm ∈ H1/2(∂Ωm) and
∇τφ(∂Ωm) ∈ H−1/2(∂Ωm). This further implies that∇τφ(Γcm) = ∇τφ(∂Ωm)|Γcm ∈ (H−1/2

00 (Γcm))′,
according to 2.11.b We will frequently refer back to this relation in the sequel.

aThe space H−1/2(∂Ωc)|Γcm is defined in the following way: ∀f ∈ H−1/2(∂Ωc)|Γcm and g ∈ H1/2(Γcm), <
f, g >H−1/2(∂Ωc)|Γcm ,H1/2(Γcm):=< f, g̃ >H−1/2(∂Ωc),H1/2(∂Ωc), where g̃ is the zero extension of g to ∂Ωc.

bWe could follow another route to reach this conclusion. We know that φ(Γcm) ∈ H1/2(Γcm), then taking the

derivative, we have ∇τφ(Γcm) ∈ (H
−1/2
00 (Γcm))′; see [20].
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Note that the contribution of the Beavers-Joseph term (the last term in (2.12)) is indefinite
and of leading order (since, formally, we need ‖φ‖H1‖v‖H1 to bound this term) which is one of
the main difficulties in the mathematical analysis. However, if one adopts the simplified Beavers-
Joseph-Saffman-Jones interfacial boundary condition, the second part of the last term (which is the
indefinite one) drops out and hence the contribution of the simplified interface term to the bilinear
form aη(·, ·) decreases the energy and therefore subsequent analysis are substantially simplified; see
[7, 18].

We also need to introduce the bilinear form b(·, ·) : W × Q → R associated with the pressure
which is given by

b(w, q) := −
∫

Ωc

q∇ ·wdΩc

and the modified duality pairing < ·, · >η,H′c,0×H′p,W : H′c,0 ×H ′p,W → R associated with the time
derivative given by

< ut,v >η,H′c,0×H′p,W :=< ut,v >H′c,0,Hc,0
+η < φt, ψ >H′p,Hp .

We will use the more economical notation < ·, · >η=< ·, · >η,H′c,0×H′p,W in the sequel.

Remark 2.1. Note that the above bilinear forms remain well defined if u ∈ Hc,f . Actually, this is
the affine space in which we want to find the solution of the problem with inhomogeneous Dirichlet
boundary conditions at the sinkhole and spring.

Finally, we define the linear forcing functional F (·) : W→ R defined by

< F,w >:= −
∫

Ωc

gk ·wdΩc + g

∫
Γcm

zw · ncmdΓ,

where k is the unit vector in z direction and the second term on the right-hand side comes from
the second interface condition in (2.7) which is a natural boundary condition.

The weak formulation of the coupled, time-dependent Stokes-Darcy system can be formally
derived by multiplying the Stokes system (2.5) by a velocity test function v then integrating the
result over Ωc, multiplying the Darcy equation (2.2) by a scaling parameter η and a scalar test
function ψ and integrating the result over Ωm, and then taking the sum. Formally, the weak
formulation of the coupled time-dependent Stokes-Darcy problem is then given as follows: find u
and p such that {

< ut,v >η +aη(u,v) + b(v, p) =< F,v > ∀v = (v, ψ) ∈W

b(u, q) = 0 ∀ q ∈ Q.
(2.13)

We further assume that the shapes of Γsi and Γsp are regular enough to guarantee the existence
of a continuous extension operator E : H1/2(Γsi ∪ Γsp) → Hc,f (Ωc) such that ∇ · E(f) = 0 and
E(f) · n = f on Γsi and Γsp, where f = fsi and f = fsp on Γsi and Γsp, respectively. Then, the
solution we seek is u− E(f) which belongs to Hc,0. The above weak formulation can be formally
rewritten, denoting (E(f), 0) by ũ, as follows: find u and p such that:{

< ut,v >η +aη(u,v) + b(v, p) =< F̃ ,v >η ∀v = (v, ψ) ∈W

b(u, q) = 0 ∀ q ∈ Q,
(2.14)

8



where the linear functional F̃ : W→ R is defined by

< F̃ ,v >η:=< F,v > − < ũt,v > −aη(ũ,v).

The equivalence for smooth solutions between this weak formulation and the classical form can
be verified directly; see the appendix.

In order to avoid the difficulty associated with the pressure, we take the Leray-Hopf approach
[28] and look for solutions in the div-free space for u only. More precisely, we look for u ∈
L2(0, T ; V), ut = u′ ∈ L2(0, T ; V′) such that

< ut,v >η +aη(u,v) =< F̃ ,v >η,∀v = (v, ψ) ∈ V. (2.15)

3 Well-posedness and approximation of the steady-state Stokes-
Darcy problem

In this section, we want to show that the steady-state Stokes-Darcy problem is well-posed (with-
out requiring that the extension E(f) be div-free) when the coefficient (α) in the Beavers-Joseph
interface boundary condition is sufficiently small. Such an assumption is physically relevant since
α is expected to scale like the square root of the porosity n (a small quantity for most porous
media) [19, 30]. In the steady-state case, the rescaling of the Darcy part is not helpful to the well-
posedness. To see this, note that although the rescaled diffusion term could control the indefinite
contribution from the Beavers-Joseph interface condition (in the tangential direction), resulting in
a G̊arding type inequality, in the absence of the time derivative term, the rescaling would result
in an higher-order indefinite contribution from the term that matches the normal velocities. Thus,
the rescaled Darcy equation does not lead to the coercivity of the coupled system. This is also
heuristically true because there is no same time scale that we can bring the two different physical
problems to in the steady state case. Since the effect of η is nullified, we choose η = Sg to simpliy
the discussion of the well-posedness of the steady problem. Then, aη(·, ·) defined in (2.12) reduces
to

a(u,v) = 2ν
∫

Ωc
Du : DvdΩc + g

∫
Ωm

(K∇φ) · ∇ψdΩm

+g
∫

Γcm

φv · ncmdΓcm − g
∫

Γcm

u · ncmψdΓcm

+
∫

Γcm

να
√

3√
trace(Π)

Pτ (u + K∇φ) · vdΓcm.

Furthermore, in the steady state case, the isotropy of the hydraulic conductivity is not required
by the mathematical treatment in order for the last boundary integral to be well-defined, i.e., we
may lift the restriction that requires Π = k(x)I and let Π(x) (and thus K(x)) be an arbitrary
(location dependent) symmetric, positive definite matrix and the last integral in a(·, ·) remains
well defined. To see this, first note that, in the steady state case, the Darcy equation becomes
∇ · (K∇φ) = 0 which implies that K∇φ ∈ Hdiv(Ωm) :=

{
w ∈ L2(Ωm) : ∇ ·w ∈ L2(Ωm)

}
; then, by

the trace theorem, (K∇φ) ·n ∈ H−1/2(∂Ωm). But we actually can show that K∇φ ∈ H−1/2(∂Ωm).
To this end, we decompose K∇φ as

K∇φ = K
(
∂φ

∂n
n +

∂φ

∂τ1
τ 1 +

∂φ

∂τ2
τ 2

)
.
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We just need to show K ∂φ
∂nn ∈ H−1/2(∂Ωm). In fact, K

(
∂φ
∂τ1

τ 1 + ∂φ
∂τ2

τ 2

)
readily belongs to

H−1/2(∂Ωm) when K(x) is smooth enough, as we argued in the previous section. If the inter-
face is smooth enough, i.e., if n(x) is a smooth function, we have that

(
nTKn

) ∂φ
∂n

= nT
{

K∇φ−K
(
∂φ

∂τ1
τ 1 +

∂φ

∂τ2
τ 2

)}
= nTK∇φ ∈ H−1/2(∂Ωm).

Now that nTKn is a smooth and strictly positive scalar function, by virtue of the symmetry and pos-
itivity of K and the assumptions on the smoothness of K and n, we conclude that ∂φ

∂n ∈ H
−1/2(∂Ωm).

Then, it is straightforward to see that ∇φ|∂Ωm as well as K∇φ|∂Ωm belong to H−1/2(∂Ωm). Finally,
K∇φ|Γm ∈

(
H1/2

00 (Γm)
)′.

Now that a(·, ·) is well defined, we state the weak formulation for the steady state problem: find
u ∈W and p ∈ Q such that:{

a(u,v) + b(v, p) = < F,v > −a(ũ,v) ∀v ∈W

b(u, q) = −b(ũ, q) ∀q ∈ Q,
(3.1)

where ũ = (E(f), 0) is the extension of the nonhomogeneous boundary condition. To show the
well-posedness, we need to use the well known saddle-point theory [4], i.e., we need to show the
following.

1. The bilinear form a(·, ·) is V-elliptic, i.e., there exists a constant αc > 0 such that

a(v,v) ≥ α ‖v‖W ∀v ∈ V,

where the space V is the defined in (2.9).

2. The bilinear form b(·, ·) satisfies the inf-sup condition, i.e., there exists a constant β > 0 such
that

inf
q∈Q

sup
u∈W

b(u, q)
‖u‖W ‖q‖L2

≥ β > 0. (3.2)

We first show that the inf-sup condition holds.

Lemma 3.1. The bilinear functional b(·, ·) is continuous on W ×Q and satisfies the inf-sup con-
dition (3.2).

Proof: It is obvious that b(·, ·) is continuous. In fact,

|b(u, q)| =
∣∣∣∣∫

Ωc

q∇ · udΩc

∣∣∣∣ ≤ ‖q‖L2 |u|H1 ≤ ‖q‖L2 ‖u‖H1 ≤ ‖q‖L2 ‖u‖W .

Furthermore, for any q ∈ Q, we can find a u ∈ Hc,0 such that∫
Ωc

qdivudΩc ≥ β∗ ‖u‖H1 ‖q‖L2 with β∗ > 0;

cThis α is not the same as the parameter in Beavers-Josephs conditions. We will use α to denote both as long as
there is no confusion.
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see [25]. In our coupled problem, let u = (−u, 0); then

b(u, q) =
∫

Ωc

qdivudΩc ≥ β∗ ‖q‖L2 ‖u‖H1 = β ‖q‖L2 ‖u‖W

with β > 0. �
We now move on to show the continuity and coercivity of a(·, ·).

Lemma 3.2. The bilinear functional a(·, ·) is continuous and coercive on W ×W (W-elliptic)
when the coefficient in the Beavers-Joseph interface boundary condition α is small enough.

Proof: The continuity is a natural result of the trace theorem and the Cauchy-Schwarz inequality.
As for the coercivity, we have

a(v,v) = 2ν
∫

Ωc
D(v) : D(v)dΩc + g

∫
Ωm

(K∇ψ) · ∇ψdΩm

+να
√

3
∫

Γcm

1√
trace(Π)

(Pτ (v) + Pτ (K∇ψ)) · Pτ (v)dΓcm

≥ 2ν ‖Dv‖2L2 + gλmin(K) ‖∇ψ‖2L2 +
να√

λmax(Π)
‖Pτ (v)‖2L2(Γcm)

− να√
λmin(Π)

‖K∇ψ‖(
H

1/2
00 (Γcm)

)′ ‖Pτ (v)‖
H

1/2
00 (Γcm)

≥ C1ν ‖v‖2H1 + C2λmin(K) ‖ψ‖2H1 −
ναλmax(K)√
λmin(Π)

‖ψ‖H1(Ωm) ‖v‖H1(Ωc)

≥ C1

2
ν ‖v‖2H1 +

C2

2
λmin(K) ‖ψ‖2H1 .

Here, the Ci’s are strictly positive constants independent of K, ν, or α and K is strictly positive
definite. The λmax(K) and λmin(K) denote the largest and smallest eigenvalues of K, and λmax(Π)
and λmin(Π) denote the largest and the smallest eigenvalues of Π respectively. The second inequal-
ity holds by applying the classical Poincaré inequality, the Poincaré-like inequality in [24, eq. 4.20],
Korn’s inequality [16, Theorem 2.4], and the trace theorem and dropping the third term. The last
inequality holds if {

ν
1
2αλmax(K)√
λmin(K)

}2

≤ C1C2νλmin(K).

This is true when α2 is small enough. �

Remark 3.3. If we instead use the Beavers-Joseph-Saffman interface condition for the steady
Stokes-Darcy problem, we could obtain, in an easier manner, the coercivity. We omit the proof due
to the similarity to that for the problem considered in [6].

The following result follows from Lemmas 3.1 and 3.2; see, e.g., [11].

Proposition 3.4. The steady-state Stokes-Darcy problem with either the Beavers-Joseph (when the
coefficient α associated with it is small enough) or Beavers-Joseph-Saffman interface conditions is
well-posed.
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We then give an error estimate for the convergence rate of the finite element methods. First,
we introduce the following discrete spaces:

Wh = Hh
c,0 ×Hh

p ⊂W, Qh ⊂ Q

Vh =
{

vh ∈Wh | b(vh, qh) = 0, ∀qh ∈ Qh
}
,

and
Vh
f =

{
vh ∈Wh | b(vh, qh) = −b(ũ, qh), ∀qh ∈ Qh

}
.

The spatially discretized problem is to find uh ∈Wh and ph ∈ Qh such that:{
a(uh,vh) + b(vh, ph) = < F,vh > −a(ũ,vh) ∀vh ∈Wh

b(uh, qh) = −b(ũ, qh) ∀ qh ∈ Qh.
(3.3)

We assume that the assumptions of Lemma 3.2 are satisfied, i.e., for the discrete case we have

a(vh,vh) ≥ α‖vh‖2W ∀vh ∈Wh,

where α is independent of h, and that the finite element spaces satisfy the discrete inf-sup or
div-stability condition

inf
06=qh∈Qh

sup
06=vh∈Wh

b(vh, qh)
‖vh‖W‖qh‖L2

≥ β > 0 ∀h. (3.4)

Proposition 3.5. Under the above assumptions of coercivity and div-stability, we have the following
error estimate for the solution of problem (3.3):

‖u− uh‖W + ‖p− ph‖L2 ≤ C
(

inf
vh∈Wh

‖u− vh‖W + inf
qh∈Qh

‖p− qh‖L2

)
, (3.5)

where u is the solution of problem (3.1).

Proof: Given in the appendix. �

Remark 3.6. If the unique solution pair (φ, ξ) of the adjoint problem{
a(vh, φ) + b(vh, ξ) = < e,vh >L2×L2,L2×L2 ∀vh ∈Wh

b(φ, qh) = 0 ∀ qh ∈ Qh,
(3.6)

where e = u − uh, is sufficiently regular, then, by the classical duality argument (see [11, pp.
119-120]), we have the estimate for the error e in L2 × L2 given by

‖u− uh‖L2×L2 ≤ Ch(‖u− uh‖W + ‖p− ph‖L2).
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4 The time dependent coupled Stokes-Darcy problem

Although the steady-state problem does provide some practical insights, stationary phenomena
in the types of flows we are interested in are rare compared with transient ones. Many common
factors drive practical aquifer flows to be time dependent. For instance, seasonal precipitation is a
prevalent time-dependent factor that dominantly affects the groundwater flows. The well-posedness
of the coupled Stokes-Darcy model with the Beavers-Joseph interface boundary condition does pose
difficulties even for isotropic hydraulic conductivity K, i.e., when K = g

ν k(x)I. However, in the
transient case, the time derivative term together with the dissipative terms enable us to control the
interfacial term which leads to the well-posedness.

To this end, we recall the weak formulation (2.15) which is derived by adding the Stokes system
(2.5) and η times the Darcy system (2.2) and homogenized the boundary condition at Γsi and
Γsp with the re-scaling parameter η at our disposal. Here, we will further exploit this parameter.
Indeed, we will show that for large enough η, the bilinear term (2.12) is essentially coercive in the
sense of satisfying a G̊arding type inequality (4.2) under the assumption that we have isotropicd

(but not necessarily homogeneous) porous media, i.e., K(x) = g
νΠ = g

ν k(x)I. This essentially leads
to the well-posedness. In retrospect, the choice of a large rescaling parameter η makes sense since
the flow in porous media evolves on a relatively slow time scale compared to that of the flow in the
conduit, and the re-scaling will essentially bring them to the same time scale for easy comparison.

With eventual full discretization involving finite element approximation in mind, we approxi-
mate (2.14) instead of (2.15) via a backward-Euler discretization in time. Letting δ = ∆t, we have
the semi-discrete system for um ∈W and pm ∈ L2(Ωc)

1
δ

〈( um+1 − um

η(φm+1 − φm)

)
,v
〉

+ aη(um+1,v)

+b(v, pm+1) =< Fm,v > ∀v ∈W

b(um+1, q) = 0 ∀ q ∈ Q,

(4.1)

where

Fm =
1
δ

∫ (m+1)δ

mδ
F̃ (t)dt.

This scheme may be also viewed as a time discretization of the div-free formulation (2.15) when
we take um,v ∈ V.

We may rewrite the first equation in (4.1) as

1
δ

〈( um+1

ηφm+1

)
,v
〉

+ aη(um+1,v) + b(v, pm+1)

=< Fm,v > +
1
δ

〈( um

ηφm

)
,v
〉
∀v ∈W

and denote the sum of the first two terms on the left-hand side of the above equation by aδ,η(um+1,v),
i.e.,

aδ,η(u,v) :=
1
δ

〈( u
ηφ

)
,v
〉

+ aη(u,v).

dThe isotropy assumption is not needed if we use the Beavers-Joseph-Saffman-Jones interface boundary condition.
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In order to show the solvability of um+1, we again do the same as we did in the last section,
i.e., we invoke the general theory for saddle-point problems. For the bilinear form b(·, ·), both the
inf-sup condition (Lemma 3.1) and its continuity are verified in the last section. It remains to show
that aδ,η(·, ·) is continuous and V-elliptic. In fact, we are going to show a stronger result, namely
that it is W-elliptic.

Firstly, it is obvious that aδ,η(u,v) is bilinear and continuous. In fact, when the hydraulic
conductivity is isotropic, we have

|aδ,η(u,v)|
≤ C1

(
‖Du‖L2 ‖Dv‖L2 + ‖∇φ‖L2 ‖∇ψ‖L2

+ ‖φ‖L2(Γcm) ‖v · n‖L2(Γcm) + ‖ψ‖L2(Γcm) ‖u · n‖L2(Γcm)

+ ‖u‖L2(Γcm) ‖v‖L2(Γcm) + ‖∇τφ‖(
H

1/2
00 (Γcm)

)′ ‖v‖
H

1/2
00 (Γcm)

)
≤ C2

(
‖u‖W ‖v‖W + ‖φ‖H1/2(∂Ωm) ‖v‖H1/2(∂Ωc)

)
≤ C3 ‖u‖W ‖v‖W ,

where C1, C2, and C3 are generic constants independent of the unknown functions. Therefore,
aδ,η(·, ·) is continuous on W ×W.

As for the coercivity (the W-ellipticity), we have, thanks to the Korn and Poincaré inequalities
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and various trace estimatese:

aδ,η(u,u)

=
1
δ

(
‖u‖2L2(Ωc)

+ η ‖φ‖2L2(Ωm)

)
+ 2ν ‖Du‖2L2(Ωc)

+
ηg

Sν

∫
Ωm

k∇φ · ∇φdΩm +
(
g − η

S

)∫
Γcm

φu · ndΓ

+
∥∥∥√ αν√

k
Pτ (u)

∥∥∥2

L2(Γcm)
+ < αg

√
k∇τφ, Pτu >(

H
1/2
00 (Γcm)

)′
,H

1/2
00 (Γcm)

≥ 1
δ

(‖u‖2L2(Ωc)
+ η ‖φ‖2L2(Ωm)) + 2νC1 ‖∇u‖2L2(Ωc)

+
ηgCk,1
Sν

‖∇φ‖2L2(Ωm) −
∣∣∣ η
S
− g
∣∣∣ ‖φ‖L2(Γcm) ‖u · n‖L2(Γcm)

+
√

3αν
Ck,2

‖Pτ (u)‖2L2(Γcm) − αgCk,3 ‖φ‖H1/2(∂Ωm) ‖u‖H1/2(∂Ωc)

≥ 1
δ

(‖u‖2L2(Ωc)
+ η ‖φ‖2L2(Ωm)) + 2νC1 ‖∇u‖2L2(Ωc)

+
ηgCk,1
Sν

‖∇φ‖2L2(Ωm)

−
( η
S

+ g
)
C2 ‖φ‖1/2L2(Ωm)

‖∇φ‖1/2
L2(Ωm)

‖u‖1/2
L2(Ωc)

‖∇u‖1/2
L2(Ωc)

−C3αgCk,3 ‖∇φ‖L2(Ωm) ‖∇u‖L2(Ωc)

≥ 1
δ
‖u‖2L2(Ωc)

+
η

δ
‖φ‖2L2(Ωm) + 2νC1 ‖∇u‖2L2(Ωc)

+
ηgCk,1
Sν

‖∇φ‖2L2(Ωm)

−νC1

2
‖∇u‖2L2(Ωc)

−
ηgCk,1
4Sν

‖∇φ‖2L2(Ωm)

−
S1/2( ηS + g)2C2

2

(Ck,1gηC1)1/2
‖φ‖L2(Ωm) ‖u‖L2(Ωc)

−νC1

2
‖∇u‖2L2(Ωc)

−
(C3αCk,3)2g2

C1ν
‖∇φ‖2L2(Ωm) ,

where the Ci’s are generic constants depending on the geometry of the domain but independent
of the other parameters such as k, η, ν, S, g, α, and δ. The Ck,i’s are constants related to the
permeability k. Roughly speaking, Ck,1 is proportional to k, while Ck,2 and Ck,3 are proportional
to
√
k. These constants are obtainable by virtue of the smoothness of k.

Now, it is easy to see that aδ,η(·, ·) is coercive for small enough δ and large enough η. Indeed,
with all other parameters fixed, we may choose the time step δ small enough and the rescaling
parameter η large enough so that the following inequalities hold:

ηgCk,1
4Sν

≥
(C3αCk,3)2g2

C1ν
η

δ2
≥

( S1/2

(Ck,1gηC1)1/2

( η
S

+ g
)2
C2

2

)2
.

eOne trace inequality used here is ‖u‖2L2(Γcm) ≤ C‖u‖L2(Ω)‖u‖H1(Ω), which can be verified easily using the calculus

identity f2(0) = f2(x)− 2
∫ x

0
f(s)f ′(s)ds.
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Then, we have the coercivity of aδ,η:

aδ,η(u,u) ≥ 1
2δ
‖u‖2L2(Ωc)

+
η

2δ
‖φ‖2L2(Ωm)

+
νC1

2
‖∇u‖2L2(Ωc)

+
ηgCk,1
2Sν

‖∇φ‖2L2(Ωm) .

Therefore we have established the existence of the discrete problem (4.1).
As a byproduct, we have also derived a G̊arding type inequality indicating that aη is essentially

coercive in the sense that there exists C0 > 0 and αη > 0 such that aη(u,v) +C0(u,v) is coercive,
i.e.,

aη(u,u) ≥ αη ‖u‖2W − C0 ‖u‖2L2×L2 . (4.2)

Our next goal is to show that the solutions of the backward-Euler scheme converge to a solution
to the weak formulation (2.14). We start with the derivation of a priori estimates for the approxi-
mate solutions. We estimate um+1 by using the fact (see for instance [10, 28]) that the solution to
(4.1) is also the unique solution to the following problem: find um+1 in V such that

1
δ

〈( um+1 − um

η(φm+1 − φm)

)
,v
〉

+ aη(um+1,v) =< Fm,v > ∀v ∈ V. (4.3)

Setting v =
(

um+1

φm+1

)
in (4.3) and using the identity (a− b, a) = 1

2(|a|2 − |b|2 + |a− b|2), we have

∥∥um+1
∥∥2

L2 − ‖um‖2L2 +
∥∥um+1 − um

∥∥2

L2

+η(
∥∥φm+1

∥∥2

L2 − ‖φm‖2L2 +
∥∥φm+1 − φm

∥∥2

L2) + 2δaη(um+1,um+1)

= 2δ(Fm,um+1) ≤ 2δ ‖Fm‖V′
∥∥um+1

∥∥
V
.

Hence, ∥∥um+1
∥∥2

L2 − ‖um‖2L2 +
∥∥um+1 − um

∥∥2

L2

+η(
∥∥φm+1

∥∥2

L2 − ‖φm‖2L2 +
∥∥φm+1 − φm

∥∥2

L2) + αηδ
∥∥um+1

∥∥2

V

≤ 2δC0

∥∥um+1
∥∥2

L2 +
δ

αη
‖Fm‖2V′ ,

where C0 is independent of δ, provided δ is small enough. Summing from m = 0 to N − 1, with
T := Nδ = N∆t, we have

∥∥uN∥∥2

L2 +
N−1∑
m=0

∥∥um+1 − um
∥∥2

L2

+η
( ∥∥φN∥∥2

L2 +
N−1∑
m=0

∥∥φm+1 − φm
∥∥2

L2

)
+ αηδ

N−1∑
m=0

∥∥um+1
∥∥2

V

≤ 2δC0

N−1∑
m=0

∥∥um+1
∥∥2

L2 +
δ

αη

N−1∑
m=0

‖Fm‖2V′ +
∥∥u0

∥∥2

L2 + η
∥∥φ0

∥∥2

L2

≤ 2δC0

N−1∑
m=0

∥∥um+1
∥∥2

L2 +
∥∥u0

∥∥2

L2 + η
∥∥φ0

∥∥2

L2 +
δ

αη

∫ T

0

∥∥∥F̃ (s)
∥∥∥2

V′
ds.
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Therefore, we have the following a priori estimates

N−1∑
m=0

∥∥um+1 − um
∥∥2

L2×L2 ≤ C

‖um‖L2×L2 ≤ C for 1 ≤ m ≤ N

δ
N−1∑
m=0

∥∥um+1
∥∥2

V
≤ C,

where C is a constant independent of m and we have applied the discrete Gronwall type inequality,
which states that if yn ≤ A+Bδ

∑n−1
j=0 yj for 1 ≤ n ≤ N and δ = T/N , then max1≤j≤N yj ≤ AeBT .

Furthermore, by using the inf-sup condition and (4.1), we have an estimate for the pressure at
each time step. For each pm+1, there exists a vm+1 such that

β
∥∥pm+1

∥∥
L2

∥∥vm+1
∥∥
W
≤ b(vm+1, pm+1)

≤ |1
δ
< um+1 − um,vm+1 > +

η

δ
< φm+1 − φm, ψm+1 > |

+|aη(um+1,vm+1)|+ | < Fm,vm+1 > |

≤ 2
∥∥1
δ

( um+1

η(φm+1)
)∥∥

L2×L2

∥∥vm+1
∥∥
L2×L2

+C
∥∥um+1

∥∥
W

∥∥vm+1
∥∥
W

+ ‖Fm‖W′

∥∥vm+1
∥∥
W
.

Hence, ∥∥pm+1
∥∥
L2 ≤ Cη

(1
δ

∥∥∥∥( um+1

η(φm+1)

)∥∥∥∥
L2×L2

+
∥∥um+1

∥∥
W

+ ‖Fm‖W′

)
.

However, we note that the {pm} may not be uniformly bounded in L2 as δ → 0.
Next, we define two approximate solutions for u on [0, T ], T = Nδ:

u∗δ((m+ 1)δ) = um+1, u∗δ piecewise linear on [0, T ],

i.e., u∗δ is linear on (mδ, (m+ 1)δ], and

u∗∗δ ((m+ 1)δ) = um+1, u∗∗δ piecewise constant on [0, T ],

i.e., u∗∗δ is constant on (mδ, (m+ 1)δ], and one approximate solution for p:

p∗∗δ ((m+ 1)δ) = pm+1, p∗∗δ piecewise constant on [0, T ].

We may then rewrite (4.1) as,

〈( du∗δ
dt

η
dφ∗δ
dt

)
,v
〉

+ aη(u∗∗δ ,v) + b(v, p∗∗δ ) = < Fm(t),v >

b(u∗δ , q) = 0.

(4.4)

The a priori estimates we derived imply that

u∗δ ,u
∗∗
δ ∈ L2(0, T ; V), u∗

′
δ ∈ L2(0, T ; V′), and u∗δ ,u

∗∗
δ ∈ L∞(0, T ; L2 × L2) (4.5)
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are uniformly bounded independent of δ. Therefore, we may extract a sub-sequence (without
changing the notation) such that

u∗δ
w−−−→
δ→0

u(1),u(1) and u∗∗δ
w−−−→
δ→0

u(2)

weakly in L2(0, T ; V) and
u∗
′
δ

w−−−→
δ→0

w∗

weakly in L2(0, T ; V′) and

u∗δ
w∗−−−→
δ→0

u(1) and u∗∗δ
w∗−−−→
δ→0

u(2)

weak * in L∞(0, T ; L2 × L2).
It is easy to see that u(1) = u(2) = u = (u, φ) (see (4.6)) and w∗ = u′ which implies that

u ∈ L2(0, T ; V), u′ ∈ L2(0, T ; V′).

We also have Fδ(t)→ F̃ (t) in L2(0, T ; V′), where

Fδ(t) =
1
δ

∫ (m+1)δ

mδ
F̃ (s)ds with t ∈ [mδ, (m+ 1)δ].

Now we derive the uniform a priori estimates on the pressure by utilizing the approximation
equation and the a priori estimate for u∗ and u∗∗. Indeed,

‖p∗∗δ ‖H−1(0,T ;L2)

= sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

< sup
q∈L2,‖q‖L2=1

(p∗∗δ (t), q), ζ(t) >H−1,H1
0

≤ C sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

< sup
v∈Hc,0,‖v‖H1=1

(p∗∗δ (t),∇ · v), ζ(t) >H−1,H1
0

= C sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

< sup
v∈W,‖v‖W=1

−b (p∗∗δ (t),v) , ζ(t) >H−1,H1
0

= C sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

〈
sup

v∈W,‖v‖W=1

(〈( du∗δ
dt

η
dφ∗δ
dt

)
,v
〉

+aη(u∗∗δ ,v)+ < Fm,v >
)
, ζ(t)

〉
H−1,H1

0

≤ C sup
ζ∈H1

0 (0,T ),‖ζ‖H1=1

(〈
sup

v∈W,‖v‖W=1
−
〈( u∗δ

ηφ∗δ

)
,v
〉
, ζ ′(t)

〉
+
〈

sup
v∈W,‖v‖W=1

aη(u∗∗δ ,v), ζ(t)
〉

+
〈

sup
v∈W,‖v‖W=1

〈Fm,v〉, ζ(t)
〉)

≤ C
(∥∥ sup

v∈W,‖v‖W=1

〈( u∗δ
ηφ∗δ

)
,v
〉∥∥

L2(0,T )

+
∥∥ sup

v∈W,‖v‖W=1
aη(u∗∗δ ,v)

∥∥
L2(0,T )

+
∥∥ sup

v∈W,‖v‖W=1
< Fm,v >

∥∥
L2(0,T )

)
≤ C

(
‖u∗δ‖L2(0,T ;L2×L2) + ‖u∗∗δ ‖L2(0,T ;W) + ‖Fδ‖L2(0,T ;W′)

)
≤ C,
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where, in the second step, we have used the fact that the divergence operator is an isomorphism
from V⊥ in Hc,0 to L2, which is equivalent to the inf-sup condition proven in Lemma 3.1; see [11,
Lemma 4.1, pp. 58]. Here, V⊥ denotes the orthogonal complement of V in Hc,0 with respect to the
inner product (∇·,∇·). The isomorphism gives that ‖∇ · v‖L2 ≥ β ‖v‖H1 for all v ∈ V⊥. Thus,
the ball {q : ‖q‖L2 ≤ 1} is a subset of {∇ · v : ‖v‖H1 ≤ 1/β}.

The uniform bound on {p∗∗δ } in the Hilbert space H−1(0, T ;L2) implies that we can extract a
subsequence (without changing the notation) such that

p∗∗δ
w−−−→
δ→0

p

weakly in H−1(0, T ;L2).
Next, we pass the limit in (4.4). For this purpose, let ζ ∈ C1([0, T ]) with ζ(T ) = 0 and v ∈W.

We have ∫ T

0

(〈
−
( u∗δ
ηφ∗δ

)
,vζ ′(t)

〉
+ aη(u∗∗δ (t),v)ζ(t) + b(vζ(t), p∗∗δ )

)
dt

=
〈( u0

ηφ0

)
,v
〉
ζ(0) +

∫ T

0
〈Fδ(t),v〉ζ(t)dt.

Letting δ → 0 and utilizing the convergence of u∗δ ,u
∗∗
δ , p∗∗δ , and Fδ, we have∫ T

0

(〈
−
( u
ηφ

)
,vζ ′(t)

〉
+ aη(u,vζ(t)) + b(vζ(t), p)

)
dt

=
〈( u0

ηφ0

)
,v
〉
ζ(0) +

∫ T

0
〈F (t),v〉ζ(t)dt

which formally leads to the weak formulation (2.14) with the desired initial condition. In the case
of v ∈ V, we recover the weak formulation (2.15). f

Thus, we have proven (2.15) and established the existence of the solution of u. Uniqueness of
the solution (the velocity and hydraulic head) is straightforward due to the quasi-coercivity and
the Gronwall inequality.

We may improve the weak convergence of the approximate solutions to strong convergence by
invoking a compactness theorem due to Témam [29, Theorem 13.3] that states the following. Let
X and Y denote two (not necessarily reflexive) Banach spaces with Y ⊂ X, the injection being
compact. Suppose G is a set of functions in L1(R;Y ) ∩ Lp(R;X), p > 1, with G being bounded in
Lp(R;X) and L1(R;Y );

∫ +∞
−∞ ‖g(a+ s)− g(s)‖pX ds → 0 as a → 0 uniformly for g ∈ G; and the

support of the functions g ∈ G is included in a fixed compact set of R, say [−L,+L]. Then, the
set G is relatively compact in Lp(R;X).

For the application we consider, we set X = L2 × L2, Y = V and p = 2. We take {u∗δ} as G.
We extend {u∗δ} by zero from the interval [0, T ] to the real line R. Their boundedness in L1(R; V)
and L2(R; L2 × L2) is already shown by (4.5). It remains to show that∫ +∞

−∞
‖u∗δ(a+ s)− u∗δ(s)‖

2
L2×L2 ds→ 0 as a→ 0

fTo show that the above duality is equivalent to (2.15) with the proper initial condition, we actually need to
justify the integration by parts (or the Green’s formula) we have used and to show the continuity of the solution u
with value in L2 × L2. This requires the estimation of ‖ut‖L2(0,T ;V′) which is derived earlier, see [10, 28] for a very
similar context.
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uniformly for all δ. Without loss of generality, we assume a > 0. Then,∫ +∞

−∞
‖u∗δ(a+ s)− u∗δ(s)‖

2
L2×L2 ds

=
∫ T−a

0
‖u∗δ(a+ s)− u∗δ(s)‖

2
L2×L2 ds+

∫ a

0
‖u∗δ(s)‖

2
L2×L2 ds

+
∫ T

T−a
‖u∗δ(s)‖

2
L2×L2 ds

≤ 2a ‖u∗δ‖
2
L∞(0,T ;L2×L2) +

∫ T−a

0
‖u∗δ(a+ s)− u∗δ(s)‖

2
L2×L2 ds.

We are thus done with the proof of the strong convergence of {u∗δ} in L2(0, T ; L2 × L2) if we can
show that the last integral goes to 0 as a→ 0. For this purpose, we integrate (4.3) in time from s
to a+ s to yield〈( u∗δ(a+ s)− u∗δ(s)

η(φ∗δ(a+ s)− φ∗δ(s))

)
,v
〉

=
∫ a+s

s
< Fδ(t),v > −aη(u∗∗δ (t),v)dt.

Thanks to the continuity of aη(·, ·) and the Hölder’s inequality, we know∫ a+s

s
|aη(u∗∗δ (t),v)|dt ≤ Cη

∫ a+s

s
‖u∗∗δ (t)‖V ‖v‖V dt

≤ Cη
(∫ a+s

s
‖u∗∗δ (t)‖2V dt

)1/2(∫ a+s

s
‖v‖2V dt

)1/2

≤ Cηa1/2 ‖v‖V ‖u
∗∗
δ ‖L2(0,T ;V) .

Likewise, we have ∫ a+s

s
| < Fδ(t),v > |dt ≤ Ca1/2 ‖v‖V ‖Fδ‖L2(0,T ;V′) .

Now we can set v = u∗δ(a+ s)− u∗δ(s) in the time integration of (4.3), to deduce thatg∫ T−a

0
‖u∗δ(a+ s)− u∗δ(s)‖

2
L2×L2 ds

≤ Cηa1/2
(
‖u∗∗δ ‖L2(0,T ;V) + ‖Fδ‖L2(0,T ;V′)

)∫ T−a

0
‖u∗δ(a+ s)− u∗δ(s)‖V ds

≤ Cηa1/2 ‖u∗δ‖L1(0,T ;V) ≤ Cηa
1/2 ‖u∗δ‖L2(0,T ;V) ≤ Cηa

1/2.

For the strong convergence of u∗∗δ to u, we look at the difference between u∗δ and u∗∗δ :

‖u∗δ − u∗∗δ ‖
2
L2(0,T ;L2(Ωc)×L2(Ωm)) =

N−1∑
m=0

∫ (m+1)δ

mδ
‖u∗δ − u∗∗δ ‖

2
L2×L2 dt

=
N−1∑
m=0

∫ δ

0

∥∥∥∥∥um+1
δ − umδ

δ

∥∥∥∥∥
2

L2×L2

t2dt

=
N−1∑
m=0

∥∥um+1
δ − umδ

∥∥2

L2×L2

∫ δ

0

(
t

δ

)2

dt ≤ Cδ.

(4.6)

gThe C’s and Cη’s may denote different constants from inequality to inequality.
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strongly in L2(0, T ; L2(Ωc)× L2(Ωm)).
To summarize, we have the following result.

Theorem 4.1. The weak formulation of the coupled Stokes-Darcy system with Beavers-Joseph
interfacial boundary condition (2.15) is well-posed under the assumption of isotropic (but not nec-
essarily homogeneous) hydraulic conductivity. Moreover, the solution to the backward-Euler scheme
(4.1) converges to the solution of the continuous system (2.15) as the time step δ approaches zero,
i.e., u∗δ and u∗∗δ converge to u in L2(0, T ; L2(Ωc)× L2(Ωm)) as the time step δ approaches zero.

Proof: We have already shown the existence and the convergence of the numerical solution to a
solution to the continuous-in-time system. We only need to show the continuous dependence on
the initial data and forcing term F .

Let u = u1−u2, where u1 and u2 are two solutions to the weak formulation (2.15) with initial
data u01 and u02 and forcing term F̃1 and F̃2, respectively. Then, u satisfies (2.15) with initial
data u0 = u01 − u02 and forcing term F̃ = F̃1 − F̃2. Formally setting v to u in (2.15) and utilizing
the G̊arding type estimate (4.2) we have

1
2
d ‖u‖2L2

dt
+
η

2
d ‖φ‖2L2

dt
+ αη ‖u‖2V − C0 ‖u‖2L2×L2 ≤ ‖F‖V′ ‖u‖V

which leads to continuous dependence of the solution (in particular uniqueness) on the initial data
and external forcing term after we apply the Cauchy-Schwarz inequality, the Poincaré inequality,
and the Gronwall inequality. �

The semi-discrete scheme that we used in our existence analysis can be further discretized in
space if we are interested in a fully discrete numerical scheme. Indeed, at each time step, we also
know the convergence of spatially discretized solution of (4.1) according to the finite element analysis
conducted in Section 3. Although the stationary problem and the backward-Euler discretization
are slightly different, the same analysis given in that section carries over if we just take aδ,η(·, ·) as
a(·, ·). Then, we have solutions to the spatially and temporally discretized problem. They actually
converge to the solution of the continuous problem as h and δ are reduced. To show this, for a fixed
N , we denote the piecewise constant interpolation of solutions of the fully discretized problem by
u∗∗h,δ, i.e.,

u∗∗h,δ(t) = um+1
h,δ for t ∈ (mδ, (m+ 1)δ],

where um+1
h,δ is the solution of the following fully discretized problem with mesh size h,

1
δ

〈( um+1
h,δ − umh,δ

η(φm+1
h,δ − φ

m
h,δ)

)
,vh
〉

+ aη(um+1
h,δ ,vh)

+b(vh, p
m+1
h,δ ) = < Fm,vh > ∀vh ∈Wh

b(um+1
h,δ , qh) = 0 ∀ q ∈ Qh.

We know that um+1
h,δ → ûm+1

δ strongly in W as h → 0, where ûm+1
δ is the exact solution of the

above problem for a given umh,δ. We denote ‖um+1
h,δ − ûm+1

δ ‖W by τm+1 and ‖um+1
h,δ − um+1

δ ‖W by
εm+1. Then, by the stability of the problem (4.1), we know that

εm+1 = ‖um+1
h,δ − um+1

δ ‖W

≤ ‖um+1
h,δ − ûm+1

δ ‖W + ‖ûm+1
δ − um+1

δ ‖W ≤ τm+1 + Cεm+1,
(4.7)
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where C is independent of m. Then, the error between the fully discretized approximate solution
and the temporally discretized approximate solution is given by

∥∥u∗∗h,δ − u∗∗δ
∥∥2

L2(0,T ;W)
=

N−1∑
m=0

∫ δ

0
(εm+1)2dt ≤ T (sup

m
εm+1)2. (4.8)

Now, for a fixed N , we simply denote supm τm+1 by τ . By induction on (4.7), the error at time
(m+ 1)δ will have the following upper bound:

εm+1 ≤ τ
m∑
i=0

Ci ∀m.

Then, supm εm+1 ≤ τ
∑N−1

i=0 Ci → 0 as τ → 0, i.e., ‖u∗∗h,δ − u∗∗δ ‖2L2(0,T ;W) → 0 as h → 0 by the
estimate (4.8). To summarize, we have the following result.

Theorem 4.2. The fully discretized solutions u∗∗h,δ converge to u weakly in L2(0, T ; W) and strongly
in L2(0, T ; L2 × L2) as h → 0 and δ → 0 with the limits taken in that order. More precisely, we
have

lim
δ→0

lim
h→0

u∗∗h,δ = u. (4.9)

Similarly, we have the weak convergence of the pressure in H−1(0, T ;L2). The convergence we
have shown here is not associated with any rate. In [5], the convergence rates of finite element
approximations to the time-dependent Stokes-Darcy problem are discussed.

We also point out that in the case for which the bilinear term aη is coercive (such as is the
case for sufficiently small α in the Beavers-Joseph condition; see Section 3) and the external forcing
term is time-independent, all time-dependent solutions converge to the unique time-independent
solution as time goes to infinity.

A Equivalence

We briefly show the equivalence between the solution to classical formulation (2.2)–(2.7) and the
solution to weak formulation (2.13), provided that the latter is sufficiently smooth. In the following
argument, we follow the notational convention introduced earlier and assume that u = (u, φ), where
u ∈ Hc,f , v = (v, ψ) ∈W, and p ∈ Q.

First, we investigate the time-dependent Navier-Stokes equations with gravity forcing:

ut + (u · ∇)u = ∇(−pI + 2νD(u))− gk.

This implies that∫
Ωc

(ut + (u · ∇)u) · vdΩc =
∫

Ωc

(∇(−pI + 2νD(u))− gk) · vdΩc
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for all v = (v, ψ) ∈W. Integrating by parts, we have:

R.H.S. =
∫
∂Ωc

[(−pI + 2νD(u))n] · vdΓc

−
∫

Ωc

(−pI + 2νD(u)) : ∇vdΩc −
∫

Ωc

gk · vdΩc

=
∫

Γcm

[(−pI + 2νD(u))n] · vdΓcm −
∫

Ωc

(−pI + 2νD(u)) : ∇vdΩc

−
∫

Ωc

gk · vdΩc

=
∫

Ωc

p∇ · vdΩc −
∫

Ωc

2νD(u) : D(v)dΩc −
∫

Ωc

gk · vdΩc

+
∫

Γcm

(nT (−pI + 2νD(u))n)v · ndΓcm

+
∫

Γcm

Pτ ((−pI + 2νD(u))n) · Pτ (v)dΓcm

=
∫

Ωc

p∇ · vdΩc −
∫

Ωc

2νD(u) : D(v)dΩc −
∫

Ωc

gk · vdΩc

+
∫

Γcm

(nT (−pI + 2νD(u))n)v · ndΓcm

+
∫

Γcm

Pτ ((−pI + 2νD(u))n) · vdΓcm.

Substituting into the interface condition, we arrive at∫
Ωc

(ut + (u · ∇)u) · vdΩc =
∫

Ωc

p∇ · vdΩc −
∫

Ωc

2νD(u) : D(v)dΩc

−
∫

Ωc

gk · vdΩc −
∫

Γcm

g(φ− z)v · ndΓcm

−
∫

Γcm

να
√

3√
trace(Π)

Pτ (u + K∇φ) · vdΓcm.

Next, we write down the variational form for the Darcy equation (divided by S and multiplied
by the rescaling parameter η):

η

S

∫
Ωm

(φt +∇ · (−K∇φ))ψdΩm

=
∫

Ωm

ηφtψdΩm +
η

S

∫
∂Ωm

(−K∇φ) · nψdΓm +
η

S

∫
Ωm

(K∇φ) · ∇ψdΩm

=
∫

Ωm

ηφtψdΩm +
η

S

∫
Γcm

(−K∇φ) · nψdΓcm +
η

S

∫
Ωm

(K∇φ) · ∇ψdΩm

=
∫

Ωm

ηφtψdΩm −
η

S

∫
Γcm

u · ncmψdΓcm +
η

S

∫
Ωm

(K∇φ) · ∇ψdΩm,

where n = −ncm.
Now, summing up the above variational forms, dropping the non-linear term, using the bilinear

forms, linear functional, and the dual defined in Section 2, and including the div-free condition, we
arrive at the weak formulation (2.13), i.e.,{

〈ut,v〉η + aη(u,v) + b(v, p) = 〈F,v〉
b(u, q) = 0.
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Thus, we have shown that a solution to problem (2.2)–(2.7) is a solution to (2.13). Next, we want
to show that the solution to the weak formulation defined above is a solution to problem (2.2)–(2.7),
provided the weak solution is smooth enough. In fact, we just need to reverse the above argument.
Following the classical argument, by setting v = 0 in the test function and letting ψ ∈ Hp be
arbitrary, we can show that the equality (2.2) and the first condition in interface condition (2.7)
hold in the proper sense. By setting ψ = 0 in the test function v and letting v ∈ Hc,0 be arbitrary,
we have that the equality (2.4) and the the other two conditions in (2.7) hold in the proper sense
as well.

B Finite element approximations

In this subsection, we continue the discussion of Section 3 and give an error bound for finite ele-
ments approximations. Following the notations and spaces defined in Section 3, we know that the
div-stability condition guarantees that Vh

f is not empty. We choose such a uh0 in Vh
f and solve the

problem: find zh in Vh such that

a(zh,vh) = 〈l,vh〉 − a(uh0 ,v
h) ∀vh ∈ Vh.

By Lax-Milgram theorem, this problem has a unique solution zh; then, uh := uh0 +zh, is the solution
to the discrete problem.

Now, for all wh ∈ Vh
f , let vh := uh −wh ∈ Vh; thenh

a(vh,vh) = 〈l,vh〉 − a(wh,vh) = a(u,vh) + b(vh, p)− a(wh,vh)
= a(u−wh,vh) + b(vh, p− qh)
≤ ‖a‖‖u−wh‖W‖vh‖W + ‖b‖‖vh‖W‖p− qh‖L2 ∀ qh ∈ Qh.

By coercivity, we have

‖vh‖W ≤
1
α

(
‖a‖‖u−wh‖W + ‖b‖‖p− qh‖L2

)
.

Therefore, since
∥∥u− uh

∥∥ ≤ ∥∥u−wh
∥∥+

∥∥wh − uh
∥∥,

‖u− uh‖W ≤
1
α

(
(1 + ‖a‖)‖u−wh‖W + ‖b‖‖p− qh‖L2

)
∀wh ∈ Vh

f , q
h ∈ Qh.

Furthermore, div-stability gives the following bound:

inf
wh∈Vh

f

‖u−wh‖W ≤
(

1 +
‖b‖
β

)
inf

vh∈Wh
‖u− vh‖W.

Thus, we arrive at the following estimate:

‖u− uh‖W < C
(

inf
vh∈Wh

‖u− vh‖W + inf
qh∈Qh

‖p− qh‖L2

)
.

It remains to estimate ‖p− ph‖L2 . First, we have

b(vh, ph − qh) = b(vh, ph)− b(vh, qh) =< l,vh > −a(uh,vh)− b(vh, qh)
= a(u,vh) + b(vh, p)− a(uh,vh)− b(vh, qh)
= a(u− uh,vh) + b(vh, p− qh) ∀vh ∈Wh, qh ∈ Qh.

h‖a‖ and ‖b‖ here denote the norm of the bilinear terms a(·, ·) and b(·, ·).
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Then, by div-stability, we have

‖ph − qh‖L2 ≤
1
β

sup
vh∈Wh

1
‖vh‖W

(
a(u− uh,vh) + b(vh, p− qh)

)
≤ 1
β

(
‖a‖‖u− uh‖W + ‖b‖‖p− qh‖L2

)
∀ qh ∈ Qh.

Thus, by the triangle inequality
∥∥p− ph∥∥

L2 ≤
∥∥p− qh∥∥

L2 +
∥∥ph − qh∥∥

L2 , we have

‖p− ph‖L2 ≤
1
β

(
‖a‖‖u− uh‖W + (β + ‖b‖) inf

qh∈Qh
‖p− qh‖L2

)
.
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