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Abstract

We establish the general machinery of string topology for differentiable
stacks. This machinery allows us to treat on an equal footing free loops
in stacks and hidden loops. In particular, we give a good notion of a
free loop stack, and of a mapping stack Map(Y,X), where Y is a com-
pact space and X a topological stack, which is functorial both in X and Y
and behaves well enough with respect to pushouts. We also construct a
bivariant (in the sense of Fulton and MacPherson) theory for topological
stacks: it gives us a flexible theory of Gysin maps which are automatically
compatible with pullback, pushforward and products. We introduce ori-
ented stacks, generalizing oriented manifolds, which are stacks on which
we can do string topology. We prove that the homology of the free loop
stack of an oriented stack is a BV-algebra and a Frobenius algebra, and
the homology of hidden loops is a Frobenius algebra. Using our gen-
eral machinery, we construct an intersection pairing for (non necessarily
compact) almost complex orbifolds which is in the same relation to the
intersection pairing for manifolds as Chen-Ruan orbifold cup-product is
to ordinary cup-product of manifolds. We show that the string product of
almost complex is isomorphic to the orbifold intersection pairing twisted
by a canonical class.

Contents

Introduction 3
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Topological stacks 8
1.1 Stacks over Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Morphisms of stacks . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Topological stacks . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Hurewicz topological stacks . . . . . . . . . . . . . . . . . . . . . 11
1.5 Pushouts in the category of stacks . . . . . . . . . . . . . . . . . 12
1.6 Geometric stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



2 Homotopy type of a topological stack 13
2.1 (Co)homology theories for topological stacks . . . . . . . . . . . . 13
2.2 Paracompactness of the classifying space . . . . . . . . . . . . . . 14
2.3 Singular homology and cohomology . . . . . . . . . . . . . . . . . 14

3 Vector bundles on stacks 15
3.1 Operations on vector bundles . . . . . . . . . . . . . . . . . . . . 16

4 Thom isomorphism 17

5 Loop stacks 20
5.1 Mapping stacks and the free loop stack . . . . . . . . . . . . . . . 20
5.2 Groupoid presentation . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Bounded proper morphisms of topological stacks 24
6.1 Some technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Bivariant theory for topological stacks 27

8 Gysin maps 32
8.1 Normally nonsingular morphisms of stacks and oriented stacks . 32
8.2 Construction of the Gysin maps . . . . . . . . . . . . . . . . . . . 37

9 The loop product 40
9.1 Construction of the loop product . . . . . . . . . . . . . . . . . . 40
9.2 Proof of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10 String product for family of groups over a stack 46
10.1 String product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.2 Family of commutative groups and crossed modules . . . . . . . 49

11 Frobenius algebra structures 52
11.1 Quick review on Frobenius algebras . . . . . . . . . . . . . . . . . 52
11.2 Frobenius algebra structure for loop stacks . . . . . . . . . . . . . 52
11.3 Frobenius algebra structure for inertia stacks . . . . . . . . . . . 57
11.4 The canonical morphism ΛX→ LX . . . . . . . . . . . . . . . . . 61

12 The BV-algebra on the homology of free loop stack 63

13 Orbifold intersection pairing 65
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Introduction

String topology is a term coined by Chas-Sullivan [14] to describe the rich al-
gebraic structure on the homology of the free loop manifold LM of an oriented
manifold M . The algebraic structure in question is induced by geometric op-
erations on loops such as gluing or pinching of loops. In particular, H•(LM)
inherits a canonical product and coproduct yielding a structure of Frobenius
algebra [14, 18]. Furthermore, the canonical action of S1 on LM together with
the multiplicative structure make H•(LM) a BV-algebra [14]. These algebraic
structures, especially the loop product, are known to be related to many subjects
in mathematics and in particular mathematical physics [46, 13, 17, 2, 21].

Many interesting geometric objects in (algebraic or differential) geometry or
mathematical physics are not manifolds. There are, for instance, orbifolds, clas-
sifying spaces of compact Lie groups, or, more generally, global quotients of a
manifold by a Lie group. All these examples belong to the realm of (geometric)
stacks. A natural generalization of smooth manifolds, including the previous
examples, is given by differentiable stacks [7] (on which one can still do differ-
entiable geometry). Roughly speaking, differential stacks are Lie groupoids up
to Morita equivalence.

One important feature of differentiable stacks is that they are non-singular,
when viewed as stacks (even though their associated coarse spaces are typically
singular). For this reason, differentiable stacks have an intersection product on
their homology, and a loop product on the homology of their free loop stacks.

The aim of this paper is to establish the general machinery of string topology
for differentiable stacks. This machinery allows us to treat on an equal footing
free loops in stacks and hidden loops. The latter are loops inside the stack,
which vanish on the associated coarse space. The stack of hidden loops in the
stack X is the inertia stack of X, notation ΛX. The inertia stack ΛX → X is
an example of a family of commutative (sic!) groups over the stack X, and the
theory of hidden loops generalizes to arbitrary commutative families of groups
over stacks.

In the realm of stacks several new difficulties arise whose solutions should
be of independent interest.

First, we need a good notion of free loop stack LX of a stack X, and more
generally of mapping stack Map(Y,X) (the stack of stack morphisms Y → X).
For the general theory of mapping stacks, we do not need a differentiable struc-
ture on X; we work with topological stacks. This is the content of Section 5.1.
The issue here is to obtain a mapping stack with a topological structure which
is functorial both in X and Y and behaves well enough with respect to pushouts
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in order to get geometric operations on loops. For instance, a key point in string
topology is the identification Map(S1 ∨S1,X) ∼= LX×X LX. Since pushouts are
a delicate matter in the realm of stacks, extra care has to be taken in finding
the correct class of topological stacks to work with (Section ?? and [40]). For
this reason, we restrict our attention to the class of Hurewicz topological stacks.
These are topological stacks which admit an atlas with a certain fibrancy prop-
erty. Without restricting to this special class of topological stacks, S1∨S1 would
not be the pushout of two copies of S1, in the category of stacks.

A crucial step in usual string topology is the existence of a canonical Gysin
homomorphismH•(LM×LM)→ H•−d(LM×MLM) whenM is a d-dimensional
manifold. In fact, the loop product is the composition

Hp(LM)⊗Hq(LM)→
→ Hp+q(LM × LM)→ Hp+q−d(LM ×M LM)→ Hp+q−d(LM) , (0.1)

where the last map is obtained by gluing two loops at their base point.
Roughly speaking the Gysin map can be obtained as follows. The free loop

manifold is equipped with a structure of Banach manifold such that the eval-
uation map ev : LM → M which maps a loop f to f(0) is a surjective sub-
mersion. The pullback along ev× ev of a tubular neighborhood of the diagonal
M → M ×M in M ×M yields a normal bundle of codimension d for the em-
bedding LM ×M LM → LM . The Gysin map can then be constructed using a
standard argument on Thom isomorphism and Thom collapse [19].

This approach does not have a straightforward generalization to stacks. For
instance, the free loop stack of a differentiable stack is not a Banach stack in gen-
eral, and neither is the inertia stack. In order to obtain a flexible theory of Gysin
maps, we construct a bivariant theory in the sense of Fulton-MacPherson [25] for
topological stacks, whose underlying homology theory is singular homology. A
bivariant theory is an efficient tool encompassing into a unified framework both
homology and cohomology as well as many (co)homological operations, in partic-
ular Gysin homomorphisms. The Gysin maps of a bivariant theory are automat-
ically compatible with pullback, pushforward, cup and cap-products (see [25]).
(Our bivariant theory is somewhat weaker than that of Fulton-MacPherson, in
that products are not always defined.)

In Section 8.1 we introduce oriented stacks. These are the stacks over which
we are able to do string topology. Examples of oriented stacks include: oriented
manifolds, oriented orbifolds, and quotients of oriented manifolds by compact
Lie groups (if the action is orientation preserving and of finite orbit type). A
topological stack X is orientable if the diagonal map X→ X× X factors as

X
0−→ N −→ E −→ X× X , (0.2)

where N and E are orientable vector bundles over X and X×X respectively, and
N → E is an isomorphism onto an open substack (there is also the technical
assumption that E is metrizable, and X → E factors through the unit disk
bundle). The embedding N→ E plays the role of a tubular neighborhood. The
dimension of X is rk N− rk E.
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The factorization (0.2) gives rise to a bivariant class θ ∈ H(X→ X×X), the
orientation of X.

Sections 5-8 are devoted to the string topology operations, focusing on the
Frobenius and BV-algebra structures. The bivariant formalism has the follow-
ing consequence: if X is a an oriented stack of dimension d, then any cartesian
square

Y

��

// Z

��

X
∆ // X× X

defines a canonical Gysin map ∆! : H•(Z)→ H•−d(Y). For example, the carte-
sian square

LX×X LX

��

// LX× LX

��

X
∆ // X× X

Gives rise to a Gysin map ∆! : H•(LX× LX) → H•−d(LX×X LX), and we can
construct a loop product

? : H•(LX)⊗H•(LX)→ H•−d(LX),

as in 0.1, or [14, 19, 18].
We also obtain a coproduct

δ : H•(LX) −→
⊕

i+j=•−d

Hi(LX)⊗Hj(LX) .

Furthermore, LX admits a natural S1-action yielding the operator D :
H•(LX)→ H•+1(LX) which is the composition:

H•(LX) ×ω−→ H•+1(LX× S1) −→ H•+1(LX),

where ω ∈ H1(S1) is the fundamental class. Thus we prove that (H•(LX), ?, δ)
is a Frobenius algebra and that the shifted homology (H•+d(LX), ?,D) is a
BV-algebra.

Since the inertia stack can be considered as the stack of hidden loops, the
general machinery of Gysin maps yields, for any oriented stack X, a product
and a coproduct on the homology H•(ΛX) of the inertia stack ΛX, making it a
Frobenius algebra, too. Moreover in Section 11.4, we construct a natural map
Φ : ΛX→ LX inducing a morphism of Frobenius algebras in homology.

In Section 13, we consider almost complex orbifolds (not necessarily com-
pact). Using Gysin maps and the obstruction bundle of Chen-Ruan [16], we
construct the orbifold intersection pairing on the homology of the inertia stack.
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It is in the same relation to the intersection pairing on the homology of a mani-
fold as the Chen-Ruan orbifold cup-product [16] is to the ordinary cup product
on the cohomology of a manifold.

The orbifold intersection pairing defines a structure of associative, graded
commutative algebra on Horb

• (X) for any almost complex orbifold X. As a vector
space the orbifold homology Horb

• (X) coincides with the homology of the inertia
stack ΛX, but the grading is shifted according to the age as in [16, 23].

In the compact case, the orbifold intersection pairing is identified with the
Chen-Ruan product, via orbifold Poincaré duality.

We also prove that the loop product, string product and intersection pair-
ing (for almost complex orbifolds) can be twisted by a cohomology class in
H•(LX×X LX) or H•(ΛX×X ΛX), satisfying the 2-cocycle condition (see Propo-
sitions 9.11, 10.3, and 13.6). The notion of twisting provides a connection
between the orbifold intersection pairing and the string product. In fact, we
associate to an almost complex orbifold X a canonical vector bundle OX ⊕NX

over ΛX×X ΛX and prove that the orbifold intersection pairing, twisted by the
Euler class of OX ⊕NX, is the string product of X.

Parallel to our work, the string product for global quotient orbifolds was
studied in [35, 27]. Furthermore, a nice interpretation of the string product in
terms of the Chen-Ruan product of the cotangent bundle was given by González
et al. [27]. A loop product for global quotients of a manifold by a finite group
was studied in [36, 35].

Conventions

Topological spaces

All topological spaces are compactly generated. The category of topological
spaces endowed with the Grothendieck topology of open coverings is denoted
Top. This is the site of topological spaces.

Manifolds

All manifolds are second countable and Hausdorff. In particular they are regular
Lindelöf and paracompact.

Groupoids

We will commit the usual abuse of notation and abbreviate a groupoid to
Γ1 ⇒ Γ0. A topological groupoid, is a groupoid Γ1 ⇒ Γ0, where Γ1 and Γ0

are topological spaces, but no further assumptions is made on the source and
target maps, except continuity. A topological groupoid is a Lie groupoid if Γ1,Γ0

are manifolds, all the structures maps are smooth and, in addition, the source
and target maps are subjective submersions.
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Stacks

For stacks, we use the words equivalent and isomorphic interchangeably. We
will often omit 2-isomorphisms from the notation. For example, we may call
morphisms equal if they are 2-isomorphic. The stack associated to a groupoid
Γ1 ⇒ Γ0 we denote by [Γ0/Γ1], because we think of it as the quotient. Also if G
is a Lie group acting on a space Y , we simply denote [Y/G] the stack associated
to the transformation groupoid Y ×G⇒ Y .

Our terminology is different from that if [40]. The quotient stack X of a
topological groupoid [Γ0/Γ1] is called a topological stack in this paper, where
as in [ibid.] these are called pretopological stacks. If the source and target
map of [Γ0/Γ1] are local Hurewicz fibrations, then we say that X is a Hurewicz
topological stack; see Section S:topological.

(Co)homology

The coefficients of our (co)homology theories will be taken in a commutative
unital ring k. All tensors products are over k unless otherwise specified.

We will write both H(X), H•(X) for the total homology groups
⊕
Hn(X).

We use the first notation when we deal with ungraded elements and ungraded
maps, while we use the second when where dealings with homogeneous homol-
ogy classes and graded maps. Similarly, in Section 7, we use respectively the
notations H(X

f→ Y) and H•(X
f→ Y) for the total bivariant cohomology groups

when we want to deal with ungraded maps or with graded ones.
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1 Topological stacks

We review some basic facts about topological stacks. More details can be found
in [40].

1.1 Stacks over Top

Throughout these notes, by a stack we mean a stack over the site Top of com-
pactly generated topological spaces with the standard Grothendieck topology.
This means, a stack is a category X fibered in groupoids over Top satisfying the
decent condition. Alternatively, we can think of X as a presheaf of groupoids
over Top which satisfies decent.

We list some basic facts about stacks.

1. Stacks over Top form a 2-category in which 2-morphisms are invertible.
Therefore, given two stacks X and Y, we have the groupoid Hom(Y,X)
of morphisms between them. In the case where the source stack Y = T
is a topological space, we usually use the alternative notation X(T ) for
the above hom-groupoid. This is sometimes referred to as the groupoid of
T -valued points of X.

Although in practice one may really be interested only in the category
of stacks which obtained by identifying 2-isomorphic 1-morphisms, the 2-
category structure can not be ignored. For example, when we talk about
fiber products of stacks, we exclusively mean the 2-fiber product in the
2-category of stacks.

2. The 2-category of stacks has fiber products and inner homs, so it is carte-
sian closed. The 2-fiber product X×Z Y is characterized by the property
that, for every topological space T , its groupoid of T -valued points is given
equivalent to

X(T )×Z(T ) Y(T ).

Given stacks X and Y be stacks over Top, the inner hom between them,
called the mapping stack Hom(Y,X), is defined by the rule

T ∈ Top 7→ Hom(T ×Y,X).

Note that we have a natural equivalence of groupoids

Hom(Y,X)(∗) ∼= Hom(Y,X),

where ∗ is a point. The mapping stack has the exponential property. That
is, given stacks X, Y, and Z, we have a natural equivalence of stacks

Hom(Z×Y,X) ∼= Hom(Z,Hom(Y,X)).
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3. The category of topological spaces embeds fully faithfully in the 2-category
of stacks. This means, given two topological spaces X and Y , viewed as
stacks via the functor they represent, the hom-groupoid Hom(X,Y ) is
equivalent to a set, and this set is in a natural bijection with the set of
continuous functions from X to Y .

This way, we can think of a topological space as a stack.

This embedding preserves the closed cartesian structure on Top. This
means that fiber products of spaces get sent to 2-fiber products of the
corresponding stacks, and the mapping spaces (with the compact-open
topology) get sent to mapping stacks.

4. The embedding of the category of topological spaces in the 2-category of
stacks admits a left adjoint. That is, to every stack X one can associate
a topological space, together with a natural map π : X → Xmod which is
universal among maps from X to topological spaces. (That is, every map
from X to a topological space T factors uniquely through π.) ; See [40],
§4.3.

The space Xmod is called the coarse moduli space of X and it should be
thought of as the “underlying space” of X.

In particular, the underlying set of Xmod is the set of isomorphism classes
of the groupoid X(∗), where ∗ stands for a point. In other words, the
points in Xmod are the 2-isomorphism classes of points of X, where by a
point of X we mean a morphism x : ∗ → X.

The underlying set of the coarse moduli space of the mapping stack
Hom(Y,X) is the set of 2-isomorphism classes of morphisms from Y to
X.

5. To a point x : ∗ → X of a stack X there is associated a group Ix, called the
inertia group of X at x. By definition, Ix is the group of 2-isomorphisms
from the point x to itself. An element in Ix is sometimes referred to as a
ghost or hidden loop; see ([40], §10).

The groups Ix assemble into a stack ΛX → X over X called the inertia
stack. The inertia stack is defined by the following 2-fiber square

ΛX

��

// X

∆

��
X

∆
// X× X

1.2 Morphisms of stacks

A morphism f : X → Y of stacks is called representable if for every map
T → Y from a topological space T , the fiber product T ×Y X is a topological
space. This is, roughly speaking, saying that the fibers of f are topological
spaces.
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Any property P of morphisms of topological spaces which is invariant under
base change can be defined for an arbitrary representable morphism of stacks.
More precisely, we say that a representable morphism f : X→ Y is P, if for every
map T → Y from a topological space T , the base extension fT : T ×Y X→ T is
P as a map of topological spaces; see ([40], §4.1).

This way we can talk about embeddings (closed, open, locally closed, or
arbitrary) of stacks, proper morphisms, finite morphisms, and so on.

We say that f : X → Y is an epimorphism, if it is an epimorphism in the
sheaf theoretic sense. In the case where f is representable, this is equivalent to
saying that every base extension fT of f over a topological space T admits local
sections.

1.3 Topological stacks

A topological stack ([40], Definition 7.1) is a stack X over Top which admits
a representable epimorphism p : X → X from a topological space X. Equiva-
lently, X is equivalent to the quotient stack [X0/X1] of a topological groupoid
X1 ⇒ X0. This quotient stack, by definition, is the stack associated to the
presheaf of groupoids

T 7→ X1(T )⇒ X0(T ).

This stack is the equivalent to the stack of torsors for the groupoid X1 ⇒ X0;
see ([40], §12).

An important example to keep in mind is the case of a topological group G
acting on a topological space X. The quotient stack of the topological groupoid
X × G ⇒ X associated to this action is denoted by [X/G]. For a topological
space T , the groupoid [X/G](T ) of T -points of [X/G] is the groupoid of pairs
(P,ϕ), where P is a principal G-bundle over T , and ϕ : P → X is a G-equivariant
map. In the case where X is a point, the corresponding quotient stack [∗/G] is
called the classifying stack of G. Its group of T -points is precisely the groupoid
of principal G-bundles over T .

We list some basic facts about topological stacks.

1. Topological stacks form a full sub 2-category of the 2-category of stacks
over Top.

2. The 2-category of topological stacks is closed under fiber products. It,
however, does not seem to have inner hom objects. That is, it does not
seem to be the case in general that the mapping stack Hom(Y,X) of
two topological stacks X and Y is a topological stack. This is the case,
however, if Y is the quotient stack of a groupoid Y1 ⇒ Y0 such that Y0

and Y1 are compact topological spaces; see Proposition 5.1.

3. The stack associated to a topological space X is topological. It is, in fact,
equivalent to the stack associated to the trivial groupoid X ⇒ X. Thus,
the category of topological spaces is a full subcategory of the 2-category
of topological stacks.
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4. Let X = [X0/X1] be the quotient stack of a topological groupoidX1 ⇒ X0.
Then, the coarse moduli space Xmod of X is naturally homeomorphic to
the course quotient space of the groupoid X1 ⇒ X0. In particular, the
coarse moduli space of the quotient stack [X/G] is the orbit space X/G
of the action of G on X. The coarse moduli space of the classifying stack
[∗/G] of G is just a single point.

5. For a point x : ∗ → X of a topological stack X, the inertia group Ix is
naturally a topological group. The inertia stack ΛX is a topological stack,
and the natural map ΛX→ X is representable.

6. Every morphism T → X from a topological space T to a topological stack
X is representable.

1.4 Hurewicz topological stacks

As we will see in §1.5, in order to have nice gluing properties for maps into a
stack X, we need to assume X is a Hurewicz stack. This will be needed later on
when we work with loop stacks. We recall the definition of a Hurewicz stack.

A Hurewicz fibration is a map having the homotopy lifting property for all
topological spaces. A map f : X → Y of topological spaces is a local Hurewicz
fibration if for every x ∈ X there are opens x ∈ U and f(x) ∈ V such that
f(U) ⊆ V and f |U → V is a Hurewicz fibration. The most important example
for us is the case of a topological submersion: a map f : X → Y , such that
locally U is homeomorphic to V × Rn, for some n.

Dually, we have the notion of local cofibration. It is known ([44]), that if
A → Z is a closed embedding of topological spaces, it is a local cofibration
if and only if there exists and open neighborhood A ⊂ U ⊂ Z such that A
is a strong deformation retract of U . If A → Z is a local cofibration, so is
A× T → Z × T for every topological space T . Moreover, the following result is
essential for our purposes ([45]):

Given a commutative diagram, with A→ Z a local cofibration and X → Y
a local fibration

A

��

// X

��
Z // Y

then for every point a ∈ A there exists an open neighborhood Z ′ of a in Z, such
that there exists a lifting (the dotted arrow) giving two commutative triangles

A′

��

// X

��
Z ′ //

>>

Y

where A′ = A ∩ Z ′.
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Definition 1.1 A topological stack X is called Hurewicz if it is equivalent to
the quotient stack [X0/X1] of a topological groupoid X1 ⇒ X0 whose source
and target maps are local Hurewicz fibrations.

Example 1.2 A topological space is a Hurewicz topological stack. The topo-
logical stack underlying any differentiable stack is a Hurewicz topological stack.
In particular, any global quotient [M/G] of a manifold by a Lie group is a
Hurewicz topological stack.

1.5 Pushouts in the category of stacks

The following generalizes ([40], Theorem 16.2).

Proposition 1.3 Let A→ Y be a closed embedding of Hausdorff spaces, which
is a local cofibration. Let A → Z be a finite proper map of Hausdorff spaces.
Suppose we are given a pushout diagram in the category of topological spaces

A
� � //

��

Y

��
Z // Z ∨A Y

Then this diagram remains a pushout diagram in the 2-category of Hurewicz
topological stacks. In other words, for every Hurewicz topological stack X, the
morphism

X(Z ∨A Y ) −→ X(Z)×X(A) X(Y )

is an equivalence of groupoids.

Proof. Let us abbreviate the pushout by U = Z ∨A Y .
The fully faithful property only uses that X is a topological stack and that U

is a pushout. Let us concentrate on essential surjectivity. Because X is a stack
and we already proved full faithfulness, the question is local in U . Assume given
Z → X and Y → X, and an isomorphism over A. Let X1 ⇒ X0 be a groupoid
presenting X, whose source and target maps are local fibrations.

Let us remark that both Z → U and Y → U are finite proper maps of
Hausdorff spaces. Thus we can cover U by open subsets Ui, such that for every
i, both Zi = Ui ∩Z and Yi = Y ∩Ui admit liftings to X0 of their morphisms to
X. We thus reduce to the case that we have Z → X0, Y → X0, and A → X1.
Next, we need to construct the dotted arrow in

A //

��

Y

��}}
X1

// X0

We can cover Y by opens over which this arrow exists, because A → Y is a
local cofibration and X1 → X0 a local fibration. Then for a point u ∈ U we
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choose an open neighborhood in U small enough such that the preimage in Y
is a disjoint union of sets over with the dotted arrow exists. Passing to such a
neighborhood of u reduces to the case that the dotted arrow exists. Then there
is nothing left to prove. �

1.6 Geometric stacks

We will encounter other types of stacks. A differentiable stack is a stack on
the category of C∞-manifolds, which is isomorphic to the quotient stack of a
Lie groupoid. Every differentiable stack has an underlying topological stack. If
the Lie groupoid X1 ⇒ X0 represents the differentiable stack X, the underlying
topological groupoid represents the underlying topological stack. Often we will
tacitly pass from a differentiable stack to its underlying topological stack. For
more on differentiable stacks, see [7].

An almost complex stack is a stack on the category of almost complex
manifolds, which is isomorphic to the quotient stack of an almost complex Lie
groupoid, i.e., a Lie groupoid X1 ⇒ X0, where X0 and X1 are almost complex
manifolds, and all structure maps respect the almost complex structure. Every
almost complex stack has an underlying differentiable stack and hence also an
underlying topological stack.

2 Homotopy type of a topological stack

Classifying space of a topological stack

Many facts about topological stacks can be reduced to the case of topological
spaces by virtue of the following.

Theorem 2.1 For every topological stack X, there exists a topological space X
together with a morphism ϕ : X → X which has the property that, for every
morphism T → X from a topological space T , the pull back T ×X X → T is a
weak homotopy equivalence.

A topological space X with the above property is called a classifying space
for X. A classifying space for X can be constructed by taking the fat realization
of the nerve of a groupoid X1 ⇒ X0 whose quotient stack is X. For more details
see [41]. The above theorem implies that the classifying space is unique up to a
unique isomorphism in the weak homotopy category of topological spaces (i.e.,
the category of topological spaces with weak homotopy equivalences inverted).

In the case where X = [X/G] is the quotient stack of a group action, the
Borel construction X ×G EG is a classifying space for X. Here EG is the total
space of the universal principal G-bundle in the sense of Milnor.

2.1 (Co)homology theories for topological stacks

Theorem 2.1 allows one to extend every (generalized) (co)homology theory h to
the 2-category of topological stacks. For instance, let us explain how to define
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h(X,A) for a pair (X,A) of topological stacks.
Choose a classifying space ϕ : X → X, and let A := ϕ−1A. It follows that

the pair (X,A) is well-defined in the weak homotopy category of pairs (i.e.,
is independent of the choice of a particular classifying space X). So, we can
define h(X,A) to be h(X,A). It can be easily verified that this construction is
functorial in morphisms of pairs.

The cohomology theory thus defined on topological stacks will maintain all
natural properties that it had on spaces. For example, it will be homotopy
invariant (in particular, it will not distinguish 2-isomorphic morphisms), it will
satisfy excision, it will maintain all the products (cap, cup, etc.) that it had on
spaces, and so on.

In the case where X = [X/G], we will recover the usual G-equivariant
(co)homology of X defined using the Borel construction. That is, h([X/G]) ∼=
h(X ×G EG).

2.2 Paracompactness of the classifying space

In many applications, it is important to find a classifying space for X which
is paracompact. There are various conditions on a groupoid X1 ⇒ X0 which
guarantee that the fat realization of the nerve of X1 ⇒ X0 is paracompact. The
following is one.

Definition 2.2 A topological stack X is called regular Lindelöf if it is equiv-
alent to the quotient stack [X0/X1] of a topological groupoid X1 ⇒ X0 such
that X1, X0 are regular Lindelöf spaces.

The proof of the following proposition will appear elsewhere.

Proposition 2.3 If X is a regular Lindelöf stack, there exists a classifying space
for X which is a regular Lindelöf space, in particular paracompact.

Remark 2.4 Every differentiable stack is regular Lindelöf and hence has a
paracompact classifying space.

2.3 Singular homology and cohomology

We will fix once and for all a coefficient ring and drop it from the notation
consistently.

We assume all topological stacks are regular Lindelöf.
Singular homology and cohomology for spaces lifts to topological stacks.

The singular (co)homology of the topological stack X can be defined to be the
singular (co)homology of its classifying space. Alternatively, let Γ : Γ1 ⇒ Γ0 be
a topological groupoid presentation of X. We denote Γp = Γ1 ×Γ0 . . . ×Γ0 Γ1

(p-fold) the space of composable sequences of p arrows in the groupoid Γ. It
yields a simplicial space Γ•

. . .Γ2
// //// Γ1 //// Γ0 . (2.1)
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The singular chain complex of Γ• is the total complex associated to the
double complex C•(Γ•) [5]. Here Cq(Γp) is the linear space generated by the
continuous maps ∆q → Γp. Its homology groups Hq(Γ•) = Hq

(
C•(Γ•)

)
are

called the homology groups of Γ. The singular cochain complex of Γ• is the
dual of C•(Γ•). In other words the total complex associated to the bicomplex
Cp(Γq). These groups are Morita invariant (i.e. only depend on the quotient
stack [Γ0/Γ1]). By definition they are the (co)homology groups of the stack
[Γ0/Γ1]. They coincide with the cohomology of the classifying space of X.

This Theory generalizes to singular cohomology theory H(X,A) for pairs
(X,A) of topological stacks satisfying the Eilenberg-Steenrod axioms. This the-
ory comes with cup products and coincided with the usual singular cohomology
when (X,A) is a pair of topological spaces. In the case when X = [X/G] is the
quotient stack of a topological group action, H is G-equivariant cohomology.
The following less standard facts are also true about H.

Proposition 2.5 Let A ↪→ B ↪→ X be closed embeddings of topological stacks.
Then, there is a natural product

Hn(X,X−B)⊗Hm(B,B− A)→ Hm+n(X,X− A)

which coincides with the cup product if B = X.

Proof. One uses the fact the classifying space is paracompact (Proposi-
tion 2.3). It is a general fact (for instance see [32]) that if F is a sheaf over
a paracompact space X and Z ⊂ X is closed, then lim−→

U⊃Z

Γ(U,F ) ∼−→ Γ(Z,F ),

where U is open. Then the result follows from the same argument as for topo-
logical spaces in [25], § 3. �

Proposition 2.6 Let X be a topological stack and A,B ⊆ X substacks. Then,
we have a cohomology long exact sequence

· · · → Hn−1(A, A∩B)→ Hn(X, A∪B)→ Hn(X, B)→ Hn(A, A∩B)→ Hn+1(X, A∪B) · · · .

Proof. By Excision Hn(A,A ∩B) ∼= Hn(A ∪B,B). The result follows from
the long exact cohomology sequence for the triple (X,A ∪B,B). �

3 Vector bundles on stacks

We begin with the definition of a (representable) vector bundle on a stack.

Definition 3.1 Let X be a (topological) stack. A real vector bundle on X
is a representable morphism of stacks E → X which makes E a vector space
object relative to X. That is, we have an addition morphism E ×X E → E and
an R-action R × E → E, both relative to X, which satisfy the usual axioms. A
complex vector bundle is defined analogously.
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Remark 3.2 There are two alternative definitions for a vector bundle on a
stack X that are equivalent to the one given above:

1. A vector bundle on X is a representable morphism of stacks E → X such
that, for every f : T → X with T a topological space, the pull back ET → T
is endowed with the structure of a vector bundle. Here, ET := f∗E =
T ×X E.

ET //

��

E

��

T
f
// X

We also require, for every g : T ′ → T , that the natural isomorphism

(f ◦ g)∗E→ g∗(f∗E)

be a bundle map.

2. Let X = [s, t : X1 ⇒ X0] be a groupoid presentation for X. Then, a vector
bundle on X is the same things as an X-equivariant vector bundle. Recall
that an X-equivariant vector bundle consists of a vector bundle E over
X0, and an isomorphism ψ : s∗E → t∗E of vector bundles over X1 such
that the three restrictions of ψ to X1×X0X1 satisfy the cocycle condition.

Let us briefly explain how these three definitions are related. Going from
Definition 3.1 to (1) is obvious. Given a vector bundle in the sense of (1), we
obtain a vector bundle E := p∗E on X0, where p : X0 → X is the quotient map.
This is easily seen to be equivariant. Finally, given an X-equivariant vector
bundle E, we define E to be the quotient stack of the groupoid [E1 ⇒ E0],
where E0 := E and E1 := s∗E = X1 ×X0 E. The source map E1 → E0 is the
projection map pr2 : X1 ×X0 E → E0. The target map is pr2 ◦ψ. It is easy to
verify that E is a vector bundle over X in the sense of Definition 3.1.

3.1 Operations on vector bundles

The standard operations on vector bundles on spaces (e.g., direct sum, tensor
product, exterior powers, and so on) can be carried out on vector bundles on
stacks mutatis mutandis. This is more easily seen if we think of a vector bundle
as in Remark 3.2 (1). In this case, we simply perform the desired operation
simultaneously on the pull backs ET , for varying T , and the resulting family of
vector bundles, say FT , will give rise to a vector bundle F on X.

In view of Remark 3.2 (2), operations on vector bundles on X correspond to
operations on X-equivariant vector bundles.

Similarly, we can define a metric on a vector bundle. More precisely, a
metric on E is the same thing as a compatible family of metrics on ET , for
varying T . Given a presentation X = [X1 ⇒ X0] for X, a metric on E is the
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same thing as an invariant metric on the X-equivariant vector bundle E. (The
latter simply means a metric on the vector bundle E over X0 such that the
isomorphism ψ : s∗E → t∗E is an isometry.)

Example 3.3 Let X be a paracompact topological space (say, a manifold) and
G a compact Lie group acting on it. Set X := [X/G]. Then every vector bundle
E on X admits a metric. In fact, metrics on E are in bijection with G-invariant
metrics on the vector bundle E := p∗E over X. (Here p : X → X is the quotient
map.)

4 Thom isomorphism

Definition 4.1 We say a vector bundle p : E → X of rank n on a topological
stack X is orientable, if there is a class µ ∈ Hn(E,E− X) such that the map

Hi(X) τ−→ Hi+n(E,E− X)
c 7→ p∗(c) ∪ µ

is an isomorphism for all i ∈ Z. The class µ is called a Thom class, or an
orientation, for p : E→ X.

Lemma 4.2 Let E→ X be an oriented vector bundle and µ ∈ Hn(E,E− X) a
Thom class for it. Let f : Y→ X be a morphisms of stacks. Then f∗E→ Y is
an oriented vector bundle and f∗(µ) is a Thom class for it.

Lemma 4.3 Let E→ X be a vector bundle. Let f : Y→ X be a trivial fibration
of topological stacks, and let ν be a Thom class for the vector bundle f∗E→ Y.
Then, there is a unique Thom class µ for E such that f∗(µ) = ν.

Proposition 4.4 Let p : E → X be an orientable vector bundle of rank n, and
let µ ∈ Hn(E,E − X) be a Thom class for it. Let K ⊂ X be a closed substack.
Then, the homomorphism

H∗(X,X− K) τ−→ H•+n(E,E− K)
c 7→ p∗(c) ∪ µ

is an isomorphism. Here, we have identified K with a closed substack of E via
the zero section of E→ X.

Proof. Let U = X − K. The map c 7→ p∗(c) ∪ µ induces a map between long
exact sequences

· · · // H•+n(E|U,E|U − U) // H•+n(E,E− X) // H•+n(E,E− K) // · · ·

· · · // H•(U) //

∼=
OO

H•(X) //

∼=
OO

H•+n(X,X− K) //

OO

· · · .
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(The top sequence is long exact by Proposition 2.6.) The claim follows from
5-lemma. �

Proposition 4.5 In Proposition 4.4, identify X with a closed substack of E via
the zero section. Then, for every c ∈ H∗(X,X−K), we have τ(c) = c · µ, where
· is the product of Proposition 2.5.

Proposition 4.6 In Proposition 4.4, assume that E is metrized, and let D
denote its disc bundle of radius r. Set L = p−1(K) ∩D. and let ρ : H•(E,E −
K)→ H•(E,E−L) be the restriction homomorphism. Then the homomorphism

H•(X,X− K) τ−→ H•+n(E,E− L)
c 7→ ρ(p∗(c) ∪ µ)

is an isomorphism. In particular, the map ρ is an isomorphism.

Proof. Let U = X − K. In the case where K = X, a standard deformation
retraction argument shows that ρ is an isomorphism, so the result follows from
Proposition 4.4. The general case reduces to this case by considering the map
of long exact sequences induced by c 7→ ρ(p∗(c) ∪ µ),

· · · // H•+n(E|U,E|U −D|U) // H•+n(E,E−D) // H•+n(E,E− L) // · · ·

· · · // H•(U) //

∼=
OO

H•(X) //

∼=
OO

H•+n(X,X− K) //

OO

· · · ,

and applying 5-lemma. �

The following lemma strengthens Proposition 4.4.

Lemma 4.7 Let p : E → X be an orientable vector bundle of rank n, and let
µ ∈ Hn(E,E− X) be a Thom class for it. Let K ⊂ X be a closed substack, and
K′ ⊂ E a closed substack of E mapping isomorphically to K under p. Then, we
have a natural isomorphism H•(X,X− K) ∼= H•+n(E,E− K′).

Lemma 4.8 Let p : E→ X and q : F→ X be vector bundles over X, and assume
that E is oriented. Then, an orientation for F determines an orientation for
E⊕F, and vice versa. Indeed, if µ is an orientation for E, and ν an orientation
for F, then µ · p∗(ν) is an orientation for E ⊕ F. Here, · is the product of
Proposition 2.5.

Proof. We only prove one of the statements, namely, the case where E and
E⊕F are oriented. We show that F is also oriented. Assume E and F have rank
m and n, respectively, and let µ ∈ Hm(E,E−X) and ν ∈ Hm+n(E⊕F,E⊕F−X)
be orientations for E and E⊕ F. The class q∗(µ) ∈ Hm(E⊕ F,E⊕ F− F) is an
orientation for the pull-back bundle q∗(E) ∼= E⊕F over F; note that the bundle
map q∗(E) → F can be naturally identified with the second projection map
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π : E⊕ F→ F. By Proposition 4.4, applied to the vector bundle π : E⊕ F→ F,
we have an isomorphism

Hn(F,F− X) → Hn+m(E⊕ F,E⊕ F− X)
c 7→ π∗(c) ∪ q∗(µ).

The inverse image of ν under this isomorphism is the desired orientation class
in Hn(F,F− X). �

In Lemma 4.8, we call the orientation on E⊕ F the sum of the orientations
of E and F, and the orientation on F the difference of the orientations on E⊕F
and E.

Lemma 4.9 Let 0 → F → M → E → 0 be a short exact sequence of vector
bundles over a topological stack X. Then, the choice of orientations on two of
the three vector bundles uniquely determines an orientation on the third one.

Proof. Apply Lemma 4.3 to the trivial fibration f : M → X to reduce the
problem the split case and then apply Lemma 4.8. �

Lemma 4.10 In Lemma 4.7, assume we are given another oriented vector
bundle F → X of rank m, and endow E ⊕ F with the sum orientation. Let
K′′ ⊂ E⊕F be a closed substack mapping isomorphically to K′ under the projec-
tion E⊕ F→ E. Then, the diagram

H•(X,X− K)
∼= //

∼= &&NNNNN
H•+n(E,E− K′)

∼=wwooooo

H•+n+m(E⊕ F,E⊕ F− K′′)

commutes. (All the isomorphisms in this diagram are the ones of Lemma 4.7.
So, in the case where K = K′ = K′′, the isomorphisms are simply the Thom
isomorphisms of Proposition 4.4.)

Finally, we prove a lemma about compatibility of Thom isomorphism with
excision.

Lemma 4.11 Let X be a manifold, and let E → X and N → X be vector
bundles of rank n. Assume that E is oriented. Let i : N → E be an open
embedding which sends the zero section of N to the zero section of E. (Note that
N is naturally isomorphic to E, hence oriented, via the isomorphisms TX⊕N ∼=
TE ∼= TX ⊕ E.) Then, the following diagram commutes:

H•+n(N,N −X) excision
∼=

// H•+n(E,E −X)

H•(X)

∼=
τN

ggNNNNN ∼=
τE

77ppppp
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5 Loop stacks

5.1 Mapping stacks and the free loop stack

Let X and Y be stacks over Top. We define the stack Hom(Y,X), called the
mapping stack from Y to X, by the rule

T ∈ Top 7→ Hom(T ×Y,X) ,

where Hom denotes the groupoid of stack morphisms. This is easily seen to be
a stack. It follows from the exponential law for mapping spaces ([48]) that when
X and Y are spaces, with Y Hausdorff, then Hom(Y,X) is representable by the
usual mapping space from Y to X (endowed with the compact-open topology).

The mapping stacks Hom(Y,X) are functorial in X and Y.

Proposition 5.1 Let X be a topological stack and A a compact topological space.
Then Hom(A,X) is a topological stack.

Proof. To show that Hom(A,X) is a topological stack, first we show that every
morphism p : S → Hom(A,X) from a topological space S is representable. Our
argument will indeed be valid for any topological space A and any stack X whose
diagonal is representable. Let q : T → Hom(A,X) be an arbitrary morphism
from a topological space T . Let p̃ : S × A → X be the defining map of p, and
q̃ : T ×A→ X the one for q. Set Y := (T ×A)×X (S×A). This is a topological
space which sits in the following cartesian diagram:

Hom(A, Y ) //

��

Hom(A,S ×A)

ep∗
��

Hom(A, T ×A)
eq∗ // Hom(A,X)

The claim now follows from the fact that p and q factor through p̃∗ and q̃∗,
respectively (both via the corresponding ĩd).

We now construct an epimorphism R→ Hom(A,X). First we need a bit of
notation. Let Y = [Y1 ⇒ Y0] and X = [X1 ⇒ X0] be topological groupoids, with
Y0, Y1 Hausdorff. We define Hom(Y,X) to be the space of continuous groupoid
morphisms from Y to X. This is topologized as a subspace of Hom(Y1, X1) ×
Hom(Y0, X0), and it represents the following functor

T ∈ Top 7→ groupoid morphisms T × Y→ X,

where T × Y stands for the groupoid [T × Y1 ⇒ T × Y0] In particular, we have
a universal family of groupoid morphisms Hom(Y,X)× Y→ X.

Let J be the set of all finite open covers of A. For α ∈ J , let Uα denote the
disjoint union of the open sets appearing in the open cover α. There is a natural
map Uα → A. Let Aα := [Uα ×A Uα ⇒ Uα] be the corresponding topological
groupoid. The spaces Uα×AUα and Uα are Hausdorff and the quotient stack of

20



Aα is A. Fix a groupoid presentation X = [X1 ⇒ X0] for X, and let π : X0 → X
be the corresponding chart for X. Set Rα = Hom(Aα,X), and R =

∐
αRα.

The universal groupoid morphisms Rα × Aα → X give rise to morphisms
Rα → Hom(A,X). Putting these all together we obtain a morphism R →
Hom(A,X). We claim that this an epimorphism. Here is where we use com-
pactness of A. Let p : T → Hom(A,X) be an arbitrary morphism. We have
to show that for every t ∈ T , there exists an open neighborhood W of t such
that p|W lifts to R. Let p̃ : T × A → X be the defining morphism for p. Since
π : X0 → X is an epimorphism, we can find finitely many open sets Vi of T ×A
which cover {t} ×A and such that p̃|Vi

lifts to X0 for every i. We may assume
Vi = Ai ×W , where Ai are open subsets of A, and W is an open neighborhood
of t independent of i. Let α := {Ai} be the corresponding open cover of A.
Then p|W lifts to Rα ⊂ R. �

Let X be a topological stack. Then LX = Hom(S1,X) is also a topological
stack. It is called the loop stack of X. By functoriality of mapping stacks,
for every t ∈ S1 we have the corresponding evaluation map evt : LX → X. In
particular, denoting by 0 ∈ S1 the standard choice of a base point, there is an
evaluation map

ev0 : LX→ X. (5.1)

Similarly, the path stack of X, which is defined to be Hom(I,X), is a topo-
logical stack.

For the next result, we need to assume that X is a Hurewicz topological
stack.

Lemma 5.2 Let A, Y , and Z be as in Proposition 1.3. Let X be a Hurewicz
topological stack. Then the diagram

Hom(Z ∨A Y,X) //

��

Hom(Y,X)

��
Hom(Z,X) // Hom(A,X)

is a 2-cartesian diagram of topological stacks.

Proof. We have to verify that for every topological space T the T -points of
the above mapping stacks form a 2-cartesian diagram of groupoids. This follows
from Proposition 1.3 applied to A× T , Y × T , and Z × T . �

We denote by ‘8’ the wedge S1 ∨ S1 of two circles.
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Corollary 5.3 Let X be a Hurewicz topological stack, and let LX be its loop
stack. Then, the diagram

Map(8,X) //

��

LX

��

LX // X

is 2-cartesian.

5.2 Groupoid presentation

Let us now describe a particular groupoid presentation of the loop stack. For
this we will assume that X is a Hausdorff Hurewicz topological stack. Thus X
admits a groupoid presentation Γ : Γ1 ⇒ Γ0, where Γ0 and Γ1 are Hausdorff
topological spaces, Γ1 → Γ0 × Γ0 is proper, and source and target maps are
local fibrations. We will fix the groupoid Γ.

We will construct a groupoid LΓ : L1Γ ⇒ L0Γ out of Γ which represents
LX. This groupoid presentation is useful in computations (see Section 11).
Our construction resembles the construction of the fundamental groupoid of a
groupoid [39].

Let MΓ = [M1Γ ⇒ M0Γ] be the morphism groupoid of Γ. Its object set is
M0Γ = Γ1 and its morphism set M1Γ is the set of commutative squares in the
underlying category of Γ:

t(h) t(k)
goo

s(h)

h

OO

s(k)

k

OO

h−1gkoo

(5.2)

The source and target maps are the horizontal arrows in square (5.2). The
groupoid multiplication is by (vertical) superposition of such squares. Thus we
have M1Γ ∼= Γ3 = Γ1 ×Γ0 Γ1 ×Γ0 Γ1. The groupoid MΓ is another presentation
of the stack X and is Morita equivalent to Γ.

Let P ⊂ S1 be a finite subset of S1 which contains the base point of S1.
The points of P are labeled according to increasing angle as P0, P1, . . . , Pn in
such a way that P0 = Pn is the base point of S1. Write Ii for the closed interval
[Pi−1, Pi]. Let SP0 be the disjoint union SP0 =

∐n
i=1 Ii. There is a canonical map

SP0 → S1. Let SP1 be the fiber product SP1 = SP0 ×S1 SP0 . There is an obvious
topological groupoid structure SP1 ⇒ SP0 . The compact-open topology induces
a topological groupoid structure on LPΓ : LP1 Γ⇒ LP0 Γ, where LP0 Γ is the set of
continuous strict groupoid morphisms [SP1 ⇒ SP0 ]→ [Γ1 ⇒ Γ0] and LP1 Γ is the
set of strict continuous groupoid morphisms [SP1 ⇒ SP0 ]→ [M1Γ⇒M0Γ].

The finite subsets of S1 including the base point are ordered by inclusion.
The ordering is directed. For P ≤ Q there is a canonical morphism of groupoids
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LPΓ −→ LQΓ. Using the fact that Γ0 and Γ1 are Hausdorff, it is not difficult to
prove that LPΓ → LQΓ is an isomorphism onto an open subgroupoid. Define
the topological groupoid

LΓ = lim−→
P⊂S1

LPΓ =
⋃
P⊂S1

LPΓ .

Proposition 5.4 The groupoid LΓ presents the loop stack LX.

Proof. First, we need to construct a morphism LP0 Γ→ LX, for every P . The
presentation L0Γ→ LX will then be obtained by gluing these morphisms using
the stack property of LX and the fact the LP0 Γ form an open covering of the
topological space L0Γ.

The structure map LP0 × SP0 → Γ0 gives rise to a morphism LP0 × SP0 → X.
This morphism descends to LP0 × S1 → X, by Proposition 1.3, because S1 is
obtained from SP0 as a pushout covered by that proposition. By adjunction, we
obtain the required morphism LP0 → LX.

The fact that
⋃
P LP0 Γ → LX is an epimorphism of stacks, follows as in

Proposition 5.1.
The fact that L1Γ is the fibered product of L0Γ with itself over LX reduces

immediately to the case of LP1 Γ, for which it is immediate. �

It is easy to represent evaluation map and functorial properties of the free
loop stack at the groupoid level with this model.

Remark 5.5 In particular, there is an equivalence of the underlying categories
between LΓ and the groupoid whose objects are the set of generalized morphisms
from the space S1 to Γ and has equivalences of such as arrows.

Corollary 5.6 If X is a differentiable stack then LX is regular Lindelöf .

Target connected groupoid

Assume the groupoid Γ is target connected. This means that if T is a topological
space, and φ : T → Γ1 a continuous map, then for every point of T there exist
an open neighborhood T ′ ⊂ T and a homotopy Φ : T ′ × I → Γ1, such that
Φ0 = φ and Φ1 = t ◦ φ, where t : Γ1 → Γ0 is the target map. For example, any
transformation groupoid with connected Lie group is target connected.

For every finite subset P ⊂ S1 and x ∈ LP0 Γ, there are arrows gi ∈ Γ1 with
t(gi) = Pi ∈ Ii and s(gi) = Pi ∈ Ii+1 (or P0 ∈ I1 if i = n). These arrows can be
continuously deformed to the identity point Pn ∈ In. Thus there is an element
x̃ ∈ Hom(S1,Γ0) ⊂ L{0}Γ0 and an arrow γ ∈ LP1 Γ with s(γ) = x̃ and t(γ) = x.
From this observation, we deduce:

Proposition 5.7 If Γ is target connected, then the groupoid LΓ1 ⇒ LΓ0 with
pointwise source map, target map and multiplication presents the loop stack
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LX. Here LΓi is the usual free loop space of Γi endowed with the compact-open
topology.

In particular, LΓ is Morita equivalent to the groupoid LΓ1 ⇒ LΓ0.

Example 5.8 If G is a connected Lie group acting on a manifold M , then
Proposition 5.7 implies that L[M/G] ∼= [LM/LG].

Discrete group action

To the contrary, if G is a discrete group acting on a space M one can form
the global quotient [M/G] which is represented by the transformation groupoid
Γ : M ×G⇒M . For any x ∈ LPΓ0 one can easily find an arrow γ ∈ LPΓ1 such
that s(γ) = x and t(γ) ∈ L{0}Γ0. Furthermore, since G is discrete, an element
of LPΓ1 is described by its source and one element gi ∈ G for i = 0, . . . , |P |.
From these two observations one proves easily:

Proposition 5.9 Let G be a discrete group acting on a space M . Then L[M/G]
is presented by the transformation groupoid∐

g∈G
PgM

×G⇒ ∐
g∈G

PgM

where PgM = {f : [0, 1]→M such that f(0) = f(1).g} and G acts by pointwise
conjugation.

Note that if G is finite, one recovers the loop orbifold of [34].

6 Bounded proper morphisms of topological
stacks

Definition 6.1 Let f : X → Y be a morphisms of topological stacks and E a
metrizable vector bundle over Y. A lifting i : X→ E of f ,

E

��

X

/�
i
??

f
// Y

is called bounded if there is a choice of metric on E such that i factors through
the unit disk bundle of E. A morphism f : X→ Y of topological stacks is called
bounded proper if there exists a metrizable orientable vector bundle E on Y
and a bounded lifting i as above such that i is a closed embedding.
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Definition 6.2 A bounded proper morphism f : X → Y is called strongly
proper if every orientable metrizable vector bundle E on X is a direct summand
of f∗(E′) for some orientable metrizable vector bundle E′ on Y. (Note that,
possibly after multiplying by a positive R-valued function on Y, we can arrange
the inclusion b∗E ↪→ (gb)∗(E′) to be contractive, i.e., have norm at most one.)

Example 6.3 1. Every bounded proper map f : X → Y of a topological
spaces with Y compact is strongly proper. In that case, one can use the
fact that every vector bundle on a compact space is a subbundle of a trivial
bundle.

2. Let X be a topological stack such that ∆: X→ X×X is bounded proper.
Then ∆ is strongly proper. This follows from the fact that every vector
bundle on X can be naturally extended to X × X. Similarly, the iterated
diagonal ∆(n) : X→ Xn is strongly proper.

3. Let X,Y be compact G-manifolds (with G compact) and f : X → Y be
a G-equivariant map. Then the induced map of stacks [f/G] : [X/G] →
[Y/G] is strongly proper.

It does not seem to be true in general that two bounded proper maps compose
to a bounded proper map, but we have the following.

Lemma 6.4 Let f : X→ Y and g : Y→ Z be strongly proper morphisms. Then
gf : X→ Z is strongly proper.

Proof. It is trivial that every orientable metrizable bundle on X is a direct
summand of one coming from Z. Let us now prove that gf is proper. Suppose
given factorizations

E

��

X

/�
i
??

f
// Y

F

��

Y

/�
j
@@

g
// Z

for f and g. By enlarging E, and using that g is strongly proper , we may
assume that E = g∗(E′), for some oriented metrized vector bundle E′ on Z. Let
i′ : X → E′ be the composition pr ◦i where pr : E → E′ is the projection map.
The following diagram shows that gf is proper:

E′ ⊕ F

��

X

- 

(i′,jf) <<

gf
// Z

�
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6.1 Some technical lemmas

In this section we prove a few technical lemmas that will be needed in Section
7 to define bivariant groups.

Let f : X→ Y be a morphism of topological stack that admits a factorization

E

��

X

/�
i
??

f
// Y

For example, every bounded proper f has this property (Definition 6.1). The
following series lemmas investigate certain properties of the relative cohomology
groups H•(E,E− X).

Lemma 6.5 Let f : X → Y be a morphism of topological stacks, and assume
we are given two different factorizations (i,E) and (i′,E′) for it. Then, there is
a canonical isomorphism H•+rk E(E,E− X) ∼= H•+rk E′(E′,E′ − X).

Proof. Embed X in E⊕ E′ via (i, i′) : X→ E⊕ E′. Consider the diagram

(E′,E′ − X)← (E′ ⊕ E,E′ ⊕ E− X)→ (E,E− X)

of pairs of topological stacks. It follows from Proposition 4.4 that we have
natural isomorphisms

H•+rk E′(E′,E′−X) ∼←− H•+rk F+rk E(E′⊕E,E′⊕E−X) ∼−→ H•+rk E(E,E−X).

We can now apply Lemma 4.7. �

Using a triple direct sum argument, it can be shown that given three fac-
torizations (i,E), (i′,E′), and (i′′,E′′) for f , the corresponding isomorphisms
defined in the above lemma are compatible. Also, if we switch the order of (i,E)
and (i′,E′) we get the inverse isomorphism. Finally, when (i,E) and (i′,E′) are
equal we get the identity isomorphism. Therefore, the group H•(E,E−X) only
depends on the morphism f .

Lemma 6.6 Let f : X → Y be a morphism of topological stacks, and let ϕ :=
f ◦ pr: X × I → Y, where I is the unit interval and pr stands for projection.
Suppose we are give a factorization

E

��

X× I
- 
ι
<<

ϕ
// Y
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for ϕ. Let 0 ≤ a ≤ 1, and define ιa : X → E to be the restriction of ι to
X = X×{a}. Then, the natural map φa : H•(E,E−ιa(X))→ H•(E,E−ι(X×I))
induced by the map of pairs (E,E−ι(X×I))→ (E,E−ιa(X)) is an isomorphism
and it is independent of a.

Proof. We may assume that the image of ι does not intersect the zero section
of E. (For example, we lift everything to E⊕R via (ι, 1) : X→ E⊕R and apply
Proposition 4.7 to the vector bundle E⊕ R→ E.).

Let E′ = E⊕ R and define β : X× I ↪→ E′ by β(x, t) = (ι(x, 0), t). This is a
closed embedding, so by Lemma 6.5, we have a commutative diagram

H•(E,E− ι(X× I))
∼= // H•(E′,E′ − β(X× I))

H•(E,E− ιa(X))

φa

OO

∼= // H•(E′,E′ − βa(X))

φ′a

OO

This reduces the problem to the case where our map is β instead of ι, in which
case the result is obvious.
�

7 Bivariant theory for topological stacks

We define a bivariant cohomology theory [25] on the category of topological
stacks whose associated covariant and contravariant theories are singular ho-
mology and cohomology, respectively. Our bivariant theory satisfies weaker
axioms than those of [25] in that products are not always defined. We show,
however, that there are enough products to enable us to define Gysin morphisms
as in [25].

The underlying category of our bivariant theory is the category TopSt of
topological stacks. The confined morphisms are all maps and independent
squares are 2-cartesian diagrams.

Bivariant groups

To a morphism f : X→ Y of topological stacks, we associate a category C(f) as
follows. The objects of C(f) are morphism a : K → X such that fa : K → Y is
bounded proper (Definition 6.1). A morphism in C(f) between a : K → X and
b : L→ X is a homotopy class (relative to X) of morphisms g : K→ L over X.

Lemma 7.1 The category C(f) is cofiltered.

Once and for all, we choose, for each object a : K → X, a vector bundle
E→ Y through which fa factors, as in Definition 6.3.
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We define the bivariant singular homology of an arbitrary morphism
f : X→ Y to be the Z-graded abelian group

H•(X
f−→ Y) = lim−→

C(f)

H•+rk E(E,E− K).

The homomorphisms in this direct limit are defined as follows. Consider a
morphism ϕ : K → K′ in C(f). From this we will construct a natural graded
pushforward homomorphism ϕ∗ : H•+m(E,E − K) → H•+n(E′,E′ − K′), where
m = rk E and n = rk E′.

Let F = E⊕ E′ with the sum orientation. Let p : E′ → Y be the projection
map. Then, p∗(E) is an oriented vector bundle over E′. Note that the projection
map π : p∗(E) → E′ is naturally isomorphic to the second projection map F =
E ⊕ E′ → E′; this allows us to view F as an oriented vector bundle of rank m
over E′. Let D ⊆ F be the unit disc bundle. It follows from the assumptions
that K ⊆ D, hence also K ⊆ L := π−1(K′) ∩D. The restriction homomorphism

ϕ∗ : H•+m+n(F,F− K)→ H•+m+n(F,F− L) ∼= H•+n(E′,E′ − K′),

induced by the inclusion of pairs (F,F − L) → (F,F − K) is the desired push-
forward homomorphism; here, we have used the isomorphism of Proposition
4.6.

Next we have to show that the ϕ∗ is independent of the homotopy class of
ϕ. Consider a ◦ pr: K × I → X, and let ρ0, ρ1 : K → K × I be the times 0 and
time 1 maps. Note that a ◦ pr: K × I → X is an object of C(f). Since every
homotopy (relative to X) between maps with domain K factors through K× I,
it is enough to show that ρ0,∗ = ρ1,∗. This follows from Lemma 6.6.

Remark 7.2 Let K → Y be a bounded proper morphism. It follows from
Lemma 6.5, that the cohomology H•(E,E − K) is independent of choice of
the vector bundle E and the embedding i : K ↪→ E, up to a canonical isomor-
phism. Furthermore, the pushforward maps constructed above are compatible
with these canonical isomorphisms. So, H•(f) is independent of all choices
involved in its definition.

Lemma 7.3 Let f : X → Y be a bounded proper morphism and X
i→ E → Y

a factorization for f , where i is a closed embedding (but E is not necessarily
metrizable). Then we have a natural isomorphism

H•(X
f−→ Y) ∼= H•+rk E(E,E− X).

Proof. Follows from Lemma 6.5. �
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Independent pullbacks

Consider a cartesian diagram

X′
f ′ //

��

Y′

h
��

X
f
// Y

We define the pullback h∗ : H(X
f−→ Y)→ H(X′

f ′−→ Y′) as follows.
Pullback along h induces a functor h∗ : C(f)→ C(f ′), K 7→ h∗K := X′ ×X K.

Furthermore, we have a natural homomorphism

H•+rk E(E,E− K)→ H•+rk E(h∗E, h∗E− h∗K)

induced by the map of pairs (h∗E, h∗E− h∗K)→ (E,E−K). Using Lemma 6.5,
this induces the desired homomorphism of colimits

h∗ : lim−→
C(f)

H•+rk E(E,E− K)→ lim−→
C(f ′)

H•+rk E′(E′,E′ − K′).

Confined pushforwards

Let h : X→ Y be a morphism of topological stacks (Definition 6.1) fitting in a
commutative triangle

X

f ��444

h // Y

g��




Z

We define the pushforward homomorphism h∗ : H(X
f−→ Z) → H(Y

g−→ Z) as
follows.

There is a natural functor C(f)→ C(g), which sends a : K→ X to ha : K→
Y. A factorization for fa gives a factorization for gha in a trivial manner:

K
� � i //

a
��

E

��

K
� � i //

ha ��

E

��
7→

X
f
// Z Y

g
// Z

Using Lemma 6.5, this induces the desired homomorphism

h∗ : lim−→
C(f)

H•+rk E(E,E− K)→ lim−→
C(g)

H•+rk E(E,E− K).
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Products

Unfortunately, we are not able to define product for arbitrary pairs of compos-
able morphisms f and g. However, under an extra assumption on g this will be
possible.

Definition 7.4 A morphism f : X→ Y of topological stacks is called adequate
if in the cofiltered category C(f) the subcategory consisting of a : K → X such
that fa : K→ Y is strongly proper is cofinal.

Example 7.5 1. Every strongly proper morphism is adequate. (Because in
this case C(f) has a final object that is strongly proper over Y.)

2. A morphism f : X→ Y in which Y is a paracompact topological space is
adequate. (In this case every object in C(f) is strongly proper over Y ; see
Example 6.3)

Let f : X → Y and g : Y → Z be morphisms of topological stacks, and
assume g is adequate. Then we can define products of any two classes α ∈ H(f)
and β ∈ H(g). The construction of the product is as follows. Consider objects
(K, a) ∈ C(f) and (L, b) ∈ C(g), and choose factorizations

K
� � i //

a
��

E

��

X
f
// Y

L
� � j //

b ��

F

��

Y
g
// Z

We may assume gb : L→ Z is strongly proper. There exists a metrizable oriented
vector bundle E′ over Z such that b∗E is isomorphic to a subbundle of (gb)∗(E′)
as vector bundles over L. Note that, possibly after multiplying by a positive
R-valued function on Z, we can arrange the inclusion b∗E ↪→ (gb)∗(E′) to be
contractive (i.e., have norm at most one). Let us denote b∗E by E0, (gb)∗(E′)
by E1, and the codimension of E0 in E1 by c.

We define the product

Hr(E,E− K)⊗Hs(F,F− L)→ Hr+s+c(E′ ⊕ F,E′ ⊕ F− K×Y L).

as follows. (Note that (K×Y L, a ◦ pr) belongs to C(gf) and we have a factor-
ization

K×Y L � � (i,j) //

��

E′ ⊕ F

��

X
gf

// Z

for it. We explain this in more detail shortly.) By pulling back the map i along
$ : E0 → E, we obtain a closed embedding K×Y L ↪→ E0. On the other hand,
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we have a closed embedding E1 ↪→ E′⊕F; this is simply the pullback of j along
the projection map π : E′ ⊕ F → F. Using the inclusion E0 ↪→ E1, we find a
factorization

K×Y L � � //

(i,j)

,,
E0

� � // E1
� � // E′ ⊕ F.

Now, let α ∈ Hr(E,E − K) and β ∈ Hs(F,F − L) be two cohomology classes.
We define α ·β ∈ Hr+s+c(E′⊕F,E′⊕F−K×Y L) to be τ($∗(α)) ·π∗(β), where
the latter · is the product of Proposition 2.5. In more detail, we have π∗(β) ∈
Hs
(
E′ ⊕ F,E′ ⊕ F − E1

)
, $∗(α) ∈ Hr(E0,E0 − K ×Y L), and τ : Hr(E0,E0 −

K×Y L)→ Hr+c
(
E1,E1−K×Y L

)
is the Thom isomorphism of Proposition 4.4

for the vector bundle E1 over E0; to obtain this Thom isomorphism, we have
used that, since the bundles are metrizable, E0 is a direct summand of E1 and
its complement is oriented (Lemma 4.8). Finally, our · is the one of Proposition
2.5 with the inclusions K×Y L ↪→ E1 ↪→ E′ ⊕ F, n = r + c and m = s.

Associated covariant and contravariant theories

By definition, the nth graded piece of the contravariant theory associated to the
bivariant theory H is give by

Hn(X) = Hn(X id−→ X) = lim−→
C(idX)

Hn+rk E(E,E− K).

The category C(idX) has a final object (X,X), so the above colimit is isomorphic
to Hn(X,X− X) = Hn(X), the usual singular cohomology.

The nth graded piece of the covariant theory associated to H is defined to
be

Hn(X) = H−n(X→ pt) = lim−→
C(X)

He−n(E,E −K) ∼= lim−→
K→X

Hn(K).

Here, C(X) is the category whose object are pairs (E,K) where E is a Euclidean
space of dimension e and K is a compact subspace of E together with a map
K → X. In the latter colimit, we have used the Spanier-Whitehead duality
Hn(K) ∼= He−n(E,E − K), and the limit is taken over the category of all
maps K → X with K a compact topological space that is embeddable in some
Euclidean space. By the following proposition, the latter colimit is, indeed,
isomorphic to the singular cohomology Hn(X).

Proposition 7.6 Let X be a topological stack. Then, we have a natural iso-
morphism

lim−→
K→X

Hn(K) ∼= Hn(X),

where the limit is taken over the category of all maps K → X with K a compact
topological space that is embeddable in some Euclidean space.
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It is possible to generalize the axiomatic framework for (skew-symmetric)
bivariant theories [25] to include the present case, where products are only

defined for a composition X
f−→ Y

g−→ Z if Y
g−→ Z belongs to a subclass

of morphisms called adequate. See Appendix A for the axioms. Details will
appear elsewhere.

8 Gysin maps

8.1 Normally nonsingular morphisms of stacks and ori-
ented stacks

Definition 8.1 We say that a representable morphism f : X → Y of stacks is
normally nonsingular, if there exist vector bundles N and E over the stacks
X and Y, respectively, and a commutative diagram

N
� � i // E

p
��

X

s

OO

f
// Y

where s is the zero section of N, i is an open immersion, and E is oriented. When
N is also oriented, we say that the diagram is oriented. (For the definition of
on orientation on a morphism f see Definition 8.5 below.) The integer c =
rk N− rk E depends only on f and is called the codimension of f .

A diagram as above is called a normally nonsingular diagram for f . The
vector bundle N is sometimes referred to as the normal bundle of X in E, and
i(N) as a tubular neighborhood of X in E.

Proposition 8.2 Let G be a compact Lie group, and X and Y smooth G-
manifolds, with X = [X/G] and Y = [Y/G] the corresponding quotient stacks.
Assume further that X is of finite orbit type. Then, for every G-equivariant
smooth map X → Y , the induced morphism f : X → Y of quotient stacks is
normally nonsingular.

Proof. First we claim that, there is a vector bundle V → BG and a smooth
embedding j : X→ V, as in the following commutative diagram:

V

p
��

X

j

77

f
// Y

πY

// BG
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This statement is equivalent to the fact that every G-manifold X of finite orbit
type embeds G-equivariantly into a linear G-representation V ([10], § II, Theo-
rem 10.1). We can arrange for the G-action on V to be orientation preserving
by simply replacing V with V ⊕ V .

Let E := Y ×BG V be the pullback of V over Y. We obtain the following
commutative diagram

E

p
��

X

(f,j)
??

f
// Y

Observe that (f, j) is a smooth closed embedding (this can be checked by pulling
back the whole picture along a chart, say ∗ → BG, for BG). Let N be the
normal bundle of (f, j)(X) in E. By the existence of G-equivariant tubular
neighborhoods ([10], § VI, Theorem 2.2), we find a vector bundle N over X and
an open embedding i : N→ E making the following diagram commutative:

N
� � i // E

p

��

X

s

OO

(f,j)

??

f
// Y

This is exactly what we were looking for. �

Example 8.3 The action of a finite group on a manifold has finite orbit type.
More interestingly, the action of a compact Lie group on a manifold whose Z-
coefficient homology groups are finitely generated has finite orbit type. This is
Mann’s Theorem, see [10], § IV.10.

Definition 8.4 Let f : X → Y be a strongly proper morphism. A bivari-
ant class θ ∈ H(X

f−→ Y), not necessarily homogenous, is called a strong
orientation if for every g : Z → X, multiplication by θ is an isomorphism
H(Z

gf−→ Y) ∼−→ H(X
f−→ Y).

Definition 8.5 A strongly proper morphism f : X → Y of topological stacks
is called strongly oriented, if it is normally nonsingular and it is endowed
with a strong orientation θf ∈ Hc(f), where c = codim f ; see Definition 8.1. A
topological stack X is called strongly oriented if the diagonal ∆: X→ X× X is
strongly oriented. In this case, we define dim X := codim ∆.

Lemma 8.6 Let f : X → Y and g : Y → Z be strongly proper morphisms, and
let θ ∈ H(f) and ψ ∈ H(g) be strong orientation classes. Then, θ ·ψ is a strong
orientation class for gf : X→ Z. (Note that the latter map is strongly proper by
Lemma 6.4.)
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Lemma 8.7 Let f : X → Y be a strongly proper map and θ ∈ H(f) a strong
orientation class for it. Then multiplication by θ induces an isomorphism
H(X) ∼−→ H(f). If θ′ ∈ H(f) is another orientation class for f , then there
is a unique unit u ∈ H(X) such that θ′ = u · θ.

The following result states that an oriented normally nonsingular diagram
gives rise a canonical strong orientation.

Proposition 8.8 Let f : X → Y be a strongly proper morphism of topological
stacks equipped with an oriented normally nonsingular diagram. Then, f has a
canonical strong orientation class θf ∈ Hc(f) where c = codim f .

The following proposition shows that any morphism between strongly ori-
ented topological stacks has a natural strong orientation. Proposition 8.11 shows
that this class is multiplicative.

Proposition 8.9 Let f : X → Y be a strongly proper normally nonsingular
morphism of topological stacks, and assume that X and Y are both strongly
oriented (Definition 8.5). Let d = dim X and c = dim Y − dim X. Then, there
is a unique strong orientation class θf ∈ Hc(f) which satisfies the equality
θf · θY = (−1)cdθX · (θf × θf ), as in the diagram

X
f

/.-,()*+θf
//

∆/.-,()*+θX

��

Y

∆ 76540123θY

��

X× X
f×f

ONMLHIJKθf × θf
// Y×Y

Proof. By Proposition 8.8, there exists a strong orientation θ for f . It is
easy to see that θ × θ is a strong orientation for f × f : X × X → Y × Y.
By Lemma 8.6, θ · θY and θX · (θ × θ) are both strong orientation classes for
X → Y × Y. Therefore, by Lemma 8.7, there is a unit u ∈ H0(X) such that
θ ·θY = u ·θX · (θ×θ). It follows that θf := (−1)cdu ·θ has the desired property;
see Lemma 8.10 below. �

Lemma 8.10 Let X be a topological stack and θ ∈ H(X ∆−→ X × X). Let
u, v ∈ H0(X), and let u× v ∈ H0(X)×H0(X) be their exterior product. Then,
θ · (u× v) = u · v · θ, as classes in H(∆).

Proposition 8.11 Assume f : X → Y and g : Y → Z are strongly proper
normally nonsingular morphisms of strongly oriented topological stacks. Let
θf ∈ Hc(f), c = codim f , and θg ∈ Hd(g), d = codim g, be the strong orien-
tations constructed in Proposition 8.9. Then, gf is a strongly proper normally
nonsingular. Furthermore, θf · θg = θgf .
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If X is strongly oriented (Definition 8.5), its iterated diagonals ∆(n) : X→ Xn

are strongly proper (Example 6.3).

Corollary 8.12 Let X be a oriented stack. Then the diagonals ∆(n) : X→ Xn

are canonically strongly oriented.

Proposition 8.13 Notation being as in Proposition 8.2, assume further that
X and Y are oriented and that the G-actions are orientation preserving. Then,
every normally nonsingular diagram for f : X → Y is naturally oriented. In
particular, when f is strongly proper, we have a strong orientation class θf ∈
Hc(f), c = dimY −dimX. Furthermore, this class is independent of the choice
of the normally nonsingular diagram.

Proof. Let us first fix a notation: given a manifold X with an action of G, we
denote [TX/G] by TX. (So, TX does depend on X, and not just on X. Since
in what follows all stacks are quotients of a G-action on a given manifold, this
should not cause confusion.)

Consider a normally nonsingular diagram

N
� � i // E

p
��

X

s

OO

f
// Y

as in the proof of Proposition 8.2. We show that N is naturally oriented. By
Lemma 4.9, there is a natural orientation on TE, because it fits in the following
short exact sequence

0→ p∗E→ TE→ p∗TX→ 0.

In particular, we have an orientation on f∗(TE). We have an isomorphism of
vector bundles over X

TX⊕N ∼= f∗(TE).

It now follows from Lemma 4.8 that N also carries a natural orientation. This
proves the first part of the proposition. In particular, when f is proper, we
obtain a class θf ∈ Hc(X

f−→ Y) as in Proposition 8.8.
Now, we show that the class θf is independent of the normally nonsingular

diagram above. Consider another oriented normally nonsingular diagram for f

M
� � j // F

q
��

X

t

OO

f
// Y
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We have to show that the following diagram commutes

H•(X)
∼= //

=
��

H•+rk N(E,E− X)

∼=
��

H•(X)
∼= // H•+rk M(F,F− X)

where the horizontal isomorphisms are the one of Proposition 8.8, and the ver-
tical isomorphism is the one of Lemma 6.5. First we prove a special case.

Special case. Assume E = F, and is = tj. In this case, we can choose a third
vector bundle L → X and an open embedding k : L ↪→ E that factors through
both N and M. The two orientations induced on L from M and N, as in Lemma
4.11, are the same (because they are equal to the orientation induced from E,
as described above). The claim now follows from the commutative diagram of
Lemma 4.11 (applied once to the open embedding L ↪→ N and once to the open
embedding L ↪→M).

General case. To prove the general case, we make use of the following auxiliary
oriented nonsingular diagrams:

N⊕ f∗F � � (i,pr) // E⊕ F

��

X

(s,jt)

OO

f
// Y

M⊕ f∗E � � (j,pr) // F⊕ E

��

X

(t,is)

OO

f
// Y

Here, the two maps pr stand for the projection maps f∗F = X ×Y F → F and
f∗E = X ×Y E → E. Let us denotes the ranks of E, F, N, and M by e, f , n,
and m. (Hopefully, presence of two different f in the notation will not cause
confusion!) The first normally nonsingular diagram gives rise to the following
commutative diagram of isomorphisms:

H•(X)

=
��

∼= //

ϕ
--

H•+n+f (N⊕ f∗F,N⊕ f∗F− X)

∼=
��

∼= // H•+n+f (E⊕ F,E⊕ F− X)

∼=
��

H•(X)
∼= // H•+n(N,N− X)

∼= // H•+n(E,E− X)

The commutativity of the left square is because of Lemma 4.10, and the commu-
tativity of the right square is because Thom isomorphism (vertical) commutes
with excision (horizontal).

Similarly, the second normally nonsingular diagram gives rise to the following
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commutative diagram of isomorphisms

H•(X)

=
��

∼= //

ψ

--

H•+m+e(M⊕ f∗E,M⊕ f∗E− X)

∼=
��

∼= // H•+m+e(F⊕ E,F⊕ E− X)

∼=
��

H•(X)
∼= // H•+m(M,M− X)

∼= // H•+m(F,F− X)

On the other hand, using the special case that we just proved, the two
normally nonsingular diagrams give rise to the following commutative diagram:

H•(X)

=
��

∼=

ϕ // H•+n+f (E⊕ F,E⊕ F− X)

=
��

H•(X) ∼=

ψ // H•+m+e(F⊕ E,F⊕ E− X)

The general case now follows from combining this diagram with (the other
rectangles) of the previous two diagrams. �

Corollary 8.14 Let X be a stack that is equivalent to the quotient stack [X/G]
of smooth orientation preserving action of a compact Lie group G on a smooth
oriented manifold X having finitely generated homology groups. Then, the di-
agonal X → X × X is naturally oriented. In particular, the diagonal of the
classifying stack BG of a compact Lie group G is naturally oriented.

Remark 8.15 Let X, Y and f be as in Proposition 8.13. There are two ways
of giving a strong orientation to f . Either we can use Proposition 8.13 directly,
or we first apply Corollary 8.14 to endow X and Y with a strong orientation,
and then apply Proposition 8.9. The orientations we get are the same for f . We
denote θf this strong orientation.

Proposition 8.16 Let X be a paracompact oriented orbifold. Then the diagonal
X→ X× X is strongly oriented and in particular, X is naturally oriented.

Proof. Locally, we can find a tubular neighborhood for the diagonal. The
result follows using partition of unity. �

8.2 Construction of the Gysin maps

We recall the construction of Gysin homomorphisms associated to a bivariant
class [25].
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Fix an element θ ∈ Hi(X
f−→ Y). Let u : Y′ → Y be an arbitrary morphism

of topological stacks and X′ = X×Y Y′ the base change given by the cartesian
square :

Y

��

f ′ // Y′

p��

X
f // X′.

(8.1)

Then θ determines Gysin homomorphisms

θ! : Hj(Y′)→ Hj−i(X′)

and
θ! : Hj(X′)→ Hj+i(Y′).

For the cohomology Gysin map, we need to assume that f is adequate. These
homomorphisms are defined by

θ!(a) =
(
u∗(θ)

)
· a, for a ∈ Hj(Y′) = H−j(Y′ → pt),

and
θ!(b) = f ′∗

(
b · u∗(θ)

)
, for b ∈ Hj(X′) = Hj(X′ id−→ X′).

The homology Gysin map is defined because the map X′ → ∗ is adequate (see
Example 7.5).

Gysin homomorphisms associated to a bivariant theory satisfies many prop-
erties such as functoriality, naturality or commutation with product, see [25] for
details.

Notation: When X
f−→ Y is strongly oriented and θ = θf is the strong orien-

tation, we denote f ! = (θf )! the Gysin map.

Let M , N be oriented compact manifolds and G a Lie group acting on M , N
by orientation preserving diffeomorphisms. By Proposition 8.13, if f : M → N
is a G-equivariant map, then f is canonically strongly oriented. Gysin maps for
equivariant (co)homology were already considered, for example, by Atiyah and
Bott [4].

Proposition 8.17 The Gysin map f!, f
! associated to f in (co)homology coin-

cides with the equivariant Gysin map in the sense of Atiyah and Bott [4].

Proof. Gysin map in [4] are obtained by the use of fiber integration and Thom
classes over the spaces MG = M ×G EG and NG = N ×G EG. These spaces
are respectively classifying spaces of the stacks [M/G] and [N/G] and thus are
respectively the pullbacks [M/G]×[∗/G] BG, [N/G]×[∗/G] BG. The pullback of
the normally non singular diagram of Proposition 8.2 along the natural maps
[M/G] ×[∗/G] BG → [M/G] and [N/G] ×[∗/G] BG → [N/G] yields a bundle
NG = N ×[∗/G] BG over MG and a bundle EG = E ×[∗/G] BG over NG. This
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defines a nonsingular diagram for the induced map fG : MG → NG. Unfolding
the definition of bivariant classes, it is straightforward to check that the Gysin
map associated to the strong orientation class of Proposition 8.13 is induced by
the Thom isomorphism associated to the bundle NG over MG. �

Proposition 8.18 (Excess formula) Assume all topological stacks in the
cartesian diagram

X

q

��

j // X′

p

��
Y

f // Y′

are as in Corollary 8.14 or as in Proposition 8.16. Moreover, assume f and j
are immersions with normal bundle Nf , Nj respectively. Then

p∗(θf ) = e
(
q∗(Nf )/Nj

)
· θj . (8.2)

Here e(Nf/Nj) ∈ H•(X) is the Euler class of the bundle Nf/Nj.

Proof. Since X′ → Y′ factors as the composition X′
(1,p)−→ X′ × Y′ −→ Y′ of

an embedding and a submersion, by functoriality of pullbacks, it is enough to
consider the case where p is a submersion and p is an embedding separately. In
the latter case, it is enough to prove it with X → Y, X → X′ assumed to be
tubular neighborhood E, E′ of X and Y′ = E⊕ E′ ⊕N where N = Nf/Nj and
f, p are the natural inclusion maps. Since we have assumed our stacks to be
oriented, by Proposition 8.9 we have canonical orientation classes θ1 ∈ H•(E→
E ⊕ E′ ⊕ N), θ2 ∈ H•(E → E ⊕ N) and θ3 ∈ H•(E ⊕ N → E ⊕ E′ ⊕ N). By
Lemma 6.5, the natural maps i1 : N→ E⊕N, i2 : E′⊕N→ E⊕E′⊕N induces
natural isomorphisms i∗1 : H•(E→ E⊕N) ∼→ H•(X→ N) and i∗2 : H•(E⊕N →
E⊕ E′ ⊕N) ∼→ H•(X→ E′). It follows that Equation (8.2) is equivalent to

θ1 = p̃∗(θ2).p∗(θ3) (8.3)

where p̃ : X → E ⊕N is the natural inclusion map. Equation (8.3) holds since
product and pullback commute. �

Let G be a subgroup of a finite (discrete) group H. Let Y be a manifold
endowed with a (right) H-action (and thus a G-action). Consider the quotient
stacks [Y/H] and [Y/H]. There are well known “transfer maps” trGH : HH

∗ (Y )→
HG
∗ (Y ) (see [8])

Lemma 8.19 When G is a finite group, the Gysin map associated to the carte-
sian square

[Y/G]

��

// [Y/H]

��
[∗/G] // [∗/H]
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where the lower map is induced by the inclusion G ↪→ H, is the usual “transfer
map” HH

∗ (Y )→ HG
∗ (Y ) in equivariant homology.

Proof. The space Y ×H is endowed with a natural right H-action given by
(y, h).k = (y.k, k−1h) as well as a right G-action (y, h).g = (y, hg). These two
actions commutes hence we can form the quotient stack [Y × H/H × G] ∼=
[Y × (H/G)/H]. Clearly the map (y, h) 7→ yh is equivariant with respect to
the G action on the target and H ×G-action on the source. One easily checks
that this map induces an equivalence [Y × (H/G)/H] ∼= [Y/G]. We are thus
left to study the Gysin map of an equivariant covering with fibers the set H/G.
The argument of Proposition 8.17 easily shows that it coincides with the usual
transfer maps for coverings by a finite group and thus with the transfer. �

Assuming we take coefficient in a field of characteristic coprime with |H| for
the singular homology, we have

H•([Y/H]) ∼= HH
∗ (Y ) ∼=

(
H∗(Y )

)
H
.

In that case the map trGH :
(
H∗(Y )

)
H
→
(
H∗(Y )

)
G

is explicitly given by

trGH(x) =
∑

h∈H/G

h.x. (8.4)

9 The loop product

In this section we consider strongly oriented stacks (Definition 8.5). We obtain a
loop product on the homology of the free loop stack of an oriented stack which
generalizes Chas Sullivan product for the homology of a loop manifolds [14].
Recall that a stack X is called strongly oriented if the diagonal ∆ : X→ X× X
has a strong orientation class (Definition 8.4). For instance, oriented manifolds
and oriented orbifolds are oriented stacks. More generally, the quotient stack
of a compact Lie group acting by orientation preserving automorphisms on an
oriented manifold is an oriented stack.

9.1 Construction of the loop product

Let X be an oriented stack of finite dimension d. The construction of the loop
product

H•(LX)⊗H•(LX)→ H•(LX)

is divided into 3 steps.

Step 1 There is a well-known external product (called the “cross product”)

Hp(LX)⊗Hq(LX) S−→ Hp+q(LX).
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Step 2 The diagonal ∆ : X→ X×X and the evaluation map ev0 : LX→ X (5.1)
yield the cartesian square

LX×X LX //

��

LX× LX

(ev0,ev0)
��

X
∆ // X× X.

(9.1)

We will usually denote by e : LX×LX→ X×X the map (ev0, ev0). Since
X is Hurewicz, Corollary 5.3 implies that there is a natural equivalence of
stacks

LX×X LX ∼= Map(8,X),

where the figure “8” stands for the topological stack associated to the
topological space S1 ∨ S1. The wedge S1 ∨ S1 is taken with respect to
the basepoint 0 of S1. Since X is oriented, its diagonal ∆ : X → X × X
is oriented normally nonsingular and according to Section 8.2, there is a
Gysin map

∆! : H•(LX× LX)→ H•−d(LX×X LX) ∼= H•−d(Map(8,X)).

Step 3 The map S1 → S1 ∨ S1 that pinches 1
2 to 0, induces a natural map of

stacks m : Map(8,X) → LX, called the Pontrjagin multiplication. Hence
we have an induced map on homology

m∗ : H•(Map(8,X)→ H•(LX).

We define the loop product to be the following composition

Hp(LX)⊗Hq(LX) S→ Hp+q(LX× LX) ∆!

→ Hp+q−d(Map(8,X)) m∗→ Hp+q−d(LX).
(9.2)

Theorem 9.1 Let X be an oriented stack of dimension d. The loop product
induces a structure of associative and graded commutative algebra for the shifted
homology H•(LX) := H•+d(LX).

The loop product is of degree d = dim(X) because the Gysin map in-
volved in Step 2 is of degree d. If we denote H•(LX) := H•+dim(X)(LX) the
shifted homology groups, then the loop product induces a degree 0 multiplica-
tion H•(LX)⊗H•(LX)→ H•(LX).

Indeed one can introduce a “twisted” version of loop product. Let α be a
class in

⊕
r≥0H

r(LX×XLX). The twisted loop product ?α : H•(LX)⊗H•(LX)→
H•(LX) is defined, for all x, y ∈ H•(LX),

x ?α y = m∗
(
∆!(x× y) ∩ α

)
.
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Remark 9.2 The twisted product ?α is not graded since we do not assume α
to be homogeneous. However, if α ∈ Hr(LX ×X LX) is homogeneous of degree
r, then ?e : H•(LX)⊗H•(LX)→ H•−d−r(LX) is of degree r + dim(X).

Let us introduce some notations. We denote, respectively, p12, p23 : LX ×X

LX×X LX→ LX×X LX the projections on the first two and the last two factors.
Also let (m×1) : LX×XLX×XLX→ LX×XLX and (1×m) : LX×XLX×XLX→
LX×X LX be the Pontrjagin multiplication of the two first factors and two last
factors respectively. Furthermore, there are flip maps σ : LX×LX→ LX×LX,
σ̃ : LX×X LX→ LX×X LX permuting the two factors of LX× LX.

Theorem 9.3 Let α be a class in
⊕

r≥0H
r(LX×X LX).

• If α satisfies the 2-cocycle condition

p∗12(x) ∪ (m× 1)∗(α) = p∗23(α) ∪ (1×m)∗(α) (9.3)

in H•(LX ×X LX ×X LX), then ?e : H•(LX) ⊗ H•(LX) → H•(LX) is
associative.

• If α satisfies the flip condition σ̃∗(α) = α, then the twisted Loop product
?α : H(LX)⊗H(LX)→ H(LX) is graded commutative.

Example 9.4 If E is an oriented vector bundle over a stack X it has a Euler
class e(E). Note that the rank may vary on different connected components of
X. In particular, any vector bundle E over LX ×X LX defines a twisted loop
product ?E := ?e(E) : H(LX) ⊗H(LX) → H(LX). Moreover, σ̃∗(e(E)) ∼= e(E)
whenever σ̃∗E ∼= E. Since identities between Euler classes are equivalent to
identities in K-theory we have:

Corollary 9.5 Let X be an oriented stack and E a vector bundle over LX×XLX.

• If E satisfies the cocycle condition

p∗12(E) + (m× 1)∗(E) = p∗23(E) + (1×m)∗(E)

in K-theory, then ?E is associative.

• If σ̃∗E ∼= E, then the twisted Loop product ?E : H(LX)⊗H(LX)→ H(LX)
is graded commutative.

Remark 9.6 Let M be an oriented manifold and G a finite group acting on
M by orientation preserving diffeomorphisms and X = [M/G] be the asso-
ciated global quotient orbifold. Using Proposition 5.9, Proposition 8.17 and
the argument of the proof of Proposition 14.9 below to identify evaluation
maps and Pontrjagin map, it is straightforward to prove the Loop product
? : H•(LX)⊗H•(LX)→ H•(LX) coincides with the one introduced in [35].
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9.2 Proof of Theorems

The Pontrjagin multiplication m : Map(8,X) → LX is induced by the pinch
map S1 → S1 ∨ S1. The latter is homotopy coassociative, thus there is a chain
homotopy equivalence between

m(m× id) : C•(LX×X LX×X LX)→ C•(LX)

and m(id×m). This proves the next lemma:

Lemma 9.7 The Pontrjagin multiplication satisfies

m∗
(
(id×m)∗

)
= m∗

(
(m× id)∗

)
.

Proposition 9.8 The loop product H•(LX)⊗H•(LX) •→ H•−d(LX) is associa-
tive.

Proof. It is well known that the cross product is associative so that

S(2) : H•(LX)⊗H•(LX)⊗H•(LX)→ H•(LX× LX× LX)

is equal to both S(S × 1) and S(1× S). We write m(2) for the iterated map

m∗(m× 1)∗ = m∗(1×m)∗

as in Lemma 9.7 and ∆(2) the iterated diagonal

∆(∆× 1) = ∆(1×∆) : X→ X×3.

Also let e(2) : LX×3 → X×3 denote the product ev0× ev0× ev0 of the evaluation
map on each component. It is enough to prove that, for all x, y, z ∈ H•(LX),

(x • y) • z = m(2)
(
∆(2)!

(x× y × z)
)

= x • (y • z).

The first equality is given by the commutativity of the following diagram:

H(LX)⊗H(LX)⊗H(LX)

S⊗1 ��
S(2)

**VVVVVVVV

H(LX× LX)⊗H(LX)

(3)

S //

∆!⊗1 ��

H(LX× LX× LX)

(1)∆×1!��

∆(2)!
// H(LX×X LX×X LX)

H(LX×X LX)⊗H(LX)
S //

m∗⊗1 ��

H(LX×X LX× LX)

(2)(m×1)∗ ��

∆!
// H(LX×X LX×X LX)

m̃×1��
p(2)

((RRRRRRR

H(LX)⊗H(LX)
S // H(LX× LX)

∆!
// H(LX×X LX)

m∗ // H(LX).

(9.4)

The commutativity of bottom left square follows from the naturality of the cross
product, and the bottom right triangle from the associativity of m∗ according
to Lemma 9.7. The three remaining squares commutes thanks to the following
reasons:
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(Square 1) There is a diagram of cartesian squares

LX×X LX×X LX //

��

LX×X LX× LX

gev0×ev0

��

// LX× LX× LX

e(2)

��
X

∆ // X× X
∆×1 // X× X× X

.

Thus the commutativity follows from the functoriality of Gysin maps.

(Square 2) Note that the map ẽv0 in square (1) is equal to ev0 ◦m. The
commutativity follows, by naturality of Gysin maps, from the tower of
cartesian diagrams:

LX×X LX×X LX

m̃×1

��

// LX×X LX× LX

m×1

��
LX×X LX

gev0

��

// LX× LX

e

��
X

∆ // X× X.

(Square 3) It is commutative by compatibility of Gysin maps with the cross
product.

Hence it follows that, for all x, y, z ∈ H(LX), one has (x • y) • z =
m(2)(∆(2)!

(x× y × z)).
One proves in a similar way the identity m(2)(∆(2)!

(x× y × z)) = x • (y • z)
from which the equation (x • y) • z = •(y • z) follows. �

Proposition 9.9 The loop product H•(LX)⊗H•(LX) ?→ H∗(LX) is graded com-
mutative.

Proof. Essentially, this result follows from the homotopy commutativity of
the Pontrjagin map m : LX ×X LX = Map(8,X) → X. More precisely we need
to prove that, for x ∈ Hp(LX), y ∈ Hq(LX), we have

m∗
(
∆!(x× y)

)
= (−1)pq

(
m∗
(
∆!(y × x)

)
.

The tower of pullback squares

LX×X LX //

eσ
��

LX× LX

σ

��
LX×X LX

id //

��

LX× LX

e

��
X

∆ // X× X
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implies that
σ̃∗ ◦∆!(x× y) = (−1)pq∆!(y × x).

Here σ̃ : LX ×X LX → LX ×X LX and σ : LX × LX → LX × LX are flip maps.
Hence the result follows from m∗ ◦ σ̃∗ = m∗ in homology. The latter is an
immediate consequence of the existence of a homotopy between the pinch map
p : S1 → S1 ∨ S1 and σ ◦ p : S1 → S1 ∨ S1 obtained by making the base point
0 ∈ S1 goes to 1

2 ∈ S
1. Passing to the mapping stack functor Map(−,X) yields

a homotopy equivalence between m ◦ σ̃ and m. �

Remark 9.10 Note that the homotopy between the two pinch maps does not
preserve the canonical basepoints. Hence it is crucial to work with the free loop
stack (in other words with non pointed mapping stack functors) in this proof.

Proposition 9.11 If α ∈ H•(LX ×X LX) satisfies the cocycle equation (9.3),
then the twisted loop product ?α : H(LX)⊗H(LX)→ H(LX) is associative.

Proof. We write f1 : LX×X LX×LX→ LX×X LX and f3 : LX×LX×X LX→
LX×X LX for the canonical projections. Also we denote j3 : LX×X LX×X LX ↪→
LX ×X LX × LX and j1 : LX ×X LX ×X LX ↪→ LX × LX ×X LX the canonical
maps. Using the naturality of cup product and cross product, we can write an
associativity diagram similar to (9.4) for ?α, for which the only non obviously
commuting square is the one labeled by (1) which becomes :

H(LX× LX× LX)

∆×1!

��

1×∆!
// H(LX×X LX×X LX)

∩f∗3 (α)// H(LX×X LX×X LX)

∆!

��
H(LX×X LX× LX)

∩f∗1 (α)

��

H(LX×X LX×X LX)

∩p∗23(α)

��
H(LX×X LX× LX) ∆!

// H(LX×X LX×X LX)
∩p∗12(α)// H(LX×X LX×X LX).

Since Gysin maps commute with pullback, for any y ∈ H•(LX×X LX× LX),

∆!(y ∩ f∗1 (α)) = ∆!(y) ∩ (f1 ◦ j3)∗(α)
= ∆!(y) ∩ (m× 1)∗(α).

Similarly, ∆!(y ∩ f∗3 (α)) = ∆!(y)∩ (1×m)∗(α). From square (1) of diagram 9.4
we deduce that the commutativity of the square is equivalent to the identity(

∆! ◦∆× 1!
)
∩ (m× 1)∗(α) ∩ p∗12(α) =

(
∆! ◦ 1×∆!

)
∩ (1×m)∗(α) ∩ p∗23(α)

⇐⇒ ∆(2)!
∩
(
(m× 1)∗(α) ∪ p∗12(α)

)
= ∆(2)!

∩
(
(1×m)∗(α) ∪ p∗23(α)

)
.

The last equality follows immediately from the 2-cocycle condition (9.3). �

Proposition 9.12 If σ̃∗(α) = α, then the twisted loop product ?α : H(LX) ⊗
H(LX)→ H(LX) is commutative.

Proof. The proof of Propositions 9.9 applies verbatim. �
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10 String product for family of groups over a
stack

The Chas-Sullivan product generalizes the intersection product for a manifold
M . Indeed, the embedding of M as the space of constant loop in LM makes
H•(M) a subalgebra of the loop homology and the restriction of the loop product
to this subalgebra is the intersection product [14].

In the context of stacks, there are more interesting ”constant” loops, that
is loops which are constant on the coarse space. From a mathematical physics
point of view, these spaces of loops are sometimes called ghost loops. The
canonical ghost loop stack is the inertia stack.

10.1 String product

In this section we construct a string product for the inertia stack. From the
categorical point of view the inertia stack ΛX of a stack X is the stack of
pairs (X,ϕ) where X is an object of X and ϕ an automorphism of X. If X is a
Hurewicz topological stack then so is ΛX. However, if X is differentiable, ΛX is
not necessarily differentiable. Let Γ be a topological groupoid representing X.
Let SΓ = {g ∈ Γ1| s(g) = t(g)} be the space of closed loops. There is a natural
action of Γ on SΓ by conjugation. Thus one forms the transformation groupoid
ΛΓ : SΓ o Γ ⇒ SΓ, which is always a topological groupoid, called the inertia
groupoid. It is a presentation of the inertia stack. and denoted ΛX. Indeed one
obtains the following morphism of groupoids

ΛΓ ////

��

SΓ

����
Γ1 // // Γ0.

(10.1)

There is a morphism of topological groupoids ev0 : ΛΓ → Γ given, for (x, g) ∈
SΓoΓ, by ev0((x, g)) = g ∈ Γ1. This groupoid morphism ev0 : ΛΓ→ Γ induces
the evaluation map

ev0 : ΛX→ X (10.2)

on the corresponding stacks.

The construction of the string product can be made in 3 steps.

Step 1 The external product induces a map:

Hp(ΛX)⊗Hq(ΛX) S→ Hp+q(ΛX× ΛX).

Step 2 We can form the pullback of the evaluation map ev0 : ΛX → X along
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the diagonal ∆ : X→ X× X, thus obtaining the cartesian square

ΛX×X ΛX //

��

ΛX× ΛX

(ev0,ev0)
��

X
∆ // X× X.

(10.3)

Again we denote by e : ΛX × ΛX → X × X the map (ev0, ev0). Since X
is strongly oriented, so is its diagonal ∆ : X → X × X. Hence we have a
Gysin map:

∆! : H•(ΛX× ΛX)→ H•−d(ΛX×X ΛX).

Step 3 The stack ΛX×XΛX is known as the double inertia stack. Its objects are
triples (X,ϕ, ψ) where X is an object of X and ϕ,ψ are automorphisms
of X. On the groupoid level the stack ΛX ×X ΛX is presented by the
transformation groupoid

(
SΓ ×Γ0 SΓ

)
o Γ1 ⇒ SΓ ×Γ0 SΓ where Γ1 acts

on SΓ ×Γ0 SΓ by conjugation diagonally. The double inertia stack is
endowed with a “Pontrjagin” multiplication map m : ΛX ×X ΛX → ΛX
given by m(X,ϕ, ψ) = (X,ϕψ). It induces a morphism on homology

m∗ : H•(ΛX×X ΛX)→ H•(ΛX).

Composing the three maps in the above steps one obtains a product

? : Hp(ΛX)⊗Hq(ΛX)→ Hp+q−d(ΛX),

called the string product:

Hp(ΛX)⊗Hq(ΛX) S→ Hp+q(ΛX×ΛX) ∆!

→ Hp+q−d(ΛX×X ΛX) m∗→ Hp+q−d(ΛX).
(10.4)

As for the loop product, the string product is a degree 0 multiplication on
the shifted homology groups: H•(ΛX) = H•+d(ΛX).

Theorem 10.1 Let X be an oriented stack of dimension d. The shifted homol-
ogy H•(ΛX) of the inertia stack is an associative graded commutative algebra.

Before proving Theorem 10.1, let us remark that the “Pontrjagin” map m :
ΛX×X ΛX→ ΛX corresponds to the multiplication is associative. Thus, passing
to homology one has the lemma:

Lemma 10.2 m∗ : H•(ΛX×X ΛX)→ H•(ΛX) satisfies the associativity condi-
tion:

m∗
(
(id×m)∗

)
= m∗

(
(m× id)∗

)
.
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Less obvious is that it is also commutative : indeed there is a 2-arrow α

ΛX×X ΛX
m //

flip

��

α

!)KKKKK
KKKKK

ΛX

ΛX×X ΛX

m

<<xxxxxxxxxxx

(10.5)

which associates to (X,ϕ, ψ) in the double inertia the isomorphism ϕ−1 :

X
ϕψ //

ϕ−1

��
∼=

X

ϕ−1

��
X

ψϕ // X

(10.6)

between (X,ϕψ) and (X,ψϕ) in ΛX.

Proof of Theorem 10.1. Associativity follows mutatis mutandis from the
proof of Theorem 9.8, substituting LX with ΛX in the argument. Similarly,
the proof of Theorem 9.9 leaves us to proving that the induced map m∗ ◦ σ̃ :
H•(ΛX ×X ΛX) → H•(ΛX) in homology is equal to m∗. Here again σ̃ is the
flip map. Passing to any groupoid Γ representing X and denoting ΛΓ×Γ ΛΓ =(
SΓ×Γ0 SΓ

)
o Γ1 ⇒

(
SΓ×Γ0 SΓ

)
, it is enough to check that the induced map

m∗ ◦ σ̃∗ : H• (ΛΓ×Γ ΛΓ)→ H•(ΛΓ)

in groupoid homology is equal to m∗. At level of groupoids, the 2-arrow α of
diagram (10.5) yields the identity

m∗(σ(n1, n2)) = µ(n2, n1)

=
(
µ(n1, n2)

)n−1
2

for all x = (n1, n2, γ) ∈
(
SΓ ×Γ0 SΓ

)
o Γ1. Here µ : SΓ ×Γ0 SΓ → SΓ is the

restriction of the groupoid multiplication of Γ. Thusm∗(σ(n1, n2)) is canonically
conjugate to m∗(n1, n2) and in a equivariant way. It follows that after passing to
groupoid homology, one has m∗ = m∗ ◦ σ̃. An explicit homotopy h : Cn(ΛΓ×Γ

ΛΓ) → Cn+1(ΛΓ) between m∗ and m∗ ◦ σ̃ at the chain level is given by h :∑n
i=0(−1)ihi where

hi((n1, n2), g1, . . . , gn) =
(
µ(n1, n2)

)n−1
2 , g1, . . .

. . . , gi, (g1 . . . gi)−1n2(g1 . . . gi), gi+1, . . . , gn
)

for i > 0 and h0((n1, n2), g1, . . . , gn) =
(
µ(n1, n2)

)n−1
2 , n2, g1, . . . , gn

)
. �
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If α is a cohomology class in
⊕

r≥0H
r(ΛX×X ΛX), one defines the twisted

string product
?α : H•(ΛX)⊗H•(ΛX)→ H•(ΛX)

as follows. For any x, y ∈ H•(ΛX),

x ?α y = m∗
(
∆!(x× y) ∩ α

)
.

We use similar notations as for Theorem 9.3: denote p12, p23 : ΛX×X ΛX×X

ΛX→ ΛX×X ΛX the projections on the first two and the last two factors

Proposition 10.3 Let α be a class in
⊕

r≥0H
r(ΛX×X ΛX).

• If α satisfies the cocycle condition:

p∗12(α) ∪ (m× 1)∗(α) = p∗23(α) ∪ (1×m)∗(α) (10.7)

in H•(ΛX×X ΛX×X ΛX), then ?α : H(ΛX)⊗H(ΛX)→ H(ΛX) is asso-
ciative.

• If α satisfies the flip condition σ̃∗(α) = α, then the twisted string product
?α : H(ΛX)⊗H(ΛX)→ H(ΛX) is graded commutative.

Proof. The argument of Proposition 9.11 and Proposition 9.12 applies. �

Corollary 9.5 has an obvious counterpart for inertia stack.

Corollary 10.4 Let X be an oriented stack and E a vector bundle over ΛX×X

ΛX.

• If E satisfies the cocycle condition

p∗12(E) + (m× 1)∗(E) = p∗23(E) + (1×m)∗(E)

in K-theory, then ?E is associative.

• If σ̃∗E ∼= E, then the twisted Loop product ?E : H(ΛX)⊗H(ΛX)→ H(ΛX)
is graded commutative.

10.2 Family of commutative groups and crossed modules

The string product can be defined for more general ”ghost loops” stacks than
the mere inertia stack. In fact, we can replace the commutative family ΛX→ X
by an arbitrary commutative family of groups.

A family of groups over a (topological) stack X is a (topological) stack G
together with a morphism of (topological) stacks ev : G→ X and an associative
multiplication m : G ×X G → G. A family of groups G → X (over X) is said
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to be a commutative family of groups (over X) if there exists an invertible
2-arrow α making the following diagram

G×X G
m //

flip

��

α

�'GGGG
GGGG

G

G×X G

m

>>||||||||||

(10.8)

commutative. Clearly, the inertia stack is a commutative family of groups (see
Equation 10.6).

In the groupoid language, a commutative family of groups can be repre-
sented as follows. A crossed module of (topological) groupoids is a morphism
of groupoids

N1
i //

����

Γ1

����
N0

= // Γ0

which is the identity on the base spaces (in particular N0 = Γ0) and where
N1 ⇒ N0 is a family of groups (i.e. source and target are equal), together with
a right action (γ, n)→ nγ of Γ on N by automorphisms satisfying:

1. for all (n, γ) ∈ N o Γ1, i(nγ) = γ−1i(n)γ;

2. for all (x, y) ∈ N ×Γ0 N , xi(y) = y−1xy.

Note that the equalities in (1) and (2) make sense because N is a family of
groups. We use the short notation [N i−→ Γ] for a crossed module.

Remark 10.5 In the literature, groupoids for which source equals target are
sometimes called bundle of groups. Since we do not assume the source to be
locally trivial, we prefer the terminology family of groups.

Since a crossed module [N i−→ Γ] comes with an action of Γ on N , one
can form the transformation groupoid Λ[N i→ Γ] : N1 o Γ1 ⇒ N1, which is
a topological groupoid. Furthermore, the projection N1 oΓ0 Γ1 → Γ1 on the
second factor induces a (topological) groupoid morphism ev : Λ[N i→ Γ] → Γ.
Let G and X be the quotient stack [N1/N1 oΓ1] and [Γ0/Γ1] respectively. Then
ev : G→ X is a commutative family of groups over X. Clearly, the inertia stack
ΛX corresponds to the crossed module [SΓ ↪→ Γ] for any groupoid presentation
Γ of X. Obviously Λ[SΓ ↪→ Γ] is the inertia groupoid ΛΓ. The inertia stack is
universal among commutative family of groups over X:
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Lemma 10.6 Let ev : G→ X be a commutative family of groups over X. There
exists a unique factorization

G
e //

ev %%JJJJJJJ ΛX
ev0��

X.

In fact, for any crossed module [N i−→ Γ], there is a unique map e : Λ[N i→
Γ]→ ΛΓ making the following diagram commutative:

Λ[N
i→ Γ]

e //

ev ''NNNNNNNN
ΛΓ

ev0
��

Γ.

Example 10.7 Let X be an abelian orbifold, that is an orbifold which can be
locally represented by quotients [X/G] where G is (finite) abelian. Then the
k-twisted sectors of [16] carries a natural crossed module structure [SkΓ

µ−→ Γ]
where µ is the k − 1-fold multiplication SkΓ → SΓ followed by the inclusion ι.
Of course, for k = 1, it is well-known that the induced stack is the inertia stack
and that the abelian hypothesis can be droped. The associated commutative
family of groups is ΛkX→ X where ΛkX = ΛX×X · · · ×X ΛX is the kth-inertia
stack.

Let G → X be a commutative family of groups over a stack X. If X is
strongly oriented, Section 8.2 yields a canonical Gysin map

∆! : H•(G×G)→ H•−d(G×X G).

Thus one can form the composition

? : Hp(G)⊗Hq(G) S→ Hp+q(G×G) ∆!

→ Hp+q−d(G×X G) m∗→ Hp+q−d(G) (10.9)

Since m : G×X G → G is associative and commutative as for the inertia stack
in Section 10.1, Step 3, the argument of Theorem 10.1 yields easily

Proposition 10.8 Let G be a commutative family of groups over an oriented
stack X (with dim(X) = d). The multiplication ? (see Equation (10.9)) endows
the shifted homology groups H•(G) ∼= H•+d(G) with a structure of associative,
graded commutative algebra.

Remark 10.9 It is easy to define twisted ring structures on H•(G) along the
lines of Theorem 10.3. Details are left to the reader.

Remark 10.10 If X is a oriented stack and if G → X is a family of groups
which is not supposed to be commutative, the product ? (Equation (10.9)) is
still defined. Moreover the proof of Theorem 10.1 shows that (H•(G), ?) is an
associative algebra. The kth-inertia stack ΛkX = ΛX×X · · ·×XΛX is an example
of non (necessarily) commutative family of groups.
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11 Frobenius algebra structures

The loop homology (with coefficients in a field) of a manifold carries a rich
algebraic structure besides the loop product. It is known [18] that there exists
also a coproduct, which makes it a Frobenius algebra (without counit).

It is natural to expect that such a structure also exists on H•(LX) for an
oriented stack X. In Section 11.2 we show that this is indeed the case. We also
prove a similar statement for the homology of inertia stacks.

In this section we assume that our coefficient ring k is a field, since we will
use the Künneth formula H•(X⊗Y) ∼−→ H•(X)⊗H•(Y).

11.1 Quick review on Frobenius algebras

Let k be a field and A a k-vector space. Recall that A is said to be a Frobenius
algebra if there is an associative commutative multiplication µ : A⊗2 → A and
a coassociative cocommutative comultiplication δ : A → A⊗2 satisfying the
following compatibility condition

δ ◦ µ = (µ⊗ 1) ◦ (1⊗ δ) = (1⊗ µ) ◦ (δ ◦ 1) (11.1)

in Hom(A⊗2, A⊗2). Here we do not require the existence of a unit nor a counit.
Also we allow A to be graded and the maps µ and δ to be graded as well. When
both maps are of the same degree d, we say that A is a Frobenius algebra of
degree d. The tensor product of two Frobenius algebras A and B is naturally a
Frobenius algebra with the multiplication (µ ⊗ µ) ◦ (τ23) and comultiplication
τ−1
23 ◦ (δ⊗ δ) where τ23 : A⊗B ⊗A⊗B → A⊗2 ⊗B2 is the map permuting the

two middle components.

Warning We need a few words of caution concerning our definition of Frobe-
nius algebras. In the literature, one often encounters (commutative) Frobenius
algebras which are both unital and counital such that, if c : A→ k is the counit,
then c ◦ µ : A⊗A→ k is a nondegenerate pairing.

11.2 Frobenius algebra structure for loop stacks

In this subsection we prove the existence of a Frobenius algebra structure on the
homology of the free loop stack of an oriented stack. Let ev0, ev1/2 : LX → X
be the evaluation maps defined as in Equation (5.1), where X is a Hurewicz
topological stack. To simplify the notations, let ĕ be the evaluation map
(ev0, ev1/2) : LX→ X× X.

Lemma 11.1 The stack LX×X LX fits into a cartesian square

LX×X LX
m //

��

LX

ĕ

��
X

∆ // X× X

(11.2)
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where ∆ : X→ X× X is the diagonal.

Proof. Since S1 is compact and X is a Hurewicz topological stack, Lemma 5.2
ensures that the pushout diagram of topological spaces

pt
∐

pt
0

‘ 1
2 //

��

S1

��
pt // S1 ∨ S1

becomes a pullback diagram after applying the mapping stack functor
Map(−,X). This is precisely diagram (11.2). �

Remark 11.2 The argument of Lemma 11.1 can be applied to iterated diago-
nals as well. In particular, LX×X · · ·×X LX (with n-terms) is the mapping stack
Map(S1 ∨ · · · ∨ S1,X) (with n copies of S1) and moreover there is a cartesian
square

LX×X · · · ×X LX //

��

LX

(ev0,ev1/n,...,evn−1/n)

��
X

∆ // X× · · · × X.

(11.3)

Now assume that X is oriented of dimension d. According to Section 8.2,
the cartesian square (11.2) yields a Gysin map

∆! : H•(LX) −→ H•−d(LX×X LX).

By diagram (9.1), there is a canonical map Map(8,X) ∼= LX×X LX
j→ LX×LX.

Thus we obtain a degree d map

δ : H•(LX)
∆!

→ H•−d(LX×X LX)
j∗→ H•−d(LX× LX) ∼=

M
i+j=•−d

Hi(LX)⊗Hj(LX).(11.4)

Theorem 11.3 Let X be an oriented stack of dimension d. Then (H•(LX), ?, δ)
is a Frobenius algebra, where both operations ? and δ are of degree d.

Proof. It remains to prove the coassociativity, cocommutativity of the co-
product and the Frobenius compatibility relation. Denote by δS : H•(X×Y)→
H•(X) ⊗ H•(Y) the inverse of the cross product induced by the Künneth iso-
morphism and δ

(n)
S for its iteration.

i) Coassociativity Let ĕ(2) : LX → X × X × X be the iterated evaluation
map (ev0, ev1/3, ev2/3). According to Corollary 8.12, the iterated diagonal ∆(2) :
X→ X×X×X is naturally normally nonsingular oriented. Thus, Remark 11.2
implies that there is a Gysin map ∆(2)!

. Similarly there is a canonical map
j(2) : LX×X LX×X LX ∼= Map(S1∨S1∨S1,X)→ LX×LX×LX. The argument
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of the proof of Theorem 9.8 shows that it is sufficient to prove that the following
diagram is commutative (which is, in a certain sense, the dual of diagram (9.4)).

H(LX)⊗H(LX)⊗H(LX)

H(LX× LX)⊗H(LX)

δS⊗1
OO

H(LX× LX× LX)
δSoo

δ
(2)
SkkVVVVVVVV

H(LX×X LX×X LX)
j
(2)
∗oo

H(LX×X LX)⊗H(LX)

j∗⊗1
OO

H((LX×X LX)× LX)

(3)

(5)

1×δSoo
(j×1)∗
OO

H(LX×X LX×X LX)

(1)

(1×j)∗oo

H(LX)⊗H(LX)

∆!⊗1

OO

H(LX× LX)
δS

oo
∆!
OO

H(LX×X LX)
j∗

oo
∆!
OO

(2)

H(LX)
(4)

∆!
oo

∆(2)!hhRRRRRRR

(11.5)

where p and p̃ denote, respectively, the projections LX×LX→ LX and LX×X

LX → LX on the first factor. Square (5) is commutative by naturality of the
cross coproduct δS and the upper left triangle by its coassociativity. We are left
to study the three remaining squares (1), (2), (3) and triangle (4).

Square (1) commutes in view of the identity j(2) = (j×1)◦(1×j) which follows
from the natural isomorphism (LX×X LX)×LX ∼= LX×X (LX×LX). Here
the map LX × LX → X is the composition ev0 ◦p. In the sequel, we use
this isomorphism without further notice.

Square (2) Since ĕ ◦ p̃ =
(
ĕ ◦ p

)
◦ j : LX×X LX → X× X, the commutativity

of square (2) follows immediately, by naturailty of Gysin maps, from the
tower of cartesian diagrams

LX×X LX×X LX

1×j ��

// LX×X LX

j��

LX×X LX× LX

��

m×1 // LX× LX

ĕ◦p��

X
∆ // X× X.

Square (3) commutes by the same argument as for square (3) in diagram (9.4).

Triangle (4) The sequence of cartesian diagrams

LX×X LX×X LX
m×1 //

��

LX×X LX
m //

ĕ◦ep
��

LX

(ev0,ev 1
2
,ev 1

4
)

��
X

∆ // X× X
∆×1 // X× X× X.

(11.6)

implies, by naturality of Gysin maps, that

∆! ◦ (∆× 1)! = ∆(2)!
. (11.7)
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There is an homeomorphism h : S1 ∼→ S1 which, together with the flip
map σ, induces a commutative diagram

LX×X LX×X LX

��

// --LX
h∗

//

ĕ(2)

��

LX

(ev0,ev 1
2
,ev 1

4
)

��
X

∆(2)
// X× X× X

1×σ // X× X× X

(11.8)

As h∗ = Map(−,X)(h) is a homeomorphism and (1 × σ) ◦ ∆(2) = ∆(2),
diagram (11.8) identifies ∆(2)!

with the Gysin map (denoted ∆(2)!
by

abuse of notation) associated to Diagram (11.6). Since (∆× 1)! = ∆!

the commutativity of Triangle (4) follows from Equation (11.7).

ii) Let’s turn to the point of cocommutativity. It is sufficient to prove that

∆! = σ̃∗ ◦∆!, (11.9)

where σ̃ : LX×X LX→ LX×X LX is the flip map. There is a natural homotopy
F : I × LX×X LX→ LX between m ◦ σ̃ and m (see the proof of Theorem 9.9).
Equation (11.9) follows easily by naturality of Gysin maps applied to the carte-
sian squares below (where t ∈ I)

LX×X LX
F (t,−) //

(t,1) ��

LX

(t,1)��

I × LX×X LX
(1◦p,F )//

��

I × LX

ĕ��

X
∆ // X× X.

The map (t, 1) : LX → I × LX is the map LX
∼→ {t} × LX → I × LX. The

left upper vertical map is similar. The maps (t, 1) are homotopy equivalences
inverting the canonical projections I ×LX→ LX, I ×LX×X LX→ LX×X LX.

iii) It remains to prove the Frobenius relation (11.1). To avoid confu-
sion between different Gysin maps, we now denote m! := ∆! : H•(LX) →
H•−d(LX ×X LX) and j! := ∆! : H•(LX × LX) → H•−d(LX ×X LX) the Gysin
maps inducing the product and coproduct. The cartesian squares

LX×X LX×X LX
1×m //

��

LX×X LX

ĕ◦ep
��

X
∆ // X× X,

LX×X LX×X LX
ej //

��

LX× LX×X LX

(ev0 × ev0)◦(1×ep)
��

X
∆ // X× X

give rise to Gysin maps (see Section 8.2)

(1×m)! : H•(LX×X LX)→ H•−d(LX×X LX×X LX) and

j̃! : H•(LX× LX×X LX)→ H•−d(LX×X LX×X LX).
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There is a canonical map ˜̃j : Map(S1 ∨ S1 ∨ S1,X) ∼= LX ×X LX ×X LX →
LX×X LX× LX sitting in the pullback diagram

LX×X LX×X LX

��

eej // (LX×X LX)× LX

gev0×ev0

��
X

∆ // X× X

Consider the following diagram

H•(LX× LX)

j!

��
(a)

m!
23

++VVVVVVVVVVVVVVVVVVV
(1×m)! // H•−d(LX× LX×X LX)

(a′)

(1×j)∗ //

ej!
��

H•−d(LX× LX× LX)

(j×1)!

��
H•−d(LX×X LX)

m∗

��
(b)

1×Xm
!
// H•−2d(LX×X LX×X LX)

(c)

(b′)

m∗×X1

��

eej∗ // H•−2d(LX×X LX× LX)

m∗×1

��
H•−d(LX)

m!
// H•−2d(LX×X LX)

j∗
// H•−2d(LX× LX)

(11.10)

where m!
23 : H•(LX × LX) → H•−2d(LX ×X LX ×X LX) is the Gysin map

determined by the cartesian square (applying Corollary 8.12)

LX×X LX×X LX

��

j◦(1×Xm) // LX× LX

ev0×ĕ
��

X
∆(2)

// X× X× X.

The triangle (a) in diagram (11.10) is commutative because we have a sequence
of cartesian squares

LX×X LX×X LX
1×Xm //

��

LX×X LX
j //

ĕ◦ep
��

LX× LX

ev0 ×ĕ

��
X

∆ // X× X
∆×1 // X× X× X.

(11.11)

Similarly, triangle (a′) is commutative, i.e., j̃! ◦ (1×m)! = m!
23. By naturality

of Gysin maps, the towers of cartesian squares

LX×X LX×X LX
1×Xm //

1×Xm

��

LX×X LX

m

��
LX×X LX

��

m // LX

��
X

∆ // X× X ,

LX×X LX×X LX //

eej
��

LX× LX×X LX

1×j

��
LX×X LX× LX

gev0◦(1×p)

��

j×1 // LX× LX× LX

(ev0 × ev0)◦(1×p)

��
X

∆ // X× X
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give the commutativity of squares (b) and (b’) in diagram (11.10). The com-
mutativity of Square (c) is trivial. Thus diagram (11.10) is commutative. Up
to the identification H•(LX × LX) ∼= H•(LX) ⊗ H•(LX), the composition of
the bottom horizontal map and the left vertical one in diagram (11.10) is the
composition δ(−?−). The composition of the right vertical map with the upper
arrow is (a ? b(1))⊗ b(2). Finally commutation of the Gysin maps with the cross
product yields the identity

δ(a ? b) = a ? b(1) ⊗ b(2).

The proof of identity δ(a ? b) = a(1) ⊗ a(2) ? b is similar. �

11.3 Frobenius algebra structure for inertia stacks

In this section we show that the homology of the inertia stack is also a Frobenius
algebra, similarly to Theorem 11.3.

Let X be a Hurewicz topological stack of dimension d and Γ a topological
groupoid representing X. Thus its inertia stack ΛX is the stack associated to
the inertia groupoid ΛΓ := SΓoΓ⇒ SΓ, where SΓ is the space of closed loops.
Any loop S1 → X on a topological space X can be evaluated in 0 but also in
1/2. It is folklore to think of ΛX as a ghost loop stack. Hence evaluation map at
0 and 1/2 should make sense as well. We first construct these evaluation maps
for the inertia stack which leads to the construction of the Frobenius structure
on H•(ΛX) when X is oriented.

First of all, let us introduce another groupoid Λ̃Γ which is Morita equivalent
to ΛΓ. Objects of Λ̃Γ consist of all diagrams

x y
g1
vv

x

g2
vv (11.12)

in Γ. Note that the composition g1g2 is a loop over x. Arrows of Λ̃Γ consist of
commutative diagrams

x y

g1
ww

x

g2
vv

x′

h0

OO

y′

h1/2

OO

ii x′

h0

OO

hh

Note that the left and right vertical arrows are the same. The target map is
the top row

x y
g1
vv

x

g2
vv

while the source map is the bottom row

x′ y′
h−1
0 g1h1/2
uu

x′

h−1
1/2g2h0

uu
.
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The unit map is obtained by taking identities as vertical arrows. The compo-
sition is obtained by superposing two diagrams and deleting the middle row of
the diagram, i.e.

x y

g1
ww

x

g2
vv

x′

h0

OO

y′

h1/2

OO

ii x′

h0

OO

hh

∗ x′ y′
uu

x′
vv

x”

h′0

OO

y”

h′1/2

OO

ii x”

h′0

OO

ii

is mapped to

x y

g1
vv

x

g2
vv

x”

h0h
′
0

OO

y”

h1/2h
′
1/2

OO

ii x” .

h0h
′
0

OO

ii

In other words, Λ̃Γ is the transformation groupoid S̃Γ oΓ0×Γ0

(
Γ1×Γ1

)
, where

S̃Γ = {(g1, g2) ∈ Γ2 | t(g1) = s(g2)}, the momentum map S̃Γ→ Γ0×Γ0 is (t, t),
and the action is given, for all compatible (h0, h1/2) ∈ Γ1 × Γ1, (g1, g2) ∈ S̃Γ,
by

(g1, g2) · (h0, h1/2) = (h−1
0 g1h1/2, h

−1
1/2g2h0).

One defines evaluation maps taking by the vertical arrows of S̃Γ, i.e.
∀(g1, g2, h0, h1/2) ∈ Λ̃Γ1 define

ev0 : (g1, g2, h0, h1/2) 7→ h0, ev1/2 : (g1, g2, h0, h1/2) 7→ h1/2.

It is simple to prove

Lemma 11.4 Both evaluation maps ev0 : Λ̃Γ → Γ and ev1/2 : Λ̃Γ → Γ are
groupoid morphisms.

There is a map

p : Λ̃Γ→ ΛΓ (11.13)

obtained by sending a diagram in Λ̃Γ1 to the composition of the horizontal
arrows, i.e.,

x y

g1
ww

x

g2
vv

x′

h0

OO

y′

h1/2

OO

ii x′

h0

OO

hh

is mapped to x x

g1g2
vv

x′

h0

OO

x′

h0

OO

hh

In other words p(g1, g2, h0, h1/2) = (g1g2, h0).

Lemma 11.5 The map p : Λ̃Γ→ ΛΓ is a Morita morphism.

Proof. The map p0 : Λ̃Γ0 → ΛΓ0 is a surjective submersion with a section
given by g 7→ (g, 1s(g)) for g ∈ SΓ. Let g, g′ ∈ SΓ. Assume given (g1, g2) ∈ Γ2

with g1g2 = g and (g′1, g
′
2) ∈ Γ2 with g′1g

′
2 = g′. Then any arrow in Λ̃Γ from
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x y
g1
vv

x

g2
vv to x y

g′1
vv

x

g′2
vv is uniquely determined by h0 ∈ Γ1

satisfying h−1
0 g1g2h0 = g′1g

′
2. Indeed, h1/2 is given by h1/2 = g2h0g

′
2
−1. �

As a consequence the groupoid Λ̃Γ also represents the inertia stack ΛX, and
Lemma 11.4 implies that there are two stack maps ev0, ev1/2 : ΛX→ X.

We now proceed to construct the string coproduct. As in Section 10.1 above,
ΛΓ×Γ ΛΓ is the transformation groupoid

(
SΓ×Γ0 SΓ

)
oΓ⇒ SΓ×Γ0 SΓ, where

Γ acts on SΓ ×Γ0 SΓ by conjugations diagonally. Its corresponding stack is
ΛX×X ΛX.

Lemma 11.6 The stack ΛX×X ΛX fits into the cartesian square

ΛX×X ΛX
m //

��

ΛX

(ev0,ev1/2)

��
X

∆ // X× X

.

As in Section 11.3, we denote ĕ := (ev0, ev1/2) : ΛX→ X× X the right vertical
map in the diagram of lemma 11.6.

Proof.We use Λ̃Γ as a groupoid representative of ΛX. By the definition of the
evaluation maps, the fiber product

Γ×Γ×Γ Λ̃Γ //

��

Λ̃Γ
(ev0,ev1/2)

��
Γ

∆ // Γ× Γ

can be identified with the subgroupoid of Λ̃Γ, which consists of (g1, g2, h0, h1/2)
such that h0 = h1/2. The latter is simply the transformation groupoid

SΓ×Γ0 SΓ o Γ1 ⇒ SΓ×Γ0 SΓ

which is precisely ΛΓ×Γ ΛΓ. Moreover the composition

ΛΓ×Γ ΛΓ ∼= Γ×Γ×Γ Λ̃Γ→ Λ̃Γ
p→ ΛΓ,

where p is defined by equation (11.13), is precisely the “Pontrjagin” map m :
ΛΓ×Γ ΛΓ→ ΛΓ in Section 10.1. �

Remark 11.7 It is not hard to generalize the above construction to any finite
number of evaluation maps and obtain the following cartesian square (see the
proof of Theorem 11.3 below)

ΛX×X · · · ×X ΛX //

��

ΛX

��
X // X× · · · × X.
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If X is oriented of dimension d, the cartesian square of Lemma 11.6 yields a
Gysin map (Section 8.2)

∆! : H•(ΛX) −→ H•−d(ΛX×X ΛX).

As shown in Section 10.1, there is also a canonical map j : ΛX×XΛX→ ΛX×ΛX.

Theorem 11.8 Assume X is an oriented stack of dimension d. The composi-
tion

Hn(ΛX) ∆!

−→ Hn−d(ΛX×XΛX)
j−→ Hn−d(ΛX×ΛX) ∼=

⊕
i+j=n−d

Hi(ΛX)⊗Hj(ΛX)

yields a coproduct δ : H•(ΛX) →
⊕

i+j=•−dHi(ΛX) ⊗ Hj(ΛX) which is
a coassociative and graded cocommutative coproduct on the shifted homology
H•(ΛX) := H•+d(ΛX), called the string coproduct of ΛX.

Proof. The proof is very similar to that of Theorem 11.3. We only explain
the difference.

i) First we introduce a third evaluation map ev2/3 : ΛX → X similar to
ev1/2. Taking a representative Γ of X, the idea is to replace ΛΓ by another

groupoid ˜̃ΛΓ, where ˜̃ΛΓ1consists of commutative diagrams:

x y

g1
ww

z

g2
vv

x

g3
ww

x′

h0

OO

y′

h1/2

OO

ii z′

h2/3

OO

hh x′

h0

OO

hh

The source and target maps are, respectively, given by the bottom and upper
lines. The multiplication is by superposition of diagrams. There are evaluation

maps ev0, ev1/2, ev2/3 : ˜̃ΛΓ → Γ, respectively, given by h0, h1/2, g2/3. A proof
similar to those of Lemmas 11.5 and Lemmas 11.6 gives the following facts :

1. the groupoid ˜̃ΛΓ is Morita equivalent to ΛΓ. Hence it also represents the
stack ΛX.

2. The evaluation maps induce a cartesian square

ΛX×X ΛX×X ΛX //

��

ΛX

ĕ(2)

��
X

∆(2)
// X× X× X

which yields a Gysin map ∆(2)!
: H•(ΛX)→ H•−2d(ΛX×X ΛX×X ΛX).

It follows that one can form a diagram similar to (11.5) for ΛX and prove that
all its squares (1),(2), (3), (5) are commutative mutatis mutandis. The proof
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of the commutativity of triangle (4) is even easier: it follows immediately from
the sequence of cartesian square

ΛX×X ΛX×X ΛX //

��

ΛX×X ΛX
m //

ĕ◦ep
��

ΛX

ĕ(2)

��
X

∆ // X× X
∆×1 // X× X× X.

ii) Since p ◦ σ̃ is conjugate to p, the proof of the cocommutativity of δ is
similar to the proof of Proposition 11.3 and of Proposition 10.1. �

Theorem 11.9 The homology groups (H•(ΛX), •, δ) form a (non unital, non
counital) Frobenius algebra of degree d.

Proof. According to Theorems 10.1, 11.3 it suffices to prove the compatibility
condition between the string product and string coproduct. The argument of
the proof of Theorem 11.3.iii) applies. �

Remark 11.10 If X has finitely generated homology groups in each degree,
then by universal coefficient theorem, H•(ΛX) inherits a Frobenius coalgebra
structure which is unital iff (H•(ΛX), δ) is counital.

11.4 The canonical morphism ΛX→ LX

There is a morphism of stacks Φ : ΛX→ LX generalizing the canonical inclusion
of a space into its loop space (as a constant loop).

Remark 11.11 Objects of ΛX are pairs (X,ϕ) where X is an object of X and ϕ
an automorphism of X. The morphism Φ may be thought to maps (X,ϕ) ∈ ΛX
to the isotrivial family over S1, which is obtained from the constant family XI

over the interval by identifying the two endpoints via ϕ.

We show in this Section that Φ induces a morphism of Frobenius algebras in
homology.

Let Γ be a groupoid representing the oriented stack X (of dimension d) and
ΛΓ its inertia groupoid representing ΛX. Proposition 5.4 gives a groupoid LΓ
representing the free loop stack LX. We use the notations of Section 5.2. Recall
that the topological groupoid LΓ is a limit of topological groupoids LPΓ where
P is a finite subset of S1. We take P = {1, 1} ⊂ S1 the trivial subset of S1. We
will construct a morphism of groupoids ΛΓ→ LPΓ inducing the map ΛX→ LX.

Any (g, h) ∈ SΓ o Γ = ΛΓ1 (i.e. g ∈ Γ1 with s(g) = t(g)) determines a
commutative diagram Φ(g, h) in the underlying category of the groupoid Γ :

t(h) t(h)
goo

s(h)

h

OO

s(h) .

h

OO

h−1ghoo

(11.14)
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The square Φ(g, h) (defined by diagram (11.14)) being commutative, it is an
element of M1Γ. Since P is a trivial subset of S1, a morphism [SP1 ⇒ SP0 ] →
[M1Γ ⇒ M0Γ] is given by a path f : [0, 1] → Γ1 and elements k, k′ ∈ Γ1 such
that the diagram

t(f(0)) t(f(1))koo

s(f(0))

f(0)

OO

s(f(1)))

f(1)

OO

k′oo

commutes. In particular, the diagram Φ(g, h) ∈ M1Γ yields a (constant)
groupoid morphism [SP1 ⇒ SP0 ] → [M1Γ ⇒ M0Γ] defined by t 7→ f(t) = h.
The map (g, h) 7→ Φ(g, h) is easily seen to be a groupoid morphism. We denote
by Φ : ΛΓ → LΓ its composition with the inclusion LPΓ → LΓ. It is still a
morphism of groupoids. Hence we have the following

Lemma 11.12 The map Φ : ΛΓ → LΓ induces a functorial map of stacks
ΛX→ LX.

In particular there is an induced map Φ∗ : H•(ΛX)→ H•(LX) in homology.

Theorem 11.13 Let X be an oriented stack. The map Φ∗ : (H•(ΛX), •, δ) →
(H•(LX), ?, δ) is a morphism of Frobenius algebras.

Proof. Let Γ be a groupoid representing X. For any (g, h) ∈ SΓ o Γ1 = ΛΓ1,
one has

ev0

(
Φ(g, h)

)
= h = ev0(g, h)

where ev0 stands for both evaluation maps LΓ → Γ, ΛΓ → Γ. Thus the
cartesian square of Step (2) in the construction of the string product factors
through the one of the loop product and we have a tower of cartesian squares:

ΛX×X ΛX //

eΦ ��
ΛX× ΛX

Φ×Φ
��

LX×X LX

��

// LX× LX

ev0× ev0
��

X
∆ // X× X

(11.15)

where Φ̃ is induced by Φ× Φ. The square (11.15) shows that

∆! ◦
(
Φ× Φ

)
∗ = Φ̃∗ ◦∆!. (11.16)

Since LΓ is a presentation of LX, the cartesian square LΓ×Γ LΓ represents
the stack LX ×X LX. Given any (g1, g2, h) in

(
SΓ ×Γ0 SΓ

)
o Γ1 = ΛΓ ×Γ ΛΓ,
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one can form a commutative diagram Φ̃(g1, g2, h):

t(h) t(h)
g1rr

t(h)
g2rr

s(h)

h

OO

s(h)

h

OO

h−1g1h

mm s(h),

h

OO

h−1g2h

ll

which induces canonically an arrow of LΓ ×Γ LΓ as in the construction of Φ.
The map (g1, g2, h) 7→ Φ̃(g1, g2, h) represents the stack morphism Φ̃. Since

m
(
Φ̃(g1, g2, h)

)
= Φ(g1g2, h)

the diagram

ΛX×X ΛX
m //

eΦ
��

LX×X LX

m

��
ΛX

Φ // LX

(11.17)

is commutative. Hence, diagram (11.17) and Equation (11.16) implies that Φ∗ is
an algebra morphism. Similarly Φ∗ is a coalgebra morphism since the diagram

ΛX×X ΛX
m //

eΦ ��
ΛX

Φ
��

LX×X LX
m //

��

LX

(ev0,ev1/2)
��

X
∆ // X× X.

is commutative. �

Remark 11.14 If the stack X is actually a manifold X, then its inertia stack
is X itself and LX = LX the free loop space of X. It is clear that the map Φ
becomes the usual inclusion X ↪→ LX identifying X with constant loops. For
manifolds, the map Φ∗ is injective but not surjective (except in trivial cases).
However, for general stacks, Φ∗ is not necessary injective nor surjective. See
Section 14.4.

12 The BV-algebra on the homology of free loop
stack

The circle S1 acts on itself by left multiplication. By functoriality of the mapping
stack, the S1-action on itself confers a S1-action to LX for any topological stack
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X. This action endows H•(LX) with a degree one operator D as follows. Let
[S1] ∈ H1(S1) be the fundamental class. Then a linear map D : H•(LX) →
H•+1(LX) is defined by the composition

H•(LX)
×[S1]−→ H•+1(LX× S1)

ρ∗−→ H•+1(LX),

where the last arrow is induced by the action ρ : S1 × LX→ LX.

Lemma 12.1 The operator D satisfies D2 = 0, i.e. is a differential.

Proof. Write m : S1 × S1 → S1 for the group multiplication on S1. The
naturality of the cross product implies, for any x ∈ H•(LX), that

D2(x) = ρ∗
(
m∗([S1]× [S1])× x)

)
= 0

since m∗([S1]× [S1]) ∈ H2(S1) = 0. �

In order to prove that D together with the loop product makes the shifted
homology H•(LX) a BV-algebra (for an oriented stack X), we follow a very
efficient procedure due to Cohen-Jones [19, 21]. It relies on the fact that LX is
an algebra on the homology of the cacti operad and results of Getzler [26] and
Voronov [47].

Theorem 12.2 Let X be an oriented stack of dimension d and assume that k is
a field of characteristic different from 2. Then the shifted homology H•(LX) =
H•+d(LX) admits a BV-algebra structure given by the loop product ? : H•(LX)⊗
H•(LX)→ H•(LX) and the operator D : H•(LX)→ H•+1(LX).

Proof. According to [19], the result follows from the following fact about the
cacti operad which is an operad in the category of topological spaces (see [47]).

Claim H•(LX) is an algebra over the homology of the cacti operad.

A key-point is that a cactus, i.e. an element of the cacti operad, has an under-
lying topological space c which is obtained by gluing together a finite numbers
of oriented circles along with an orientation preserving map p : S1 → c called
the pinching map. In particular the space c is compact, thus the mapping stack
Map(c,X) is a well-defined topological stack and there is a functorial stack mor-
phism p∗ : Map(c,X) → LX. Furthermore, any choice of k distinct points in
c yield evaluation maps Map(c,X) → Xk. It is then straightforward to check,
using Lemma 5.2, the Gysin map given by the bivariant theory (see Section 8.2,
and the technics of the proofs of Theorem 9.1 and Theorem 11.3, that the proof
of the claim for manifolds [19] goes through the category of oriented stacks.
Details are left to the reader. �

Remark 12.3 As in [21], one can prove that Theorem 12.2 follows from a cactus
algebra structure of the free loop stack LX in the category of correspondences
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of topological stacks (and not of topological stacks). The proof of [21] applies
verbatim to the framework of stacks. Note however, that there is a little
subtlety here to apply directly the proof of [21]: one needs carefully avoid the
use of mapping stacks with a non-compact topological space as the source.

Remark 12.4 One could try to apply this operadic framework to inertia stack
as well. However it does not seems there is a non-trivial S1-action on ΛX.

13 Orbifold intersection pairing

Let X be an almost complex orbifold. Then ΛX is again an almost complex
orbifold. In particular, X and ΛX are oriented orbifolds. Care has to be taken,
because even if X is connected and has constant dimension, ΛX usually has
many components of varying dimension (the so-called twisted sectors).

Warning In this section, all (co)homology groups are taken with coefficients in
C, the field of complex numbers. In particular this is true for singular homology
H•(X), de Rham cohomology (denoted H•DR(X)) and compactly supported de
Rham cohomology (denoted H•DR, c(X)).

13.1 Poincaré duality and Orbifolds

For oriented orbifolds, there is the Poincaré duality homomorphism P :
Hi(X)→ Hd−i(X) [5]. Here X is an oriented orbifold which has constant (real)
dimension d = dim(X). Let us recall briefly the definition of the Poincaré duality
homomorphism, see [5] for details. There is the canonical inclusion Hi(X) ↪→(
Hi(X)

)∗ which is an isomorphism if Hi(X) is finite dimensional. Since X is of
dimension d, there is the Poincaré duality isomorphism

(
Hi

DR

)∗ ∼−→ Hd−i
DR, c [5].

Let inc : H•DR, c(X) → H•DR(X) be the canonical map. The Poincaré duality
homomorphism P is the composition

Hi(X) −→ (Hi(X))∗ ∼−→ (Hi
DR(X))∗ ∼−→ Hn−i

DR, c(X) inc−→ Hn−i
DR (X) ∼−→ Hn−i(X).

If the orbifold X is proper, then P : H•(X)→ Hd−•(X) is an isomorphism.

Recall that the inertia stack ΛX has usually many components of varying
dimension. The inverse map I : ΛX → ΛX is the isomorphism defined for any
object (X,ϕ) in ΛX, where X is an object of X and ϕ an automorphism of X,
by I(X,ϕ) = (X,ϕ−1). In the language of groupoids, if X is presented by a
Lie groupoid Γ, the map I is presented by the map (γ, α) 7→ (γ−1, β) for any
(γ, α) ∈ SΓ×Γ0 Γ1.

The age is a locally constant function age : ΛX → Q. If X = [M/G] is a
global quotient with G a finite group, then

ΛX =

∐
g∈G

Mg

 /G
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and for x ∈ Mg, the age is equal to
∑
kj if the eigenvalues of g on TxM are

exp(2iπkj) with 0 ≤ kj < 1. The age does not depend on which way X is
considered as a global quotient. So it is well-defined on ΛX for any arbitrary
almost complex orbifold, because any such X can be locally written as a global
quotient [M/G]. Similarly, the dimension is a locally constant function dim :
ΛX → Z. The age and the dimension are related by the formula (for instance
see [16, 23])

dim = d− 2 age− 2 I ◦ age (13.1)

where I : ΛX→ ΛX is the inverse map. The orbifold homology of X is

Horb
• (X) = H•−2 age(ΛX) =

⊕
n∈Q

H•−2n

(
[ΛX]age=n

)
where [ΛX]age=n is the component of ΛX for which the age is equal to n. Since
ΛX is an oriented orbifold, there is the Poincaré duality homomorphism P :
H•(ΛX) → H•(ΛX). The orbifold cohomology is H•orb(X) = H•−2 age(ΛX)
(see [16, 23]).

Lemma 13.1 The composition

H•(ΛX) P−→ H•(ΛX) I∗−→ H•(ΛX)

maps Horb
i (X) into Hd−i

orb (X). We call it the orbifold Poincaré duality ho-
momorphism Porb : Horb

i (X)→ Hd−i
orb (X).

Proof. It follows from formula (13.1). �

13.2 Orbifold intersection pairing and string product

Recall that, if X is a manifold, then the homology H•(X) has the intersection
pairing and the cohomology H•(X) has the cup-product. The Poincaré duality
homomorphism is an algebra map. However, if X is not compact, the intersection
ring and cohomology ring may be very different from each other (for instance,
if X is not compact, H•(X) has no unit).

Chen-Ruan [16] defined the orbifold cup-product on the cohomology
H•orb(X), generalizing the cup-product for manifolds. We will define the ana-
logue of Chen-Ruan orbifold product in homology. Our construction generalizes
the intersection pairing for manifolds. Note that we do not assume our orbifolds
to be compact.

Our definition of the orbifold intersection pairing is as follows: there are the
canonical maps j : ΛX ×X ΛX → ΛX × ΛX and m : ΛX ×X ΛX → ΛX (see
Section 10.1) and a Gysin homomorphism j! : H(ΛX × ΛX) → H(ΛX ×X ΛX)
because j is strongly oriented. The main ingredient in the definition of Chen-
Ruan orbifold cup-product is the so called obstruction bundle whose construction
is explained in details in [16] and [23]. It is a bundle over ΛX ×X ΛX denoted
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OX. The inverse map I : ΛX
∼→ ΛX induces the ”inverse” obstruction bundle

O−1
X = (I ×X I)∗(OX) which is also a bundle over ΛX ×X ΛX. We denote

eX = e(O−1
X ) the Euler class of O−1

X . The orbifold intersection pairing is
the composition:

H(ΛX)⊗H(ΛX)
×−→ H(ΛX× ΛX)

j!−→ H(ΛX×X ΛX)
∩eX−→ H(ΛX×X ΛX)

m∗−→ H(X).

Theorem 13.2 Suppose X is an almost complex orbifold of (real) dimension d.

1. The orbifold intersection pairing defines a bilinear pairing

Horb
i (X)⊗Horb

j (X) e−→ Horb
i+j−d(X).

2. The orbifold intersection pairing e is associative and graded commutative.

3. The orbifold Poincaré duality map Porb : Horb
• (X) −→ Hd−•

orb (X) is a ho-
momorphism of C-algebras, where Hd−•

orb (X) is equipped with the orbifold
cup-product [16].

Recall that graded commutative means that, for any x ∈ Hi([ΛX]age=k) ⊂
Horb
i+2k(X) and y ∈ Hj([ΛX]age=`) ⊂ Horb

j+2`(X), one has x e y =
(−1)(i+2k)(j+2`)y e x.

Proof.

1. By Riemann-Roch, the obstruction bundle OX satisfies the following
well-known formula (see [23] Lemma 1.12 and [16] Lemma 4.2.2):

rank(OX) = 2(age ◦ p1 + age ◦ p2 − age ◦m) + dim2−dim ◦m (13.2)

where p1, p2 : ΛX×X ΛX→ ΛX are the projections on the first and second factor
respectively, dim2 : ΛX ×X ΛX → Z is the dimension function of the orbifold
ΛX ×X ΛX and rank : OX → Z is the rank function of the vector bundle OX

(as a real vector bundle). Since j : ΛX ×X ΛX → ΛX × ΛX has codimension
equal to dim ◦p1 + dim ◦p2 − dim, the result follows from formula (13.2) and
formula (13.1).

2. Since flip(OX) ∼= OX (for instance see [23]) and eX is of even degrees
(thus strictly commutes with any class), the commutativity follows as in the
proof of 10.1. It remains to prove the associativity. Consider the cartesian

67



diagrams

ΛX×X ΛX× ΛX
m12

))RRRRRR

ΛX×X ΛX×X ΛX

j(12)3 44iiiiiii

m12 **UUUUUUUU
ΛX× ΛX

ΛX×X ΛX
j

55llllll

(13.3)

ΛX× ΛX×X ΛX
m23

))RRRRRR

ΛX×X ΛX×X ΛX

j1(23) 44iiiiiii

m23 **UUUUUUUU
ΛX× ΛX

ΛX×X ΛX
j

55llllll

(13.4)

The map j(12)3, j1(23) are the canonical embeddings induced by j : ΛX×XΛX→
ΛX×ΛX (applied, respectively, to the last two and first two factors). The maps
mii+1 (i = 1, 2) are induced by multiplication of the components i, i + 1. We
also denote pij : ΛX ×X ΛX ×X ΛX → ΛX (i 6= j) the map (pi, pj) induced
by the projections on the component i and j and j12 = j × id : ΛX×3 →
ΛX ×X ΛX × ΛX, j23 = id×j : ΛX×3 → ΛX × ΛX ×X ΛX. The so-called
excess bundle E12 associated to diagram (13.3) is defined as follows. There is a

canonical map from the normal bundle Nj(12)3 of ΛX×X ΛX×X ΛX
j(12)3→ ΛX×X

ΛX×ΛX to the restriction m∗12Nj of the normal bundle of ΛX×X ΛX
j→ ΛX. By

definition E12 = Coker(Nj(12)3 ↪→ m∗12Nj). Similarly, there is the excess bundle
E23 = Coker(Nj(1(23) ↪→ m∗23Nj) associated to diagram (13.4). The proof of
Theorem 9.8 together with the commutativity of eX with any class, shows that

(α e β) e γ = m∗
(
j!
(
m12∗

(
j!
12(α× β × γ) ∩ p∗12eX

))
∩ eX

)
= m∗

(
m12∗

(
j(12)3

!
(
(j!

12(α× β × γ) ∩ p∗12eX

)
∩ e(E12)

)
∩ eX

)
= m

(2)
∗

(
j(2)!

(α× β × γ) ∩ p∗12eX ∩ e(E12) ∩m∗12eX

)
.

The second line follows from the excess bundle formula (see Proposition 8.18)
applied to diagram (13.3). Similarly,

α e (β e γ) = m
(2)
∗

(
j(2)!

(α× β × γ) ∩ p∗23eX ∩ e(E23) ∩m∗23eX

)
.

Hence we need to prove that the bundles OX and Eij satisfy the following
identity

p∗12(O−1
X ) +m∗12(O−1

X ) + E12 = p∗23(O−1
X ) +m∗23(O−1

X ) + E23 (13.5)

in the K-theory group of vector bundles over ΛX×X ΛX×X ΛX.
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The main property of the obstruction bundle OX is that it satisfies an ”affine
cocycle condition” see Equation (13.9) below. In fact, there are two cartesian
squares (for i = 1, 2), analogous to (13.3), (13.4)

ΛX×X ΛX
m

&&LLLLL

ΛX×X ΛX×X ΛX

pii+1 55kkkkkk

mii+1 ))SSSSSS
ΛX

ΛX×X ΛX

pi

88rrrrr

(13.6)

Since p12 = p12 ◦ j(12)3 and p1 = p1 ◦ j, it is easy to check that the ”excess”
bundles associated to diagram (13.6) for i = 1, 2 coincide with E12 and E23

respectively. Indeed, there are the following identities

E12 = p∗12m
∗TΛX + TΛX×XΛX×XΛX − p∗12TΛX×XΛX −m∗12TΛX×XΛX,(13.7)

E23 = p∗23m
∗TΛX + TΛX×XΛX×XΛX − p∗23TΛX×XΛX −m∗23TΛX×XΛX.(13.8)

in the K-theory group of vector bundles over ΛX ×X ΛX ×X ΛX. over ΛX ×X

ΛX×X ΛX associated to the diagram (13.6) defined by Eii+1 = Coker(Npii+1 →
m∗ii+1Npii+1). It follows from Lemma 4.3.2 and Proposition 4.3.4 in [16] (also
see Lemma 1.20 and Proposition 1.25 of [23] for more details) that OX satisfies
the following ”associativity” equation

p∗12(OX) +m∗12(OX) + E12 = p∗23(OX) +m∗23(OX) + E23 (13.9)

in the K-theory group of vector bundles over ΛX×X ΛX×X ΛX. Let σ13 be the
automorphism of ΛX×X ΛX×X ΛX given by permutation of the factors 1 and 3,
i.e., σ13(X,ϕ, ψ, θ) = (X, θ, ψ, ϕ). Then (I×XI)◦m12◦σ13 = m23◦(I×XI×XI)
and (I ×X I) ◦ p12 ◦ σ13 = σ12 ◦ p32 ◦ (I ×X I ×X I). Since σ∗12OXX ∼= OX, the
pullback of the left-hand side in Equation (13.9) along the map I ×X I ×X I is
easily seen to be

(I ×X I ×X I)∗(p∗12(OX) +m∗12(OX) + E12) = p∗23(O−1
X ) +m∗23(O−1

X ) + E23,

i.e., the right-hand side in Equation (13.5). Similarly, the pullback of the right-
hand side in (13.9) is the left-hand side (13.5). Hence Equation (13.9) is equiv-
alent to Equation (13.5); the associativity of e follows.

3. Since dim : ΛX→ Z is always even, P commutes with the cross product.
Using general argument on the Poincaré duality homomorphism in [5], Propo-
sition 8.17 and tubular neighborhood, it is straightforward that P ◦ f ! = f∗P
for any strongly oriented map of orbifolds f : X → Y. Hence the following
diagram is commutative

H•(ΛX)⊗H•(ΛX)
× // H•(ΛX× ΛX)

j∗ // H•(ΛX×X ΛX)
∪e(OX)// H•(ΛX×X ΛX)

m! // H•(X)

H•(ΛX)⊗H•(ΛX)
× //

I∗
OO

H•(ΛX× ΛX)
j∗ //

I∗
OO

H•(ΛX×X ΛX)
∪eX //

I∗
OO

H•(ΛX×X ΛX)
m! //

I∗
OO

H•(X)

I∗
OO

H•(ΛX)⊗H•(ΛX)
× //

P

OO

H•(ΛX× ΛX)
j! //

P

OO

H•(ΛX×X ΛX)
∩eX //

P

OO

H•(ΛX×X ΛX)
m∗ //

P

OO

H•(X).

P

OO
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Now the result follows from Lemma 13.4 below. �

Remark 13.3 If X is compact, the orbifold Poincaré duality map is a linear
isomorphism, thus an isomorphism of algebras according to Theorem 13.2.3.

Lemma 13.4 The Chen-Ruan orbifold cup-product [16] is the composition

H•(ΛX)⊗H•(ΛX)
×→ H•(ΛX× ΛX)

i∗→ H•(ΛX×X ΛX)
∪e(OX)−→ H•(ΛX×X ΛX)

m!
→ H•(ΛX).

Proof. The Chen-Ruan pairing in [16] is defined, for compact orbifolds, by the
formula

〈α ∪orb β, γ〉orb =
∫

ΛX×XΛX

p∗1(α) ∪ p∗2(β) ∪m∗(I∗(γ)) ∪ f. (13.10)

Until the end of this proof, let us write µ for the pairing given by the formula
of Proposition 13.4. We compute 〈µ(α, β), γ〉orb. Denoting

∫
ΛX

the orbifold
integration map defined in [16], we find

〈µ(α, β), γ〉orb =
∫

ΛX

µ(α, β) ∪ I∗(γ)

=
∫

ΛX

m!
(
p∗1(α) ∪ p∗2(β) ∪ e(OX)

)
∪ I∗(γ)

=
∫

ΛX

m!
(
p∗1(α) ∪ p∗2(β) ∪ e(OX) ∪m∗(I∗(γ))

)
=

∫
ΛX×XΛX

p∗1(α) ∪ p∗2(β) ∪m∗(I∗(γ)) ∪ e(OX).

By nondegeneracy of the orbifold pairing, we get α ∪orb β = µ(α, β). �

Similarly to the twisted string product 10.1, we now introduce orbifold in-
tersection pairing twisted by a cohomology class.

Definition 13.5 1. Let α ∈ H•(ΛX ×X ΛX) be a (not necessarily homoge-
neous) cohomology class. The orbifold intersection pairing twisted by α,
denoted eα, is the composition

H(ΛX)⊗H(ΛX)
×−→ H(ΛX× ΛX)

j!−→ H(ΛX×X ΛX)
∩(eX∪α)−→ H(ΛX×X ΛX)

m∗−→ H(X).

2. Let E be a vector bundle over ΛX ×X ΛX. We call ee(E) the orbifold
intersection pairing twisted by E.

With similar notations as for Theorem 9.3, we prove

Proposition 13.6 1. If α satisfies the cocycle condition:

p∗12(α) ∪ (m× 1)∗(α) = p∗23(α) ∪ (1×m)∗(α)

in H•(ΛX×X ΛX×X ΛX), then eα : H(ΛX)⊗H(ΛX)→ H(ΛX) is asso-
ciative.
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2. If E is a bundle over ΛX×X ΛX which satisfies the cocycle condition

p∗12(E) + (m× 1)∗(E) = p∗23(E) + (1×m)∗(E) (13.11)

in the K-theory group of vector bundles over ΛX×X ΛX×X ΛX, then ee(E)

is associative.

Proof. It follows as Theorem 10.3 and Theorem 13.2.2. �

Let NX be the normal bundle of the map ΛX×X ΛX
m→ ΛX.

Theorem 13.7 For any almost complex orbifold X, the string product coincides
with the orbifold intersection pairing twisted by OX ⊕ NX, i.e., for any x ∈
H•(ΛX),

x ? y = x ee(OX⊕NX) y.

The proof reduces to the following lemmas.
The full excess bundle FX is the excess bundle associated to the cartesian

diagram

ΛX
ev

!!BBBB

ΛXXΛX

p1
99ttttt

p2 %%JJJJJ
X

ΛX

ev

==||||

i.e., FX = Coker
(
N

ΛX×XΛX
p1→ΛX

↪→ N
ΛX

ev→X

)
.

Lemma 13.8 Let X be an almost complex orbifold. The string product ? :
H(ΛX)⊗H(ΛX)→ H(ΛX) is equal to the composition

H(ΛX)⊗H(ΛX)
×−→ H(ΛX× ΛX)

j!−→ H(ΛX×X ΛX)
∩e(FX)−→ H(ΛX×X ΛX)

m∗−→ H(X).

Proof. Apply the excess formula (Proposition 8.18). �

Lemma 13.9 The obstruction bundle satisfies the identity

OX + NX + O−1
X = FX

in the K-theory group of vector bundles over ΛX×X ΛX.

Proof. Recall that OX is solution of the equation (13.9):

p∗12(OX) +m∗12(OX) + E12 = p∗23(OX) +m∗23(OX) + E23

in the K-theory group of vector bundles over ΛX×X ΛX×X ΛX.
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For any permutation τ ∈ Σ3 of the set {1, 2, 3}, there is a map Tτ : ΛX×X

ΛX→ ΛX×X ΛX defined as the composition

ΛX×X ΛX
(p1,p2,I◦m)// ΛX×X ΛX×X ΛX

eτ // ΛX×X ΛX×X ΛX
p12 // ΛX×X ΛX,

where τ̃ is the permutation of factors induced by τ . It is well-known (see [16],
[23] Lemma 1.10) that T∗τ (OX) ∼= OX.

Let r be the map (p1, p2, I ◦p2) : ΛX×X ΛX→ ΛX×X ΛX×X ΛX. Note that

p12 ◦ r = id, (m12 ◦ r) = I ◦ T(13), p23 ◦ r = (p2, I ◦ p2).

and furthermore r∗m∗23TΛX×XΛX
∼= p∗1(TΛX). It follows (using Equation (13.7),

Equation (13.8) and NX = m∗TΛX − TΛX×XΛX) that the pullback of Equa-
tion (13.9) along r : ΛX×X ΛX→ ΛX×X ΛX×X ΛX, yields the identity

OX + O−1
X + NX = ev∗TX − TΛX×XΛX − p∗1TΛX − p∗2TΛX

+r∗p∗23(OX) + r∗m∗23(OX)

in the K-theory group of vector bundles over ΛX×X ΛX. Since the right-hand
side of the first line is isomorphic to FX, it suffices to prove that r∗p∗23(OX)
and r∗m∗23(OX) have rank 0. It is an easy application of the Riemann-Roch
formula (13.2). �

Proof of Theorem 13.7. By Lemma 13.8, it suffices to prove that e(FX) =
eX ∪ e(OX ⊕NX) which is trivial by Lemma 13.9. �

Remark 13.10 According to Theorem 13.7, Theorem 13.2.3 and Remark 13.3,
if X is compact, the orbifold Poincaré duality homomorphism Porb induces an
isomorphism of algebras between the string algebra

(
H•(ΛX), ?

)
and the orbifold

cohomology equipped with Chen-Ruan orbifold cup-product twisted by the class
e(O−1

X X ⊕ NX). A nice interpretation of this isomorphism has recently been
found by González, Lupercio, Segovia and Uribe [27]. They proved that the
string product of compact complex orbifolds is isomorphic to the Chen Ruan
product of the cotangent bundle T ∗X of X.

14 Examples

14.1 The case of manifolds

Smooth manifolds form a special class of differentiable stacks with normally
non-singular diagonal (Definition 8.1). Denote by the same letter M a manifold
and its associated (topological) stack. The diagonal ∆ : M →M×M is strongly
oriented iff the manifold M is oriented.

Proposition 14.1 Let M be an oriented manifold. The BV-algebra and Frobe-
nius algebra structures of H•(LM) given by Theorem 12.2 and Theorem 11.3
coincide with Chas-Sullivan [14], Cohen-Jones [19] and Cohen-Godin [18] ones.
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Proof. By Proposition 5.7, the free loop stack of M is isomorphic to the free
loop space LM . It follows from Proposition 8.17 and Proposition 8.13 (in the
case G = {1}), that the Gysin maps of Sections 9, 11, 12 coincide with the
Gysin maps in [19] Section 1 (also see [24] Section 3.1). �

Remark 14.2 When M is an oriented manifold, the string product on
H•(ΛM) ∼= H•(M) is simply the usual intersection pairing.

14.2 String (co)product for global quotient by a finite
group

A special important class of oriented orbifolds is the global quotient [M/G],
where G is a finite group, M is an oriented manifold together with an action
of G by orientation preserving diffeomorphisms. In this case, the homology of
the inertia stack H([M/G]) is well known. Assume that our coefficient ring k is
a field of characteristic coprime with |G| (or 0). The inertia stack of [M/G] is
represented by the transformation groupoid∐

g∈G
Mg ×G⇒

∐
g∈G

Mg (14.1)

where the action of h ∈ G moves y ∈ Mg to y · h ∈ Mh−1gh. Furthermore,
ΛX×X ΛX ∼=

[∐
g,h∈GM

g,h/G
]
, where Mg,h = Mg∩Mh, and the “Pontrjagin”

map m : ΛX ×X ΛX → ΛX is induced by the embeddings ig,h : Mg,h ↪→ Mgh.
Since |G| is coprime with char(k), the homology groups of the inertia stack
Λ[M/G] are

H•(Λ[M/G]) ∼= H•

∐
g∈G

Mg


G

∼=

⊕
g∈G

H•(Mg)


G

.

The excess bundle Ex(M,X,X ′) of the diagram of embeddings

X

  @@@

Z = X
T

X′

88qqqqq

&&MMMM
M

X′

??~~~

is the cokernel of the bundle map NZ↪→X ↪→ (NX′↪→M )/Z . Thus Ex(M,X,X ′)
is the virtual bundle TM−TX−TX′+TZ (each component being restricted to Z).
For g, h ∈ G, we denote Ex(g, h) := Ex(M,Mg,Mh). The bundles Ex(g, h)
induce a bundle Ex on Λ[M/G] ×[M/G] Λ[M/G] whose Euler class is denoted
e(Ex). Since the diagonal G → G × G is a group monomorphism, there is a
transfer map trGG×G : (

⊕
g,h∈GH•(M

g)⊗H•(Mh))G×G →
(⊕

g,h∈GH•(M
g)⊗

H•(Mh)
)
G

explicitly given (see Equation (8.4)) by

trGG×G(x) =
∑
g∈G

x · (g, 1).
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The maps ig : Mg,h ↪→Mg, ih : Mg,h ↪→Mh yield Gysin morphims (ig × ih)! :
H•(Mg ×Mh)→ H•(Mg,h).

Proposition 14.3 The string product ? : H(Λ[M/G]) ⊗ H(Λ[M/G]) →
H(Λ[M/G]) is the composition0@M
g∈G

H(Mg)

1A
G

⊗

0@M
h∈G

H(Mh)

1A
G

→

0@ M
g,h∈G

H(Mg ×Mh)

1A
G×G

trG
G×G−→

0@ M
g,h∈G

H(Mg ×Mh)

1A
GL

(ig×ih)!

−→

0@ M
g,h∈G

H(Mg,h)

1A
G

∩e(Ex)−→

0@ M
g,h∈G

H(Mg,h)

1A
G

m∗−→

0@M
k∈G

H(Mk)

1A
G

The proof of Proposition 14.3 relies on Lemma 14.4 below, which is of indepen-
dent interest. Note that there is a oriented stack morphism

ϕ : Λ[M/G]×[M/G] Λ[M/G] ∼=

 ∐
g,h∈G

Mg,h/G

→ Λ[M/G]× Λ[M/G] (14.2)

induced by the groupoid map (x, g) 7→ (ig(x), g, ih(x), g).

Lemma 14.4 The Gysin map ϕ! is the composition0@ M
g,h∈G

H(Mg ×Mh)

1A
G×G

trG
G×G−→

0@ M
g,h∈G

H(Mg ×Mh)

1A
G

L
(ig×ih)!

−→

0@ M
g,h∈G

H(Mg,h)

1A
G

.

Proof. The G-equivariant map Mg,h → Mg × Mh, given by x 7→
(ig(x), ih(x)), induces a oriented stack morphism ψ : Λ[M/G]×[M/G] Λ[M/G]→
Λ[M/G]×[∗/G] Λ[M/G]. By Proposition 8.17, ψ! = ⊕(ig× ih)!. Then, the result
follows from the functoriality of Gysin maps and Lemma 8.19. �

Proof of Proposition 14.3. We use the notations of Section 10.1. The
cartesian diagram (10.3) (where X = [M/G]) and the excess formula 8.18 shows
that,

∆! = ϕ!(x) ∩ e(Ex).

Thus the result follows from Lemma 14.4. �

Similarly we compute the string coproduct. For any g ∈ G, the unit 1g ∈
H0(Mg) induces a map 1g : H(Mg)→ H0(Mg)⊗H(Mg)→ H(Mg ×Mg).

Proposition 14.5 The string coproduct is induced (after passing to G-
invariant) by the composition

M
g∈G

H(Mg)
⊕1g−→

M
g∈G

H(Mg ×Mg)
trG

G×G−→
M
g,h∈G

H(Mh ×Mg)
⊕i!g,h−→

M
g,h∈G

H(Mg,h)

∩e(Ex)−→
M
g,h∈G

H(Mg,h)
(ig,ih)∗−→

M
g,h∈G

H(Mg ×Mh) ∼=
M
g,h∈G

H(Mg)⊗H(Mh).

74



Proof. Let Γ be the transformation groupoid M o G ⇒ M . Unfolding the
definition of the groupoid Λ̃Γ (see Section 11.3), one finds that Λ̃Γ is the trans-
formation groupoid

(
G×

∐
h∈GM

h
)

oG2 ⇒ G×
∐
h∈GM

h, where the action
of (h0, h1/2) ∈ G2 on (g,m) ∈ g ×Mh is (h−1

0 gh1/2,m.h0). The Morita map
p : Λ̃Γ → Λ[M/G] (Equation (11.13)) has a section κ defined, for m ∈ Mh

and h0 ∈ G, by κ(m,h0) = (h,m, h0, h0). In particular κ induces an isomor-
phism in homology and commutes with Gysin maps. Thus the Gysin map ∆!

of Section 11.3 is the composition of κ∗ with the Gysin map associated to the
sequence of cartesian diagrams

[
‘

Mg,h/G] //

��

[G×
‘

Mh/G] //

��

[G×
‘

Mh/G×G]

��
[M/G] // [M ×M/G] // [M/G]× [M/G] .

(14.3)

By Proposition 8.18 and Lemma 8.19, the Gysin maps associated to the left
square and the right square are, respectively, i!g,h(−) ∩ e(Ex(g, h)) and TrGG×G.
Since κ∗ = ⊕1g, the result follows. �

Example 14.6 Consider [∗/G] where G is a finite group. By Proposition 5.9,
the stack morphism Φ : Λ[∗/G]→ L[∗/G] (see Lemma 11.12) is an isomorphism.
Let k be a field of characteristic coprime with |G|. Then

H•(Λ[∗/G]) =
(⊕
g∈G

k
)
G
∼=
(⊕
g∈G

k
)G ∼= Z(k[G])

where Z(k[G]) is the center of the group algebra k[G]. By Propositions 14.3,
the isomorphism H•(Λ[∗/G]) ∼= Z(k[G]) is an isomorphism of algebras. By
Proposition 14.5, the string coproduct is given by δ([g]) =

∑
hk=g[h] ⊗ [k].

Thus the Frobenius algebra structure coincides with the one given by Dijkgraaf-
Witten [22].

14.3 String topology of [S2n+1/(Z/2Z)n+1]

Let S2n+1 be the euclidian sphere {|z0|2 + · · · + |zn|2 = 1, zi ∈ C} acted upon
by (Z/2Z)n+1 identified with the group generated the reflections across the
hyperplanes zi = 0 (0 ≤ i ≤ n). Let R = [S2n+1/(Z/2Z)n+1] be the induced
quotient stack which is obviously an oriented orbifold of dimension 2n+ 1. We
now describe the Frobenius algebras associated to ΛX and LX. Until the end of
this section we denote R = (Z/2Z)n+1.

The string product has a very simple combinatorial description. Let
∆n be a n-dimensional standard simplex. Denote v0, . . . , vn its n + 1-
vertex and F0, . . . , Fn its n-faces of dimension n − 1. In other words Fi =
∆(v0, . . . , v̂i, . . . , vn) is the convex hull of all vertices but vi. More generally we
denote Fi1...ik := Fi1 ∩ · · · ∩ Fik the subface of dimension n − k given by the
convex hull of all vertices but vi1 , . . . , vik . We assign the degree 2n− 2k + 1 to
a face Fi1...ik of dimension n− k.
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Proposition 14.7 Let k be a ring with 1/2 ∈ k. Then H•(ΛR) is the free
k-module with basis indexed by elements r ∈ R − {1} of degree 0 and all faces
Fi1...ik in degree 2(n− k) + 1 (in particular F∅ = ∆n has degree 2n+ 1), i.e.,

H•(ΛR) ∼= k|R|−1 ⊕
( ⊕

k = 0 . . . n
0 ≤ i1 < · · · < ik ≤ n

k.Fi1...ik
)
.

The string product ? is defined on the basis by the identities

Fi1...ik ? Fj1...jl = Fi1...ik ∩ Fj1...jl

if the two subfaces have transversal intersection in ∆n, and is 0 otherwise. The
element ∆n = F∅ is set to be the unit and all other products involving a generator
of k|R|−1 are trivial.

In other words, H0(ΛR) = k|R|−1, and H2i+1(ΛR) is the free module generated
by the subfaces of dimension i of the simplex ∆n. The product is given by
transverse intersection in ∆n.

Proof. Write si (i=0. . . n) for the reflection across the hyperplane zi = 0.
Then, for 0 ≤ k ≤ n,

(S2n+1)
si1 ...sik ∼=

(z0, . . . , zn) ∈ Cn+1 /
∑

j 6=i1,...ik

|zj |2 = 1

 ∼= S2n−2k+1.

Thus H•
(
(S2n+1)si1 ...sik

) ∼= k V ′si1 ...sik
⊕ k F ′i1...ik [2(n − k) + 1]. Since these

generators are R-invariant, |R| is invertible in k and (S2n+1)s0...sn = ∅, one has

H•(ΛR) ∼=
⊕
g∈R

H•
(
(S2n+1)g

)
R
∼=

⊕
g−{1}∈R

H•
(
(S2n+1)g

)
By Proposition 14.3, the string product is the composition of trRR×R with

H
`
(S2n+1)g × (S2n+1)h

´ (ig×ih)!

→ H
`
(S2n+1)g,h

´ ∩e(Ex(g,h))−→ H
`
(S2n+1)g,h

´ m∗→ H((S2n+1)gh)

Clearly trRR×R is multiplication by the order of R. Furthermore Fi1...ik and
Fj1...jl are transversal iff the sets {i1, . . . , ik} and {j1, . . . , jl} are disjoint iff
the submanifolds (S2n+1)si1 ...sik and (S2n+1)sj1 ...sjl are transversal in (S2n+1).
In particular, if Fi1...ik and Fj1...jl are transversal, (S2n+1)si1 ...sik

,sj1 ...sjl =
(S2n+1)si1 ...sik

.sj1 ...sjl , the excess bundle is of rank 0, m∗ = id and by Poincaré
duality,

(isi1 ...sik
× isj1 ...sjl

)! (F ′i1...ik × F
′
j1...jl

) = F ′i1...ikj1...jl .

If Fi1...ik and Fj1...jl are not transversal, one finds

(isi1 ...sik
× isj1 ...sjl

)!(F ′i1...ik × F
′
j1...jl

) = F ′i1...ik ∩ F
′
j1...jl

= F ′{i1,...,ik}∪{j1,...,jl}
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and (S2n+1)si1 ...sik
sj1 ...sjl contains (S2n+1)si1 ...sik

,sj1 ...sjl as a submanifold of
codimension > 0. It follows that m∗

(
F ′{i1,...,ik}∪{j1,...,jl} ∩ e(Ex)

)
= 0 for de-

gree reason. Similarly, F ′i1,...,ik ? g = 0 for any g ∈ R. The result follows by
identifying Fi1,...,ik with 2−n−1F ′i1,...,ik as basis element. �

Remark 14.8 It is easy to show that the string coproduct is trivial. Indeed,
for degree reason, only the class of F∅ might be non zero. Proposition 14.5
shows the string coproduct is induced by the composition

H(S2n+1)
P
i!g→
⊕

H((S2n+1)g)
∩⊕e
(

(S2n+1)h
)

→
⊕

H((S2n+1)g).

Since (S2n+1)h is an odd dimensional sphere, its Euler class is 2-torsion, hence
trivial by our assumption on k.

Since R = (Z/2Z)n+1 is abelian, its group algebra is a Frobenius algebra
(see Example 14.6 above).

Proposition 14.9 Let k be a field of characteristic different from 2. There is
an isomorphism of BV-algebras as well as Frobenius algebras

H•(LR) ∼= H•(LS2n+1)⊗k k[(Z/2Z)n+1]. (14.4)

The BV-operator on the right hand side is B ⊗ id where B : H•(LS2n+1) →
H•+1(LS2n+1) is the BV-operator of the loop homology of S2n+1.

Proof. According to Proposition 5.9, the free loop stack LR is presented by
the groupoid

∐
g∈R PgS

2n+1 oR⇒
∐
g∈R PgS

2n+1. Hence

H•(LX) =
(⊕
g∈R

H•(PgS2n+1)
)
R
.

Since R is a subgroup of the connected Lie group SO(2n + 2), which acts on
S2n+1, for all g ∈ R there is a continuous path ρ : [0, 1]→ SO(2n+2) connecting
g to the identity (that is ρ(0) = g, ρ(1) = 1). In particular, any path f ∈
PgS

2n+1 can be composed with the path f(0).ρ(t) yielding a loop Υg(f) ∈
LS2n+1. It is a general fact that Υg : PgS

2n+1 → LS2n+1 is a G-equivariant
homotopy equivalence (see [35] for details). We write Υ :

∐
g∈R PgS

2n+1 →∐
g∈R LS2n+1 for the map induced by the maps Υg for g ∈ R. Since the G-

action on LM = PeM is trivial, the isomorphism (14.4) follows.
It remains to prove that the linear isomorphism (14.4) is an isomorphism

of Frobenius algebras and BV-algebras. To do so, we need the evaluation map
ev0 : LR → R at the groupoid level. One checks that ev0 is represented by
the maps evg : PgS

2n+1 × R → S2n+1 × R defined by evg
(
(f, h)

)
= (f(1), h).

Let f, g ∈ PrS
2n+1 × PhS

2n+1 such that f(1) = g(1). The composition of
the path f(−) and g(−) · h gives an element m(f, g) ∈ PrhS

2n+1. This com-
position induces the stack morphism m : LR ×R LR → LR. Denote m̃ the
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map
∐
g,h∈R LS2n+1 ×S2n+1 LS2n+1 em→ ∐

g∈R LS2n+1 which maps an element
(γ, γ′) ∈ LS2n+1×S2n+1 LS2n+1 in the component (g, h) to the element m(γ, γ′)
in the component gh. Here m is the usual composition of paths. The map
Υg : PgS

2n+1 → LS2n+1 induces a commutative diagram of R-equivariant maps‘
g,h PgS2n+1 × PhS2n+1

‘
Υg×Υh

��

‘
g,h PgS2n+1 ×S2n+1 PhS2n+1oo m //

‘
Υg×Υh

��

‘
g PgS2n+1

‘
Υg

��‘
g,h LS2n+1 × LS2n+1

‘
g,h LS2n+1 ×S2n+1 LS2n+1oo em // ‘

g LS2n+1.

Since LS2n+1 → S2n+1, PgS
2n+1 → S2n+1 are fibration, the vertical arrows

are R-homotopy equivalences. It follows easily that the map

1
|R|

Υ : H•
([ ∐
g∈R

LS2n+1/R
])
→ H•(LS2n+1)⊗ k[R]

is a morphism of algebras. One proves similarly that
1
|R|

Υ is a coalgebra map.

Now we need to identify the BV-operator. Denote LΓ the transformation
groupoid

∐
g∈R PgS

2n+1oR⇒
∐
g∈R PgS

2n+1. Since the stack S1 is canonically
identified with the quotient stack [R/Z], the homology H•(S1) coincides with
the homology of the groupoid Γ′ : R o Z ⇒ R. The 0-dimensional simplex
(0, 1) ∈ RoZ = Γ′1 defines an element in C0(Γ′1) ⊂ C1(Γ′) which is the generator
of H1(S1). The map Γ′×LΓ θ→ LΓ defined, for (x, n) ∈ R×Z, f ∈ Pg and h ∈ R,
by θ(x, n, f, h)(t) = f(t + x).hn is a groupoid morphism representing the S1-
action on LX. Since Υ(θ((0, 1), f) = f , Υ commutes with the BV-operator. �

Remark 14.10 For the sake of completeness, we recall [20] that,
H•(LS2n+1) ∼= k[u, v] with |v| = −2n − 1 and |u| = 2n for n > 0, and
H•(LS2n+1) ∼= k[[u, u−1]][v] if n = 0. Thus

H•(L[S2n+1/(Z/2Z)n+1]) ∼= k[(Z/2Z)n+1][u, v] if n > 0, and

H•(L[S1/Z/2Z]) ∼= k[[u, u−1]][τ, v]/(τ2 = 1) with |v| = 1, |u| = 0 if n = 0.

Remark 14.11 The stack morphism Φ : ΛX → LX of Section 11.13 is rep-
resented at the groupoid level by

∐
g∈R(S2n+1)g ↪→

∐
g∈R PgS

2n+1 where
x ∈ (S2n+1)g is identified with a constant path. It follows easily that the Frobe-
nius algebra morphism is given by Φ(F∅) = e, Φ(Fi1...ik) = 0 and Φ(g) = gv.

14.4 String topology of L[∗/G] when G is a compact Lie
group

Any topological group G naturally defines a topological stack corresponding to
the groupoid G ⇒ {∗}, which is denoted by [∗/G]. In this section we study
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the Frobenius structures on the homology of its loop stack and inertia stack
assuming that G is a compact and connected Lie group. It turns out that in
this case the two Frobenius structures obtained are indeed isomorphic since
Λ[∗/G] and L[∗/G] are homotopy equivalent. In this section, we assume that
G is of dimension d and we will work with real coefficients for (co)homology
groups.

First we will identify the homology groups H•(Λ[∗/G]) and H•(L[∗/G]).

Lemma 14.12 The inertia stack Λ[∗/G] is represented by the transformation
groupoid G o G ⇒ G, where G acts on itself by conjugation, while the stack
Λ[∗/G]×[∗/G] Λ[∗/G] is represented by the groupoid (G×G) oG⇒ G×G with
the diagonal conjugacy action.

The following result is well known [12].

Lemma 14.13 The map Λ[∗/G] Φ→ L[∗/G] is an homotopy equivalence.

Proof. Since G is connected, by Proposition 5.7, L[∗/G] can be represented
by the loop group LG ⇒ {∗}. On the other hand, BLG ∼= LBG is homo-
topy equivalent to EG ×G G. Identifying BLG with {f ∈ Map(I, EG) / ∃g ∈
Gsuch that f(0) = f(1).g}/G, this equivalence is induced by the map f 7→
(f(0), g) [8], [12]. The map Φ of Lemma 11.12 and the isomorphism in between
L[∗/G] and [∗/LG] (Proposition 5.7) gives a map BΦ : B[∗/G] = EG×G G→
BLG which is indeed easily checked to establish the homotopy equivalence. �

As an immediate consequence, we have

Corollary 14.14 The map Φ∗ : H•(Λ[∗/G])→ H•(L[∗/G]) is an isomorphism
of Frobenius algebras.

Thus it is sufficient to study the Frobenius structure on the homology of the
inertia stack Λ[∗/G].

According to Remark 11.10, there is a dual Frobenius structure induced on(
H•(Λ[∗/G]), ?, δ

)
. We refer to δ : H•(Λ[∗/G]) → H•(Λ[∗/G]) ⊗ H•(Λ[∗/G])

and ? : H•(Λ[∗/G])⊗H•(Λ[∗/G])→ H•(Λ[∗/G]) as the dual string coproduct
and dual string product respectively. Since, it is technically easier, we will
describe the Frobenius structure ofH•(Λ[∗/G]). The following result is standard
[38]. We write EG for a free G-space which is contractible and BG = EG×G ∗
its classifying space so that H•([∗/G]) = H•(BG) = H•G(∗).

Proposition 14.15 1. The cohomology of G, as a topological space, is

H•(G) = (Λg∗)G ∼= Λ(y1, y2, · · · , yl)

2. The cohomology of [∗/G] is

H•([∗/G]) = (S∗(g∗))G ∼= S(x1, x2, · · · , xl)
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3. The cohomology of [G/G] is

H•([G/G]) = (S∗(g∗))G ⊗ (Λg∗)G ∼= S(x1, x2, · · · , xl)⊗ Λ(y1, y2, · · · , yl)

4. The cohomology of [G×G/G] is

H•([G×G/G]) = (S∗(g∗))G ⊗ (Λ(g∗ ⊕ g∗))G

∼= S(x1, x2, · · · , xl)⊗ Λ(y1, y2, · · · , yl, y′1, y′2, · · · , y′l),

5. The cohomology of [G×G/G×G] is

H•([G×G/G×G]) = (S∗(g∗ ⊕ g∗))G ⊗ (Λ(g∗ ⊕ g∗))G

∼= S(x1, x2, · · · , xl, x′1, x′2, · · · , x′l)
⊗Λ(y1, y2, · · · , yl, y′1, y′2, · · · , y′l)

Here l = rank(G), deg(yi) = deg(y′i) = 2di+1, deg(xi) = deg(x′i) = 2di and
di are the exponents of G.

To compute the Frobenius structure of H•(Λ[∗/G]), we need an explicit
construction of some Gysin maps.

Let M be an oriented manifold with a smooth (G×G)-action. Consider G
as a subgroup of G × G by embedding it diagonally. In this way, M becomes
a G-space and we have a morphism of stacks [M/G] → [M/G × G], which is
indeed a G-principle bundle. According to Section 8.2, there is a cohomology
Gysin map ∆! : H•[M/G] → H•−d[M/G×G], which should be in a certain
sense fibration integration.

Recall that when G is a compact connected Lie group, the cohomology of
the quotient stack H•([M/G]) with real coefficients can be computed using the
Cartan model (ΩG(M), dG), where ΩG(M) := (S(g∗)⊗ Ω(M))G is the space of
G-equivariant polynomials P : g→ Ω(M), and

dG(P )(ξ) := d(P (ξ))− ιξP (ξ), ∀ξ ∈ g.

Here d is the de Rham differential and ιξ is the contraction by the generating
vector field of ξ. Given a Lie group K and a Lie subgroup G ⊂ K, let G
act on K from the right by multiplication and K act on itself from the left
by multiplication. The submersion K → K/G is a principal K-equivariant
right G-bundle. There is an isomorphism of stacks [M/G] ∼→ [K ×G M/K]
which induces an isomorphism in cohomology. It is known [38] that, on the
Cartan model, this isomorphism can be described by an induction map IndGK :
ΩG(M)→ ΩK(K ×GM). Here G acts on K ×M by

(k,m) · g = (k · g, g−1 ·m).

The induction map is the composition

ΩG(M) Pul→ ΩK×G(K ×M) Car→ ΩK(K ×GM),
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where ΩG(M) Pul→ ΩK×G(K × M) is the natural pullback map, induced by
the projections on the second factor K × G → G, and ΩK×G(K × M) Car−→
ΩK(K×GM) is the Cartan map corresponding to a K-invariant connection for
the G-bundle K → K/G [38]. We now recall the description of this map.

Let Θ ∈ Ω1(K)⊗g be a K-invariant connection on the G-bundle K → K/G.
The associated principal G-bundle

G→ K ×M → K ×M
G

∼= K ×GM

carries a pullback connection, denoted by the same symbol Θ . We denote

FΘ = dΘ +
1
2
[Θ,Θ] its curvature, which is an element in Ω2

K(K ×M)⊗ g. The

equivariant momentum map µΘ ∈ (k∗ ⊗ Ω0(K))K ⊗ g is defined by

ξ ∈ k 7→ µΘ(ξ) = −ιξΘ

where ιξ is the contraction along ξ̂ ∈ (K), the generating vector field of ξ. Then
FΘ + µΘ is the equivariant curvature of Θ [9]. Observe that ΩK×G(K ×M) ∼=
(S(g∗)⊗ ΩK(K ×M))G that is the space of G-equivariant polynomial functions
from g to ΩK(K ×M). Hence if x ∈ g⊗ ΩiK(K ×M) and P is a homogeneous
degree q polynomial on g, then by substitution of variables, we get an element
P (x) in Ω2q+qi

K (K ×M). The Cartan map ΩK×G(K ×M)→ ΩK(K ×GM) is
the composition

P ⊗ ω ∈ (S(g∗)⊗ ΩK(K ×M))G 7→ P (FΘ + µΘ)ω ∈ ΩK(K ×M)
7→ Hor

(
P (FΘ + µΘ)ω

)
∈ ΩK(K ×GM),

where Hor : Ω(K ×M)→ Ω(K ×GM) is the horizontal projection with respect
to Θ.

If moreover FΘ = 0 and K ×M → K ×G M admits a horizontal section
σ : K ×GM → K ×M , we have the following lemma.

Lemma 14.16 Let P ⊗ω be an element in (S(g∗)⊗ Ω(M))G ∼= ΩG(M). Then,
IndGK(P ⊗ ω) ∈ Ω(K ×GM) is the K-equivariant polynomial on k with value in
Ω(K ×GM) defined, for any ξ ∈ k, by

IndGK(P ⊗ ω) : ξ 7→ σ∗
(
P (µΘ(ξ))pr∗2(ω)

)
.

Proof. First of all, Pul(P ⊗ ω) ∈
(
S
(
(k⊕ g)∗

)
⊗ Ω(K ×M)

)K×G is the map
ξ ⊕ y 7→ P (y)pr∗2(ω) for any ξ ∈ k and y ∈ g. Then, by hypothesis,

Hor
(
P (FΘ + µΘ)ω

)
= σ∗

(
P
(
µΘ(ξ)

)
pr∗2(ω)

)
∈ (S(k∗)⊗ Ω(K ×GM))K

and the lemma follows. �
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Now let K be the cartesian product group G ×G. We view G as the diagonal
subgroup of K. The K action on itself by left multiplication commutes with
the right G-action. We have a principal right G-bundle

G −→ K(= G×G) −→ G

(g, h) 7→ gh−1.

The left Maurer-Cartan form ΘL
MC ∈ Ω1(G) ⊗ g on G yields a K-invariant

one-form Θ = pr∗2
(
ΘL
MC

)
∈ Ω1(K) ⊗ g by pullback along the projection on

the second factor. Then Θ is a K(= G × G)-invariant connection. Moreover
it is flat, thus its equivariant curvature reduces to the equivariant momentum
µΘ : k = g⊕ g→ Ω0(K)⊗ g.

Lemma 14.17 For any (α, β) ∈ k(= g⊕ g), and (g, h) ∈ K(= G×G) one has

µΘ(α, β)|(g,h) = −Adh−1 β.

Proof. The generating vector field for the left G-action on G is given, for all
β ∈ g by

β̂|h =
∂

∂t

∣∣∣∣∣
t=0

exp(tβ)h = Lh (Adh−1 β) .

It follows, for any (g, h) ∈ K = G×G, that

µΘ(α, β)|(g,h) = −ι(α̂,β̂)(Θ|(g,h))

= −ιβ̂ ΘL
MC

∣∣
h

= −ΘL
MC

∣∣
1

(Adh−1 β) = −Adh−1 β.

�

Let M be a K (= G × G) space. It is then a G-space. Thus we have an
induction map

IndGG×G : ΩG(M)→ ΩG×G((G×G)×GM) ∼= ΩG×G(G×M).

The group G×G acts on G×M by

(k1, k2) · (g,m) =
(
k1gk

−1
2 , (k1, k2) ·m

)
.

Lemma 14.18 1. The map

(G×G)×GM → G×M, (k1, k2,m) 7→
(
k1k
−1
2 , (k1, k2) ·m

)
is a (G×G)-equivariant diffeomorphism.

2. The map

σ : G×M → K ×M, σ(g,m) =
(
g, 1, (g−1, 1) ·m

)
is a horizontal section for the principal G-bundle G → K ×M → K ×G
M ∼= G×M .
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As a consequence, we have an isomorphism

ΩG×G((G×G)×GM) ∼→ ΩG×G(G×M).

Thus there is an induction map

IndGG×G : ΩG(M)→ ΩG×G(G×M).

To obtain the Gysin map H•([M/G]) → H•−d([M/G × G]), one simply
composes the induction map IndGG×G : H•([M/G])→ H•([G×M/G×G]) with
the equivariant fiber integration map [4] H•([G×M/G×G])→ H•−d([M/G×
G]) over the first factor G.

Proposition 14.19 Given a (G×G)-manifold M , the Gysin map

H•G(M)→ H•−dG×G(M)

is given, on the Cartan model, by the chain map Ψ : ΩG(M) → ΩG×G(M),
∀P ⊗ ω ∈ (S(g∗)⊗ Ω(M))G,

Ψ(P ⊗ ω) =
(

(ξ1, ξ2) 7→
∫
G

P (−ξ2)ϕ∗(ω)
)
, ∀ξ1, ξ2 ∈ g, (14.5)

where ϕ : G×M →M is the map (g,m)
ϕ7→ (g−1, 1) ·m, and

∫
G

stands for the
fiber integration over the first factor G.

Proof. The induction map IndGG×G : ΩG(M)→ ΩG×G(G×M) is a chain level
representative of the stacks isomorphisms

[M/G] ∼←− [G×G×M/G×G×G] ∼−→ [G×G×GM/G×G].

induced by Morita equivalences of groupoids. Thus the Gysin map ∆! :
H•[M/G] → H•−d[M/G×G] is the composition of IndGG×G with the Gysin
map H•([G ×M/G × G]) → H•−d([M/G × G]) which, by Proposition 8.17 is
the equivariant fiber integration.

We now need to express the induction map more explicitly. Recall that, for
any α ∈ ΩG(M), IndGG×G(α) ∈ ΩG×G(G×M). That is, IndGG×G(α) is a polyno-
mial function on k(= g ⊕ g) valued in Ω(G × M). Write ϕ : G × M → M
for the composition ϕ = pr2 ◦ σ. Thus ϕ(g,m) = (g−1, 1) · m. Accord-
ing to Lemma 14.16, it suffices to compute σ∗

(
P (µΘ(ξ1, ξ2))pr∗2(ω)

)
. By

Lemma 14.18.3 and Lemma 14.17 we find that

σ∗(P (µΘ(ξ1, ξ2))) = P (−ξ2).

Now the very definition of ϕ yields that for any α = P ⊗ ω ∈ ΩG(M) ∼=
(S(g∗)⊗ Ω(M))G, and ∀ξ1, ξ2 ∈ g,

IndGG×G(α)(ξ1, ξ2) = P (−ξ2)ϕ∗(ω).

This concludes the proof. �
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Remark 14.20 If we identify an element of ΩG(M) with a G-equivariant
polynomial Q : g → Ω(M), then Equation (14.5) can be written as follows.
∀(ξ1, ξ2) ∈ k = g⊕ g,

Ψ(Q)(ξ1, ξ2) =
∫
G

ϕ∗(Q(−ξ2)).

We now go back to our special case. Denote by m : G × G → G and
∆ : G → G × G the group multiplication and the diagonal map respectively.
The diagonal map induces a stack map ∆ : [G × G/G] → [G × G/G × G] and
thus a Gysin map

∆! : H•([G×G/G])→ H•−d([G×G/G×G]),

which is given by Proposition 14.19. Similarly the group multiplication m in-
duces a stack map m : [G×G/G]→ [G/G] and thus a Gysin map

m! : H•([G×G/G])→ H•−d([G/G]).

Sincem isG-equivariant, this is the usualG-equivariant Gysin map on manifolds
according to Proposition 8.17.

Note that H•G(G) is a free module over H•([∗/G]) ∼= S(x1, . . . , xl). In fact,
H•G(G) = H•([∗/G])[y1, . . . , yl] (the yjs are of odd degrees). Thus elements of
H•G(G) are linear combinations of monomials yε11 ...y

εl
l , where each εj is either 0

or 1. SimilarlyH•G(G×G) is the freeH•G(G)-module generated by the monomials
yε11 · · · y

εl
l y
′
1
ε′1 . . . y′l

ε′l .

Lemma 14.21 The map m! is a H•([∗/G]) linear map defined by

m!(yε11 ...y
εl
l y
′
1
ε′1 . . . y′l

ε′l) = y
ε1+ε′1−1
1 ...y

εl+ε
′
l−1

l

with the convention that y−1
j = 0.

Proof. Since m : G × G → G is G-equivariant, the Gysin map m! : H∗([G ×
G/G]) → H∗([G/G]) is a map of H•([∗/G])-module, and by Proposition 8.17,
it is the equivariant fiber integration of the principal bundle G×G→ G. It can
be represented on the Cartan cochain complex by integration of forms, see [29]
for details. In particular m!(yε11 ...y

εl
l y
′
1
ε′1 . . . y′l

ε′l) is determined by the equation∫
G×G
m∗(α) ∧ (yε11 ...y

εl
l y
′
1
ε′1 . . . y′l

ε′l) =
∫
G

α ∧m!(yε11 ...y
εl
l y
′
1
ε′1 . . . y′l

ε′l)(14.6)

Since the volume form on G and G × G are respectively given by y! . . . yl and
y1...yly

′
1 . . . y

′
l, Equation (14.6) implies that m! : H∗(G×G)→ H∗−d(G) sends

yε11 ...y
εl
l y
′
1
ε′1 . . . y′l

ε′l to yε1+ε′1−1
1 ...y

εl+ε
′
l−1

l . This finishes the proof. �
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The string product and coproduct onH•([G/G]), by universal coefficient the-
orem, induces a degree −d coproduct δ : H•([G/G])→ H•([G/G])⊗H•([G/G])
and degree −d product ? : H•([G/G])⊗H•([G/G])→ H•([G/G]) which makes
H•([G/G]) into a Frobenius algebra, called the dual Frobenius structure on
H•([G/G]).

More explicitly, these two operations are given by the following compositions:

δ : H•([G/G]) m
∗

→ H•([G×G/G]) ∆!→ H•−d([G×G/G×G])

→
⊕

i+j=•−d

Hi([G/G])⊗Hj([G/G]),

and

? : H•([G/G])⊗H•([G/G]) ∼= H•([G×G/G×G]) ∆∗→ H•([G×G/G]) m!→ H•−d([G/G]).

Theorem 14.22 Let G be a compact connected Lie group. The dual string
coproduct on H•([G/G]) is trivial. And the dual string product on H•([G/G])
is given as follows. For any P (x1, . . . , xl)yε11 ...y

εl
l and Q(x1, . . . , xl)y

ε′1
1 ...y

ε′l
l in

H•([G/G]), we have

(P (x1, . . . , xl)yε11 ...y
εl
l ) ?

(
Q(x′1, . . . , x

′
l)y
′
1
ε′1 . . . y′l

ε′l
)

= (PQ)(x1, . . . , xl)y
ε1+ε′1−1
1 ...y

εl+ε
′
l−1

l

with the convention that y−1
j = 0.

Proof. On the Cartan model, by Proposition 14.19, the string coproduct is
given by the following composition of chain maps:

ΩG(G)
p∗−→ ΩG(G×G) Ψ∗−→ ΩG×G(G×G)

∼=−→ ΩG(G)⊗ ΩG(G).

Here the last map is Künneth formula, and the first map

p∗ : ΩG(G) ∼= (S(g∗)⊗ Ω(G))G → ΩG(G×G) ∼= (S(g∗)⊗ Ω(G×G))G

is S(g∗)-linear and given by

p∗(P ⊗ ω) = P ⊗m∗(ω), ∀P ⊗ ω ∈ (S(g∗)⊗ Ω(G))G.

Note that the space ΩG(G) ⊗ ΩG(G) ∼= (S(g∗)⊗ Ω(G))G ⊗ (S(g∗)⊗ Ω(G))G

has a S(g∗)G-module structure, which is given by multiplication on the second
factor: i.e. ∀Q ∈ S(g∗), P1 ⊗ ω1 ⊗ P2 ⊗ ω2 ∈ ΩG(G)⊗ ΩG(G), one defines

Q·(P1⊗ω1⊗P2⊗ω2) = {(ξ1, ξ2) 7→ P1(ξ1)⊗ ω1 ⊗Q(−ξ2)P2(ξ2)⊗ ω2 ∈ Ω(G)⊗ Ω(G)} .

By Proposition 14.19, we know that the Gysin map Ψ∗ : ΩG(G × G) →
ΩG×G(G×G) is indeed a S(g∗)G-module map.
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There are two kinds of elements P ⊗ ω in H•([G/G]) =
(
S(g∗)

)G ⊗ Λ(g)G.
One consists of those where ω is a top degree form, i.e. a multiple of y1∧· · ·∧yl,
and the others are those where ω corresponds to a form in Ω∗<d(G). In the latter
case, Ψ(P ⊗ ω) vanishes after fiber integration for degree reasons. In the first
case, the G-action on G is by conjugation. Since the conjugacy action is trivial in
cohomology,

∫
G
ϕ∗(ω) = 0 and by Proposition 14.19, Ψ(P ⊗ ω)vanishes. Hence

the dual string coproduct is trivial.
We now compute the dual string product. First, by a simple computation,

we know that, on the Cartan model, the map ∆∗ : H∗G×G(G×G)→ H∗G(G×G)
is given by

∆∗(P (x1, . . . , xl, y1, . . . , yl,x
′
1, . . . , xl

′, y′1, . . . , y
′
l))

= P (x1, . . . , xl, y1, . . . , yl, x1, . . . , xl, y
′
1, . . . , y

′
l).

In other words, the map ∆∗ is an algebra map that leaves the odd degree
generators yi, y′j unchanged and send both generators xi, x′i (i = 1 . . . r) to the
generator xi. By Lemma 14.21, one obtains that

(m! ◦∆∗)
(
yε11 ...y

εl
l , y

′
1
ε′1 . . . y′l

ε′l
)

= y
ε1+ε′1−1
1 ...y

εl+ε
′
l−1

l .

The dual string product now follows from the explicit S(g∗)-module structure. �

Remark 14.23 It follows that the string product on H•([G/G]) is trivial while
the string coproduct has a counit given by the fundamental class of G, which is
dual of the cohomology class y1 . . . yl.

15 Concluding Remarks

1. It is well-known [43, 3] that a structure of 1 + 1-dimensional Topological
Quantum Field Theory on A is equivalent to a structure of unital and
counital Frobenius algebra on A such that the pairing c ◦ µ : A⊗ A→ k,
where c is the counit and µ the multiplication, is non-degenerate. The-
orem 11.3 implies that H•(LX) is a 1 + 1-positive boundary TQFT in
the sense of [18]. Positive boundary TQFT are obtained by considering
only cobordism Σ with boundary ∂Σ = −S1

∐
S2 such that S1, S2 6= ∅

(see [18] for details). In particular, one can define operation H•(LX)⊗p →
H•(LX)⊗q for any bordism Σ :

∐p
i=1 S

1 →
∐q
i=1 S

1. Cohen-Godin [18]
proved that these operations are parameterized by the so-called Sullivan
chord diagrams of type (p, q). Let X be a oriented stack. Using the general
machinery developed in Section 5.1, Section 8.2 and the proof of Theo-
rem 11.3, one can show along similar lines as in [18], that each chord dia-
gram c of type (p, q) determines a linear map µ(c) : H(LX)⊗p → H(LX)⊗q.
Furthermore the maps µ(c) are compatible with the gluing of chord dia-
grams.
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2. A higher dimensional analog of String topology, called Brane topol-
ogy, was studied by Sullivan-Voronov (see [21] Chapter 5) and Hu-Kriz-
Voronov [31]. Brane topology is concerned with the algebraic structure
of the homology of MSn

= Map(Sn,M), where M is an oriented man-
ifold and Sn the standard n-dimensional sphere. Sullivan-Voronov ([21]
Chapter 5) proved that H•+d(MSn

,Q) is a BVn+1-algebra ([21] Definition
5.3.1) which is an analog of a BV-algebra where the BV -operator is of de-
gree n. The proof is based on the action of the n-dimensional cacti operad,
on MSn

in a way similar to the n = 1 case. For a topological stack X, since
the standard spheres Sn are compact, one can define XS

n

= Hom(Sn,X)
as in Section 5.1, as well as the stack Hom(Sn∨Sn,X). Corollary 5.3 can
be easily generalized to arbitrary n. Applying the general machinery of
this paper, more precisely Section 12, one can define Brane topology for
oriented stacks.

3. Let G be either a compact Lie group or a discrete group. Then the stack
[∗/G] is strongly oriented. Thus according to Theorem 11.3, H•(L[∗/G])
is a Frobenius algebra. An alternative approach to string topology for
[∗/G] has been carried out in Gruher-Salvatore [28]. It would be inter-
esting to find a precise link between the result of Section 14.4 with those
of [28]. Similarly, it would be interesting to find the connection between
the construction relate of our string product (Theorem 10.1) with that of
Abbaspour-Cohen-Gruher [1] for Poincaré duality groups.

A Generalized Fulton-MacPherson bivariant
theories

In this section we recall the axioms of a Fulton-MacPherson bivariant theory.
Indeed we need a slight generalization of it because products of bivariant classes
are not always defined. This generalization is what we need to define Gysin
homomorphisms, see Section 8.2.

The underlying category

The underlying category of a generalized bivariant theory is a category C with
fiber products and a final object. The category C is equipped with the following
structure:

• A class of commutative triangles called confined triangles

X

u ��@@@@@

f // Y

v�������

S

87



We usually write this triangle as X
f−→ Y

v−→ S. We sometime refer to
the above triangle as a morphism f : X → Y confined relative to S.

• a class of squares called independent squares

X ′

f ′

��

g′ // X

f
��

Y ′ g
// Y

Note: we will distinguish the above square from its transpose, so the
transpose of an independent square may not be independent.

• a class of morphisms called adequate.

We require the following axioms to be satisfied:

A1. A triangle X
f−→ Y

v−→ Z in which f is an identity map is confined.

A2. If the inside triangles in

X

u   @@@@@

f // Y

v
��

g // Z

w��~~~~~

S

are confined, then so is the outside triangle.

B1. Any commutative square in which the top and the bottom morphisms are
identity maps is independent.

B2. Any square obtained from juxtaposition (vertical, or horizontal) of inde-
pendent squares is independent.

C. If in the commutative diagram

X ′

g′

��

f ′ // Y ′

g
��

v′ // S′

��

X
f
// Y v

// S

the left square (or its transpose) is independent and f is confined relative
to S, then f ′ is confined relative to S′.

D. All isomorphisms are adequate.
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Lemma A.1 Given

X
f // Y // Z // W

if f is confined relative to W then f is confined relative to Z.

Proof. Use Axioms B1 and C. �

Axioms for a bivariant theory

A bivariant theory T on such a category C assigns to every morphism f : X → Y

in C a graded abelian group T (X
f−→ Y ), or T (f) for short. We denote the

ith graded component, i ∈ Z, of T by T i. We sometimes denote an element
α ∈ T (X

f−→ Y ) by

X
f

'&%$ !"#α // Y .

The functor T support three types of operations:

• Product. For every f : X → Y and adequate g : Y → Z, there is a product

T i(X
f−→ Y )⊗ T j(Y g−→ Z) ·−→ T i+j(X

g◦f−→ Z).

• Pushforward. Given a confined triangle

X

u ��@@@@@

f // Y

v�������

S

there is a pushforward homomorphism

f∗ : T i(X u−→ S) −→ T i(Y v−→ S).

• Pullback. For every independent square

X ′

f ′

��

g′ // X

f
��

Y ′ g
// Y

there is a pullback homomorphism

g∗ : T i(X
f−→ Y ) −→ T i(X ′

f ′−→ Y ′).

(Observe the abuse of notation.)
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These operations should satisfy the following compatibility axioms:

A1. Product is associative. Given a diagram

X
f

'&%$ !"#α // Y
g

'&%$ !"#β // Z
h��������γ // W

where g, h and h ◦ g are adequate, we have

(α · β) · γ = α · (β · γ)

in T (h ◦ g ◦ f)..

A2. Pushforward is functorial. If the triangles in

X

u   @@@@@

f // Y

v
��

g // Z

w��~~~~~

S

are confined, then

(g ◦ f)∗ = g∗ ◦ f∗ : T i(X u−→ S) −→ T i(Z w−→ S).

A3. Pullback is functorial. If the squares in

X ′′

f ′′

��

h′ // X ′

f ′

��

g′ // X

f
��

Y ′′
h
// Y ′ g

// Y

are independent, then

(g ◦ h)∗ = h∗ ◦ g∗ : T i(X
f−→ Y ) −→ T i(X ′′

f ′′−→ Y ′′).

A12. Product and pushforward commute. Given

X
f //

'&%$ !"#α
99Y

g // Z
h

'&%$ !"#β // W

with f confined relative to W and h adequate, we have

f∗(α · β) = f∗(α) · β

in T (h ◦ g).
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A13. Product and pullback commute. Given

X ′

f ′

��

h′′ // X

f ��������α
��

Y ′
h′ //

g′

��

Y

g '&%$ !"#β
��

Z ′
h // Z

with independent squares, g and g′ adequate, we have

h∗(α · β) = h′∗(α) · h∗(β)

in T (g′ ◦ f ′).

A23. Pushforward and pullback commute. Given

X ′

f ′

��

h′′ // X

f
�� ��������α
��

Y ′
h′ //

g′

��

Y

g
��

Z ′
h // Z

with independent squares and f confined relative to Z, we have

f ′∗(h
∗α) = h∗f∗(α)

in T (g′).

A123. Projection formula. Given

X ′

f ′

��

g′ // X

f ��������α
��

Y ′
g //

'&%$ !"#β
55Y

h // Z

with independent square, g adequate and confined relative to Z and h ◦ g
adequate, we have

α · g∗(β) = g′∗(g
∗α · β)

in T (h ◦ f).
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We say a bivariant theory T has unital if for every X ∈ C there is an element
1X ∈ T 0(X id−→ X) with the following properties:

• For every f : W → X and every α ∈ T (W
f−→ X), we have α · 1X = α.

• For every g : X → Y and every β ∈ T (X
g−→ Y ), we have 1X · β = β.

• For every g : X ′ → X, we have g∗(1X) = 1X′ .

A bivariant theory T is called skew-commutative (respectively, commu-
tative), if for any square

X ′

f ′

��

g′ // X

f ��������α
��

Y ′
g

'&%$ !"#β // Y

that is independent or its transpose is independent, g and f are adequate, we
have

g∗(α) · β = (−1)deg(α) deg(β)f∗(β) · α

(respectively, g∗(α) · β = f∗(β) · α).

Note that we don’t assume the class of adequate morphisms to be closed;
that is, if f, g are adequate, f ◦ g might not be adequate. However, in practice,
it is convenient to specify a (large) closed subclass of adequate maps, called
the strongly adequate morphisms. In particular, the product of bivariant
classes are always defined and associative on the subclass of strongly adequate
morphisms.

Using the definitions of Section 7 and results of Sections 4, 6, 6.1, it is
straightforward to prove

Theorem A.2 The bivariant theory of Section 7 is a generalized Fulton-
MacPherson bivariant theory.

Note that, in view of Lemma 6.4 and Example 7.5.1, we can choose the class of
strongly adequate morphisms to be the class of strongly proper maps.
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[23] B. Fantechi, L. Göttsche, Orbifold cohomology for global quotients, Duke
Math. J. 117 (2003), no. 2, 197–227.
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