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Abstract. We show that an arbitrary topological stack X has a natural weak
homotopy type. Under a certain paracompactness condition on X, we show
that X actually has a natural homotopy type. We also prove these results for
diagrams of topological stacks. These results are formulated in terms of func-
tors from the category of topological stacks to the (weak) homotopy category
of topological spaces. We show how this can be used to extend (co)homology
theories to topological stacks. We prove similar results for small diagrams of
topological stacks.
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1. Introduction

The goal of this paper is to provide a solid basis for doing homotopy theory on
topological stacks. Our point of view is that topological stacks are generalizations
of topological spaces, and as such one desires to extend the homotopy theory of
topological spaces to all topological stacks. Our results furnish the basic tools for
doing so.

The category of topological stacks accommodates various classes of objects si-
multaneously: 1- orbifolds, 2- gerbes, 3- spaces with an action of a topological
group, 4- Artin stacks, 5- Lie groupoids, 6- complexes-of-groups, 7- foliated mani-
folds. And, of course, the category of topological spaces is a full subcategory of the
category of topological stacks.

In each of the above cases, tools from algebraic topology have been adopted, to
various extents, to study the objects in question. For instance, (3) is the subject
of equivariant algebraic topology. Behrend has studied singular (co)homology of
Lie groupoids in [Be]. Homotopy invariants and (co)homology theories for orbifolds
have been developed by Haefliger, Moerdijk, Thurston,. . . . The case of complexes-
of-groups has been studied extensively by Bass, Bridson, Haefliger, Serre, Soulé,. . . .

The results of this paper generalize, and unify, the above examples. Our first
main result is the following.

Theorem 1.1. Every topological stack X admits an atlas ϕ : Θ(X) → X which
is a universal weak equivalence. (This means that, for every map T → X from
a topological space T , the base extension ϕT : Θ(X) ×X T → T of ϕ is a weak
equivalence of topological spaces.)

As a consequence of the above theorem, we obtain a functor Θ: TopSt → Topw.e.
to the weak homotopy category Topw.e. of topological spaces which to a topological
stack X associates its weak homotopy type Θ(X); see Theorem 8.2. The important
feature of this result is the universal weak equivalence ϕ. It allows us to relate the
homotopical invariants of X to those of Θ(X) (say, via pull-back or push-forward).
To see an application of this, the reader can consult [BGNX] where this result is
used to develop an intersection theory and a theory of Thom classes on stacks; for
another application see [EbGi].

In the case where X has a groupoid presentation with certain paracompactness
properties (§8.2), the above functor can be lifted to a functor Θ: TopSt → Toph.e.
which associates to such a topological stack an actual homotopy type (Theorem
8.8). This applies to all differentiable stacks and, more generally, to any stack that
admits a presentation by a metrizable groupoid; see Proposition 8.5. This is useful
for defining (co)homology theories that are only homotopy invariant. (For example,
certain sheaf cohomology theories or certain Čech type theories are only invariant
under homotopy equivalences).

The next main result in the paper is the generalization of Theorem 1.1 to dia-
grams of topological stacks (§12). The following theorem is a corollary of Theorem
12.1.

Theorem 1.2. Let P : D → TopSt be a diagram of topological stacks indexed by
a small category D. Then, there is a diagram Q : D → Top of topological spaces,
together with a transformation ϕ : P ⇒ Q, such that for every d ∈ D the morphism
Q(d) → P (d) is a universal weak equivalence. Furthermore, Q is unique up to
(objectwise) weak equivalence of diagrams.
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This theorem implies that every diagram of topological stacks has a natural weak
homotopy type as a diagram of topological spaces. Furthermore, the transformation
ϕ relates the given diagram of stacks with its weak homotopy type, thus allowing
one to transport homotopical information back and forth between the diagram and
its homotopy type.

The above theorem has various applications. For example, it implies an equivari-
ant version of Theorem 1.1 for the (weak) action of a discrete group. It also allows
one to define homotopy types of pairs (triples, and so on) of topological stacks.
It may also be useful in studying Bredon type homotopy theories for topological
stacks.

We also consider the case where arrows in D are labeled by properties of con-
tinuous maps, such as: subspace, open (or closed) subspace, proper, finite, and so
on. We show (§12.1) that, under certain conditions, if morphisms in a diagram
P of topological stacks have the properties assigned by the corresponding labels,
then we can arrange so that the morphisms in the homotopy type Q of P also
satisfy the same properties. For example, if we take D to be {1 → 2} and label
the unique arrow of D by ‘closed subspace’, this implies that the weak homotopy
type of a ‘closed pair’ (X,A) of topological stack can be chosen to be a ‘closed pair’
(X,A) of topological spaces. Furthermore, we have a weak equivalence of pairs
ϕ : (X,A) → (X,A) relating the pair (X,A) to its weak homotopy type (X,A).

The above results are valid for arbitrary topological stacks X. That is, all we
require is for X to have a presentation by a topological groupoid X = [X1 ⇒ X0].
Although this may sound general enough for applications, there appears to be a
major class of stacks which does not fall in this category: the mapping stacks
Map(Y,X) of topological stacks.

Nevertheless, in [No2] we prove that the mapping stacks are not far from being
topological stacks. Let us quote a result from [ibid.].

Theorem 1.3. Let X and Y be topological stacks, and let Map(Y,X) be their map-
ping stack. If Y admits a presentation [Y1 ⇒ Y0] in which Y1 and Y0 are compact,
then Map(Y,X) is a topological stack. If Y1 and Y0 are only locally compact, then
Map(Y,X) is a paratopological stack.

Paratopological stacks (Definition 9.1) form an important 2-category of stacks
which contains TopSt as a full sub 2-category. The advantage of the 2-category
of paratopological stacks over the 2-category TopSt of topological stacks is that
it is closed under arbitrary 2-limits (but we will not prove this here). We show
in §9 that our machinery of homotopy theory of topological stacks extends to the
category of paratopological stacks. In particular, all mapping stacks Map(Y,X)
have a well-defined (functorial) weak homotopy type, as long as Y satisfies the
locally compactness condition mentioned above.

We believe the category of paratopological stacks is a suitable category to be
doing homotopy theory in. Some other candidates are also discussed in §9.

2. Notation and conventions

Throughout the notes, Top stands for the category of all topological spaces.
The localization of Top with respect to the class of weak equivalences is denoted
by Topw.e. (the weak homotopy category of spaces). The localization of Top with
respect to the class of homotopy equivalences is denoted by Toph.e. (the homotopy
category of spaces).
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All stacks considered in the paper are over Top.
We will denote groupoids by X = [s, t : X1 ⇒ X0]. For convenience, we drop s

and t from the notation. We usually reserve the letters s and t for the source and
target maps of groupoids, unless it is clear from the context that they stand for
something else.

Our terminology differs slightly from that of [No1]. A topological stack means
a stack X that is equivalent to the quotient stack of a topological groupoid X =
[X1 ⇒ X0]; in [ibid.] these are called pretopological stacks.

A morphism f : X → Y of stacks is called an epimorphism if it is an epimorphism
in the sheaf theoretic sense (i.e., for every topological space W , every object in
Y(W ) has a preimage in X(W ), possibly after passing to an open cover of W ). In
the case where X and Y are topological spaces, this is equivalent to saying that f
admits local sections.

For simplicity, we assume that all 2-categories have invertible 2-morphisms. The
category obtained by identifying 2-isomorphic morphisms in a 2-category C is de-
noted by [C]. We usually use Fraktur symbols for 2-categories and Sans Serif sym-
bols for 1-categories.

3. Torsors for groupoids

We quickly recall the definition of a torsor for a groupoid; see for instance [No1],
§12.

Definition 3.1. Let X = [R ⇒ X] be a topological groupoid, and let W be a
topological space. By an X-torsor over W we mean a map p : T →W of topological
spaces which admits local sections, together with a cartesian morphism of groupoids

[T ×W T ⇒ T ] → [R ⇒ X].

By a trivialization of an X-torsor p : T → W we mean an open covering {Ui} of
W , together with a collection of sections σi : Ui → T . To give an X-torsor and a
trivialization for it is the same thing as giving a 1-cocycle on W with values in X,
as defined below.

Given an open cover {Ui} of W of a topological space W , an X-valued 1-cocycle
onW relative the cover {Ui} consists of a collection of continuous maps ai : Ui → X,
and a collection of continuous maps γij : Ui ∩ Uj → R, such that:

C1. for every i, j, s ◦ γij = ai|Ui∩Uj and t ◦ γij = aj |Ui∩Uj ;
C2. for every i, j, k, γijγjk = γik as maps from Ui ∩ Uj ∩ Uk to R.
Equivalently, a 1-cocyle on {Ui} is a groupoid morphism c : U → X, where U :=

[
∐
Ui ∩ Uj ⇒

∐
Ui] is the groupoid associated to the covering {Ui}.

A morphism from a 1-cocycle
(
{Ui}, ai, γij

)
to a 1-cocycle

(
{U ′

k}, a′k, γ′kl
)

is a
collection of maps δik : Ui ∩ U ′

k → R such that:
M1. for every i, k, s ◦ δik = ai|Ui∩U ′

k
and t ◦ δik = a′k|Ui∩U ′

k
;

M2. for every i, k, l,

δikγ
′
kl = δil : Ui ∩ U ′

k ∩ U ′
l → R,

γijδik = δjk : Ui ∩ Uj ∩ U ′
k → R.

Equivalently, a morphism from the 1-cocycle c : U → X to the 1-cocycle c′ : U′ →
X is a morphism of groupoids U

∐
U′ → X whose restrictions to U and U′ are equal

to c and c′, respectively. Here, U
∐

U′ is defined to be the groupoid associated to
the covering {Ui, Uk}i,k (repetition allowed).
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Lemma 3.2. Let X be a topological groupoid and W a topological space. Then,
1-cocycles over W and morphisms between them form a groupoid that is naturally
equivalent to the groupoid of X-torsors over W . This groupoid is also naturally
equivalent to the groupoid HomSt(W, [X/R]) of stack morphisms from W to the
quotient stack [X/R].

Proof. The last statement can be found in ([No1], §12). We only point out that
the torsor p : T → W associated to a morphism ϕ : W → [X/R] is defined via the
following 2-cartesian diagram

T

p

X

W ϕ
[X/R]

We explain how to associate an X-torsor to a 1-cocycle
(
{Ui}, ai, γij

)
. Set Ti :=

Ui×ai,X,sR. Define T to be
∐
Ti/∼, where ∼ is the following equivalence relation:

(wi, αi) ∼ (wj , αj), if wi = wj =: w and αi = γij(w)αj .
The cartesian groupoid morphism [T ×W T ⇒ T ] → [R ⇒ X] is defined as fol-

lows. The map T → X is defined by (wi, αi) 7→ t(αi). An element
(
(wi, αi), (wi, βi)

)
in T ×W T is mapped to α−1

i βi ∈ R; this is easily seen to be well-defined (i.e., in-
dependent of i).

The rest of the proof is straightforward and is left to the reader. �

Remark 3.3. Our definition of a 1-cocycle is different from that of ([Hae], §2) in
that in loc. cit. the maps ai are not part of the data. There is, however, a forgetful
map that associates to a 1-cocycle in our sense a cocycle in the sense of Haefliger.

4. Classifying space of a topological stack

In this section, we discuss Haefliger’s definition of the classifying space of a
topological groupoid.

4.1. Construction of the classifying space of a topological stack. We recall
[Hae] the definition of the (Haefliger-Milnor) classifying space BX and the uni-
versal bundle EX of a topological groupoid X = [R ⇒ X]. Our main objective is
to show that E → X is an X-torsor, thereby giving rise to a morphism BX → X.

An element in EX is a sequence (t0α0, t1α1, · · · , tnαn, · · · ), where αi ∈ R are
such that s(αi) are equal to each other, and ti ∈ [0, 1] are such that all but
finitely many of them are zero and

∑
ti = 1. As the notation suggests, we

set (t0α0, t1α1, · · · , tnαn, · · · ) = (t′0α
′
0, t

′
1α

′
1, · · · , t′nα′n, · · · ) if ti = t′i for all i and

αi = α′i if ti 6= 0.
Let ti : EX → [0, 1] denote the map (t0α0, t1α1, · · · , tnαn, · · · ) 7→ ti, and let

αi : t−1
i (0, 1] → R denote the map (t0α0, t1α1, · · · , tnαn, · · · ) 7→ αi. The topology

on EX is the weakest topology in which t−1
i (0, 1] are all open and ti and αi are all

continuous.
The classifying space BX is defined to be the quotient of EX under the fol-

lowing equivalence relation. We say two elements (t0α0, t1α1, · · · , tnαn, · · · ) and
(t′0α

′
0, t

′
1α

′
1, · · · , t′nα′n, · · · ) of EX are equivalent, if ti = t′i for all i, and if there is
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an element γ ∈ R such that αi = γα′i. (So, in particular, t(αi) = t(α′i) for all i.)
Let p : EX → BX be the projection map.

The projections ti : EX → [0, 1] are compatible with this equivalence relation,
so they induce continuous maps ui : BX → [0, 1] such that ui ◦ p = ti. Let Ui =
u−1
i (0, 1].

Lemma 4.1. The projection map p : EX → BX can be naturally made into a
X-torsor.

Proof. First we show that p admits local sections. Consider the open cover {Ui} of
BX defined above. We define a section Ui → EX for p by sending the equivalence
class of (t0α0, t1α1, · · · , tnαn, · · · ) to (t0α−1

i α0, t1α
−1
i α1, · · · , tiα−1

i αn, · · · ).
Let us now define a cartesian groupoid morphism

F : [EX×BX EX ⇒ EX] → [R ⇒ X].

The effect on the object space is given by the map f : EX → X which sends
(t0α0, t1α1, · · · , tnαn, · · · ) to s(αi); this is independent of i (by definition). An
element in EX×BX EX is represented by a pair(

(t0γα0, t1γα1, · · · , tnγαn, · · · ), (t0α0, t1α1, · · · , tnαn, · · · )
)
,

for a unique γ ∈ R. We send this element to γ ∈ R. This is easily verified to be a
cartesian morphism of groupoids. �

It follows from Lemma 3.2 that we have a morphism natural ϕ : BX → X and
the the X-torsor p : EX → BX fits in a 2-cartesian diagram

EX
f

p

X

BX ϕ X

4.2. Comparison with the simplicial construction. There is another way of
associating a classifying space to a groupoid X = [R ⇒ X], namely, by taking the
geometric realization of (the simplicial space associated to) it. In this subsection,
we compare this construction with Haefliger’s and explain why we prefer Haefliger’s
construction.

First, let us recall the construction of the geometric realization of X. Consider
the simplicial space NX with

(NX)0 = X, and (NX)n = R×X × · · · ×X ×R︸ ︷︷ ︸
n−fold

, n ≥ 1.

The geometric realization of X is, by definition, the geometric realization of NX.
We will denote it by |X|.

Alternatively, |X| can be obtained as a quotient space of EX by declaring that
“it is allowed to take common factors in EX.” This means that, if an element
α ∈ R appears several times in the sequence s = (t0α0, t1α1, · · · , tnαn, · · · ) ∈ EX,
say at indices i1, · · · , ik, then we regard s as equivalent to any sequence s′ ∈ EX
which is obtained from s by altering the coefficients ti1 , · · · , tik in a way that ti1 +
· · · + tik remains fixed. (Roughly speaking, we are collapsing the subsequence
(ti1α, · · · , tikα) of s to a single element (ti1 + · · ·+ tik)α.)
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It can be shown that there is a universal bundle |E| over |X| that is almost an
X-torsor. We explain how it is defined.

Consider the topological groupoid E := [R ×s,X,s R ⇒ R]. There is a groupoid
morphism p : E → X induced by the target map t : R → X. This induces a map
|p| : |E| → |X| on the geometric realizations. This will be the structure map of our
(almost) torsor. Let us explain how the cartesian morphism

[|E| ×|X| |E| ⇒ |E|] → [R ⇒ X]

is constructed. Viewing X and R as trivial groupoids [X ⇒ X] and [R ⇒ R],
we have the following strictly cartesian diagram in the category of topological
groupoids:

E×X E λ

pr1 or pr2

R

s or t

E σ X

In this diagram, the map σ : [R ×s,X,s R ⇒ R] → [X ⇒ X] is the one induced by
the source map s : R→ X. The fiber product E×X E is the strict fiber product of
groupoids, and the maps E → X appearing in this fiber product are both p. The
morphism λ in the diagram is defined as follows. An object in the groupoid E×X E
is a pair of arrows (γ1, γ2) with the same target. Under λ, this will get sent to
γ1γ

−1
2 ∈ R. The effect of λ on arrows is now uniquely determined.
The above diagram is indeed a (cartesian) morphism of groupoid objects in the

category of topological groupoids. After passing to geometric realizations at all four
corners, and noting that taking geometric realizations commutes with fiber prod-
ucts, the above diagram gives rise to the desired cartesian morphism of topological
groupoids Ψ: [|E| ×|X| |E| ⇒ |E|] → [R ⇒ X].

This almost proves that |p| : |E| → |X| is an X-torsor. The only thing that is
left to check is the existence of local sections. This, however, may not be true in
general, unless the source and target maps of the original groupoid X, and also
its identity section, are nicely behaved (locally). This prevents p : |E| → |X| from
being an X-torsor. As a consequence, we do not get a morphism |X| → [X/R]. This
explains why we opted for BX rather than |X| as a model for the classifying space
of X.

Remark 4.2. The above discussion can be summarized by saying that there are
quotient maps q′ : EX → |E| and q : BX → |X| inducing a commutative diagram

[EX×BX EX ⇒ EX]
Q

Φ

[|E| ×|X| |E| ⇒ |E|]

Ψ

[R ⇒ X]

of cartesian groupoid morphisms. The morphism Φ does make EX → BX into an
X-torsor. In contrast, the morphism Ψ does not always make |E| → |X| into an X-
torsor. Therefore, the dotted arrow in the following diagram of the corresponding
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quotient stacks

BX
q

ϕ

∼=

|X|

[X/R]

may not always be filled.

4.3. The case of a group action. Let G be a topological group acting continu-
ously on a topological space X (on the right). Recall that X = [X/G] is the quotient
stack of the topological groupoid X = [X × G ⇒ X]. In this case, BX is equal to
the Borel construction, that is BX = X×GEG. The torsor EX constructed in §4 is
equal to X ×EG, and p : EX → BX is Milnor’s universal G-bundle. The cartesian
square appearing after the proof of Lemma 4.1 now takes the following form

X × EG
f

p

X

X ×G EG ϕ
[X/G]

5. Shrinkable morphisms

We begin with an important definition.

Definition 5.1. We say that a continuous map f : X → Y of topological spaces
is shrinkable ([Do], §1.5), if it admits a section s : Y → X such that there is a
fiberwise strong deformation retraction of X onto s(Y ). We say that f is locally
shrinkable, if there is an open cover {Ui} of Y such that f |Ui : f−1(Ui) → Ui is
shrinkable for all i. We say that f is parashrinkable, if for every map T → Y
from a paracompact topological space T , the base extension fT : T ×Y X → T is
shrinkable. If this condition is only satisfied for T a CW complex, we say that f is
pseudoshrinkable. We say that f is a universal weak equivalence, if for every
map T → Y from a topological space Y , the base extension fT : T ×Y X → T of f
is a weak equivalence.

Definition 5.2. We say that a representable morphism f : X → Y of topological
stacks is locally shrinkable (respectively, parashrinkable, pseudoshrinkable, a uni-
versal weak equivalence) if for every map T → Y from a topological space Y , the
base extension fT : T ×Y X → T of f is so.

Remark 5.3. The above notions do not distinguish 2-isomorphic morphisms of
stacks, so they pass to [TopSt].

The following lemma clarifies the relation between the above notions.
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Lemma 5.4. The properties introduced in Definition 5.2 are related in the following
way:

triv. Hurewicz fib. ⇒ triv. Serre fib.

⇒ ⇒

shrinkable ⇒ locally shrinkable ⇒ parashrinkable ⇒ pseudoshrinkable

⇒ ⇒

epimorphism universal weak eq.

Proof. All the implications are obvious except for the one in the middle and the one
on the top-left. The one on the top-left follows from [Do], Corollary 6.2. To prove
the middle implication, we have to show that every locally shrinkable f : X → Y
with Y paracompact is shrinkable. Dold ([Do], §2.1) proves that if f : X → Y is
a continuous map which becomes shrinkable after passing to a numerable ([Do],
§2.1) cover {Ui}i∈I of Y , then f is shrinkable. Since in our case Y is paracompact,
every open cover of Y admits a numerable refinement. So f is shrinkable by Dold’s
result. �

Lemma 5.5. Let f : X → Y be a parashrinkable (respectively, pseudoshrinkable)
morphism of topological stacks. Let B be a paracompact topological space (respec-
tively, a CW complex). Then, for every morphism g : B → Y, the space of lifts g to
X is non-empty and contractible. In particular, every morphism g : B → Y has a
lift g̃ : B → X and such a lift is unique up to homotopy.

Proof. Recall that a lift of g to X means a map g̃ : B → X together with a 2-
isomorphism ε : f ◦ g̃ ⇒ g.

The space of lifts of g is homeomorphic to the space of sections of the map
shrinkable map fB : B ×X Y → B, hence is contractible. �

The converse of Lemma 5.5 is also true and can be used as an alternative way
of defining parashrinkable (respectively, pseudoshrinkable) morphisms.

Lemma 5.6. Let f : X → Y and g : Y′ → Y be morphisms of topological stacks.
Let f ′ : X′ → Y′ be the base extension of f along g. If f is locally shrinkable
(respectively, parashrinkable, pseudoshrinkable, a universal weak equivalence), then
so is f ′. If g is an epimorphism, and f ′ is locally shrinkable, then f is also locally
shrinkable.

Proof. Obvious. �

Lemma 5.7. Consider the 2-commutative square

A
f

i
ϕ

X

p

B g Y

in which p : X → Y is a parashrinkable (respectively, a pseaudoshrinkable) morphism
of topological stacks and i : A ↪→ B is a closed Hurewicz cofibration of paracompact
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topological spaces (respectively, CW complexes). Then, one can find h and α such
that in the diagram

A
f

i

X

p
α

B

h

g Y

the upper triangle is 2-commutative and the lower triangle commutes up to a ho-
motopy that leaves A fixed (i.e., there is a homotopy from g to p ◦ h which after
precomposing with i becomes 2-isomorphic to the constant homotopy).

Proof. We can replace p by its base extension pB : B×X Y → B. So, we are reduced
to the following situation: we have shrinkable map p : X → B of topological spaces,
a subspace A ⊂ B which is a Hurewicz cofibration, and a section s : A → X. We
want to extend s to a map σ : B → X such that p ◦ σ is homotopic to the identity
map idB : B → B via a homotopy that fixes A pointwise.

Since p is shrinkable, it has a section S : B → X. Furthermore, S|A and s are
fiberwise homotopic via a homotopy H : A × [0, 1] → X. (Fiberwise means that
p ◦H : A× [0, 1] → A is equal to the first projection map.) Set

C = (A× [0, 1]) ∪A×{0} B.

The maps H and S glue to give a map k : C → X. The composition p◦k : C → B is
the collapse map that fixes B pointwise and collapses A×[0, 1] onto A via projection.

Since A ⊂ B is a closed Hurewicz cofibration, the inclusion C ⊂ B× [0, 1] admits
a retraction r : B × [0, 1] → C ([Wh], §I.5.2). Let r1 : B → C be the restriction of
r to B × {1}. Set σ := k ◦ r1. It is easy to see that σ has the desired property. �

Remark 5.8. If in the above lemma we switch the roles of the upper and the lower
triangles, namely, if we require that the upper triangle is homotopy commutative
and the lower one is 2-commutative, then the lemma is true without the cofibration
assumptions on i.

Corollary 5.9. Let f : X → Y be a pseudoshrinkable morphism of Serre topological
stacks ([No1], §17; also see Definition 10.1). Then, f is a weak equivalence, i.e., it
induces isomorphisms on all homotopy groups (as defined in [No1], §17).

Proof. To prove the surjectivity of πn(X, x) → πn(Y, f(x)), apply Lemma 5.7 to the
case where B is Sn and A is its base point. The injectivity follows by considering
B = Dn+1 and A = ∂Dn+1. �

Lemma 5.10. Consider a family fi : Xi → Y, i ∈ I, of representable morphisms
of topological stacks, and let f :

∏
Y Xi → Y be their fiber product. (Note that f is

well-defined up to a 2-isomorphism.) If all fi are parashrinkable (respectively, pseu-
doshrinkable), then so is f . If all fi are locally shrinkable (respectively, universal
weak equivalence), then so is f , provided I is finite.

Proof. In the parashrinkable case, it is enough to assume that Y = Y is a paracom-
pact topological space. The result now follows from the fact that an arbitrary fiber
product of shrinkable morphisms Xi → Y , i ∈ I, of topological spaces is shrinkable.
The case of pseudoshrinkable morphisms is proved analogously.
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The case of locally shrinkable maps is also similar, except that for each i ∈ I we
may have a different open cover of Y which makes fi shrinkable. Since I is finite,
choosing a common refinement will make f shrinkable.

The case of universal weak equivalence maps is easily proved by induction (using
the fact that the composition of two universal weak equivalences is again a universal
weak equivalence). �

6. Existence of a nice atlas for a topological stack

We prove our first main theorem.

Theorem 6.1. Let X be a topological stack, and let X = [R ⇒ X] be a presentation
for it. Then, there is a natural map ϕ : BX → X which fits in the following 2-
cartesian diagram

EX
f

p

X

BX ϕ X

Here, f is the map defined in the proof of Lemma 4.1. Furthermore, f is shrinkable.
In particular, ϕ is locally shrinkable.

Proof. The X-torsor p : EX → BX defined in Lemma 4.1 furnishes the map ϕ and
the 2-cartesian diagram; see Lemma 3.2.

Let us show that f is shrinkable. Define the section σ : X → EX by

x 7→ (1 idx, 0 idx, · · · , 0 idx, · · · ).
This identifies X with a closed subspace of EX. We define the desired strong
deformation retraction Ψ: [0, 2]× EX → EX by juxtaposing the maps Ψ1 : [0, 1]×
EX → EX and Ψ2 : [1, 2]× EX → EX which are defined as follows:

Ψ1 :
`
t, (t0α0, t1α1, · · · , tnαn, · · · )

´
7→

`
(t0− tt0)α0, (t1− tt1 + t)α1, · · · , (tn− ttn)αn, · · ·

´
,

and

Ψ2 :
`
t, (t0α0, t1α1, · · · , tnαn, · · · )

´
7→

`
(t− 1) idx, (2− t)α1, 0 idx, · · · , 0 idx, · · ·

´
.

Here, x is the common source of the αi. That ϕ is locally shrinkable follows from
Lemma 5.6. �

Let us rephrase the above theorem as a theorem about existence of nice atlases
for topological stacks.

Theorem 6.2 (Existence of a nice atlas). Every topological stack X admits an
atlas ϕ : X → X which is locally shrinkable (and, in particular, a universal weak
equivalence).

Proof. Choose an arbitrary presentation X for X. Then, the morphism ϕ : BX → X

of Theorem 6.1 is the desired atlas; see Lemma 5.4. �

Corollary 6.3. Every topological groupoid [R ⇒ X] is Morita equivalent ([No1],
§8) to a topological groupoid [R′ ⇒ X ′] in which the source and target maps are
locally shrinkable (in particular, they are universal weak equivalences).

Proof. The desired groupoid is [BX×ϕ,X,ϕ BX ⇒ BX], where X = [R ⇒ X]. �
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Remark 6.4. We will see in §8 that the atlas ϕ : X → X of Theorem 6.2 can be
used to define a weak homotopy type for the stack X. We saw in Remark 4.2 that
the diagram

BX
q

ϕ

|X|

[X/R]

can not always be filled. It is, however, true in many cases that the map q is a weak-
equivalence. In such cases, the geometric realization |X| of a groupoid presentation
X for X can very well be used to define the weak homotopy type of X. The question
that remains to be answered is, under what condition is the map q : BX → |X| a
weak equivalence?

7. Some category theoretic lemmas

In this section, we prove a few technical results of category theoretic nature.
These results will be needed in our functorial description of the homotopy type
of topological stack (§8). The reader who is not interested in category theoretical
technicalities can proceed to the next section.

Throughout this section, the set up will be as follows. Let C be a 2-category with
fiber products. Assume all 2-morphisms in C are invertible. Let [C] be the category
obtained by identifying 2-isomorphic 1-morphisms in C. Let B be a full subcategory
of C which is closed under fiber products. Assume that B is a 1-category, that is,
there is at most one 2-morphism between every two morphisms in B. Let R be a
class of morphisms in B which contains the identity morphisms and is closed under
base extension and 2-isomorphism. We define R̃ to be the class of morphisms
f : y → x in C such that for every morphism p : t→ x, t ∈ B, the base extension r
of f along p belongs to R.

t×x y

r

y

f

t p
x

It is clear that R̃ is invariant under base extension and contains R and all identity
morphisms.

Lemma 7.1. The set up being as above, assume that for every object x in C,
there exists an object Θ(x) in B together with a morphism ϕx : Θ(x) → x which
belongs to R̃. Then, the inclusion functor B → [C] induces a fully faithful functor
ι : R−1B → R−1[C]. Furthermore, Θ naturally extends to a functor R−1[C] → R−1B
that is a right adjoint to ι. Finally, Θ can be defined so that the counits of adjunction
are the identity maps and the units of adjunction belong to R̃.

Proof. In the proof we will make use of the calculus of right fractions for R̄ (§13) to
describe morphisms in the localized categories. Here, R̄ is the closure of R under
composition. (Notice that localization with respect to R and R̄ yields the same
result.)
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First, let us explain how to extend Θ to a functor. We will assume Θ(x) = x,
whenever x ∈ B.

Given a morphism f : x→ y in [C], set z := Θ(x)×y Θ(y), as in the 2-cartesian
diagram

z
g

r

Θ(y)

ϕy

Θ(x)
f◦ϕx

y

By hypothesis, we have r ∈ R. We define Θ(f) : Θ(x) → Θ(y) to be the span (r, g).
The proof that Θ is well-defined and respects composition is straightforward.

To prove that Θ is a right adjoint to ι, we show that composing with the mor-
phism ϕx : Θ(x) → x induces a bijection

HomR−1B(t,Θ(x)) ∼−→ HomR−1[C](t, x)

for every t ∈ B. With the notation of §13, we have to show that the map

P : Span(t,Θ(x)) → Span(t, x)

which sends a span (r, g) to (r, ϕx ◦ g) induces a bijection

π0(P ) : π0 Span(t,Θ(x)) → π0 Span(t, x).

We define a functor

Q : Span(t, x) → Span(t,Θ(x))

as follows. Let (r, g) ∈ Span(t, x). Then Q(r, g) is defined to be (r ◦ ρ, g′), as in the
diagram

s×x Θ(x)
g′

ρ

Θ(x)

ϕx

t v
gr

x

There are natural transformations of functors

idSpan(t,Θ(x)) ⇒ Q ◦ P

and P ◦Q⇒ idSpan(t,x). This is enough to establish that π0(P ) and π0(Q) induce
inverse bijections between π0 Span(t,Θ(x)) and π0 Span(t, x). (For example, this
can be seen by noticing that P and Q induce an equivalence of categories between
the groupoids generated by inverting all arrows in Span(t,Θ(x)) and Span(t, x).)

Fully faithfulness of ι follows from the fact that the unit of adjunction ι◦Θ ⇒ idB

is an isomorphism. �

Corollary 7.2. The functors ι and Θ induce an equivalence of categories R−1B ∼=
R̃−1[C]. In fact, on the right hand side, instead of inverting R̃, it is enough to
invert R together with all the morphisms ϕx : Θ(x) → x.

Remark 7.3. It can be shown that the functors P and Q appearing in the proof of
Lemma 7.1 are indeed adjoints

P : Span(t,Θ(x)) 
 Span(t, x) :Q
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Therefore, if we work with the 2-categorical enhancements of R−1B and R−1[C]
(see Remark 13.1), then the adjunction between ι and Θ can be enhanced to a
2-categorical adjunction.

Lemma 7.4. Let F : B 
 C :G be an adjunction between categories. Let B′ ⊂ B
and C′ ⊂ C be full subcategories such that F (B′) ⊂ C′ and G(C′) ⊂ B′. Then, the
restriction of F and G to these subcategories induces an adjunction F ′ : B′ 
 C′ :G′

Proof. Obvious. �

Lemma 7.5. Let F : B 
 C :G be an adjunction between categories. Let S ⊂ B
and T ⊂ C be classes of morphisms such that F (S) ⊂ T and G(T ) ⊂ S. Then, we
have an induced adjunction

F̃ : S−1B 
 T−1C :G̃

between the localized categories. Furthermore, if F is fully faithful, then so is F̃ .

Proof. We will use the 2-categorical formulation of adjunction ([Mac], IV.1, Theo-
rem 2). A standard Yoneda type argument shows that to give an adjunction

F : B 
 C :G

is the same thing as giving adjunctions

KG : KB 
 KC :KF ,

for every category K, which are functorial with respect to change of K. Here, KB

stands for the category of functors from B to K.
By the universal property of localization, KS

−1B is naturally identified with a full
subcategory of KB. Similarly, KS

−1C is naturally identified with a full subcategory
of KC. The assumption that F and G respect S and T implies that KG(KS

−1B) ⊂
KS

−1C and KF (KS
−1C) ⊂ KS

−1B. So, we have an induced adjunction

KG : KS
−1B 
 KS

−1C :KF .

Since these adjunctions are functorial with respect to K, the Yoneda argument
gives the desired adjunction F̃ : S−1B 
 T−1C :G̃.

The statement about fully faithfulness follows from the fact that a left adjoint
F is fully faithful if the unit of adjunction is an isomorphism of functors. �

7.1. Lemma 7.1 for diagram categories. We prove a version of Lemma 7.1 for
diagrams. The set up will be as in Lemma 7.1. We will assume, in addition, that
R is closed under fiber products. This means that, given two morphisms Y → X
and Z → X in R, the fiber product Z ×X Y → X is also in R. Since R is closed
under base extension, this is automatic if R is closed under composition.

Suppose we are given a category D, which we think of as a diagram. We assume
either of the following holds:1

A. The category D has the property that every object d in D has finite “degree”,
that is, there are only finitely many arrows coming out of d; or,

B. The class R is closed under arbitrary fiber products.

1The common feature of these two conditions, which is all we need to prove our lemma, is that
R is closed under products indexed by any set whose cardinality is less that or equal to the degree
(i.e., the number of arrows coming out) of some object in D.
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We denote the 2-category of lax functors from D to C by CD. We think of objects
in CD as diagrams in C indexed by D.

Lemma 7.6. Let T (resp., T̃ ) be the class of all transformations τ in the dia-
gram category [CD] which have the property that for every d ∈ D the corresponding
morphism τd in C is in R (resp., R̃). Then, the inclusion functor BD → [CD] in-
duces a fully faithful functor ι : T−1BD → T−1[CD], and ι has a right adjoint ΘD.
Furthermore, ΘD can be defined so that the counits of adjunction are the identity
transformations and the units of adjunction are honest transformations in T̃ .

Proof. We use Lemma 7.1 with C and B replaced by the corresponding diagram
categories. We have to verify that for every functor p : D → C, there exists a functor
ΘD(p) : D → B together with a natural transformation of functors ϕp : ΘD(p) ⇒ p

such that every morphism ϕp,d in this transformation is in R̃. To show this, we will
make use of the relative Kan extension of §14. Let us fix the set up first.

Let U be the 2-category fibered over C whose fiber U(x) over an object x ∈ C is
the 2-category of morphisms h : a → x in R̃. More precisely, the objects in U are
morphisms a→ x in R̃. The morphism in U are 2-commutative squares

b a

τ

y x

in C whose vertical arrows are in R̃; such a morphism is defined to be cartesian if
the square is 2-cartesian. The 2-morphisms in U are defined in the obvious way.

It follows that morphisms in U(x) are 2-commutative triangles in C. It is easy
to see that U(x) is indeed a 1-category and not just a 2-category. The functor
π : U → C is the forgetful functor which sends h : a→ x to x. The pull-back functor
f� : U(y) → U(x) for a morphism f : x→ y is the base extension along f .

Let E be the discrete category with the same set of objects as D, and let F : E → D
be the functor which sends an object to itself. Either of the conditions (A) or (B)
above implies that π : U → C is F -complete (Definition 14.3) at every p : D → C.

We can now define ΘD(p) and ϕp as follows. Let p : D → C be a diagram in C. For
every object d ∈ D, we denote p(d) by xd. For each d, choose a map ϕd : Θ(xd) → xd,
with Θ(xd) in B and ϕd in R̃. This gives a functor P : E → U, d 7→ ϕd, which lifts
p. By Proposition 14.6, we have a right Kan extension RF (P ) : D → U. To give
such a functor RF (P ) is the same thing as giving a functor ΘD(p) : D → C together
with a natural transformation of functors ϕp : ΘD(p) ⇒ p. More precisely, for every
d ∈ D, we define ΘD(p)(d) and ϕp,d by

RF (P )d = ΘD(p)(d)
ϕp,d−→ xd ∈ U(xd).

All that is left to check is that ΘD(p) factors through B. To see this, note that,
by the construction of the Kan extension (see proof of Proposition 14.6), ΘD(p)(d)
is the product in U(d) of a family of objects {y0, y1, · · · } in U(d), one of which, say
y0, is Θ(xd). (Note the abuse of notation: each yi is actually a morphism yi → xd.)
Denote the product of the rest of the objects by y. So ΘD(p)(d) = Θ(xd) × y,
the product being taken in U(d). Note that product in the fiber category U(d) is
calculated by taking fiber product over xd in C. Hence, the following diagram is
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2-cartesian in C.

ΘD(p)(d) y

h

Θ(xd) ϕd
xd

Since h : y → xd is in U(d), its base extension along ϕd is in R. That is, ΘD(p)(d)
is in B and ΘD(p)(d) → Θ(xd) is a morphism in R. This shows that ΘD(p)(d) is in
B, which is what we wanted to prove. �

While proving Lemma 7.6 we have also proved the following.

Corollary 7.7. Let S be a small sub 2-category of C, and denote the inclusion
of S in C by iS. Then, there is a functor ΘS : S → B together with a natural
transformation ϕS : ΘS ⇒ iS such that for every x ∈ C, ϕS(x) : ΘS(x) → x is in
R̃.

Proof. Let D = [S] and think of it as a diagram category. Think of p = [iS] : D →
[C] as a D-diagram in [C]. Then, with the notation of Lemma 7.6, the sought
after ΘS and ϕS are exactly ΘD([iS]) and ϕ[iS] (precomposed with the projection
S → [S]). �

8. Homotopy type of a topological stack

Theorem 6.2 is saying that every topological stack has a weak homotopy type.
In this section, we use the category theoretic lemmas of §7 to give a functorial
formulation of this fact (Theorem 8.2 and Theorem 8.8).

Proposition 8.1. Let R ⊂ Top be the class of locally shrinkable maps (Definition
5.1). Then, the inclusion functor Top → TopSt induces a fully faithful functor
ι : R−1Top → R−1[TopSt], and ι has a right adjoint Θ: R−1[TopSt] → R−1Top.
Furthermore, Θ can be defined so that the counits of adjunction are the identity
maps and the units of adjunction are honest morphisms of topological stacks which
are locally shrinkable.

Proof. Apply Lemma 7.1 to the inclusion Top → TopSt with R being the class of
locally shrinkable maps of topological spaces. For every topological stack X, the
existence of a topological space Θ(X) which satisfies the requirement of Lemma 7.1
is guaranteed by Theorem 6.2. �

8.1. The weak homotopy type of a topological stack. The following theorem
says that every topological stack has a natural weak homotopy type.

Theorem 8.2. Let Sw.e. be the class of weak equivalences in Top. Let Topw.e. :=
S−1
w.e.Top be the category of weak homotopy types. Then, the inclusion functor Top →

TopSt induces a fully faithful functor ι : Topw.e. → S−1
w.e.[TopSt], and ι has a right

adjoint Θ: [TopSt]w.e. → S−1
w.e.Top. Furthermore, Θ can be defined so that the

counits of adjunction are the identity maps and the units of adjunction are honest
morphisms of topological stacks which are locally shrinkable.

Proof. Consider the adjunction ι : R−1Top 
 R−1[TopSt] : Θ of Proposition 8.1.
Let S ⊂ R−1Top be the class of weak equivalences and set T = ι(R). It is easy
to see that the conditions of Lemma 7.5 are satisfied. This gives us the desired
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adjunction ι : Topw.e. 
 S−1
w.e.[TopSt] :Θ. (By abuse of notation, we have denoted

the induced functors on localized categories again by ι and Θ.) �

The functor Θ: S−1
w.e.[TopSt] → Topw.e. should be thought of as the functor that

associates to every topological stack its weak homotopy type.
We say that a morphism f : X → Y of topological stacks is a weak homotopy

equivalence, if Θ(f) is so. Let TopStw.e. be the localization of the category
[TopSt] of topological stacks with respect to weak equivalences.

Corollary 8.3. The functors ι and Θ of Theorem 8.2 induce an equivalence of
categories

Topw.e.
∼= TopStw.e..

In fact, the category on the right can be obtained by inverting Sw.e. and all locally
shrinkable morphisms of topological stacks.

Proof. Immediate from Theorem 8.2 (also see Corollary 7.2). �

8.2. The homotopy type of a hoparacompact topological stack. For the
class of hoparacompact topological stacks (Definition 8.4) we can strengthen Theo-
rem 8.2 by showing that every such stack has a natural homotopy type (Theorem
8.8).

Definition 8.4. We say that a topological stack X is hoparacompact if there is
a parashrinkable morphism ϕ : X → X with X a paracompact topological space.

For instance, if the atlas ϕ : X → X of Theorem 6.2 can be chosen so that X is
paracompact, then X is hoparacompact.

Proposition 8.5. Let X be the quotient stack of a topological groupoid X = [X1 ⇒
X0]. In each of the following cases, BX is paracompact, hence X is hoparacompact:

1. The spaces X1 and X0 are regular and Lindelöf. (A space X is Lindelöf if
every open cover of X has a countable subcover. A space X is regular if
every closed set can be separated from every point by open sets.)

2. The spaces X1 and X0 are metrizable.
3. The space X1 and X0 are paracompact, Hausdorff, and they admit a proper

surjective map from a metric space.

The above proposition was also (independently) observed by Johaness Ebert.
We will omit the proof here. The key point is that, under the given assumptions,
the multiple fiber products Xn := X1 ×X0 × · · · ×X0 ×X1 are again paracompact.
This is not necessarily true if X1 and X0 are only assumed to be paracompact,
because the products of two paracompact spaces is not necessarily paracompact.
For this reason, we have to replace the paracompactness requirement on X1 and
X0 by something stronger which is closed under products.

Let Para be the category of paracompact topological spaces and HPTopSt the
category of hoparacompact topological stacks. Let Sh.e. ⊂ Para be the class of
homotopy equivalence. Let Parah.e. = S−1

h.e.Para be the category of paracompact
homotopy types.

Remark 8.6. There is an alternative way of describing the categories Parah.e. and
S−1
h.e.[HPTopSt] which is perhaps more natural. Let us give this description in the

case of S−1
h.e.[HPTopSt].
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The objects of S−1
h.e.[HPTopSt] are the same as those of [HPTopSt]. The mor-

phisms HomS−1
h.e.[HPTopSt](X,Y) are obtained from HomHPTopSt(X,Y) by passing

to a certain equivalence relation. If X is a topological space, this relation is just the
one generated2 by the usual homotopy between maps (defined via cylinders). If X

is not an honest topological space, then two morphism f, g : X → Y in [HPTopSt]
get identified in HomS−1

h.e.[HPTopSt](X,Y) if and only if for every map h : T → X

from a topological space T , the compositions f ◦ h and g ◦ h are equivalent.
It is easy to verify that this category satisfies the universal property of localiza-

tion.

Lemma 8.7. Let R be as in Proposition 8.1. Then, the inclusion functor Para →
Top induces a fully faithful functor Parah.e. → R−1Top. The induced functor
S−1
h.e.[HPTopSt] → R−1[TopSt] may not be fully faithful, but it induces a bijec-

tion
HomS−1

h.e.[HPTopSt](T,Y) ∼= HomR−1[TopSt](T,Y)

whenever T is a topological space.

Proof. We only prove the statement for [HPTopSt]. The case of Para is proved
similarly.

Before proving the bijectivity, let us explain why we have an induced functor

S−1
h.e.[HPTopSt] → R−1[TopSt]

in the first place. By the discussion of Remark 8.6, morphisms in S−1
h.e.[HPTopSt]

are obtained from those of [HPTopSt] by passing to a certain equivalence relation.
It is easy to check that the localization functor [HPTopSt] → R−1[HPTopSt] sends
an entire equivalence class of morphisms to one morphism. (This follows from the
fact that the projection map X × [0, 1] → X of a cylinder is in R.) Therefore, we
have a functor S−1

h.e.[HPTopSt] → R−1[TopSt].
Now, let T be a paracompact topological space and Y a hoparacompact topolog-

ical stack. We want to show that

γ : HomS−1
h.e.[HPTopSt](T,Y) → HomR−1[TopSt](T,Y)

is a bijection.
Let R̄ be the class of morphisms in TopSt which are compositions of finitely many

locally shrinkable morphisms. By §13, morphisms in R−1[TopSt] = R̄−1[TopSt]
can be calculated using a calculus of right fractions. By Lemma 13.2,

HomR−1[TopSt](T,Y) = Hom[TopSt](T,Y)/∼,

where ∼ is the equivalence relation generated by R̄ -homotopy (§13). On the other
hand

HomS−1
h.e.[HPTopSt](T,Y) = Hom[TopSt](T,Y)/∼′ ,

where ∼′ is the usual homotopy (Remark 8.6). To complete the proof, we show that
∼ and ∼′ are the same. That is, two honest morphisms f, f ′ : T → Y are homotopic

2In the category of topological stacks, homotopy between maps is not necessarily an equivalence
relation because it may not be transitive. Therefore, one has to take the equivalence relation
generated by it.
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if and only if they are R̄-homotopic. First assume that f and f ′ are R̄-homotopic
and consider an R̄-homotopy (§13) between them, as in the diagram

T
t

f

t′
f ′

Vr
g

Y.

Since r is a composition of locally shrinkable morphisms and T is paracompact, it
follows from Lemma 5.5, together with the fact that T × [0, 1] is paracompact, that
t and t′ are homotopic. This implies that f and f ′ are also homotopic. Conversely,
assume f and f ′ are homotopic. Then, we can form an R̄-homotopy diagram
between them by taking V = T × [0, 1].

The proof is complete. �

The above lemma is saying that S−1
h.e.[HPTopSt] can be identified with the full

subcategory of R−1[TopSt] consisting of hoparacompact topological stacks. Simi-
larly, Parah.e. can be identified with the full subcategory of R−1Top consisting of
paracompact topological spaces.

The following theorem says that every hoparacompact topological stack has a
natural homotopy type.

Theorem 8.8. The inclusion functor Para → HPTopSt induces a fully faithful
functor ι : Parah.e. → S−1

h.e.[HPTopSt], and ι has a right adjoint Θ. Furthermore,
the right adjoint Θ can be defined so that the counits of adjunction are the identity
maps and the units of adjunction are honest morphisms of topological stacks which
are locally shrinkable.

Proof. Consider the adjunction ι : R−1Top 
 R−1[TopSt] : Θ of Proposition 8.1.
We can arrange so that for every hoparacompact X, Θ(X) is paracompact.

By Lemmas 7.4 and 8.7 , if in both sides of the adjunction we restrict to the
paracompact objects, we obtain the adjunction

ι : Parah.e. 
 S−1
h.e.[HPTopSt] :Θ,

which is what we were after. �

The functor Θ: S−1
h.e.[HPTopSt] → Parah.e. should be thought of as the functor

that associates to every hoparacompact topological stack its homotopy type.
We say that a morphism f : X → Y of hoparacompact topological stacks is a

homotopy equivalence, if Θ(f) is so. Let HPTopSth.e. be the localization of the
category of hoparacompact stacks with respect to homotopy equivalences. We have
the following.

Corollary 8.9. The functors ι and Θ of Theorem 8.8 induce an equivalence of
categories

Parah.e. ∼= HPTopSth.e..

In fact, the category on the right can be obtained by inverting Sh.e. and all locally
shrinkable morphisms of hoparacompact topological stacks.

Proof. Immediate from Theorem 8.8 (also see Corollary 7.2). �
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9. Homotopical stacks

In the previous section, we proved the existence of a natural (weak) homotopy
type for an arbitrary topological stack. Although this may seem to be quite gen-
eral, there are still some important classes of stacks which do not appear to be
topological. The first example that comes to mind is the mapping stack Map(Y,X)
of two topological stacks. It is shown in [No2] that if Y = [Y0/Y1], for a topological
groupoid [Y1 ⇒ Y0] with Y0 and Y1 compact, then the mapping stack Map(Y,X)
is again topological. The compactness condition on Y, however, is quite restrictive
and it seems that without it Map(Y,X) may not be topological in general (but we
don’t have a counter example).

Nevertheless, we prove in [No2] that when Y0 and Y1 are locally compact and
X is arbitrary, Map(Y,X) is not far from being topological. More precisely, it is
paratopological in the sense of Definition 9.1 below. Every topological stack is, by
definition, paratopological.

In this section, we show that our construction of the homotopy types for topo-
logical stacks can be extended to a larger class of stacks called homotopical stacks
(Definition 9.1). Homotopical stacks include all paratopological stacks (hence, in
particular, all topological stacks).

Definition 9.1. We say that a stack X is paratopological if it satisfies the fol-
lowing conditions:

A1. Every map T → X from a topological space T is representable (equivalently,
the diagonal X → X× X is representable);

A2. There exists a morphism X → X from a topological space X such that for
every morphism T → X, with T a paracompact topological space, the base
extension T×XX → T is an epimorphism of topological spaces (i.e., admits
local sections)

If (A2) is only satisfied with T a CW complex, then we say that X is pseudotopo-
logical. If in (A2) we require that the base extensions to be weak equivalences,
we say that X is homotopical. (Remark that if the latter condition is satisfied for
all CW complexes T then it is satisfied for all topological spaces T .)

Roughly speaking, a stack X being paratopological means that, in the eye of a
paracompact topological space T , X is as good as a topological stack (Lemmas 9.2
and 9.3). Thus, it is not surprising that the homotopy theory of topological stacks
can be extended to paratopological (or even pseudotopological) stacks.

Paratopological stacks form a full sub 2-category of the 2-category of stacks which
we denote by ParSt. The 2-categories HoSt and PsSt of homotopical stacks and
pseudotopological stack are defined similarly.

Lemma 9.2. Let X be a stack over Top such that the diagonal X → X × X is
representable. Then, X is paratopological (respectively, pseudotopological) if and
only if there exists a topological stack X̄ and a morphism p : X̄ → X such that
for every paracompact topological space T (respectively, every CW complex T ), p
induces an equivalence of groupoids X̄(T ) → X(T ).

Proof. We only prove the statement for paratopological stacks. The case of pseu-
dotopological stacks is similar.

Suppose that such a map X̄ → X exists. Take an atlas X → X̄ for X̄. It is clear
that the composite map X → X satisfies (A2) of Definition 9.1.
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Conversely, assume X is paratopological and pick a map X → X as in Definition
9.1, (A2). Set X0 := X and X1 := X×XX. It is easy to see that the quotient stack
X̄ := [X0/X1] of the topological groupoid [X1 ⇒ X0] has the desired property. �

Lemma 9.3. Let X be a paratopological (resp., pseudotopological) stack. Let p : X̄ →
X be as in Lemma 9.2. Then, for any map T → X, with T a paracompact topo-
logical space (resp., a CW complex), the base extension pT : T ×X X̄ → T is a
homeomorphism.

Proof. We only prove the statement for paratopological stacks. The case of pseu-
dotopological stacks is similar.

Set Y := T×XX̄, and let Ymod be its coarse moduli space ([No1], §4.3). By ([No1],
Proposition 4.15.iii), we have a continuous map f : Ymod → T . Since a point is
paracompact, it follows from the definition that f is a bijection. On the other hand,
since T is paracompact, f admits a section. Therefore, f is a homeomorphism.

Since a point is paracompact, it follows from the property of the map p that the
inertia groups of Y are trivial. That is, Y is a quasitopological space in the sense of
([No1], §7, page 27). Since the coarse moduli map Y → Ymod = T admits a section,
it follows from ([No1], Proposition 7.9) that Y = Ymod = T . �

A slightly weaker version of Theorem 6.2 is true for paratopological and homo-
topical stacks.

Proposition 9.4. Let X be a paratopological (resp., pseudotopological, homotopical)
stack. Then, there exists a parashrinkable morphism (resp., a pseudoshrinkable
morphism, a universal weak equivalence) ϕ : X → X from a topological space X.

Proof. In the homotopical case the statement is true by definition.
Let X be a paratopological (resp., pseudotopological) stack, and let p : X̄ → X be

an approximation for it by a topological stack X̄ as in Lemma 9.2. Choose an atlas
ϕ̄ : X → X̄ for it which is locally shrinkable (Theorem 6.2). Then, the composite
ϕ := p ◦ ϕ̄ : X → X is parashrinkable (resp., pseudoshrinkable) by Lemma 9.3. �

Remark 9.5. Notice that, in contrast with Theorem 6.2, the map ϕ in Proposition
9.4 need not be an epimorphism.

Corollary 9.6. We have the following full inclusions of 2-categories:

TopSt ⊂ ParSt ⊂ PsSt ⊂ HoSt.

Proof. The first two inclusions are clear from the definition. The last inclusion
follows from Proposition 9.4. �

Theorem 9.7. Theorem 8.2 remains valid if we replace TopSt with ParSt (resp.,
PsSt or HoSt). The last statement in Theorem 8.2 on the units and counits
of the adjunction also remains valid provided that we replace locally shrinkable by
parashrinkable (resp., pseudoshrinkable, universal weak equivalence).

Proof. The same argument used in the proof of Theorem 8.2 carries over verbatim
(we have to use Proposition 9.4 instead of Theorem 6.2). �

Definition 9.8. We say that a paratopological stack is hoparacompact, if there
exists a parashrinkable morphism ϕ : X → X such that X is a paracompact topolog-
ical space (see Proposition 9.4). We denote the full subcategory of ParSt consisting
of hoparacompact paratopological stacks by HPParSt.
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See Proposition 8.5 for examples of hoparacompact stacks.
The following theorem says that a hoparacompact paratopological stack has the

homotopy type of a paracompact topological space.

Theorem 9.9. Theorem 8.8 remains valid if we replace HPTopSt by HPParSt.
Furthermore, the last statement in Theorem 8.2 on the units and counits of the
adjunction remains valid with locally shrinkable replaced by parashrinkable.

Proof. The proof of Theorem 8.8 carries over. �

Remark 9.10. There is also a version of Theorem 9.9 for pseudotopological stacks.
We define a pseudotopological stack to be hoCW if there exists a pseudoshrinkable
morphism ϕ : X → X such that X is a CW complex (see Proposition 9.4). We leave
it to the reader to reformulate Theorem 9.9 accordingly. It follows that a hoCW
pseudotopological stack has the homotopy type of a CW complex.

The following lemmas will be used later on when we discuss homotopy types of
diagrams of stacks.

Lemma 9.11. The 2-category of stacks X whose diagonal X → X × X is repre-
sentable is closed under arbitrary (2-categorical) limits.

Proof. We prove a more general fact. Consider two diagrams X = {Xd} and Y =
{Yd} of stacks, where d ranges in some index category D. Let ∆: X ⇒ Y be a
natural transformation such that for every d, ∆d : Xd → Yd is representable. The
induced morphism lim ∆: lim X → lim Y is also representable. (Applying this to
the case where Yd = Xd × Xd and ∆d : Xd → Xd × Xd are the diagonal morphisms
proves our lemma.)

To prove the claim, take an arbitrary map f : T → lim Y from a topological space
T . Note that to give f is the same thing as to give a compatible family of maps
fd : T → Yd. It follows easily from the universal property of limits that we have a
natural isomorphism

lim f∗d (Xd) ∼= f∗(lim X).

(By f∗ we mean pull-back along f , e.g., f∗d (Xd) := T ×fd,Yd,∆d
Xd.) Since the

diagram on the left is a diagram of topological spaces, it follows that f∗(lim X) is
a topological space. �

Lemma 9.12. Let Y be a stack whose diagonal Y → Y × Y is representable. Let
pi : Xi → Y, i ∈ I, be a family of stacks over Y. If every Xi is paratopological
(resp., pseudotopoloical), then so is their fiber product

∏
Y Xi. If I is finite, the

same statement is true for topological stacks and homotopical stacks.

Proof. We prove the case of paratopological stacks. The other cases are proved
similarly.

Condition (A1) of Definition 9.1 is satisfied by Lemma 9.11. Choose ϕi : Xi → Xi
as in Proposition 9.4. Set X =

∏
YXi. We claim that the induced map ϕ : X →∏

Y Xi is parashrinkable (hence, satisfies condition (A2) of Definition 9.1, A2). Let
g : T →

∏
Y Xi be a map from a paracompact topological space T , and denote its

i-th component by gi : T → Xi. Let fi : Ti → T be the base extension of ϕi along
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gi, as in the 2-cartesian diagram

Ti

fi

Xi

ϕi

T gi
Xi

We have a 2-cartesian diagram

∏
T Ti

f

∏
YXi

ϕ

T g

∏
Y Xi

Since fi is shrinkable for every i, the claim follows from Lemma 5.10. �

Lemma 9.13. The 2-categories TopSt, ParSt, PsSt, and HoSt are closed under
finite limits.

Proof. To show that these 2-categories are closed under finite limits, it is enough
that 2-fiber products exist, which is the case by Lemma 9.12. The case of an
arbitrary finite limit then follows from the general fact that a 2-category that has
2-fiber products and a final object is closed under arbitrary finite limits. �

10. Homotopy groups of homotopical stacks

By ([No1], §17) we know that if (X, x) is a pointed Serre3 topological stack
(Definition 10.1), the standard definition

πn(X, x) := [(Sn, •), (X, x)]

of homotopy groups in terms of homotopy classes of pointed maps gives rise to well-
defined homotopy groups for X that enjoy the expected properties. If, however, X

is not Serre this definition is problematic because the notion of homotopy for maps
from a space into X is not well-behaved (e.g, homotopy between maps is not a
transitive relation; see [ibid.]).

Nevertheless, Theorem 6.1 allows for a definition of higher homotopy groups that
works for an arbitrary topological stack X. In fact, all we need for this definition
to make sense is X to be a homotopical stack (Theorem 10.5).

Let us first recall the definition of a Serre topological stack.

Definition 10.1 ([No1], §17). We say that a topological stack X is Serre if it
is equivalent to the quotient stack of a topological groupoid [s, t : R ⇒ X] whose
source map (hence, also its target map) is a local Serre fibrations. That is, for every
y ∈ R, there exists an open neighborhood U ⊆ R of y and V ⊆ X of f(y) such that
the restriction of s|U : U → V is a Serre fibration.

3In [ibid.] we call these topological stacks.
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Lemma 10.2. Let f : X → Y be a morphism of homotopical stacks (resp., paratopo-
logical stacks). Then, there is a 2-commutative diagram

X
g

ϕ

Y

ψ

X
f

Y

where X and Y are topological spaces (resp. paracompact topological spaces) and ϕ
and ψ are universal weak equivalences (resp., parashrinkable morphisms).

Proof. We only prove the case of homotopical stacks. By Theorem 6.2, we can
choose universal weak equivalences ψ : Y → Y and h : X → X ×Y Y . (Notice that,
by Lemma 9.13, X×Y Y is homotopical.) Set ϕ = pr1 ◦h and g = pr1 ◦h. �

The following lemma were proved implicitly in the course of proof of Lemma 7.1.
We state them separately for future use.

Lemma 10.3. Let ϕ : X → X be a universal weak equivalence with X a topological
space. Let f1, f2 : Y → X be continuous maps of topological spaces such that ϕ ◦ f1
and ϕ ◦ f2 : Y → X are 2-isomorphic. Then, f1 and f2 are equal in the weak
homotopy category Topw.e. of topological spaces.

Proof. Let g = ϕ ◦ f1, and consider the 2-cartesian diagram

Z
h

ψ

X

ϕ

Y g X

where Z = Y ×XX. The maps f1 and f2 correspond to section s1, s2 : Y → Z of ψ.
Since ψ is a weak equivalence, s1 and s2 are equal in Topw.e.. Therefore, f1 = h◦s1
and f2 = h ◦ s2 are also equal in Topw.e.. �

Lemma 10.4. Let ϕ : X → X be a parashrinkable (resp., pseudoshrinkable) mor-
phism (see Definition 5.2) with X a paracompact topological space (resp. a CW
complex). Let f1, f2 : Y → X be continuous maps of topological spaces such that
ϕ ◦ f1 and ϕ ◦ f2 : Y → X are 2-isomorphic. Then, f1 and f2 are homotopic.

Proof. Copy the proof of Lemma 10.3. �

Theorem 10.5. Let (X, x) be a pointed homotopical stack. Then, one can define
homotopy groups πn(X, x) that are functorial with respect to pointed morphisms of
stacks. When X is a Serre topological stack, these homotopy groups are naturally
isomorphic to the ones defined in ([No1], §17). That is, πn(X, x) ∼= [(Sn, •), (X, x)].

Proof. Let (X, x) be a pointed homotopical stack. Choose a universal weak equiv-
alence ϕ : X → X. Pick a point x̃ ∈ X sitting above x. (This means, a map
x̃ : • → X, together with a 2-morphism α : x ⇒ p ◦ x̃, which we usually suppress
from the notation for convenience.) For n ≥ 0, we define πn(X, x) := πn(X, x̃).

Let us see why this definition is independent of the choice of x̃. Let x̃′ ∈ X be
another point above x. Let F = •×X X be the fiber of ϕ over x. The map F → •,
being the base extension of ϕ, is a weak homotopy equivalence. This means that
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F is a weakly contractible topological space. The lifts x̃ and x̃′ of x correspond to
points x̄ and x̄′ in F . Since F is weakly contractible, there is a path γ, unique up
to homotopy, joining x̄ and x̄. Taking the image of γ in X we find a natural path
joining x̃ and x̃′. This path defines a natural isomorphism πn(X, x̃) ∼−→ πn(X, x̃′).

We will leave it to the reader to verify that πn(X, x) is also independent of the
chart ϕ : X → X and that it is functorial. The proof makes use of the Lemmas 10.2
and 10.3.

In the case where X is Serre topological, it follows from Corollary 5.9 that the
homotopy groups defined above are naturally isomorphic to the ones defined in
([No1], §17). �

11. (Co)homology theories for homotopical stacks

Theorem 9.7 enables us to do algebraic topology in the category of homotopical
stacks. For instance, we can extend every (co)homology theory for topological
spaces which is invariant under weak equivalences to the category of homotopical
stacks. Similarly, Theorem 9.9 allows us to extend every (co)homology theory
which is invariant under homotopy equivalences to the category of hoparacompact
paratopological stacks; see Definition 9.8.4 In this section, we indicate briefly how
this is done.

Fact. Let h be a (co)homology theory on the category of topological spaces which
is invariant under weak equivalences. Then h can be extended to the category of
homotopical stacks.

Let us show, for example, how to define h∗(X,A) for a pair (X,A) of homotopical
stacks. (In §12 we will discuss in detail how to define homotopy types of small
diagrams of stacks.) From now on, we will assume that h is contravariant, and
denote it by h∗. Everything we say will be valid for a homology theory as well.

Pick a universal weak equivalence ϕ : X → X , and set A := ϕ−1A ⊆ X. Define
h∗(X,A) := h∗(X,A). This definition is independent, up to a natural isomorphism,
of the choice of ϕ. To see this, let ϕ′ : X ′ → X be another universal weak equiva-
lence, and form the fiber product ϕ′′ : X ′′ → X.

(X ′′, A′′)
p

q

(X,A)

ϕ

(X ′, A′)
ϕ′

(X,A)

Since p and q are weak equivalences of pairs, it follows that there are natural
isomorphisms h∗(X ′, A′) ∼= h∗(X ′′, A′′) ∼= h∗(X,A).

Covariance of h∗ with respect to morphisms of pairs of homotopical stacks follows
from Lemmas 10.2 and 10.3.

For more or less trivial reasons, the resulting cohomology theory on the category
of homotopical stacks will maintain all the reasonable (read functorial) proper-
ties/structures that it has with topological spaces (e.g., excision, long exact se-
quence for pairs, Mayor-Vietoris, products, etc.). Homotopic morphisms (in par-
ticular, 2-isomorphic morphisms) induce the same map on cohomology groups.

4Usually, (co)homology theories of Čech type, or certain sheaf cohomologies, are only invariant
under homotopy equivalences.
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The proof of all of these follows by same line of argument: choose a universal
weak equivalence ϕ : X → X, verify the desired property/structure on X, and then
use Lemmas 10.2 and 10.3 to show that the resulting property/structure on h∗(X)
is independent of the choice of ϕ and is functorial.

Remark 11.1. In the case where h is singular (co)homolgoy, what we constructed
above coincides with the one constructed by Behrend in [Be] (we will not give
the proof of this here). When X = [X/G] is the quotient stack of a topological
group action, the discussion of §4.3 shows the cohomology theories defined above
coincide with the corresponding G-equivariant theories constructed via the Borel
construction.

11.1. (Co)homology theories that are only homotopy invariant. There are
certain (co)homology theories that are only invariant under homotopy equivalences.
Among these are certain sheaf cohomology theories or cohomology theories defined
via a Čech procedure. Such (co)homology theories do not, a priori, extend to
topological stacks because they are not invariant under weak equivalences. But
there is still something that can be done, as we now explain.

Fact. Let h be a (co)homology theory on the category of topological spaces which
is invariant under homotopy equivalences. Then, h can be extended to the category
of hoparacompact paratopological stacks (Definition 9.8).

Let X be a hoparacompact paratopological stack. Then, the same argument we
used in the previous subsection applies here, more or less word by word, as long as
we choose X paracompact and ϕ parashrinkable. For instance, the reader can easily
verify that, under these assumptions, the morphisms p and q in the commutative
square of the previous subsection will be homotopy equivalences. This guarantees
that h∗(X,A) is well-defined. To prove functoriality one makes use of Lemmas 10.2
and 10.4.

Remark 11.2. The above discussion remains true if we replace the category of
hoparacompact paratopological stacks by the category of hoCW pseudotopological
stacks (see Remark 9.10).

11.2. A remark on supports. The notion of supports for a (co)homology theory
can sometimes be extended to the stack setting. The following result will not be
used elsewhere in the paper, but we include it to illustrate the idea.

Let us say that a homology theory h on topological spaces is (para)compactly
supported if for every topological space X the map

lim−→
K→X

h∗(K) → h∗(X)

is an isomorphism. Here, the limit is taken over all maps K → X with K
(para)compact. For example, singular homology is compactly supported.

Proposition 11.3. Let h be a (para)compactly supported homology theory. Then,
for every paratopological stack X, we have a natural isomorphism

lim−→
K→X

h∗(K) ∼−→ h∗(X),

where the limit is taken over all maps K → X with K a (para)compact topological
space.
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Proof. Choose a parashrinkable morphism ϕ : X → X and use the fact that every
morphism K → X from a paracompact topological space K has a lift, unique up to
homotopy, to X; see Lemma 5.5. �

12. Homotopy types of diagrams of topological stacks

In this section, we prove a diagram version of Theorem 9.7. We show that to
every small diagram of topological stacks (with a certain condition on the shape of
the diagram) one can associate a diagram of topological spaces which is well-defined
up to (objectwise) weak equivalence (Theorem 12.1) of diagrams. Theorem 12.1 is
actually formulated in a way that it implies versions of the above statement for
topological, homotopical, paratopological, and pseudotopological stacks.

Let D be a category (which we will think of as a diagram). In what follows, we
will assume that C and R are any of the following pairs:

1) C is TopSt and R is the class of locally shrinkable maps of topological
spaces;

2) C is HoSt and R is the class of universal weak equivalences of topological
spaces;

3) C is ParSt and R is the class of parashrinkable maps of topological spaces;
4) C is PsSt and R is the class of pseudoshrinkable maps of topological spaces.

In the first two cases, assume in addition that the category D has the property
that for every object d in D there are only finitely many arrows coming out of d.
Lemma 5.10 now guarantees that in all four cases at least one of the two conditions
(A) or (B) of §7.1 is satisfied.

By the notation of §7.1, R̃ stands for the class of representable morphisms of
stacks which are locally shrinkable, universal weak equivalence, parashrinkable, or
pseudoshrinkable (depending on which pair 1-4 we are considering).

Recall that CD stands for the category of lax functors D → C. A morphism τ in
CD is a natural transformation of functors.

Theorem 12.1. Let D be a category, and let C and R be as above. Let T (resp., T̃ )
be the class of all transformations τ in CD which have the property that for every
d ∈ D the corresponding morphism τd in C is in R (resp., R̃). Then, the inclusion
functor TopD → CD induces a fully faithful functor ιD : T−1TopD → T−1[CD], and
ιD has a right adjoint ΘD. Furthermore, ΘD can be defined so that the counits of
adjunction are the identity transformations and the units of adjunction are honest
transformations in T̃ .

Proof. Let B = Top and use Lemma 7.6. �

Let P : D → C be a diagram of stacks in C. The diagram ΘD(P ) : D → Top
should be regraded as the weak homotopy type of P . The transformation
ϕ : ΘD(P ) ⇒ P allows one to relate the homotopical information in the diagram P
to the homotopical information in its homotopy type ΘD(P ). Notice that ϕ is an
objectwise universal weak equivalence.

The following propositions say that the functor Θ: R−1PsSt → R−1Top of
Theorem 9.7, can be lifted to a functor to Top if we restrict it to a small sub
2-category S.

Proposition 12.2. Let S be a small sub 2-category of the 2-category PsSt of
pseudotopological stacks, and denote the inclusion functor by iS. Identify Top with a
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subcategory of PsSt. Then, there is a functor ΘS : S → Top and a transformation
ϕS : ΘS ⇒ iS such that for every X in S, ϕS(X) : ΘS(X) → X is pseudoshrinkable
(in particular, a universal weak equivalence). In the case where S sits inside ParSt,
ΘS and ϕS can be chosen so that ϕS(X) are parashrinkable.

Proof. Follows from Corollary 7.7. �

Proposition 12.3. Let S be a small sub 2-category of the 2-category HoSt of
homotopical stacks. Identify Top with a subcategory of HoSt. Assume that S has
the property that for every stack X in S there are only finitely many Y in S to
which there is a morphism from X. Then, there is a functor ΘS : S → Top and a
transformation ϕS : ΘS ⇒ idS such that for every X in S, ϕS(X) : ΘS(X) → X

is an atlas for X which is a universal weak equivalence. In the case where S sits
inside TopSt, ΘS and ϕS can be chosen so that ϕS(X) are locally shrinkable.

Proof. Follows from Corollary 7.7. �

12.1. Homotopy types of special diagrams. The weak homotopy type of a
diagram {Xd} of stacks can be constructed more easily if we assume that: 1) our
diagram category D has a final object ?, 2) the morphisms in the diagram are rep-
resentable. For this, choose a locally shrinkable (parashrinkable, pseudoshrinkable,
or a universal equivalence, depending on which class of stacks we are working with)
map X? → X?, and define Xd, d ∈ D, simply by base extending X? along the the
morphism Xd → X?, as in the diagram

Xd X?

Xd X∗

This construction of the weak homotopy type of a diagram has certain advantages
over the general construction of the previous subsection. Suppose that every mor-
phism f in D is labeled by a property Pf of morphisms of topological spaces which
is invariant under base change. (Note that such property can then be extended to
representable morphisms of stacks.) Then, it is obvious that if the morphisms f in
a diagram {Xd} have the properties Pf , then so will the corresponding morphisms
in the diagram {Xd}.

Example 12.4. Let D = {1 → 2}, and assume the label assigned to the unique mor-
phism in D is ‘closed immersion’. Then, it follows that every closed pair (X,A) of
topological stacks has the weak homotopy type of a closed pair (X,A) of topological
spaces. Furthermore, there is a morphism of pairs ϕ : (X,A) → (X,A) which is a
universal weak equivalence on both terms. This is essentially what we discussed in
§11.

In the case where A is a point, (X,A) will be a pair with A weakly contractible.
Therefore, we can define πn(X, x) := πn(X,A). This is exactly what we discussed
in §10.

13. Appendix I: Calculus of right fractions

Let C be a category. LetR be a class of morphisms in C which contains all identity
morphisms and is closed under composition and base extension. The localized
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category R−1C can be calculated using a calculus of right fractions, as we see
shortly. Our setting is slightly different from Gabriel-Zisman’s ([GaZi], §2.2) in
that their condition (d) may not be satisfied in our case. (We are, however, making
a stronger assumption that R is closed under base extension.)

Let R−1C be a category with the same set of objects as C. The morphisms in
R−1C are defined as follows. A morphism from X to Y is presented by a span (r, g)

T
r g

X Y

where r is in R and g is a morphism in C. For fixed X and Y , the spans between
them form a category Span(X,Y ). The morphisms in Span(X,Y ) are morphisms
T ′ → T in C which respect the two legs of the spans. By definition, two spans in
Span(X,Y ) give rise to the same morphism in HomR−1C(X,Y ) if and only if they
are in the same connected component of Span(X,Y ). That is, if they are connected
by a zig-zag of morphisms in Span(X,Y ). In other words,

HomR−1C(X,Y ) := π0 Span(X,Y ).

The composition of spans is defined in the obvious way. It is easy to see that
R−1C satisfies the universal property of localization.

Remark 13.1. We can enhance R−1C to a bicategory by defining the the hom-
category between X and Y to be Span(X,Y ). The localized category R−1C is
recovered from this bicategory by declaring all 2-cells to be equalities. That is, by
replacing the hom-categories Span(X,Y ) with the set π0 Span(X,Y ).

Let f, f ′ : X → Y be morphisms in C. We say that f, f ′ are R-homotopic if there
is a commutative diagram

X
t

f

t′
f ′

Vr
g

Y,

where r is in R. Let ∼ be the equivalence relation on HomC(X,Y ) generated by
R-homotopy. We have a natural map

η : HomC(X,Y )/∼ → HomR−1C(X,Y )

f 7→ (id, f).

Lemma 13.2. Assume that X ∈ C has the property that every morphism r : V → X
in R admits a section. Then, for every Y in C, the natural map

η : HomC(X,Y )/∼ → HomR−1C(X,Y )

is a bijection.

Proof. Given a span (r, g) from X to Y , choose a section s for r. Then, g ◦ s, or
rather the span (id, g ◦ s), represents the same morphism in R−1C as (r, g). This
shows that η is surjective. To prove injectivity, consider f, f ′ ∈ HomC(X,Y ). It
is easy to see that there is a morphism in Span(X,Y ) between (id, f) and (id, f ′)
if and only if f and f ′ are R-homotopic. Therefore, the R-homotopy classes of
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morphisms in HomC(X,Y ) correspond precisely to the connected components of
Span(X,Y ). This proves injectivity. �

14. Appendix II: Relative Kan extensions

We introduce a right Kan extension construction in the setting of fibered 2-
categories π : U → B. In the case where the base 2-category B is just a point and
U is a category, this reduces to the usual right Kan extension as defined in ([Mac],
§X).

Let B and U be 2-categories, and let π : U → B be a fibered 2-category (not
necessarily in 2-groupoids). It is sometimes more convenient to think of this fibered
2-category as the contravariant 2-category-valued lax functor B → 2Cat which
assigns to an object b in B the fiber U(b) of U over b. (In our application (§7.1), π
is fibered in 1-categories, so the corresponding lax functor takes values in Cat.) For
every morphism f : a → b in B, we have the pull-back functor f� : U(b) → U(a).
(To define f� we need to make some choices, but the resulting functor f� will
be unique up to higher coherences.) The laxness of our 2-category-valued functor
means that, for every pair of composable morphisms f and g in B, we have a
natural transformation g� ◦ f� ⇒ (f ◦ g)�, and that these transformations satisfy
the usual coherence conditions. The fibered 2-category U can be recovered from
this lax functor by applying the Grothendieck construction.

Let π : U → B be a fibered 2-category, and Γ a 2-category. Let b be an object in
B. Consider a diagram P : Γ → U(b), that is, a lax functor from Γ to U(b). Assume
that P has a limit limP in U(b). Let limP : Γ → U(b) denote the constant functor
with value limP , and let ΥP : limP ⇒ P be the universal transformation.

Definition 14.1. The notation being as above, we say that the limit limP of P
in U(b) is global, if for every morphism f : a→ b in B, and every object k ∈ U(a),
the functor

HomU,f (k, limP ) → Transf (k, P )

f̃ 7→ ΥP ◦ f̃
is an equivalence of categories. Here, HomU,f means those morphisms in U which
map to f under π. Similarly, Transf stands for those transformations Φ (of functors
Γ → U) such that, for every d ∈ D, the image of the morphism Φ(d) under π is
equal to f . (Note that both sides are 1-categories. In the case where π : U → B is
fibered in 1-categories, they are actually equivalent to sets.)

Remark 14.2. The limit limP being global is equivalent to requiring the pullback
f�(limP ) ∈ U(a) to be the limit of the pullback diagram f� ◦ P : Γ → U(a), for
every f : a→ b.

Definition 14.3. Let π : U → B be a fibered 2-category, and Γ a 2-category. Let
b be an object in B. We say that π : U → B is Γ-complete at b, if every diagram
P : Γ → U(b) has a limit and the limit is global (Definition 14.1). More generally,
let D and E be 2-categories,5 and F : E → D and p : D → B functors. We say that
π : U → B is F -complete at p if it is (d↓E)-complete at p(d) for every d ∈ D.

5We make an exception to our notational convention (§2) that Sans Serif symbols stand for
1-categories, because in our application (§7.1) D and E will be 1-categories.
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The comma 2-category (d ↓ E) appearing in the above definition is defined as
follows. The objects are pairs (e, α), where e ∈ ObE and α : d→ F (e) is a morphism
in D. A morphism (e, α) → (e′, α′) in (d↓E) is a morphism γ : e→ e′ in E, together
with a 2-morphism τ : F (γ) ◦ α ⇒ α′. A 2-morphism from (γ, τ) to (γ′, τ ′) is a
2-morphism ε : γ ⇒ γ′ in E which makes the 2-cell in D consisting of τ , τ ′, and F (ε)
commute. (Note that in the case where D and E are 1-categories, (d ↓E) is also a
1-category and it coincides with the one defined in [Mac], II.6. If, furthermore, E
is discrete, then (d↓E) is also discrete.)

Definition 14.4. Let π : U → B be a fibered 2-category, and I an index set. We
say that π : U → B is I-complete (or it has global I-products) if it is I-complete
at every b ∈ B. Here, we think of I as the discrete 2-category with objects I and
no nontrivial morphisms or 2-morphisms.

The following lemma shows that completeness with respect to a functor is in-
variant under base change of fibered categories.

Lemma 14.5. Let π : U → B be a fibered 2-category, and F : E → D a functor of
2-categories. Let B′ → B be a functor, and let π′ : U′ → B′ be the pullback fibered
2-category. Let p′ : D → B′ be a functor and p : D → B the composite functor.
Suppose that π : U → B is F -complete at p. Then, π′ : U′ → B′ is F -complete at p′

Proof. Straightforward. �

Let D and E be 2-categories, and fix a “base” functor p : D → B. Let F : E → D
be a functor and denote p ◦ F by q.

E

F
q

U

π

D p B

Let UD
p be the 2-category of strict lifts of p to U. That is, an object in UD

p is a
functor P : D → U such that π ◦ P = p. (The latter is an equality, not a natural
transformation of functors.) Define UE

q similarly. Note that in the case where
π : U → B is fibered in 1-categories UD

p and UE
q are 1-categories.

Proposition 14.6 (Relative right Kan extension). Notation being as in the previ-
ous paragraph, suppose that π : U → B is F -complete at p (Definition 14.3). Then,
the functor F ∗ : UD

p → UE
q obtained by precomposing with F admits a right adjoint

RF : UE
q → UD

p .

Proof. Observe that in the case where B is the trivial 2-category with one object
and U is a 1-category, the proposition reduces to the existence of the usual right
Kan extension. In fact, the construction of RF is simply the imitation of the one
([Mac], §X). We briefly outline how it is done.

By base extending U along p, we may assume that D = B, p = id, q = F .
Fix a functor P : E → U such that P ◦ π = F . The desired right Kan extension
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RF (P ) : D → U of P will then be a section to the projection π : U → D.

U

π

E

P

F
D

RF (P )

For an object d ∈ D, define a functor Ψd : (d↓E) → U(d) by the rule Ψd(e, α) :=
α�(P (e)). Observe two things: 1) by assumption, P (e) sits above F (e), so it
makes sense to pull it back along α; 2) for every (e, α) there is a natural (cartesian)
morphism η(e,α) : α�(P (e)) → P (e) in U over α. (If you want, this is the definition
of the pullback α�(P (e)).)

Define the functor RF (P ) : D → U by the rule d 7→ lim Ψd. Note that, by
definition, lim Ψd is global (Definition 14.1).

Given a morphism f : a → b in D, the morphism RF (P )(f) in U is defined as
follows. Let lim Ψa : (b ↓ E) → U(a) be the constant functor with value lim Ψa.
There is a natural transformation of functors lim Ψa ⇒ Ψb over f induced by the
morphisms η(e,α) discussed two paragraphs above. Since lim Ψb is a global limit,
this transformation induces a natural morphism lim Ψa → lim Ψb over f . We define
RF (P )(f) to be this morphism. It is readily verified that RF (P ) is a functor (and,
obviously, RF (P ) ◦ π = idB).

We leave it to the reader to verify that RF (P ) is the desired right Kan extension.
�

The right Kan extension RF (P ) can be illustrated by the following diagram.

E
P

F

U

π

ε

D p

RF (P )

B

The lower triangle and the big square in this diagram are strictly commutative.
The natural transformation ε in the upper triangle is the counit of adjunction.

Corollary 14.7. Let π : U → B be a fibered 2-category which has global products
(Definition 14.4). Let F : E → D be a functor with D a 1-category and E a discrete
category (i.e., E has no nontrivial morphisms). Then, for every functor p : D → B,
the functor F ∗ : UD

p → UE
q obtained by precomposing by F admits a right adjoint

RF : UE
q → UD

p .

Furthermore, if F is so that for every d ∈ D there are only finitely many arrows
emanating from d whose target is in the image of F , then the right adjoint RF
exists under the weaker assumption that π : U → B has global finite products.

Proof. It is obvious that π : U → B is F -complete for every p : D → B. The result
follows from Proposition 14.6. �
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