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Abstract

We consider temporal approximation of stationary statistical properties of dissipa-
tive complex dynamical systems. We demonstrate that stationary statistical properties
of the time discrete approximations (numerical scheme) converge to those of the un-
derlying continuous dissipative complex dynamical system under three very natural
assumptions as the time step approaches zero. The three conditions that are sufficient
for the convergence of the stationary statistical properties are: (1) uniform dissipativity
of the scheme (in the sense of pre-compactness of the union of the global attractors for
the numerical approximations); (2) uniform (with respect to initial data from the union
of the global attractors) convergence of the solutions of the numerical scheme to the
solution of the continuous system on the unit time interval [0, 1]; and (3) the uniform
(with respect to initial data from the union of the global attractors) continuity of the
solutions to the continuous dynamical system on the unit time interval [0, 1]. The con-
vergence of the global attractors is established under weaker assumptions. Application
to the infinite Prandtl number model for convection is discussed.

keywords: stationary statistical property, invariant measure, global attractor, dissipa-
tive system, time discretization, uniformly dissipative scheme, infinite Prandtl number model
for convection, Nusselt number

1 Introduction

Many dissipative dynamical systems arising in physical applications possess very complex be-
havior with abundant instability and sensitive dependence on initial data and parameters[29].
It is well-known that statistical properties of these kind of systems are much more important,
physically relevant and stable than single trajectories [11, 18, 20, 22, 23, 32].
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For a given abstract autonomous continuous in time dynamical system determined by a
semi-group {S(t), t ≥ 0} on a separable Banach space H , we recall that if the system reaches
a statistical equilibrium in the sense that the statistics are time independent (stationary sta-
tistical properties), the probability measure µ on H that describes the stationary uncertainty
(stationary statistical properties) can be characterized via either the strong (pull-back) or
weak (push-forward) formulation [11, 20, 22, 32, 33].

Definition 1 (Invariant Measure (Stationary Statistical Solution)). Let {S(t), t ≥ 0} be a
continuous semi-group on a Banach space H which generates a dynamical system on H. A
Borel probability measure µ on H is called an Invariant Measure(Stationary Statistical
Solution) of the dynamical system if

µ(E) = µ(S−1(t)(E)), ∀t ≥ 0, ∀E ∈ B(H) (1)

where B(H) represents the σ-algebra of all Borel sets on H. Equivalently, the invariant mea-
sure µ can be characterized through the following push-forward weak invariance formulation

∫

H

Φ(u) dµ(u) =

∫

H

Φ(S(t)u) dµ(u), ∀t ≥ 0 (2)

for all bounded continuous test functionals Φ.
Invariant measure (stationary statistical solution) for a discrete dynamical system gen-

erated by a map Sdiscrete on a Banach space H is defined in a similar fashion with the
continuous time t replaced by discrete time n = 0, 1, 2, · · ·.

Another popular object utilized below associated with long time behavior of a dynamical
system is the global attractor which we recall for convenience [11, 13, 29].

Definition 2 (Global Attractor and Dissipative System). Let {S(t), t ≥ 0} be a continuous
semi-group on a Banach space H which generates a continuous dynamical system on H.
A set A ⊂ H is called the global attractor of the dynamical system if the following three
conditions are satisfied.

1. A is compact in H.

2. A is invariant under the flow, i.e.

S(t)A = A, for all t ≥ 0. (3)

3. A attracts all bounded sets in H, i.e., for every bounded set B in H,

lim
t→∞

distH(S(t)B,A) = 0. (4)
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Here, distH denotes the Hausdorff semi-distance in H between two subsets which is defined
as

distH(A,B) = sup
a∈A

inf
b∈B

‖a− b‖H (5)

where ‖ · ‖H = ‖ · ‖ denotes the norm on H.
The global attractor for a discrete dynamical system induced by a map Sdiscrete on a

Banach space H is defined in a similar fashion with the continuous time t replaced by discrete
time n = 0, 1, 2, · · ·.

A dynamical system is called dissipative if it possesses a global attractor.

It is easy to see, thanks to the invariance and the attracting property, that the global
attractor, when it exists, is unique [13, 29]. We also caution the reader that our definition
of dissipativity may be slightly different from the traditional notation [13, 29].

We are usually interested in
∫

H
Φ(u) dµ(u) (statistical average) for various test functionals

Φ (observable). Since we normally do not know the invariant measure µ a priori, one of the
commonly used methods in calculating the statistical quantity is to substitute spatial average
by long time average under Boltzmann’s assumption of ergodicity ([11, 20, 22, 33])

∫

H

Φ(u) dµ(u) = lim
t→∞

1

t

∫ t

0

Φ(S(s)u) ds.

Although this formulation may not make sense all the time since the long time average
may not exist, one can always replace the long time limit by Banach (generalized) limit
which are bounded linear functionals on the space of bounded functions that agrees with the
usual long time limit on those functions whenever the long time limit exists [21]. One may
show via the so-called Bogliubov-Krylov argument that these generalized long time average
over trajectory leads to invariant measure (may depend on the chosen Banach limit and
initial datum u) of the system for appropriate dissipative dynamical systems such as the two
dimensional incompressible Navier-Stokes system and the infinite Prandtl number model for
convection system discussed below [11, 32, 36].

Due to the presumed complexity of the dynamics, it is foreseeable that physically inter-
esting stationary statistical properties need to be calculated using numerical methods. Even
under the ergodicity assumption, it is not at all clear that classical numerical schemes which
provide accurate approximation on finite time interval will remain meaningful for stationary
statistical properties (long time properties) since small error will be amplified and accumu-
lated over long time except in the case that the underlying dynamics is asymptotically stable
[12, 14, 19] where statistical approach is not necessary since there is no chaos. Therefore, it
is of great importance and a challenge to search for numerical methods that are able to cap-
ture stationary statistical properties of infinite dimensional complex dynamical system. We
will focus on dissipative system and time discretization here since long time approximation
seems to be the key issue involved.

As we shall demonstrate below that if the system and the scheme possess three very
natural properties (1) uniform dissipativity in the sense that the scheme possesses global
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attractor for small enough time step and the union of these global attractors (for different
time steps) is pre-compact in the phase space; (2) uniform convergence of the numerical
scheme for data from the support of the invariant measures on the unit time interval [0, 1]
modulo initial layer; and (3) the continuous dynamical system is uniformly continuous (for
data from the support of the invariant measures) on the unit time interval [0, 1], then the
stationary statistical properties of the scheme will converge to stationary statistical properties
of the continuous dynamical system. Our result will be presented in an abstract fashion in
order to clarify the central issues and to provide well-organized means for discussing the
problems. We also hope that our work will stimulate further work on accurate and efficient
numerical schemes for stationary statistical properties of infinite dimensional dissipative
systems.

It is easy to see that the assumptions are natural. Since the underlying dynamical system
is dissipative, it is natural to require that the numerical scheme inherit the dissipativity
of the continuous in time system so that the scheme is uniformly dissipative (for small
time steps). The uniform convergence of the numerical scheme for initial data from the
global attractor on the unit time interval is also expected from most reasonable numerical
schemes. The strong continuity of the underlying dynamical system on the unit time interval
uniform with respect to initial data from the union of the global attractors is natural for
most continuous dissipative dynamical systems. Once the desired natural conditions are
discovered, the proof of the main result is relatively straightforward although verifying these
three sufficient conditions for each application may be highly non-trivial (see section 3 for a
relatively easy application to the infinite Prandtl number model for convection with a linear
semi-implicit scheme).

Although we are not aware of any work on the convergence of stationary statistical
properties of numerical schemes for chaotic PDEs except our previous work [3, 4] (see [5] for
the case of map on the unit interval), there have been a lot of work on temporal approximation
of dissipative dynamical systems such as the two dimensional incompressible Navier-Stokes
system and the one-dimensional Kuramoto-Sivashinsky equation (see [12, 15, 17, 25, 26,
30, 9, 10] among others). These authors were mostly interested in the long time stability
of the scheme in the sense of deriving uniform in time bounds on the scheme (sometimes
bound in the phase space H only which is not sufficient for uniform dissipativity although it
may be sufficient for the convergence of the global attractors), and none of them discussed
statistical properties. Our result on the convergence of stationary statistical properties may
be viewed as an abstraction and generalization of [3, 4]. See [8] for the heat bath approach
to computing invariant measure for finite dimensional systems.

A by-product of the convergence analysis of the invariant measures presented here is
the convergence of the global attractors of the scheme to that of the underlying system.
This is also within expectation since the global attractors carry the support of the invari-
ant measures. The convergence of the global attractors under time discretization has been
discussed for the two dimensional Navier-Stokes system, reaction-diffusion equation, and
for finite-dimensional dynamical systems [25, 27, 15] among others. Therefore our result
on the convergence of global attractors may be viewed as a generalization and abstraction
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of these results. However, we would like to point out that the convergence of the global
attractors can be established under much weaker assumption. One only needs the uniform
boundedness of the union of the global attractors K, instead of the pre-compactness (plus
finite time uniform convergence for data from K). Because of this important distinction, it
is possible to have schemes that are able to capture the global attractor asymptotically but
not necessarily the stationary statistical properties (invariant measures). There are also in-
teresting works on persistence under approximation of various invariant sets (such as steady
state, time periodic orbit, inertial manifold etc) both for PDEs and ODEs under appropriate
assumptions (such as spectral gap condition that is usually associated with inertial manifold
theory, see [27, 16, 28, 29] and the references therein). We would also like to point out that
the convergence of invariant sets and the convergence of stationary statistical properties are
two related but very different issues associated with the long time behavior. It is easy to
construct two dynamical systems with exactly the same global attractor or inertial manifold
but with totally different dynamics or stationary statistical properties.

The rest of the manuscript is organized as follows: in section 2 we prove the main results,
namely the convergence of stationary statistical properties and the global attractors under
the three natural hypotheses; in section 3 we discuss an application of the main results to
the infinite Prandtl number model for convection. The choice of application is both for its
physical significance and mathematical simplicity so that an essentially self-contained short
exposition is possible and we believe that our main abstract theorem applies to many other
dissipative systems and schemes. We then provide conclusion and remarks in the fourth/last
section.

2 Main results: abstract formulation

Here we show our main results, namely, uniform dissipativity plus finite time uniform conver-
gence of the time discrete approximation together with the finite time uniform continuity of
the underlying dynamical system imply convergence of the stationary statistical properties
/ invariant measures.

Throughout this section, all semigroups are assumed to be continuous in the sense that
S(t), t ≥ 0 and Sk are continuous operators on H .

Theorem 1 (Convergence of Stationary Statistical Properties). Let {S(t), t ≥ 0} be a con-
tinuous semi-group on a separable Hilbert space H which generates a continuous dissipative
dynamical system (in the sense of possessing a compact global attractor A) on H. Let
{Sk, 0 < k ≤ k0} be a family of continuous maps on H which generates a family of discrete
dissipative dynamical system (with global attractor Ak) on H. Suppose that the following
three conditions are satisfied.

H1: [ Uniform dissipativity] There exists a k1 ∈ (0, k0) such that {Sk, 0 < k ≤ k1} is
uniformly dissipative in the sense that

K =
⋃

0<k≤k1

Ak (6)
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is pre-compact in H.

H2: [ Uniform convergence on the unit time interval] Sk uniformly converges to S on the
unit time interval (modulo an initial layer) and uniformly for initial data from the
global attractor of Sk in the sense that for any t0 ∈ (0, 1)

lim
k→0

sup
u∈Ak ,nk∈[t0,1]

‖Sn
k u− S(nk)u‖ = 0. (7)

H3: [ Uniform continuity of the continuous system] {S(t), t ≥ 0} is uniformly continuous
on K on the unit time interval in the sense that for any T ∗ ∈ [0, 1]

lim
t→T ∗

sup
u∈K

‖S(t)u− S(T ∗)u‖ = 0. (8)

Then the invariant measures of the discrete dynamical system {Sk, 0 < k ≤ k0} converge to
invariant measures of the continuous dynamical system S. More precisely, let µk ∈ IMk

where IMk denotes the set of all invariant measures of Sk. There must exist a subsequence,
still denoted {µk}, and µ ∈ IM (an invariant measure of S(t)), such that µk weakly con-
verges to µ, i.e.,

µk ⇀ µ, as k → 0. (9)

Moreover, extremal statistics converge in upper-semi-continuous fashion in the sense that
for any bounded continuous functional Φ on the phase space H, there exist ergodic invariant
measures µk ∈ IMk and an ergodic invariant measure µ ∈ IM, such that

sup
u0∈H

lim sup
N→∞

1

N

N
∑

n=1

Φ(Sn
k (u0)) =

∫

H

Φ(u) dµk(u), ∀k, (10)

sup
u0∈H

lim sup
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt =

∫

H

Φ(u) dµ(u), (11)

lim sup
k→0

sup
u0∈H

lim sup
N→∞

1

N

N
∑

n=1

Φ(Sn
k (u0)) ≤ sup

u0∈H

lim sup
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt. (12)

Proof: Since K =
⋃

0<k≤k1
Ak is pre-compact in H and since all invariant measures are

supported on the global attractor [11, 36] and µk ∈ IMk, we see that {µk} is tight in the
space of all Borel probability measures on H thanks to Prokhorov’s theorem [1, 21, 11].
Hence it must contain a weakly convergent subsequence (still denoted {µk}) which weakly
converges to a Borel probability measure µ on H , i.e.

∫

H

ϕ(u) dµk(u) →
∫

H

ϕ(u) dµ(u), as k → 0.

Our goal is to show that µ is invariant under S(t).
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Now we fix a T ∗ ∈ (0, 1] and let nk = ⌊T ∗

k
⌋ be the floor of T ∗

k
(the largest integer

dominated by T ∗

k
), and let ϕ be any smooth (C1) test functional (observable) with compact

support.
Since µk ∈ IMk, we have by the weak invariance of µk under Sk and weak convergence

∫

H

ϕ(Snk

k u) dµk(u) =

∫

H

ϕ(u) dµk(u) →
∫

H

ϕ(u) dµ(u), as k → 0.

On the other hand,
∫

H

ϕ(Snk

k u) dµk(u)

=

∫

H

ϕ(S(T ∗)u) dµk(u) +

∫

H

(ϕ(S(nkk)u) − ϕ(S(T ∗)u)) dµk(u) +

∫

H

(ϕ(Snk

k u) − ϕ(S(nkk)u)) dµk(u)

For the first term, since S(t) is continuous, ϕ(S(T ∗)u) is bounded and continuous in u.
Hence we have

∫

H

ϕ(S(T ∗)u) dµk(u) →
∫

H

ϕ(S(T ∗)u) dµ(u), as k → 0.

We also have, thanks to the uniform convergence assumption, the mean value theorem, the
uniform boundedness of the derivative of the smooth (C1) test functional (observable) with
compact support, for u ∈ Ak,

|ϕ(Snk

k u) − ϕ(S(nkk)u)| ≤ sup
u∈H

‖ϕ′(u)‖ sup
u∈Ak

‖Snk

k u− S(nkk)u‖

≤ sup
u∈H

‖ϕ′(u)‖ sup
u∈Ak ,nk∈[ T∗

2
,T ∗]

‖Sn
k u− S(nk)u‖

→ 0, as k → 0,

1 and hence, since the support of invariant measure µk is included in the global attractor
Ak, [11, 36]

∫

H

(ϕ(Snk

k u) − ϕ(S(nkk)u)) dµk(u) → 0, as k → 0.

Moreover,

|ϕ(S(nkk)u) − ϕ(S(T ∗)u)| ≤ sup
u∈H

‖ϕ′(u)‖ sup
u∈Ak

‖S(nkk)u − S(T ∗)u‖ → 0, as k → 0

by the uniform continuity of S(t) at t = T ∗ and u ∈ K since nkk = ⌊T ∗

k
⌋k → T ∗ as k → 0.

This further implies,
∫

H

(ϕ(S(nkk)u) − ϕ(S(T ∗)u)) dµk(u) → 0, as k → 0.

1We only need limk→0 sup
u∈Ak

sup
T∗− 1

k
≤nk≤T∗ ‖Sn

k
u − S(nk)u‖ = 0, ∀T ∗ ∈ (0, 1].
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Combining the estimates above, we have

∫

H

ϕ(Snk

k u) dµk(u) →
∫

H

ϕ(S(T ∗)u) dµ(u), as k → 0.

Therefore
∫

H

ϕ(S(T ∗)u) dµ(u) =

∫

H

ϕ(u) dµ(u)

which is exactly the weak invariance (2) for the smooth (C1) test functional (observable)
with compact support and T ∗ ∈ (0, 1].

For a general bounded continuous test functional ϕ, we can first approximate it by finite
dimensional test functional of the form ϕ◦Pm where Pm is the orthogonal projection onto the
m-dimensional subspace spanned by the first m elements of a given (fixed) orthonormal basis
of H (this is where we need H to be a separable Hilbert space). We can then approximate
ϕ◦Pm by smooth test functionals with compact support using mollifiers and truncation since
only the value of ϕ◦Pm on the compact global attractor is relevant for statistics. This proves
short time weak invariance (2) for any bounded continuous test functional φ and T ∗ ∈ (0, 1].

Now for a general T ∗∗ > 1, we exists a unique positive integer n and T∗ ∈ (0, 1] such that
T ∗∗ = n+ T∗. Hence

∫

H

ϕ(S(T ∗∗)u) dµ(u) =

∫

H

ϕ(Sn(1)S(T∗)u) dµ(u)

=

∫

H

ϕ(S(T∗)u) dµ(u)

=

∫

H

ϕ(u) dµ(u)

where we have utilized the semi-group property of S(t), the strong continuity of S(t) and
the short time weak invariance that we proved above with T ∗ = 1 n times and T ∗ = T∗ one
time.

This ends the proof of the convergence of the invariant measures.
As for the extremal statistics, it is easy to see that due to the uniform dissipativity, for any

given bounded continuous test functional Φ, there exist ergodic invariant measures µk and
µ such that the extreme of temporal averages are equivalent to spatial averages with respect
to these ergodic invariant measures [36, 11, 33], as stated in (10, 11). This is a manifestation
of the fact that the extremal points of the set of invariant measures must be ergodic. As
for the upper semi-convergence of the extremal statistics stated in (12), we have, thanks to
the uniform dissipativity and Prokhorov’s theorem, there exists a subsequence (still denoted
{µk}) and ν ∈ IM such that

µk → ν, as k → 0,

lim sup
k→0

sup
u0∈H

lim sup
N→∞

1

N

N
∑

n=1

Φ(Sn
k (u0)) = lim sup

k→0

∫

H

Φ(u) dµk.
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Since IM is compact in the space of Borel probability measures on H , there exists an
ergodic invariant measure νmax ∈ IM such that supµ̃∈IM

∫

H
Φ(u) dµ̃ =

∫

H
Φ(u) dνmax [36].

Therefore

lim sup
k→0

sup
u0∈H

lim sup
N→∞

1

N

N
∑

n=1

Φ(Sn
k (u0)) = lim sup

k→0

∫

H

Φ(u) dµk

=

∫

H

Φ(u) dν

≤ sup
µ̃∈IM

∫

H

Φ(u) dµ̃

=

∫

H

Φ(u) dνmax

= lim
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt

≤ sup
u0∈H

lim sup
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt.

This completes the proof of the theorem.

Next, we show the convergence of the global attractors under weaker assumptions, namely
the uniform boundedness of K (the union of the global attractors), and uniform convergence
on finite time interval (modulo an arbitrary initial layer).

Proposition 1 (Convergence of Global Attractors). Let {S(t), t ≥ 0} be a continuous semi-
group on a Banach space H which generates a dissipative dynamical system (in the sense
of possessing a compact global attractor A) on H. Let {Sk, 0 < k ≤ k0} be a family of
continuous maps on H which generates a family of discrete dissipative dynamical system
(with global attractor Ak) on H. Suppose that the following two conditions are satisfied.

H4: [ Uniform boundedness] There exists a k1 ∈ (0, k0] such that {Sk, 0 < k ≤ k1} is
uniformly bounded in the sense that

K =
⋃

0<k≤k1

Ak (13)

is bounded in H.

H5: [ Finite time uniform convergence] Sk uniformly converges to S on any finite time in-
terval (modulo any initial layer) and uniformly for initial data from the global attractor
of the scheme in the sense that there exists t0 > 0 such that for any T ∗ > t0 > 0

lim
k→0

sup
u∈Ak ,nk∈[t0,T ∗]

‖Sn
k u− S(nk)u‖ = 0. (14)
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Then the global attractors converge in the sense of Hausdorff semi-distance, i.e.

lim
k→0

distH(Ak,A) = 0. (15)

Proof: Since K is bounded, for any given ǫ > 0, there exists a Tǫ > t0 > 0 such that

distH(S(t)K,A) <
ǫ

2
, ∀t ≥ Tǫ

because the global attractor A attracts all bounded set, in particular K.
Now let uk ∈ Ak. Since the global attractor Ak is invariant under Sk, there exists a

vk ∈ Ak such that uk = Snk

k vk where nk = ⌊Tǫ+1
k

⌋.
Thanks to the uniform convergence on [Tǫ, Tǫ+1] and u ∈ K, we have, there exists kǫ > 0

such that
‖uk − S(nkk)vk‖ = ‖Snk

k vk − S(nkk)vk‖ <
ǫ

2
, k ≤ kǫ.

This implies that

distH(Ak,A) = sup
uk∈Ak

dist(uk,A)

≤ sup
uk∈Ak

(‖uk − S(nkk)vk‖ + dist(S(nkk)vk,A))

≤ ǫ, k ≤ kǫ.

This completes the proof for the convergence of the global attractors.

We would like to reiterate the point that the uniform boundedness assumption H4 is
much weaker that the uniform dissipativity assumption H1 for infinite dimensional systems
although they are equivalent for finite dimensional systems. This is an important difference
and hence it is theoretically possible to have schemes that are able to capture the global
attractor asymptotically but not the invariant measures necessarily. Conditions H5 and H2
are roughly equivalent in some sense. They are usually valid for reasonable numerical schemes
(see below for an example on the infinite Prandtl number model). Therefore convergence
of the global attractors is usually easier to establish than the convergence of the invariant
measures (stationary statistical properties).

In application, the discrete dynamical systems {Sk} are usually generated by one time
step discretization (numerical scheme) with time step k. In another word, un+1 = Sk(u

n)
is the solution to the numerical scheme. The uniform dissipativity of the numerical scheme
is customary established via the existence of a uniform (in time step) absorbing ball in
another separable Hilbert space V which is compactly imbedded in H in the case of strongly
dissipative system (see the next section for an example). However, this may not be feasible
for weakly dissipative systems such as the Darcy-Boussinesq system for convection in fluid
saturated porous media, or weakly damped driven Schrödinger equation. The finite time
uniform convergence comes with classical numerical analysis for reasonable schemes (see
next section for an example). The uniform continuity of the underlying continuous dynamical
system is also easily verified for reasonable systems.
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3 Application to the infinite Prandtl number model for

convection

Here we illustrate an application of the main result to the following infinite Prandtl number
for convection [2, 31, 6, 34, 7]

∇p = ∆u +RakT, ∇ · u = 0, u|z=0,1 = 0, (16)

∂T

∂t
+ u · ∇T = ∆T, T |z=0 = 1, T |z=1 = 0 (17)

where u is the Eulerian velocity of the fluid, p represents the kinematic pressure of the fluid,
T is the temperature of the fluid, k is a unit vector in the z direction, Ra is the Rayleigh
number measuring the ratio of differential heating over overall dissipation, and we assume
that the fluids occupy the (non-dimensionalized) region Ω = [0, Lx] × [0, Ly] × [0, 1] with
periodicity imposed in the horizontal directions for simplicity.

The choice of this example is both for its physical significance and for its mathematical
simplicity so that we may have an essentially self-contained short exposition. It is well-known
that this system possesses turbulent behavior at large Rayleigh number [2, 6, 18, 31]. The
convergence of the stationary statistical properties for another class of semi-implicit schemes
was discussed in [3, 4] utilizing Liouville type equation approach. The scheme that we study
here has an added advantage over the schemes that we investigated earlier in the sense that
the discretization is independent of any ad-hoc background temperature profile τ (to be
introduced in (22)).

One of the most important statistical quantities in convection is the Nusselt number
[2, 6, 7, 18, 35] quantifying the heat transport in the vertical direction which is the statistics
corresponding to the functional

Φ(θ) = Ra

∫

Ω

A−1(kθ)3θ dx =

∫

Ω

u3θ dx

where A denotes the Stokes operator with the associated boundary conditions and viscosity
one, and A−1(kθ)3 represents the third component (vertical velocity) of A−1(kθ). In another
word, u = A−1f solves the following Stokes system

−∆u + ∇p = f , ∇ · u = 0,

u|z=0,1 = 0, u periodic in x, y.

Although this Φ is not bounded, for any pre-compact set K (in particular the union of the
global attractors of the scheme), we can easily replace it by a bounded continuous functional
Φ̃ which agrees with Φ on K and hence the statistical averages of Φ and Φ̃ are the same
since the support of all interested invariant measures is included in K. The replacement is
possible due to the pre-compactness of K (presumed, to be verified below). Our result on
the convergence of the Nusselt number, i.e. (12) with the Φ given above, complements the
well-known variational approach [6] since our result indicates that the numerics will provide
an asymptotic lower bound for the maximal Nusselt number while the variational approach
provides a rigorous upper bound.
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3.1 A semi-implicit scheme

Notice that the infinite Prandtl number model can be written as a non-local non-linear
advection diffusion equation for the temperature field

∂T

∂t
+Ra A−1(kT ) · ∇T = ∆T, T |z=0 = 1, T |z=1 = 0 (18)

where A denotes the Stokes operator with the associated boundary conditions and viscosity
one.

We then propose the following semi-implicit scheme for the infinite Prandtl number model

T n+1
k − T n

k

k
+RaA−1(kT n

k ) · ∇T n+1
k = ∆T n+1

k (19)

where T n
k denotes the approximate solution at time kn with k being the time step.

Our goal now is to show that the stationary statistical properties of this scheme converge
to those of the infinite Prandtl number model as the time step k approaches zero.

In order to accomplish this goal utilizing our main result proved in the previous section,
we rewrite the scheme in the perturbative variable θ as usual so that the phase space is the
Hilbert space H = L2(Ω)

θn+1
k − θn

k

k
+RaA−1(kθn

k ) · ∇θn+1
k +RaA−1(kθn

k )3τ
′(z) = ∆θn+1

k + τ ′′(z) (20)

where θn
k = T n

k − τ with τ(z) being an add-hoc background temperature profile (to be
specified below) which satisfies the non-homogeneous Dirichlet boundary condition of T n

k ,
and we are searching for solution in the spaceH1

0,per (the subspace ofH1 with zero trace/value
at z = 0, 1 and periodic in the horizontal directions). Here A−1(kθ)3 represents the third
component (vertical velocity) of A−1(kθ).

The infinite Prandtl number model (18) can be written in the perturbative variable θ as
well

∂θ

∂t
+RaA−1(kθ) · ∇θ +RaA−1(kθ)3τ

′(z) = ∆θ + τ ′′(z). (21)

Following [6], we set the background temperature profile τ to be a locally smoothed
(mollified) version of the following piecewise linear function

τ(z) =

{

1 − z
δ
, 0 ≤ z ≤ δ,

0, δ ≤ z ≤ 1.
(22)

The choice of the parameter δ will be specified later in (26).
We remark that the scheme (20) is different from the scheme that we investigated earlier

[3, 4] where the scheme
θn+1

k
−θn

k

k
+RaA−1(kθn

k )·∇θn+1
k +RaA−1(kθn+1

k )3τ
′(z) = ∆θn+1

k +τ ′′(z)
was studied. The new scheme (20) has the advantage that it is independent of the ad-hoc
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background profile τ since it can be written in terms of the temperature field T only as is
clear in (19).

It is easy to see that the well-posedness of the scheme (20) follows from the weak formu-
lation
∫

Ω

(
1

k
θn+1

k +RaA−1(kθn
k )·∇θn+1

k )ψ+

∫

Ω

∇θn+1
k ·∇ψ =

∫

Ω

(
1

k
θn

k+τ ′′−RaA−1(kθn
k )3τ

′(z))ψ, ∀ψ ∈ H1
0,per,

(23)
the identity

∫

Ω
A−1(kθn

k ) · ∇θn+1
k θn+1

k = 0, ∀θn+1
k ∈ H1

0,per, θ
n
k ∈ L2, and the Lax-Milgram

theorem [21]. Therefore, we have a discrete dynamical system Sk defined on the Hilbert
space

H = L2(Ω) (24)

given by
Sk(θ

n
k ) = θn+1

k . (25)

We notice that Sk in fact maps H into H1
0,per which is a direct consequence of the weak

formulation.
In order to apply the main result proved in the previous theorem to the current situation,

we will verify the three conditions postulated in the main theorem. These will be the goal
of the next three subsections.

3.2 Uniform dissipativity

Here we demonstrate the uniform dissipativity, i.e., H1, of the scheme (20) with appropriate
choice of δ.

Here and below, the cjs denote generic constants independent of k, n and the initial
data unless otherwise stated (but which may depend on the Rayleigh number). Here and

elsewhere ‖θ‖ =
√

∫

Ω
|θ|2 denotes the spatial L2 norm of θ, and ‖θ‖∞ = esssupΩ|θ| denotes

the spatial L∞ norm of θ.
We first derive a uniform bound in the L2 space. For this purpose we take the inner

product of the scheme (20) with ψ = θn+1
k and utilize the identity (a− b, a) = 1

2
(|a|2 − |b|2 +

|a− b|2), and we have

1

2k
(‖θn+1

k ‖2 − ‖θn
k‖2 + ‖θn+1

k − θn
k‖2) + ‖∇θn+1

k ‖2

≤ ‖τ ′‖‖∇θn+1
k ‖ +Ra|

∫

Ω

τ ′(z)(A−1(kθn
k ))3θ

n+1
k |

≤ ‖τ ′‖2 +
1

4
‖∇θn+1

k ‖2 +Ra|
∫

Ω

τ ′(z)(A−1(kθn
k ))3θ

n+1
k |

where we have used the identity
∫

Ω
A−1(kθn

k ) · ∇θn+1
k θn+1

k = 0 one more time.

13



As for the nonlinear term, we have

Ra|
∫

Ω

τ ′(z)(A−1(kθn
k ))3θ

n+1
k | ≤ Ra

δ
‖A−1(kθn

k )3‖L2(z≤δ)‖θn+1
k ‖L2(z≤δ)

≤ Raδ‖ ∂
∂z
A−1(kθn

k )3‖L2(z≤δ)‖
∂

∂z
θn+1

k ‖L2(z≤δ)

≤ Raδ2‖ ∂
2

∂z2
A−1(kθn

k )3‖L2(z≤δ)‖
∂

∂z
θn+1

k ‖L2(z≤δ)

≤ c1Raδ
2‖θn

k‖‖
∂

∂z
θn+1

k ‖
≤ c1Raδ

2(‖θn
k − θn+1

k ‖ + ‖θn+1
k ‖)‖∇θn+1

k ‖
≤ c1Raδ

2‖θn
k − θn+1

k ‖‖∇θn+1
k ‖ + c1Raδ

2‖∇θn+1
k ‖2

≤ c1Raδ
2

4
‖θn

k − θn+1
k ‖2 + 2c1Raδ

2‖∇θn+1
k ‖2

≤ 1

4k
‖θn

k − θn+1
k ‖2 +

1

4
‖∇θn+1

k ‖2

provided that we choose the background temperature profile(through δ) and the time step
k in the following fashion

δ = (8c1Ra)
− 1

2 , k ≤ 8, (26)

where we have utilized the specific form of the background profile τ (22), the homogeneous
boundary conditions for θn

k , θn+1
k , A−1(kθn

k )3,
∂
∂z
A−1(kθn)3, elliptic regularity (for the Stokes

operator A) and the Poincaré inequality.
Therefore, under the specific choice of background temperature profile (22, 26), there

exists a constant c2, such that

1

k
(‖θn+1

k ‖2 − ‖θn
k‖2 +

1

2
‖θn+1

k − θn
k‖2) + ‖∇θn+1

k ‖2 ≤ 2‖τ ′‖2 ≤ c2Ra
1

2 (27)

which further implies, thanks to Poincaré inequality,

(1 + k)‖θn+1
k ‖2 ≤ ‖θn

k‖2 + c2kRa
1

2 . (28)

This leads to, with the help of a simple iteration,

‖θn+1
k ‖2 ≤ (1 + k)−(n+1)‖θ0‖2 + c2Ra

1

2 . (29)

This is a uniform estimate in the L2 space since for any θ0 ∈ BR(L2) (ball centered at the
origin with radius R in L2), there exists an integer N0(R, k) such that

(1 + k)−n‖θ0‖2 ≤ c2Ra
1

2 , ∀n ≥ N0.

Hence
‖θn

k‖ ≤
√

2c2Ra
1

4 , ∀n ≥ N0(R, k). (30)

14



Indeed, we have

N0(R, k) ≈
ln R2

c2Ra
1
2

ln(1 + k)
≈

ln R2

c2Ra
1
2

k
(31)

so that the time needed to enter the absorbing ball of radius
√

2c2Ra
1

4 is roughly

k N0(R, k) ≈ ln
R2

c2Ra
1

2

(32)

which is independent of k, n.
There are two byproducts of the inequality (27)

1

N

N
∑

n=0

‖∇θn+1
k ‖2 ≤ ‖θ0‖2

kN
+ c2Ra

1

2 , (33)

N
∑

n=0

‖θn+1
k − θn

k‖2 ≤ 2‖θ0‖2 + 2c2kNRa
1

2 . (34)

The first is a bound in L2(H1) for the scheme and the second is a bound on the difference
of the solution at adjacent time steps.

Our next immediate goal is to obtain uniform estimates in H1 for the solution of the
scheme (20). The uniform in H1 estimate will guarantee the uniform dissipativity (H1) since
boundedness in H1 implies pre-compactness in L2 by Rellich compactness theorem. For this
purpose, we take the inner product of the scheme with ψ = −∆θn+1

k and we have

1

2k
(‖∇θn+1

k ‖2 − ‖∇θn
k‖2 + ‖∇(θn+1

k − θn
k )‖2) + ‖∆θn+1

k ‖2

≤ ‖τ ′′‖‖∆θn+1
k ‖ +Ra‖τ ′‖‖A−1(kθn

k )‖∞‖∆θn+1
k ‖ +Ra‖A−1(kθn

k )‖∞‖∇θn+1
k ‖‖∆θn+1

k ‖
≤ ‖τ ′′‖‖∆θn+1

k ‖ + c3Ra(‖τ ′‖‖θn
k‖‖∆θn+1

k ‖ + ‖θn
k‖‖θn+1

k ‖ 1

2‖∆θn+1
k ‖ 3

2 )

≤ c4(1 + (1 + k)−n‖θ0‖2)
1

2‖∆θn+1
k ‖ + c5(1 + (1 + k)−n‖θ0‖2)

3

2‖∆θn+1
k ‖ 3

2 )

≤ 1

2
‖∆θn+1

k ‖2 + c6(1 + (1 + k)−n‖θ0‖2)6 (35)

where we have applied the regularity result for the Stokes operator A, the Sobolev imbedding
of H2 into L∞, interpolation inequality, the uniform L2 estimate (29) and Hölder type
inequality.

This implies, when combined with (30, 33), there exists N1(R, k) ≥ N0(R, k), and c7 ≥
2c2Ra

1

2 , such that

‖∇θn+1
k ‖2 − ‖∇θn

k‖2 + ‖∇(θn+1
k − θn

k )‖2 + k‖∆θn+1
k ‖2 ≤ kc7, ∀n ≥ N1 (36)

‖∇θN1

k ‖2 ≤ c7, (37)

where N1 can be estimated as

N1(R, k) ≈ N0 +
2

k
.
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This implies the following uniform H1 estimate with initial data from BR(L2)

‖∇θn+1
k ‖2 ≤ c7, ∀n ≥ N1. (38)

This further leads to the existence of an absorbing ball in H1 of radius
√
c7 such that

trajectories starting from BR(L2) enter this absorbing ball in H1 within approximately N1 ≈
N0 + 2

k
steps. This ends the proof of the uniform dissipativity of the approximations (6) by

the compact imbedding of H1 into L2. This uniform bound also implies the existence of a
compact global attractor Ak ⊂ H1

0,per for the scheme for each time step k ≤ 8 and

sup
θ∈K

‖∇θ‖ ≤ √
c7.

There are another three consequences of (35) which are an L2(H2) estimate on the so-
lution, an estimate on the difference of the solution in H1 norm at adjacent steps, and a
uniform in time H1 norm estimate for initial data in H1 .

1

N

N
∑

n=0

‖∆θn+1
k ‖2 ≤ ‖∇θ0‖2

kN
+ 2c6(1 +R2)6, (39)

N
∑

n=0

‖∇(θn+1
k − θn

k )‖2 ≤ ‖∇θ0‖2 + 2c6(1 +R2)6kN, (40)

‖∇θn+1
k ‖2 ≤ (1 + k)−n+1‖∇θ0‖2 + 2c6(1 +R2)6. (41)

These estimates will be useful in our uniform convergence proof.

Uniform estimates in Sobolev spaces of higher orders can be derived just as in the case
of continuous in time system. Here we sketch the proof that the H2 norm of the solution
is asymptotically uniformly bounded in time, i.e., there is an absorbing ball in H2 which
attracts all solutions with L2 initial data uniformly for all k.

For this purpose we apply ∆ to both sides of the scheme (20) and then multiply the
scheme by ∆θn+1

k and integrate over the domain. This leads to the following

1

2k
(‖∆θn+1

k ‖2 − ‖∆θn
k‖2 + ‖∆(θn+1

k − θn
k )‖2) + ‖∇∆θn+1

k ‖2

≤ ‖τ (4)‖‖∆θn+1
k ‖ +Ra(‖∆(A−1(kθn

k ))‖L6‖∇θn+1
k ‖L3 + 2‖∇A−1(kθn

k )‖L∞‖∇2θn+1
k ‖)‖∆θn+1

k ‖
+Ra(‖∆(A−1(kθn

k ))‖‖τ ′‖L∞ + 2‖∇(A−1(kθn
k ))‖‖∇τ ′‖L∞ + ‖A−1(kθn

k )‖‖∆τ ′‖L∞)‖∆θn+1
k ‖

≤ c8(‖∆θn+1
k ‖ + ‖∆θn+1

k ‖2)

≤ c9(‖∆θn+1
k ‖ + ‖∇∆θn+1

k ‖‖∇θn+1
k ‖)

≤ 1

2
‖∇∆θn+1

k ‖2 + c10

where we have applied the identify
∫

Ω
A−1(kθn

k )∇∆θn+1
k ∆θn+1

k = 0, the fact that ∆θn+1
k = 0

at z = 0, 1 (which follows from (20, 22)), Hölder’s inequality, elliptic regularity, Sobolev
imbedding, Cauchy-Schwarz, interpolation inequality, and the H1 uniform estimate (38).

This leads to uniform H2 estimate.
To summarize, we have the following result
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Proposition 2 (Uniform dissipativity). There exists a constant c10 independent of the time
step k such that the scheme (20) possess an absorbing ball in H1 and H2 with radius 2

√
c10

which attracts all bounded sets in L2. In particular, we have

sup
u∈K

‖u‖H2 ≤ 2
√
c10 (42)

where K is the union of the global attractors for the scheme with different time step k.

3.3 Finite time uniform convergence

We now verify the second condition (H2) in the main theorem. In fact, we will prove slightly
more general version which covers both H2 and H5, i.e., the convergence of the numerical
scheme (20) on any finite time interval uniformly for initial data from K =

⋃

Ak (which is
uniformly bounded in H1 thanks to (38)).

For this purpose, we rewrite the scheme (20) as

∂θ̃k(t)

∂t
+RaA−1(kθk(t)) · ∇θk(t+ k) +RaA−1(kθk(t))3τ

′(z) = ∆θk(t+ k) + τ ′′(z), (43)

where

θk(t) = θn
k , t ∈ [nk, (n + 1)k), (44)

θ̃k(t) = θn
k +

t− nk

k
(θn+1

k − θn
k ), t ∈ [nk, (n+ 1)k). (45)

For any fixed T ∗ > 0, the estimates (41, 39) imply that θk and θ̃k are uniformly (in k)
bounded in L∞(0, T ∗;H1) and L2(0, T ∗;H2) and the bounds are uniform in k and θ0 ∈ K.

We can rephrase the differential form of the scheme as

∂θ̃k(t)

∂t
+RaA−1(kθ̃k(t)) · ∇θ̃k(t) +RaA−1(kθ̃k(t))3τ

′(z) = ∆θ̃k(t) + τ ′′(z) + fk(t), (46)

where

fk(t) = RaA−1(kθ̃k(t)) · ∇θ̃k(t) − RaA−1(kθk(t)) · ∇θk(t+ k)

+RaA−1(k(θ̃k(t) − θk(t)))3τ
′(z) − ∆(θ̃k(t) − θk(t+ k)). (47)

It is easy to see that fk is small due to our estimate on the difference of the approximate
solution at adjacent time steps (40). Indeed, we have, for t ∈ [nk, (n + 1)k)

θ̃k(t) − θk(t+ k) =
t− (n + 1)k

k
(θn+1

k − θn
k ), (48)

θ̃k(t) − θk(t) =
t− nk

k
(θn+1

k − θn
k ) (49)
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and therefore, for θ0 ∈ K,

Ra‖A−1(kθ̃k(t)) · ∇(θ̃k(t) − θk(t+ k))‖H−1 ≤ Ra‖A−1(kθ̃k(t))‖L∞‖θn+1
k − θn

k‖
≤ c11‖θn+1

k − θn
k‖,

Ra‖A−1(k(θ̃k(t) − θk(t))) · ∇θk(t+ k))‖H−1 ≤ Ra‖A−1(k(θ̃k(t) − θk(t)))‖L∞‖θk(t+ k)‖
≤ c12‖θn+1

k − θn
k‖,

Ra‖A−1(k(θ̃k(t) − θk(t))3τ
′‖H−1 ≤ c13‖θn+1

k − θn
k‖,

‖∆(θ̃k(t) − θk(t+ k))‖H−1 ≤ c14‖∇(θn+1
k − θn

k )‖,
which further leads to

‖fk(t)‖H−1 ≤ c15‖∇(θn+1
k − θn

k )‖, t ∈ [nk, (n+ 1)k) (50)

and hence, when combined with the estimate on time difference estimate (40)

‖fk‖L2(0,T ∗;H−1) ≤ c15

√

√

√

√

√

T∗

k
∑

n=0

k‖∇(θn+1
k − θn

k )‖2 ≤ c16
√
k. (51)

Taking the difference of the infinite Prandtl number model (21) and the differential form
of the scheme (46), denoting ξk(t) = θ(t) − θ̃k(t), we have

∂ξk(t)

∂t
+RaA−1(kθ(t))·∇ξk(t)+RaA−1(kξk(t))·∇θ̃k(t)+RaA

−1(kξk(t))3τ
′(z) = ∆ξk(t)−fk(t).

(52)
Multiplying this equation by ξk and integrating over Ω we have

1

2

d

dt
‖ξk(t)‖2 + ‖∇ξk(t)‖2

≤ Ra‖A−1(kξk(t))‖L∞‖∇θ̃k(t)‖‖ξk(t)‖ +Ra‖A−1(kξk(t))3‖L∞‖τ ′‖‖ξk(t)‖ + ‖fk(t)‖H−1‖∇ξk(t)‖

≤ c17‖ξk(t)‖2 +
1

2
‖fk(t)‖2

H−1 +
1

2
‖∇ξk(t)‖2.

Therefore we have
d

dt
‖ξk(t)‖2 ≤ 2c17‖ξk(t)‖2 + ‖fk(t)‖2

H−1, ‖ξk(0)‖ = 0, (53)

which leads to

‖θ − θ̃k‖L∞(0,T ∗;L2) = ‖ξk‖L∞(0,T ∗;L2) ≤ c18‖fk‖L2(0,T ∗;H−1) ≤ c19
√
k → 0 (54)

uniformly for θ0 ∈ K.
This ends the proof of the finite time uniform convergence which further implies H2 and

H5. To summarize, we have the following result

Proposition 3 (Finite time uniform convergence). For any T ∗ > 0, there exists a constant
c19 independent of the time step k such that

‖θ(nk) − θn
k‖ ≤ c19

√
k, ∀θ0 ∈ K, ∀nk ≤ T ∗, (55)

i.e., assumptions H2 (7) and H5 (14) are valid for the scheme (20) with t0 = 0.
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3.4 Finite time uniform continuity

Now we verify the finite time uniform continuity of the infinite Prandtl number model for
initial data starting from K, the union of the global attractors of the scheme with different
step size k.

It is easy to check that the L2 norm of the infinite Prandtl number model (21) is uniformly
bounded for θ0 belonging to a bounded set in L2 (see for instance [7], and the discrete version
(29)). A uniform H1 norm estimate can be also derived (see (38) for the discrete version).
Indeed, multiplying the infinite Prandtl number model (21) by −∆θ, integrating over Ω we
deduce, for θ0 ∈ K,

1

2

d

dt
‖∇θ(t)‖2 + ‖∆θ(t)‖2

≤ ‖τ”‖‖∆θ(t)‖ +Ra‖A−1(kθ(t))‖L∞‖∇θ(t)‖‖∆θ(t)‖ +Ra‖A−1(kθ(t))3‖L∞‖τ ′‖‖∆θ(t)‖
≤ c20(1 + ‖θ(t)‖ + ‖θ(t)‖‖∇θ(t)‖)‖∆θ(t)‖

≤ 1

2
‖∆θ(t)‖2 + c21(1 + ‖∇θ(t)‖2).

This leads to the following estimates

‖θ‖L∞(0,T ∗;H1) ≤ c22, (56)

‖θ‖L2(0,T ∗;H2) ≤ c22. (57)

Now, integrating the infinite Prandtl number model (21) in time from t to T ∗ we have,
for θ0 ∈ K,

‖S(t)θ0 − S(T ∗)θ0‖

≤ |
∫ T ∗

t

(‖∆θ(s)‖ +Ra‖A−1(kθ(s))‖L∞‖∇θ(s)‖ +Ra‖A−1(kθ(s))3‖L∞‖τ ′‖ + ‖τ ′′‖) ds|

≤ |
∫ T ∗

t

(‖∆θ(s)‖ + c23(1 + ‖θ(s)‖‖∇θ(s)‖ + ‖θ(s)‖)) ds|

≤ |
∫ T ∗

t

(‖∆θ(s)‖ + c24) ds|

≤ c25
√

|T ∗ − t| (58)

where we have used elliptic regularity, the uniform H1 estimate, and the L2(H2) estimate.
This completes the proof of the uniform continuity of the infinite Prandtl number model,

i.e., H3. To summarize, we have the following result

Proposition 4 (Finite time uniform continuity). For any T ∗ > 0, the infinite Prandtl
number model (21) is continuous on the time interval [0, T ∗] uniformly for initial data from
the union of the global attractors K defined in (6).
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4 Conclusions and Remarks

We have presented a general/abstract result on the convergence of stationary statistical
properties of time approximation of infinite dimensional dissipative dynamical systems. The
three natural conditions that guarantee the convergence of the stationary statistical prop-
erties of the time approximation to those of the underlying continuous in time dynamical
system are uniform dissipativity of the scheme for small enough time step; the convergence
of the solution to the scheme to the continuous dynamical system on the unit time interval
[0, 1] uniformly for initial data from the union of the global attractors of the scheme (for
different time steps); and the uniform (for initial data from the union of the global attractors
of the scheme) continuity of the underlying continuous dynamical system on the unit time
interval [0, 1]. We hope that this work will stimulate further work on numerical schemes
that are able to capture stationary statistical properties of infinite dimensional dissipative
systems.

The convergence of global attractors can be derived under the weaker assumption of
having a bounded union of the global attractors for the scheme. This indicates that there
might exist numerical schemes that are able to capture the global attractor asymptotically
but not necessarily the stationary statistical properties.

We have also illustrated the application of our main result to the infinite Prandtl num-
ber model for convection and we believe that the abstract main result presented here is
applicable to many other dissipative systems and associated schemes. Fully discretized ap-
proximation can be studied similarly for Galerkin type spatial approximation that enjoys
the three properties postulated (see [25, 26, 10] for fully discrete long time stable schemes
for other equations). Numerical implementation in physically relevant regimes is non-trivial.
Although the numerical scheme that we proposed here is linear which is advantageous over
nonlinear schemes such as the one induced by the fully implicit Euler scheme proposed by
many authors, the linear equation (the matrix in the fully discretized case) changes at each
time step due to the presence of the convection term RaA−1(kθn

k ) · ∇θn+1
k . This together

with the need for long time simulation combined with the presence of physically expected
small spatial scales of the order of Ra−

1

3 or Ra−
1

2 [2, 6, 18] which needs to be resolved makes
it a challenge to simulate the physically interesting large Rayleigh number regime. One of
the immediately goal is to design more efficient numerical scheme than the one presented
here. We will report this and our numerical result elsewhere.
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