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1 Introduction

We consider the problem of obtaining a list of compact 3-manifolds that can
be obtained as a union of given sets. The concept of an A-category of a mani-
fold Mn as introduced in [CP] is a generalization of the Lusternik-Schnirelmann
category cat(Mn). For a fixed closed connected k-manifold A, 0 ≤ k ≤ n − 1,
a subset B in Mn is said to be A-contractible if there are maps ϕ : B −→ A
and α : A −→ Mn such that the inclusion map i : B −→ M is homotopic
to α · ϕ. The A-category catA (Mn) of Mn is the smallest number of sets,
open and A-contractible needed to cover Mn. Thus when A is a point P ,
catP (Mn) = cat(Mn). In the case A =S1 it was shown in [GGH2] that the
fundamental group of a closed 3-manifold M with catS1(M) = 2 is cyclic and
it then follows from Perelman’s work [MT] that in this case M is a lens space;
hence M can be covered by two open solid tori. As a first step to obtaining a
list of all 3-manifolds with catS1(M) = 3 we ask about minimal covers of M
by three open sets, each homotopy equivalent to S1. In particular we consider
covers of M by three open solid tori.

If a closed 3-manifold M can be covered by three open balls, then M is a
connected sum of S3 and finitely many S2-bundles over S1. This was first shown
by Hempel and McMillan [HM] and a proof of a slight generalization (allowing
punctured balls) was given in [GGH1]. These proofs did not use the Poincarè
Conjecture. A much shorter proof can be given by using it, since then it suffices
to compute the fundamental group of M . In [GGH3] we used this approach,
applying Perelman’s results about the 3-dimensional spherical space-form con-
jecture, to obtain a classification of all closed 3-manifolds that can be covered by
two open balls and one open solid torus or by one open ball and two open solid
tori. This method however does not seem to be amenable to a cover by three
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open solid tori, since it would involve a computation of fundamental groups of
Seifert fiber spaces.

In this paper we obtain a classification of all closed 3-manifolds that can be
covered by three open solid tori. The main result is

Theorem: If M is a union of three open solid tori then M is homeomorphic to
B#L̃(3) or to B#S̃(3), where B is a connected sum of S3 and S2-bundles over
S1 (with any number of n ≥ 0 factors), L̃(3) is a connected sum of at most 3
lens spaces, and S̃(3) is a closed Seifert fiber space with at most 3 exceptional
fibers over any (closed) orbit surface.

This Theorem follows from Corollary 9 (d) which is proved in section 5. Our
proofs do not use Perelman’s results.

In our proofs we replace unions of balls and solid tori by unions that are
obtained by attaching two-handles to the balls and solid tori. This leads us
to consider unions of punctured balls, punctured solid tori and punctured lens
spaces and general position decompositions (defined in section 2). Such a de-
composition of a 3-manifold M consists of a cover of M by pl 3-dimensional
submanifolds such that the boundaries of any two intersect transversely and
the boundaries of any three have no common intersection points. In Theorem
7 (section 4), we obtain a classification of all compact 3-manifolds (with non-
empty boundary) that admit a general position decomposition into punctured
balls, punctured lens spaces and one or two punctured solid tori. This is used in
section 5 to obtain in Theorem 8 a classification of all closed 3-manifolds that
admit a general position decomposition into punctured balls, punctured lens
spaces and at most three punctured solid tori. Then Corollary 9 gives a classi-
fication of all closed 3-manifolds that are a union of three open submanifolds,
each an open ball or an open solid torus.

2 Preliminaries

The following lemma, proved in [GGH1], Corollary 1(a) , allows us to work in
the pl-category.

Lemma 1 Suppose M is a closed 3-manifold covered by three open sets U1,
U2, U3, such that Ui is homeomorphic to the interior of a compact connected
3-manifold Mi (i=1,2,3). Then M admits a covering M = M1 ∪M2 ∪M3 such
that ∂M1 is transverse to ∂M2 , ∂M3 ⊂ int(M1 ∪M2), and M1, M2, M3 are pl
embedded.

By an open punctured ball (resp. solid torus) we mean a manifold homeomor-
phic to an open ball (resp. solid torus) with a finite number of points removed.

2



By an (n-times) punctured M we mean a manifold obtained from M by removing
interiors of (n) disjoint balls in int(M). We allow n = 0. Note that a connected
(punctured M)= M#H, for some punctured ball H.

We will use the following notations throughout this paper:

For a 3-manifold M , the manifold obtained by filling in all 2-sphere boundary
components by 3-balls is denoted by M̂ .
H or Hi denotes a punctured ball with finitely many punctures (with possibly
no punctures).
W or Wi denotes a handlebody (orientable or non-orientable).
L or Li denotes a (punctured) lens space (possibly S1 × S2 or S3).
V or Vi denotes a (punctured) solid torus.
S(n) denotes a Seifert fiber space with at most n exceptional fibers and any
compact orbit surface with non-empty boundary.
S̃(n) denotes a closed Seifert fiber space with at most n exceptional fibers and
any (closed) orbit surface.
W (S(n)), a Seifert web on S(n), is obtained from S(n) by attaching any finite
number of 1-handles.

B denotes the collection of manifolds that are connected sums of S3 and S2-
bundles over S1 (with finitely many factors).
W denotes the collection of 3-manifolds W1# · · ·#Wn, n ≥ 0 that are connected
sums of handlebodies Wi (with finitely many factors).
For collections of manifolds X,Y we denote by X#Y the collection of manifolds
of the form X#Y , where X ∈ X and Y ∈ Y.

For convenience we write M ∈ B#L̂#H instead of saying that M is a con-
nected sum of L̂, H, and a finite number of S2-bundles over S1.

It is easy to prove (e.g. Lemma 2 of [GH]) that the collection B#W#H is
closed under attaching 1-handles, moreover:

Lemma 2 The family B#W#L1 · · ·#Ln#W (S(n))#H is closed under the op-
eration of attaching 1-handles.

Remark 3 (a) Attaching a 2-handle to L results in L (with one more punc-
ture).
(b) Attaching a 2-handle to V results in V (with one more puncture) or in L.
(c) Cutting L along a disk results in L ∪ H or, if L is a punctured S2 × S1,
possibly in H.
(d) Cutting V along a disk results in V ∪H or H.

The following lemma is well known for irreducible 3-manifolds. Noting that
for an irreducible 3-manifold M̂ every 2-sphere in M bounds a punctured ball
in M , the proof in [GGH] yields:
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Lemma 4 Suppose M is a compact 3-manifold such that M̂ is irreducible.
If M contains a 2-sided compressible torus T then either T bounds a punctured
solid torus or a punctured knot space R in M such that a meridian curve of
∂R bounds a disk D in M −R. In particular if T is a compressible boundary
component of M then M is a punctured solid torus.

Let M1, · · · ,Mn be compact submanifolds of a 3-manifold N . We say that

(∗) N = M1 ∪ · · · ∪Mn

is a general position decomposition of N if ∂Mi is transverse to ∂Mj for each
i 6= j, (i, j = 1, · · · , n), and ∂Mi ∩ ∂Mj ∩ ∂Mk = ∅ for all distinct i, j, k.

The complexity α of the general position decomposition (∗) is the number of
components of {∂Mi ∩ ∂Mj | i 6= j, i, j = 1, · · · , n} .

Lemma 5 Suppose N = M1 ∪ · · · ∪ Mn is a general position decomposition
of N and N ⊂ int(M) for some compact 3-manifold M . If a component c of
∂Mi ∩ ∂Mj is null homotopic on ∂Mi then there is a disk D on Mi such that
∂D = D ∩ ∂Mj for some i 6= j and D ∩Mk = ∅ or D ⊂ int(Mk) for all k 6= i, j
and either

(i) N ≈ M ′
1 ∪ · · · ∪M ′

n is a general position decomposition of N with com-
plexity α′ < α, where M ′

k = Mk for k 6= j and M ′
j is obtained from Mj by

attaching a 2-handle to ∂Mj with cocore D, or

(ii) N = N ′ or N is obtained from N ′ by attaching a 1-handle to ∂N ′, where
N ′ ≈ M ′

1 ∪ · · · ∪M ′
n is a general position decomposition with complexity α′ < α,

and where M ′
k = Mk for k 6= j and M ′

j = Mj\D.

(Here Mj\D is obtained from M by cutting along the properly embedded disk
D).

Proof.
The component c bounds a disk on ∂Mi. Let D be an innermost such disk

on ∂Mi, i.e. ∂D = D ∩ ∂Mj for some j 6= i and D ∩Mk = ∅ or D ⊂ int(Mk)
for all k 6= i, j. Let U(D) be a regular neighborhood (rel ∂Mj) of D in M .

If D is not contained in Mj let M ′
j = Mj ∪U(D) (If D ⊂ int(Mk) for k 6= j

choose U(D) ⊂ int(Mk)). Then M ′
j and N are as in (i) (see Fig 1).

If D ⊂ Mj let M ′
j = Mj − U(D). Then M ′

j and N ′ are as in (ii) (see Fig
2). If D ∩ Mk = ∅ for all k 6= i, j then N is obtained from N ′ by attaching a
1-handle with cocore D. If U(D) ⊂ intMk for some k 6= i, j then N = N ′.
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Figure 1:

Figure 2:

3 Complexity 0.

First we consider general position decompositions of punctured balls, punctured
lens spaces and at most 2 punctured solid tori with complexity 0.

Proposition 6 Let N ⊂ intM for some 3-manifold M .

(a) If N =
⋃

i Hi∪L1 · · ·∪Ln is a general position decomposition with complexity
0 then N ∈ B#L̂1# · · ·#L̂n#H.

(b) If N =
⋃

i Hi ∪ L1 · · · ∪ Ln ∪ V1 is a general position decomposition with
complexity 0 then N ∈ B#L̂1# · · ·#L̂n#H or N ∈ B#L̂1# · · ·#L̂n#V̂1#H.

(c) If N =
⋃

i Hi∪L1 · · · ∪Ln∪V1∪V2 is a general position decomposition with
complexity 0 then
N ∈ B#L̂1# · · ·#L̂n#V̂i#H (i = 1 or 2) or
N ∈ B#L̂1# · · ·#L̂n#V̂1#V̂2#H or
N ∈ B#L̂1# · · ·#L̂n#L̂#H.

(Recall that we allow L̂ = S3).

Proof.
Let Ti denote the torus boundary of Vi and let S denote the collection of

2-spheres
⋃

i ∂Hi ∪ ∂L1 · · · ∪ ∂Ln, resp.
⋃

i ∂Hi ∪ ∂L1 · · · ∪ ∂Ln ∪ (∂V1 − T1),
resp.

⋃
i ∂Hi ∪ ∂L1 · · · ∪ ∂Ln ∪ (∂V1 − T1) ∪ (∂V2 − T2). For each i, S ∩ intHi
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cuts Hi into punctured balls. Similarly, since V̂i is irreducible, S ∩ Vi cuts Vi

into a punctured solid torus V ′
i and punctured balls. Also S ∩ Lj cuts Lj into

a punctured lens space L′
j and punctured balls. (If Lj is a punctured S2 × S1

then L′
j may be a punctured S2 × S1 or a punctured ball; in any other case

L̂′
j = L̂j). Denote the collection of all the resulting punctured balls by {H ′

k}.

(a) In this case N =
⋃

k H ′
k∪L′

1 · · ·∪L′
n is obtained from a disjoint collection of

punctured balls H ′
k and punctured lens spaces L′

j by identifying some boundary
components in pairs and the result follows.

(b) In this case consider N =
⋃

k H ′
k ∪ L′

1 · · · ∪ L′
n ∪ V ′

1 . If there is a point x
in int(H ′

k) ∩ V ′
1 then (viewing x in V ′

1) each point y in V ′
1 can be joined to x

by a path w in V ′
1 such that int(w) ⊂int(V ′

1), i.e. w does not cross ∂H ′
k. Hence

(viewing x in H ′
k), w lies in H ′

k and therefore V ′
1 ⊂ H ′

k. Similarly, if V ′
1∩int

L′
j 6= ∅ we obtain V ′

1 ⊂ L′
j . In these cases we delete V ′

1 from the decomposition
of N and obtain N as in case (a).

In any other case N is obtained from the disjoint collection of the punctured
balls H ′

k, the punctured lens spaces L′
j , and the punctured solid torus V ′

1 by
identifying some boundary spheres in pairs. The result follows.

(c) We have N =
⋃

k H ′
k ∪ L′

1 · · · ∪ L′
n ∪ V ′

1 ∪ V ′
2 .

case (c1): T1 is not contained in intV ′
2 .

By the argument above, considering paths in V ′
2 , we see that if V ′

2 ∩H ′
i 6= ∅,

resp. V ′
2 ∩ L′

i 6= ∅, resp. V ′
2 ∩ V ′

1 6= ∅, then V ′
2 ⊂ H ′

i, resp. V ′
2 ⊂ L′

i, resp.
V ′

2 ⊂ V ′
1 . We delete V ′

2 from the decomposition of N and get N as in (b) (the
third term in the list 6(c)).
If V ′

2 is disjoint from H ′
i, L′

i, and V ′
1 we obtain N from V ′

2 and N ′ =
⋃

k H ′
k ∪

L′
1 · · · ∪L′

n ∪ V ′
1 by identifying 2-spheres in the boundary. Since N ′ is as in (b),

N is as in the second and third term of 6(c).
The same argument applies if T2 is not contained in intV ′

1 .

case (c2): T1 ⊂ intV ′
2 and T2 ⊂ intV ′

1

Then by [ (3.1)(b) of [GGH] ] we have V̂ ′
1 ∪ V̂ ′

2 = L̂ and N =
⋃

k H ′
k∪L′

1 · · ·∪
L′

n ∪ L is as in case (a) with one more lens space summand, which yields the
third term of 6(c).

4 Balls, lens spaces, and two solid tori.

We now consider the case when the complexity is strictly positive.

Theorem 7 Let N ⊂ intM for some 3-manifold M .
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(a) If N =
⋃

i Hi ∪ L1 · · · ∪ Ln is a general position decomposition then N ∈
B#W#L̂1# · · ·#L̂n#H.

(b) If N =
⋃

i Hi ∪ L1 · · · ∪ Ln ∪ V1 is a general position decomposition then
N ∈ B#W#L̂1# · · ·#L̂n#L̂n+1#H.

(c) If N =
⋃

i Hi∪L1 · · · ∪Ln∪V1∪V2 is a general position decomposition then
(c1) N ∈ B#W#L̂1# · · ·#L̂n#L̂n+1#L̂n+2#H or
(c2) N ∈ B#W#L̂1# · · ·#L̂n#W (S(2))#H.

(Recall that we allow L̂k = S3).

Proof.
The proof is by induction on the complexity α of the decomposition for N .

If α = 0 we obtain N as in Proposition 6 with W = ∅ or W = V̂i or W = V̂1#V̂2.
Suppose α ≥ 1.

cases (a) and (b):

Let C denote the collection of the circles {∂Hi ∩ ∂Hj (i 6= j), ∂Hi ∩ ∂Lk,
∂Li ∩ ∂Lj}, resp. {∂Hi ∩ ∂Hj (i 6= j), ∂Hi ∩ ∂Lk, ∂Li ∩ ∂Lj , ∂Hi ∩ ∂V1,
∂Li ∩ ∂V1} and consider a circle c of C on ∂Hi (resp. ∂Li). Since c is null
homotopic on ∂Hi (resp. ∂Li) we apply Lemma 5.

In case (i) of Lemma 5 we obtain a new general position decomposition of N
with smaller complexity that differs from the given one only in that some Hj or
Lj or V1 is replaced by adding a 2-handle. By Remark 3 the new decomposition
is of the same type, where V1 either survives or is replaced by Ln+1, and the
Theorem follows by induction. (If V1 survives to the end, it becomes a part of
W).

In case (ii) we obtain N from N ′ by attaching a 1-handle, where N ′ has a
general position decomposition of complexity < α and is as in (a) or (b) except
that some Hj or Lj or V1 is cut along a disk. By Remark 3, N ′ is as in (a) or
(b) and the result follows by induction and Lemma 2.

case (c):

Let Ti be the torus boundary of Vi.
If there is a component of T1 ∩ T2 that is null homotopic on T1 or T2, or if

T1 ∩ T2 = ∅, then we apply the same argument as above (using Lemma 5) to
obtain N from N ′ by attaching 1-handles and where N ′ has a decomposition of
the same type as N and with smaller complexity.

Thus assume that T1 ∩ T2 6= ∅ and every component of T1 ∩ T2 is not null
homotopic on T1 and T2. Then the components of ∂V1 ∩ V2, resp. ∂V2 ∩ V1,
consist of annuli Ai, resp. A′

j .
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If a boundary component of an A′
j , say, is null homotopic in V1 then all the

A′
j are compressible in V1 and we find a meridian disk D of V1 that is disjoint

to all A′
j and such that ∂D is disjoint to Hi (resp. Lj) or D ⊂ int(Hi) (resp.

D ⊂ int(Lj)). A regular neighborhood of D in V1 decomposes V1 into two
punctured balls H0, H ′

0 and we replace V1 ∪ V2 in the decomposition of N by
H0 ∪H ′

0 ∪ V2 to obtain N as in case (b). This results in 7(c1).
Thus we may assume that the boundary components of A′

j , resp. Ai, are
not null homotopic in V1, resp. V2 and it follows that the A′

j are incompressible
boundary parralel annuli in V̂1 (see for example [Ha]) and there is a Seifert
fibration of V̂1 such that the Ai’s and A′

j ’s consist of fibers. The fibration of
V̂1∩ V̂2 extends to a Seifert fibration of V̂2 and hence V̂1∪ V̂2 = S(2). The result
follows.

5 Closed 3-manifolds and three solid tori.

The main result (Corollary 9) follows from the following

Theorem 8 Let M be a closed 3-manifold.
(a) If M admits a general position decomposition M =

⋃
i Hi ∪L1 · · · ∪Ll then

M ∈ B#L̂1# · · ·#L̂l.
(b) If M admits a general position decomposition M =

⋃
i Hi ∪ L1 · · · ∪ Ll ∪ V1

then M ∈ B#L̂1# · · ·#L̂l#L̂l+1.
(c) If M admits a general position decomposition M ∈

⋃
i Hi∪L1 · · ·∪Ll∪V1∪V2

then M ∈ B#L̂1# · · ·#L̂l#L̂l+1#L̂l+2.
(d) If M admits a general position decomposition M =

⋃
i Hi∪L1 · · ·∪Ll∪V1∪

V2 ∪ V3 then
(d1) M ∈ B#L̂1# · · ·#L̂l#L̂l+1#L̂l+2#L̂l+3 or
(d2) M ∈ B#L̂1# · · ·#L̂l#S̃(3) .

(Again recall that we allow L̂k = S3).

Proof.
We only demonstrate (d), since the proofs for (a), (b) and (c) are similar

and easier.

Write M = N ∪V3, where N =
⋃

i Hi∪L1 · · ·∪Ll∪V1∪V2 is as in Theorem
7(c1) or (c2).

In case 7(c1) we represent N as

(∗∗) N = H ∪K1 ∪ · · · ∪Km ∪W1 ∪ · · · ∪Wn ∪ L1 ∪ · · · ∪ Ll ∪ Ll+1 ∪ Ll+2

where H is a punctured ball, Kj is a once-punctured S2-bundle over S1, Wi

is a once-punctured handlebody (j=1, . . . , m; i=1, . . . , n), and Lk is a once
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punctured lens space (k = 1, . . . , l+2). We may assume that L̂k 6= S2 × S1

since otherwise it can be considered as a Kj . Moreover Kj ∩Ki = Wj ∩Wi =
Kj ∩Lk = Wi ∩Lk = ∅ for i 6= j, and H ∩Wi = ∂H ∩ ∂Wi = Ci (i = 1, . . . , n),
H ∩ Kj = ∂H ∩ ∂Kj = C ′

j (j = 1, . . . ,m), H ∩ Lk = ∂H ∩ ∂Lk = C ′′
k (k =

1, . . . , l+2) are 2-spheres. Let Sj be a non-separating 2-sphere in intKj . We
may assume that Ci, C ′

j ,C
′′
k and Sj are transverse to ∂V3. Since M is closed,

∂V3 ⊂ int(N) and ∂N ⊂ int(V3). In particular, for each i, the non-sphere
boundary component Fi of Wi is contained in int(V3) and separates V3 into two
components.

Let β denote the number of components of S = ∂V3∩(
⋃

i Ci∪
⋃

j C ′
j∪

⋃
j Sj∪⋃

j C ′′
k )

First assume β = 0.

If for some i, no component of ∂V3 is contained in Wi then each point of
Wi ∩ V3 can be joined to a point of Fi by a path in Wi that misses ∂V3; hence
this path must lie entirely in V3 and it follows that Wi ⊂ V3. Deleting Wi from
(∗∗) we may assume that ∂V3 ∩Wi 6= ∅ for each i.

Now the torus boundary T3 of V3 is contained in int(Wi) for some i. Since
Ŵi is irreducible we have by Lemma 4 two cases:

(i) T3 bounds an (at most once punctured) solid torus V in Wi

(ii) T3 bounds an (at most once punctured) knot space R in Wi with a meridian
disk D in Wi −R.

Let Q = Wi ∩ V3.

case (i). We replace Wi∪V3 in the decomposition for N ∪V3 by the (punctured)
lens space Ll+3 = Wi −Q ∪T3 V3 = V ∪T3 V3 (where the union ∪T3 is along the
common boundary T3). (See Figure 3).

Figure 3:
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Then M = H ∪K1 ∪ · · · ∪Km ∪W1 ∪ · · ·Wi−1 ∪Wi+1 ∪Wn ∪L1 ∪ · · · ∪Ll ∪
Ll+1 ∪ Ll+2 ∪ Ll+3 where Fj ⊂ Ll+3 for all j 6= i.

Suppose a 2-sphere S of ∂Ll+3 lies in Wj for some j 6= i. If S bounds a ball
in Wj let B be an innermost such ball. Then either Ll+3 ⊂ B or Ll+3 ∩B = ∅.
The first case can not happen since Ci ⊂ Ll+3 and Wi ∩Wj = ∅. In the second
case replace Ll+3 by Ll+3 ∪ B in the decomposition of M to get an Ll+3 with
fewer punctures. Hence we may assume that all spheres of ∂Ll+3 − Ci in Wj

are parallel to Cj and we may isotope these 2-spheres across Cj out of Wj into
H. Thus we now have ∂Ll+3 ∩Wj = ∅ and it follows that Wj ⊂ Ll+3. Deleting
Wj from the decomposition of M we obtain M = H ∪K1∪ · · ·∪Km∪L1∪ · · ·∪
Ll ∪ Ll+1 ∪ Ll+2 ∪ Ll+3 with complexity 0.

Cutting each Kj along Sj into a (once-punctured) ball Bj we obtain a gen-
eral position decomposition of M ′ = M\

⋃
j Sj as in 7(a) with ∂M ′ a collec-

tion of 2-spheres (two copies of Sj for each j). Hence M is obtained from
M ′ = B#L̂1# · · ·#L̂l#L̂l+1#L̂l+2#L̂l+3#H0 by identifying boundary spheres
of H0 in pairs and we obtain 8(d1).

case (ii). The meridian disk D in Wi −R is also a meridian disk for V3, since
∂D is not null homotopic on ∂R = T3. Since Wi ∩ Wj = ∅ there is a regular
neighborhood U(D) in V3 that misses Wj for all j 6= i. In the decomposition
of M = N ∪ V3 replace Wi ∪ V3 by the two punctured balls B0 = R ∪ U(D)
and B1 = V3 − U(D), see figure 4. Note that (∂B0 ∪ ∂B1) ∩Wj = ∅ for j 6= i
and B0 ∪ B1 = H0 is a (punctured) ball. As before we can isotope each Wj

Figure 4:

into B0 or B1 and then delete the Wj ’s from the decomposition of M to obtain
M = H ∪K1 ∪ · · · ∪Km ∪ L1 ∪ · · · ∪ Ll ∪ Ll+1 ∪ Ll+2 ∪H0 with complexity 0
and proceed as in case (i).

Now consider β 6= 0.
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Let c be a component of S. If c ⊂ ∂V3 ∩ Ci, say, then c bounds a disk on
Ci and there is an innermost such disk D ⊂ Ci such that D ∩ ∂V3 = ∂D. Let
U(D) be a regular neighborhood rel ∂V3 of D in int(N). If D ⊂ V3 we replace
V3 by V3 − U(D) in the decomposition of M , if D is not in V3 we replace V3 by
V3 ∪U(D). In either case we obtain a new general position decomposition of M
with smaller β and with V3 having one more puncture or V3 being replaced by
a (punctured) ball B or V3 ∪ B or a punctured lens space. The result follows
now by induction on β.

In case 7(c2) we represent N as

(∗ ∗ ∗) N = H ∪K1 ∪ · · · ∪Km ∪W1 ∪ · · · ∪Wn ∪ L1 ∪ · · · ∪ Ll ∪W (S(2))

where H, Kj , Wi, Lk are as before and W (S(2)) is now a once punctured
Seifert web on S(2). As in the above case 7(c1) we may delete the Wj ’s from
the decomposition (∗ ∗ ∗) and assume that T3 ⊂ intW (S(2)).

If T3 is compressible in W (S(2)) then we repeat the above arguments of
cases (i) and (ii) (with Wi replaced by W (S(2)) and noting that W (S(2)) is
irreducible) to obtain M from M ′ = B#L̂1# · · ·#L̂l#L̂l+1#H0 by identifying
boundary spheres of the punctured ball H0 in pairs. This results in 8(d1).

If T3 is incompressible in W (S(2)) then T3 can be isotoped off the 1-handles
into S(2) ⊂ W (S(2)). By Waldhausen’s Theorem [W] (see also [Ha]), T3 can be
further isotoped to consist of fibers.

Let Q = V3 ∩W (S(2)).

Suppose there is a component Q1 of Q that does not intersect T3. Then Q1 is
a submanifold of W (S(2)) such that ∂Q1 consists of components of ∂W (S(2)).
Hence Q1 = W (S(2)) ⊂ intV3, and we may delete W (S(2)) from (∗ ∗ ∗), which
leads to 8(a).

Thus we now assume that Q is connected. Then Q is a submanifold of
W (S(2)) such that ∂Q consists of T3 and components of ∂W (S(2)) and we re-
place W (S(2))∪V3 in (∗∗∗) by W ′(S(2))∪T3V3, where W ′(S(2)) = W (S(2))−Q.
Since T3 is a fibered torus in S(2) ⊂ W (S(2)), the submanifold W ′(S(2)) is
again a Seifert web on some S(2). Since M is closed ∂Ŵ ′(S(2)) = T3, hence
Ŵ ′(S(2)) = S(2) and it follows from Proposition 2 of [H] that Ŵ ′(S(2))∪T3 V̂3 =
S(2)∪T3 V̂3 is either a connected sum of S2-bundles over S1 (if a fiber of ∂S(2)
is homotopic to a meridian of V3) or an S(3). This results in 8(d2).

Corollary 9 Suppose M is a closed 3-manifold.
(a) If M is a union of three open (punctured) balls then M ∈ B.
(b) If M is a union of two open (punctured) balls and an open (punctured) solid
torus then M ∈ B#L̂.
(c) If M is a union of an open (punctured) ball and and two open (punctured)
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solid tori then M ∈ B#L̂1#L̂2.
(d) If M is a union of three open (punctured) solid tori then

(d1) M ∈ B#L̂1#L̂2#L̂3 or
(d2) M ∈ B#S̃(3) .

Proof.
By Lemma 1 M has a general position decomposition M = H1 ∪H2 ∪H3,

resp. M = H1 ∪ H2 ∪ V2, resp. M = H1 ∪ V1 ∪ V2, resp. M = V1 ∪ V2 ∪ V3.
Since ∂M = ∅ the result follows from Theorem 8.

Remark: It is easy to see that the converse of Corollary 9 is also true. For
example, if M is a connected sum of S2-bundles over S1 and three lens spaces,
then we can even decompose M as a union of three solid tori such that their
interiors are pairwise disjoint, see e.g. ([GHN], [G]).
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