Linear Response Theory for Statistical Ensembles in
Complex Systems with Time-Periodic Forcing

Andrew J. Majda
Courant Institute, New York University
New York, NY 10012
and
Xiaoming Wang
Department of Mathematics, Florida State University
Tallahassee, FL 32312

October 22, 2008

Abstract

New linear response formulas for unperturbed chaotic (stochastic) complex dynam-
ical systems with time periodic coefficients are developed here. Such time periodic
systems arise naturally in climate change studies due to the seasonal cycle. These re-
sponse formulas are developed through the mathematical interplay between statistical
solutions for the time-periodic dynamical systems and the related skew-product sys-
tem. This interplay is utilized to develop new systematic quasi-Gaussian and adjoint
algorithms for calculating the climate response in such time-periodic systems. These
new formulas are found in section 4. New linear response formulas are also developed
here for general time-dependent statistical ensembles arising in ensemble prediction
including the effects of deterministic model errors, initial ensembles, and model noise
perturbations simultaneously . An information theoretic perspective is developed in
calculating those model perturbations which yield the largest information deficit for
the unperturbed system both for climate response and finite ensemble predictions.

1 Introduction

One of the cornerstones of modern statistical physics is the fluctuation-dissipation theorem
(FDT) which roughly states that for systems of identical particles in statistical equilibrium,
the average mean response to small external perturbations can be calculated through the
knowledge of suitable correlation functions of the unperturbed statistical systems with many
practical applications [20, 26, 5]. The low frequency response to changes in external forcing
for various components of the climate system is a central problem of contemporary climate
change science. Leith [18] suggested that if the climate system satisfied a suitable FDT,
then climate response to small external forcing could be calculated by estimating suitable



statistics in the present climate. The climate system is a forced dissipative chaotic dynamical
system with time periodic forcing due to the seasonal cycle which is physically quite far
from the classical physicists’ setting for FDT. Leith’s sugestion has created a lot of recent
activity in generating new theoretical formulations and approximate algorithms for FD'T with
applications to climate response [17, 15, 14, 16, 2, 1, 21, 3]. Thus for, these approximate
FDT algorithms have been applied to autonomous climate models of varying complexity and
have ignored the important time periodic effect of the seasonal cycle [6, 12, 4]. One goal of
the present paper is to develop a version of FDT for time-periodic systems which leads to
new approximate algorithms for climate response with seasonal cycle. The new algorithms
are presented in section 4 below.

Finite time ensemble predictions of turbulent chaotic dynamical systems with many de-
grees of freedoms is an important practical topic (see [27, 25] and Chapter 15 of [23]). The
effect of model error, both deterministic and stochastic, in competition with initial ensemble
error effecting the skill for ensemble prediction is a central topic [27, 25, 22]. Here linear
response theory is extended to unperturbed prediction ensembles far from equilibrium to
develop a theoretical framework to discuss the competition between various types of model
error and initial ensemble perturbations.

Here a theoretical framework and new approximate algorithms to address both important
scientific issues mentioned in the previous two paragraphs are developed in a unified fash-
ion. In section 2, we develop an important mathematical interplay between time-periodic
dynamical systems and the related skew-product system and their statistical solutions. In
section 3, we develop systematic FDT theorems for the time-periodic equilibrium setting as
well as finite time ensemble predictions together with various important approximations. In
section 4, we utilize the theory developed earlier in section 2 and 3 to develop a suite of
new systematic quasi-Gaussian [18, 21, 15, 17, 14, 16] and adjoint algorithms [2, 1, 3] as well
as blended variants [1, 3] for climate response with a seasonal cycle (periodic forcing). The
reader mainly interested in the proposed new algorithms for climate response can go to sec-
tion 4 directly without difficulty. In section 5 an information theoretic perspective [21, 23]
is developed in calculating those model perturbations which yield the largest information
deficit for the unperturbed system both for climate response and finite ensemble predictions.

2 General Formulation and the Skew Product System

Consider a generic (Ito) SDE system which is assumed to be well-posed and describes the
motion of some physical system

dX

dt
where T denotes a standard M dimensional white (in time) noise, o is an N x M matrix,
and F(X,t) has time periodic coefficients. For example,

F(X,t) =F(X)+£(t) (2)

= FX,t)+ (X)W, XeRY, F=(F, -, Fy),f=(f, -, fn), (1)

where f(t) is a time-periodic forcing with period Tp. In the case of zero noise, i.e. o = 0, the
SDE reduces to an ODE system and we shall require that the system to be large (N > 1)
and have the strong mixing property.



For a system with explicit time-dependent forcing which is not stationary in time, it is
impossible for the system to reach any time-independent statistical equilibrium. Hence, we
have to consider time dependent statistical solution of the system.

For an ensemble prediction, the unperturbed statistical solution p(X,t) is the solution to
the associated unperturbed time-dependent Fokker-Planck equation

% _ V. GRX, ) + %v V(D) Lepp), (3)
pX,t)| = polX), (4)

where
Q=00">0 (5)

is an N X N matrix and
(6)

is the associated diffusion operator and the time dependent Fokker-Planck operator Lpr is
defined as

Lep(t)p =~V - (pF(X,1) + 5V -V (@p). @

The Fokker-Planck equation reduces to the Liouville equation in the case of zero noise
(@ =0). Our goal here is to develop a calculus useful for both climate response and system
perturbation/model error in time dependent ensemble prediction.

2.1 Skew Product System

With the introduction of the time-periodic F(X, ), it is unlikely that the system will reach
any time-independent statistical equilibrium. Moreover, the classical linear response theory
[26, 21] cannot be directly applied to this case since a straight forward calculation leads to
an equation for linear response with time-dependent coefficients which makes it hard to be
useful unless (infinite dimensional version) Floquet theory is invoked. In order to overcome
this difficulty, we introduce a skew-product flow/system just as in the classical approach for
non-autonomous systems. In the case of periodic F(X,t) (with period Tp), the skew-product
system is the following SDE on RY x S where S = R! /modT} is the (one-dimensional) circle
with circumference Tj

dX .
% = F(X, 8) +O'(X)W,
ds
2
dt ’

which can be written in the form of (1) for the extended (skew-product) variables

- (3) :

~—



as

where
B(X) = ( F()f’ s) ) Ce(X) = ( “%Q ) . (10)

Introducing the gradient operator in the skew-product variable as V = ( Vax ) =
Bs

( g ), we may formally write down the Fokker-Planck equation for the skew-product

Bs

system just as in (3) with the hat. Indeed, with the special form that we have assumed here,

it can be written as

Do VR - L @) b (1)
P = ) x 8) (12

where 0 is the Dirac delta function centered at zero and the skew-product Fokker-Planck
operator Lpr is defined as

Lrrp =~V GF(X,8) - 2 4+ 29 V- (@Qp) (13)

We naturally inquire the relationship between the statistical solutions for the two formu-
lations. In the case of a time-dependent statistical solution generated with initial data given
by (4, 12), the relationship is simple. In fact we can easily verify the following result.

Lemma 1. Let p(X,t) be a solution of the time-dependent Fokker-Planck equation (3) with
initial data (4). Then p(X,t) is a solution to the skew-product Fokker-Planck equation (11)
with initial data (12) if and only if

DX, ) = p(X,t) X do(s —t). (14)

Moreover, if p(x,t) is a smooth solution of the skew-product Fokker-Planck equation (11),
then

def o [ X
.0 (5 ) 0 (15)
is a solution to the time-dependent Fokker-Planck equation (3) and is in fact a statistical

solution to (1) with initial datum ]5(( }5 ) ,0).

Proof: We sketch the proof. The verification of (15) is a direct and simple calculation.
The relationship (14) has to be understood in the sense of distribution. For this purpose we



consider a smooth test functional qAb(( }t( ) ,t) with compact support, we have

/ / — Lprp)o dxdt

= / / xtxéos—t)(aa LT )¢ dxdt

= = [T [ooiga (3 )0 e reenva( 3 ) a3 )0+ geevva( Y ) e
= = [T [+ i F ) 0 dxa
= [ [ temmteit(F ) s

!
Next we ask about existence of statistical equilibrium of the skew-product system and
possible long time asymptotic of the statistical behavior of the time dependent system as
well as their relationship. Of course statistical equilibrium may not exist even for the skew-
product system. However, if the skew-product system (or the original time-dependent sys-
tem) is dissipative in certain appropriate sense, the existence of statistical equilibrium can
be established via the classical Bogliubov-Krylov approach [11, 28]. These dissipative sys-
tems include the following type of special systems [21, 23] that are of great importance in
geophysical fluid dynamics

dX

—= = BX,X) + LX - dX +£(t) + oW (16)

where B is a bilinear anti-symmetric operator with X - B(X,X) = 0 (resulting from the
quadratic advection term for instance), L is a linear anti-symmetric operator (derived from
the Coriolis forcing for example), d represents dissipation and f denotes external periodic
(seasonal, annual) forcing. Both L(¢) and d(t) can also have time periodic components
in applications centered about time periodic equilibrium states in a reformulation [12, 6,
4]. The global existence of solution to such kind of systems can be found in [9] among
others under appropriate assumptions. Nevertheless, we do not know a priori if there is
a unique statistical equilibrium since we have degenerate diffusion for the skew-product
system (9) even if the noise for the time-dependent system is non-degenerate (rank(Q) = N).
However, we will see below that utilizing the relative entropy for the time-dependent problem
and a simple relationship between asymptotic behavior of statistical solutions of the time-
dependent problem (1) and the skew-product problem (9) yields a somewhat surprising
uniqueness of invariant measure (statistical equilibrium) for the skew-product system. This
uniqueness of the invariant measure (statistical equilibrium) can be viewed as a manifestation
of noise induced statistical stability in this time-dependent setting.

Now if the time-dependent system is dissipative in certain sense, then the skew-product
system is also dissipative and hence a generalized long time average defined through Banach



limit would generate invariant measure (stationary statistical solution) of the system which
we denote p®(x). This statistical equilibrium of the skew-product system is related to the
long time asymptotic statistical behavior of the original time-dependent dynamical system
(1). Indeed, it is easy to verify from (3, 11) (see also (15)) that

pper(xa t):TO ﬁeq ( >t{ ) ) (17)

is a solution to the original time-dependent Fokker-Planck equation (3). Since p® is a time
independent solution to the extended (skew-product) Fokker-Planck equation (11), we see
after integrating in x that

d d . . B
dt/pper(xt)dX—Todt q< )dX—T()/ q< )dX—To/LFqu<}t{>dX:

and hence, since p°? is a probability density function on RY x S,

/pper(x, t) dx = 1, Vt.

Therefore, pper(x,t) is a time periodic (period Tp) statistical solution to (1). Conversely, if
Pper(X, 1) is a statistical solution to (1) which is periodic in ¢ with period Tj, we may define
p°? through (17) and it is easy to verify that p? is a stationary solution of the skew-product
Fokker-Planck equation.

Now under generic noise (rank(Q)) = N) it is natural to expect that all statistical solutions
to (1), are in fact smooth and positive for all x € RY and ¢ > 0 due to the non-degenerate
diffusion in the time-dependent Fokker-Planck equation (11). Hence any two statistical
solutions p;,j = 1,2 of (1) must be approaching each other under generic noise (rank(Q) =
N) due to the following calculation on the relative entropy (information content) (This is
related to the classical H-theorem, see [13, 26], or section 5 below)

d d pi(x,1) / pi(x,1)
—H t)In dx = — | ———VR(x,t)-QVR(x,t)dx <0 (18
dt (p17p2) dt /pl( ) p2(x t) X 2R2(X,t) (Xv )Q (X7 ) X > ( )
where R = Z—; and H (py, p2) denotes the relative entropy (an alternative notation is P(p1, p2),

see section 5) which is defined as

H(p1,p2) = /pl(x> In i:g; dx. (19)

The time derivative of the relative entropy is zero only if VR is independent of x which
is possible only if p; = py. Therefore we may conclude that all statistical solutions of the
time-dependent system (1) approaches the time-periodic asymptotic statistical solution pje;.
This also implies that there is a unique statistical equilibrium for the skew-product system
under the generic noise assumption in lieu of (17).

Of course the relative entropy calculation also applies to the skew-product system. For
any two regular/smooth statistical solutions p;(x,t),j = 1,2 of the skew-product system,
then the proof of the H-theorem dictates that

d pl(x t) ( ) ) SN N
dt P Hn Pa(x t)dx_ / 2R2(%,1) VA(.0): QVRR, 1) dk <0 (20)



where R = f;—;. The time derivative is zero only if VR is independent of x which is possible
only if p; = p, under the generic noise condition. This shows that the statistical equilibrium
of the skew-product system (9) is unique under the generic noise assumption.

We summarize the results on long time statistical properties as following.

Theorem 1. If the time-dependent system (1) is dissipative in appropriate sense, then it
possesses at least one time-periodic (with period Tjy) statistical solution ppe, which is associ-
ated with a statistical equilibrium p°? of the skew-product system (9) through (17). Moreover,
under generic noise assumptions, i.e., rank(Q)) = N, and appropriate decay property at in-
finity, the time-periodic statistical solution pye, captures all asymptotic statistical properties
of the system (1) in the sense that for any statistical solution p

Jim H(p(8) e (1)) = Jimm Hpyer(1).p(t)) = 0. 21)

In this case, the skew-product system (9) possesses a unique ergodic statistical equilibrium
p°? which is related to the asymptotic statistical solution ppe, of (1) through (17). Moreover,
in this case of generic noise, pye,(t) is the pdf of the unique ergodic invariant measure of the
Poincaré map of the system (1) with time period Ty starting from t. Therefore, we have, for
any bounded continuous functional p(x), and to,

[ 0o ta) dx = Jim > p(X(to + Ty (22)

k=0
with the right hand naturally interpreted as the climatological mean.

Proof: The uniqueness of the statistical equilibrium of the skew-product system follows
from the uniqueness of asymptotic statistical behavior of the original system (1) and the
relationship (17). We point out that this uniqueness does not guarantee the convergence of
all statistical solutions of the skew-product system (9) to this unique statistical equilibrium,
only the time-average converges.

We only need to remark on the ergodicity (in the sense of equivalence between spatial
and temporal averages) of the statistical equilibrium p? when it is unique. This follows from
connection between generalized time averaging and invariant measure [11, 28, 29| but it
seems that it is less known. Indeed, for any smooth test functional ¢ with compact support,
there exists an invariant measure £°“? induced by a special generalized Banach limit that
agrees with the limsup on this functional in the sense that

lim sup — / gbf{ ) dt = / gb ) di* P (x).

T—o00

Similarly, there exists another invariant measure fi;,; which agrees with the liminf on this
functional, i.e.,

T—o0

hmlnf—/ b(x )dt:/ngS(x)dgmf(fc).

Since there is a unique invariant measure ¢ we see that

lim sup — / gb (x(t dt—hmlnf— / ¢ ) dt = / ¢ ) dji*(x / ¢ e (
T—o0



It is easy to see that the time 7 Poincaré map of each of the phase shifted dynamical

system
dX

—- =F(Xt+t) + c(X)W, X(0)=x (23)
has a unique invariant measure which is exactly p,e(x,ty) under the assumption. Since
Pper(X,t0) > 0,Vx, it is ergodic and therefore the discrete long time average (22) in the
statement of the theorem follows. This formula can be used to estimate the asymptotic pdf

Dper from long time series of the system. !

It is also easy to see that a phase shift, i.e. replacing f(¢) by f(t + ¢), does not alter
the asymptotic statistical behavior. With this skew-product formulation, we may gener-
alize the classical linear response calculation to this case with periodic in time forcing by
systematically repeating the time independent formalism [26, 21]. This is done next.

3 The Linear Response Formula

It is well-known that we frequently encounter various uncertainties both in the determin-
istic forcing term F, and in the noise term o. Therefore it is natural to consider system
perturbation induced by perturbation in the deterministic forcing term, and the noise term.

For the deterministic forcing term, we consider a space-time separable perturbation com-
monly used in climate studies [21] and the perturbation in noise is assumed to be of the
same order. Therefore we have the following perturbed system

% — F(X,1)+a(X) e 0F(t) + (0(X) + 66(X))IV, (24)

where a @ w denotes the Hadamard (or Schur, or entrywise) product of a and w, i.e. the j
component of it is the product of the j* component of a and w, i.e.

(aew); =ajw,. (25)

More general perturbation in the noise term of the form of 56W may be also considered in
a similar fashion. . .
Since V - (a(X) @ 6F(t)p°) = V e (a(X)p?) - §F(t), the perturbed Fokker-Planck
equation in the skew-product formulation then takes the form
op° op°

1
S5 = V- 0F(X.s) - S+ V-V Q)

—0V o (a(X)p°) - F(t) + %zv V- (Qp°) + gv V- (067 + 507)p’)26)

(X, 1) = Py = Po(X) x bo(s) + 6pH(X) x do(s), (27)

t=0

where Q = 67G. Note that dp), can incorporate initial errors in mean, variance, etc, in an
ensemble prediction.

Remark: The perturbation in the initial pdf does not need to be of the order of 4 of course.
On a finite time interval, the leading order perturbation (at least formally) in the pdf will

8



be that of the system perturbation if the perturbation in py is of higher order, or that of the
initial pdf if the perturbation in pq is of lower order. The perturbation in initial pdf may not
play any role for long time behavior in the case the system (perturbed and unperturbed) is
mixing and reaches a unique statistical equilibrium.

We now recall the linear response calculation [26, 21] applied to the skew-product system.
For this purpose we assume

P’ =p+op + O>5?). (28)

Inserting this into the perturbed Fokker-Plank equation (26) and dropping terms of the order
of 62 in the perturbed Fokker-Planck equation, we arrive at the following
Approximate Linear Response Dynamics

o’ Ny op 1
25 —V~(pF(X,8))—E+ V-V (Qp)

~Ve(a(X)p)-F(t) + §v -V - (05" +307)p)
= Lppp + Lap - F + L,p, (29)
P(X, 1) = phH(X) x bo(s). (30)

t=0

Here the external operators corresponding to the deterministic uncertainty (L,) and the
uncertainty in noise (L,) are defined in an obvious way

Lip = —Ve (ap), (31)
L,p = %V V- (067 +G0")p). (32)

This equation can be (formally) solved exactly to give the perturbative pdf

S t IS _ ~ t = —
P(t) = etbrep) + / [et=DLre L b(1)] - F(1) dr + / et=nLeep 5(7) dr. (33)
0 0

Remark: Notice that L, = 0 when o = 0, i.e. zero noise in the unperturbed case. Hence in
the case of noise perturbation of an originally noiseless system, the perturbative noise level
should be of the order of v/§ in order to have non-trivial order ¢ perturbation to the pdf due
to noise. This is in accordance with conventional wisdom [13].

We are interested in statistical quantities as usual. For a given functional (observable)
A(X), the statistics under the perturbed dynamics is given by

ES(A)(t) = // X)p* (X, t) dX
= E°+6E + 05 (34)

SE'(t _5// AX)p (X, t) dX (35)

where



is the leading order perturbation in the statistics which can be written as
E'(A)t) = /etLFP o ( dx+// e=ILrr L p(k, 7)) - F(r) dr dk
// (t Nlrry, -p(X,7)] dT dx
= / fo(X)e'Trr A(X) dx + /0 t / (e Lkr A(%)][Lap(%, 7)] - F(7) dX dr
N / /0 [T AR)][Lop(%, 7)] dr % (36)
- [t A ax+ [ t JHTae Ay - (k) dxdr
// [LTe=DIEr A(R)]p(%, 7) dT dX (37)
def /Po( Je tLFPA( )dx+/0 RaA(t 7)F(r )d7-+/0tR(,7A(t,7')d7‘ (38)

where LFP,LZ,LZ are the adjoint operators of fLFp,La, L, respectively. Here the linear

response operators ﬁa and R, which account for the system perturbations only are defined
as

R ,(tr) = / (=D p A (5] [Lap (%, 7)] dk = / LT[e=D e AR |p(%, 7) d%,  (39)

Roaltir) = / [€0-"EEe AR))L,B(%, 7)) d& = / LTl Ee AR)F(R,7) d%. (40)

'@H

The first form may be suitable for quasi-Gaussian (and Gaussian) approximation [18, 21, 14,
16, 15, 17, 3] while the second one is more useful for direct adjoint approximation [2, 1, 3]
as we shall see below.

Remark: This general linear response approximation is probably valid for finite time only
due to the initial ensemble perturbation. For instance, if we have time-independent forcing
perturbation, i.e. F(t) = F, no time dependent external forcing, i.e. F(X,t) = F(X), and
the system is mixing and hence all statistical solutions converge to the unique equilibrium
state, the perturbation in the statistics should be independent of the perturbation in the
initial pdf over a long time, i.e. E(A)(t) should be essentially independent pj for large t.
But this is not consistent with the approximation formula in (38) as the last two terms (the
two linear response operators) are independent of pf, while the first depends on the initial
perturbation in a linear fashion (unless there is magic cancelation). Therefore it might make
sense to ignore perturbation in initial pdf, i.e. set pj = 0, if we are interested in long time
approximation.

In the case when the unperturbed pdf p is smooth and non-vanishing, we may formally
rewrite the linear response operator in the form of a statistical average which can be replaced
by long time average if the unperturbed pdf is assumed to be ergodic [26, 21]. This is in the
spirit of the fluctuation-dissipation theory in statistical physics [26, 21, 5].

10



Theorem 2 (FDT). Suppose that ]_5(5(,7') > 0,VX, V7 > 0 and it is smooth. Then the
computation of the linear response operators (39, 40) can be reduced to the computation of
the following statistical correlations

A

RE,(t,7) = < AX(1)Ba(X(7)) >= / [e=DLEr A(X)|Ba(X, 1)p(X, 7) dX,  (41)

Roat,7) = < A(X(t)B,(X(1)) >, (42)
with the special (vector) nonlinear functionals

Bu(X,7) = P XT) g gy L XT) (13)

pX,7) p(X,7)
where the correlations are evaluated at the unperturbed pdf f)(X,T) In the case when the
unperturbed statistical solution to the skew-product system is related to the statistical solution
p(X,T) of the original time-dependent system through (14) and under the assumption that
p(X, 7) is smooth and positive, then the computation of the linear response operators (39,

40) can be reduced to the computation of the following statistical correlations

RIM7) = < AXOBA(X(r) >= [ (e 7E ACO]|_ Ba(X, 7)|_ (X, 7) dX(t)

a,

~

Roa(t,7) = < A(X(t))B,(X(1)) >, (45)

with the special nonlinear functional (which are independent of s) computed through p(X, T)

directly
A Lap(X, 1) A L,p(X, 1)
B.X,7) = ——, B,X,7)=———7"=.
X =S P =5y

Proof: It is obvious that the correlation function of two functionals A and B with respect
to p can be written as

(46)

< AX)B(X(1)) > = / A(X) / B(Y)p(X,t;Y,7)dYdX
_ / AX) / B(Y)p(X, 1Y, 1)i(Y, 7) d¥dX

= / A(X) / B(Y)eErrX)5X — Y)p(Y, 1) dY dX

_ / [e="LEe AXB(X)(X, 7)] dX. (47)

This ends the proof of the theorem. O
Remark: The first formulation for the B,, B, may be suitable when the unperturbed pdf
is the (presumed unique) stationary statistical solution of the skew-product system which
is (assumed) to be smooth and positive while the second formulation is more suitable for

11



ensemble prediction based on the original system and hence the unperturbed pdf given by
(14) is neither smooth nor positive everywhere in the skew-product variable. On the other
hand, it is quite natural to expect p(X,7) to be smooth and positive everywhere under
the assumption of non-degenerate noise (rank(Q)) = N) and some appropriate dissipative
assumption.

Although the contribution from uncertainty in initial perturbation looks straightforward
and there has been an abundant literature on this topic, the effect is not completely clarified,
especially in the presence of system perturbation. Moreover, perturbation in initial data must
be included in order to study ensemble perturbation which is of great importance in practice.
Therefore, we have included both perturbation in initial data and system perturbation to
account for model error [27, 24] in our study here for potential future applications.

In the special case when the unperturbed pdf is an equilibrium pdf of the unperturbed
system, i.e., L rpp = 0, and hence B (X 7) is independent of 7, the correlation can be written
in a snnpler form

Rap(t,m) = <AX(®)B(X(r) >

= Rap(t—r1,0)
= pmr /TTT AX(# +t = m)BX(t)) dt (48)
= /TTT AX(# +t = m)BX(t)) dt’ (49)

where we have invoked the ergodicity assumption in the second to the last step, and we
have assumed that A, B are independent of s in the last step. This last two formula may
be particularly useful in the case of an ergodic statistical equilibrium since they do not
involve the potentially unstable computation of tangent map although long time integration
of the skew-product system is required. The issue of long time integrator which captures the
equilibrium statistics is itself an interesting and challenging issue. See [10] for the case of
finite dimensional Hamiltonian system using Andersen thermostat approach, and [7, 8, 30]
for infinite dimensional dissipative systems.

3.1 Zero Noise Tangent Map Approach

Notice, as in [1, 2, 3|, that in the case of zero noise, the adjoint skew Fokker-Planck equation
can be solved explicitly via the characteristic method,

e DIEr A(R) = AX(X,t — 7)) (50)

where X (%,¢ — 7) is the solution at time ¢ — 7 of the zero noise skew equation (9) which
starts at X at time zero.

The contribution to the leading order statistics from the perturbation of the initial pdf
can be handled easily

[t aw)dx = [ A= [reoa(( ) a6

12



As for the contribution to the perturbation of the leading order statistics due to perturbation
in external forcing, we can rewrite the linear response operator in this zero noise case as

RIAr) = () = [ Lt Aot r) dx

= / AX(%,t — 7)) [Lap(x, 7)] dx

- [ - (- AR g

_ /(8A(X(§c,t — 7))

G s CORS, 7)) d%

= / Vi AX (%, — 7)) e a(x) p(X, 7) dx

_ /RN/TVXA(X(<§),t—T))oa(x)]_ﬁ(<};),T)dsdx. (52)

This is a simple generalization of the classical linear response formula [26, 21] to the current
environment of perturbation away from time-dependent statistical state. In the case of
perturbation near an equilibrium, the average with respect to the equilibrium pdf p can
be replaced by long time average after invoking the ergodicity assumption. As developed
in [1, 2, 3], the current form allows us to compute the short time linear response without
explicit knowledge of the unperturbed state (only the statistics are needed which could be
obtained via Monte-Carlo simulation or observation).

The derivative V4 A(X(X,t)) may be calculated via solving the linearized equation (tan-
gent map) and is related to the finite time Lyapunov exponents of the skew-product dynam-
ical system (9) since

A

e = wxak) - (53)
and
dv"ft(&’t) = VxF(X) X:X(&’t)VxX(fc,t), (54)
Vi X(xt)| =T (55)
Therefore
Vi X(X,t' +1) = exp( /t o VxF(X) ‘X:XW) dr)V X (%, ) (2 Tl Vi X(%,1)).  (56)

At the first glance, it seems unlikely for the linear response theory to be valid for long
time for system with at least one positive Lyapunov exponent as the linear response operator
will grow exponentially in time. On the other hand, we are considering statistical averages
here which makes those worst scenario argument inapplicable unless we consider a degenerate
ensemble of a single trajectory. Ample evidence of the practical skill of the adjoint tangent
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map approach in the case of time-independent deterministic forcing and perturbation away
from statistical equilibiurm may be found in [1, 2, 3].

There are two special cases that merit elaboration. The first is the case when the un-
perturbed statistical solution p of the skew-product systemv(9) is related to the statistical
solution p of the time dependent system (1) through (14). We further assume that the ob-

servable A depends on the spatial location X only, i.e. A(X) = A(X) (see section 4 below
for general observable), we have

RLar) = [ AKX ) o= m)iLar )] dx

= /VXA(XT(X,t — 7)) ea(x)p(x, )] dx (57)

where X, (x,t — 7) denotes the X component of X( ); Jt—T).

Now in the special subcase of the unperturbed pdf p is generated via finite ensemble
prediction

R

p(x,t) = ij50(x —x;(t), > pi=1, (58)

Jj=1

the linear response operator can be calculated with the help of the characteristic method
and the tangent map as

RE \(t,7) = Z PV AX,(x,t — 7)) e a(x) (59)

x=x, (1)

The term involving p, can be handled similarly.
The other case is when the unperturbed pdf p is the statistical equilibrium p®(x) =
Dper(X, s) of the skew-product system. In this case the correlation is a function of t — 7 only

and
R = [ ([mac(T)oeator (X ) as)ax o)
= [ ([ (%) 00 ea6omatx s ds ) ax 1)

- Jim % / VA AX (R, t+7)) e a(X (%, 7)) dr (62)

T*

where in the last step we invoked the ergodicity assumption and the inner integral can be
viewed as an average over the phases. Note that for applications of linear response theory to
climate change with seasonal forcing, it is very interesting to have more general functionals,
A(X, s), in applications. See section 4 below.

It seems that whether F is periodic in ¢ with period Ty or not does not affect the cal-
culation above. The additional periodic assumption does not provide further simplification
unless the unperturbed system is assumed to be at statistical equilibrium.
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3.2 Quasi-Gaussian Approximation, Gaussian Approximation and
Ensemble Prediction

As an alternative approximation to the direct approach discussed in the previous subsection,
we may utilize the assumption that the unperturbed pdf p or the statistical equilibrium p©?
is close to a Gaussian in many applications and hence we may replace it by a Gaussian with
the same mean and variance in some appropriate fashion. Depending on the manner on
how the equivalent Gaussians are utilized, we may end-up with the so-called quasi-Gaussian
approximation [21] or the simple direct Gaussian approximation. A crucial advantage of
quasi-Gaussian approximation is that we do not need linear tangent model to assess response
behavior approrimately.

Due to the presence of time-dependent deterministic forcing, there are two ways to in-
troduce the quasi-Gaussian or Gaussian approximation. The first is closer to finite ensemble
approach and utilizes the relationship (14) between the statistical solutions of the time-
dependent system and the skew product system. The second approach utilizes appropriate
Gaussian approximation of the statistical equilibrium p? of the skew-product system.

3.2.1 The Quasi-Gaussian Approximation

We first consider the case of statistical ensembles generated by the time-dependent system
since this is the one most useful in practice. More specifically, for each fixed time ¢, we define
a Gaussian pdf p¥(X,t) with the same mean and second moments as the unperturbed pdf
p(X, 1), i.e

def

/Xp (X,t)dX = /XpXt)dX X (4), (63)

/(X—X(t))@(X X(1))pC(X, 1) dX = /(X—X(t))@(X—X( DBX. 1) dX < (64)

where C(t,t) is the covariance matrix of X(¢), and hence

G _ 1 (K= X(#) - CTHX - X(1))
P = o Faerat 2

)- (65)

Now we replace p(X,t) by p©(X,t) in the calculation of the B, and B, in the correlation
formulation (46) in the previous theorem, i.e., we propose

(B (t,7) =< AX@)BI(X(7)) >, RIA(t,7) =< AX()BI(X()) >, (66)

with the approximate special (vector) nonlinear functionals
Lap®(X, 7) Lop®(X,7)
e (X, 1)’ e (X, 1)

Therefore if the unperturbed pdf is generated via finite ensemble prediction given in (58),
we have, in the zero noise case

BY(X,7) = BY(X,7) = (67)
(RS ij t)Bg (x;(1)), (68)
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Notice that no tangent map is needed here and this is a huge advantage for this approxi-
mation for finite ensemble prediction. This should be contrasted to the tangent map adjoint
approach presented in the previous subsection.

In the special case of perturbation in the external forcing only, i.e. a(X) = a is a constant
vector, we may assume, without loss of generality,

L,=—-Vx. (69)
Hence we have
BY(X,7) = CHt,t)(X —X(1)). (70)

Thus if A is a linear function in X, the linear response operator ﬁf 4(t,T) is essentially the
auto-correlation of X.

In the case when the unperturbed statistical solution p of the skew-product system is
the statistical equilibrium p¢? of the system, the quasi-Gaussian approximation must be
developed in a slightly different way. First we notice that p®? cannot be Gaussian since the
variable s lives on a circle. What we can expect is that each slice is close to a Gaussian for
fixed s. Of course this concept needs to be tested on some simple models. Thanks to (17),
we see that for each fixed s, Top®i(x, s) is a pdf and we may approximate it by a Gaussian
denoted p“*(x). We then propose the following quasi-Gaussian approximation

G,eq S _ LapG’S(X)

Ba (X7 ) - pG’S(X) 9 (71)
G.eq s) — LUPG’S(X)

Bf: (X,s) = pG,s(AX) ’ (72)

(RysH™(t) = < AX(1)B(X,s) >, (73)
RS = < AX()BS(X,s) > . (74)

There is a similar version of the Gaussian approximation at equilibrium with this approxi-
mation.

Quasi-Gaussian approximations are quite successful in many geophysical applications,
especially for estimating linear climate response in the mean (A(X) = X) and variance
(A(X) = X ®X) [14, 16, 21]. The success can be partially explained through the following
short time asymptotic expansion.

Theorem 3 (Short time validity of quasi-Gaussian approximation). Assume that the unper-
turbed pdf p(X,t) of the system (1) is smooth and non-vanishing. Furthermore, we assume
that the deterministic perturbation is defined by external forcing only, i.e. a(X) = a. Then
for the special linear functionals, A(X) = X, the quasi-Gaussian approzimation defined in
(66) satisfies

—

ﬁg’:A(t, T) = Raalt,7)+0O(t—7). (75)
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Proof: Under the assumption, we may assume L, = —Vx so that

Riatr) = = [l  (Fapbenlax = [Tl DM A poxr)dx
& Ty = — @(t_T)LJTwP % w p(x.7) dx = e(t—T)LEP x
AL (er) = = [l teag)| [ ndx = [l

It is easy to see that for linear test functional A we have
R, (t,t) = / VA(X)p(x,t) dx

= /VA x, t) dx

— [ A6vi©ex ) ax
= /A(X)BaG(x, t)p®(x,t) dx

_ / A(x)BS (x, (. t) dx
= (ﬁﬁA)T(tvt)

where in the second to the last step we have utilized the fact that B¢(x,t) is a polynomial
of first degree (and hence A(x)B¢(x,t) is a polynomial of second degree) and the first two
moments of p“(x,t) and p(x,t) are the same. This leads to the conclusion for general
unperturbed pdf p. A similar argument applies for the quasi-Gaussian approximation in
statistical equilibrium for the skew system. O

3.2.2 Gaussian approximation

For higher order accuracy estimates, we may formally differentiate Ry 4(t,7) and ﬁf At 7)
in 7 and evaluate at 7 = ¢ and hope that the derivatives match. Unfortunately this is
not the case. Nevertheless, if we consider Gaussian approximation instead of quasi-Gaussian
approximation, i.e. replacing p by p® directly in the formula for the linear response operators
in (39, 40), this is possible at least under appropriate noise. Hence we introduce the following
Gaussian approximation linear response operators

Ri (t,7)

= —/[ =DLEr AR)] [ Lop® (x, 7))d0 (s — 7) dk = —/[Lfe(t_T)gPA(i)]pG(X, 7)0o(s — 7)(@8)

(By4)"(t.7)

= —/[ (=0 A(%)][Vap® (x, 7))o (s — 7) d = /[Vxe(t_T)LEPA(X)]pG(X, 7)do(s — 7) dKi9)

Further more, we assume () is either a constant matrix (corresponding to additive noise only)
or a matrix with each entry a polynomial of degree no more than 2 in X (corresponding to
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simple multiplicative noise, i.e. with ¢(X) being a linear function in X. This is consistent
with MTV stochastic mode reduction procedure [21, 23]), and hence we have the following
properties when L applied onto a polynomial q(x).

simple multiplicative noise and perturbation deg(LLq) < deg(q)
additive noise and perturbation deg(Llq) < max(deg(q) — 2,0)
simple multiplicative noise and additive perturbation | deg(Llq) < max(deg(q) — 1,0)
additive noise and simple multiplicative perturbation | deg(Llq) < max(deg(q) — 1,0)

We now restrict to the special case of quadratic nonlinearity F which is physically relevant
such as quadratic advection term in fluid problems (16) [21]. In this case we can easily see the
effect of L%, applied to a polynomial ¢ under simple multiplicative noise and perturbation
assumption.

deg(Lfpq) < deg(q) + 1. (80)
It is then easy to see that

Raa(t,t) =R2,(t,t) A cubic

Ry a(t,t) = R] 4(t,t) A quadratic under simple multiplicative noise and perturbation
Roa(t,t) =R 4(t,t) A cubic under mixed additive/multiplicative noise and perturbation
Roa(t,t) = R 4(t,t) A quadratic under additive noise and perturbation

Simple calculation leads to

dr d g 0T i .
LR = [ 3 S COIT—LEn ) o ) s 1),
7=0 =0
d" Shy T ke PG s .
TR DL = [ 303 GOV L) AR 05 s 1) d
7=0 =0
d* g T( T \k—j o (%) 2
rRaalt O] = = [ 3" CIOILI(- L) AR a6 (s — 1) i,
7=0 =0

=

o

= PO (x, )00 (s — t) dx.

J
Z CJCHLI(—LTp)F 7 A(x)]

7=0 i=

LA = - [

Combining the above and the fact that the first and second moments of tjp( t) and

gtj pY(x,t) match, we have the following result on the validity of Gaussian approximation on
short time interval.

Theorem 4 (Short time validity of Gaussian approximation). Suppose that the deterministic
forcing term ¥ in (1) is quadratic in X, and we have at most simple multiplicative noise and
noise perturbation, i.e. o,d are linear in X. Furthermore, we assume that the deterministic
perturbation is defined by external forcing only, i.e. a(X) = a. Then
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o for a linear functional A(X), the Gaussian approximations defined in (78, 79) satisfy

R A(t,7) = Raalt,7) +0((t—17)%).
R) 4(t,7) = Roult,7) +O((t — 7)), simple multiplicative noise and perturbation
R) A(t,7) = Rou(t,7) +O((t — 7)), mized additive/multiplicative noise and perturbaf$d)
R) 4(t,7) = Roa(t,7) +O((t = 7)%), additive noise and perturbation
e For a quadratic functional A(X), the Gaussian approzimations defined in (78, 79)
satisfy
9At,T) = Rau(t,7) +O((t — 7)2),
At T) = Roalt,7)+O(t —7), simple multiplicative noise and perturbation
9At,T) = Roalt,7) +O((t — 7)%), mized additive/multiplicative noise and perturbafa)
94, T) = Roalt,7) +O((t = 7)*), additive noise and perturbation

A disadvantage of the Gaussian approximations presented above with higher order ac-
curacy is the need to build suitable efficient approximations to the backward operator,
e'lrr A(X), directly. We leave this topic for future research.

4 Computational Algorithms for Climate Response with
Periodic Forcing

The mathematical framework developed in section 2 together with the zero noise adjoint
form and the quasi-Gaussian approximations developed in sections 3.1 and 3.2.1 lead to
new algorithms for computing the equilibrium response in a periodic system via the FDT
theorem. The most important new practical application is computation of the changes
in the equilibrium response to models for the climate system with time periodic forcing
coefficients reflecting the seasonal cycle [12, 6, 4] with the prototype structure presented
n (16). The goal here is to present the form of such algorithms for future applications to
climate response; there are natural generalizations of the quasi-Gaussian FDT algorithms
(18,21, 15, 17, 14, 16, 1, 2, 3] following 3.2.1, the short time FDT algorithms [1, 2, 3] and the
blended response algorithms [1, 3] to the situation with a seasonal cycle. The full structure
of the skew-system formulation in section 2 together with the theory in section 2 will be
utilized below.

The typical functionals A ( )sc ) for climate response have the separable form

S

A(%) = A6on(ls - sl < ) (59)

where x(S8) is the characteristic function of the set S. For example, for the seasonal cycle
so that the period Tj is one year, we might be interested in the change in the low frequency
teleconnection patterns [12, 6, 3] during each month or season so that A(x) is x (correspond-
ing to the mean) and/or x ® x (corresponding to the second moments or variance), sg is the
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fifteenth day of each month, and P is fifteen days. Similarly, we might be interested in the
mean temperature change of its variance in each month at a specific location rather than
just the annual changes [14, 16].

To develop approximations utilizing Theorem 2 for FDT or the quasi-Gaussian approxi-

mations sketched in 3.2.1, we need to first gather accurate statistics for the pdf p®?

First from (17), we have the formula

S

(%) =1 ) (90)

where according to theorem 1, py.,.(X, s) is periodic in s with period Tj and arises from a long
time integration of the periodic dynamical systems in (1) with or without noise assuming
ergodicity and strong mixing. It can be estimated from long time series of the system (see
Theorem 1). Take the period interval Ty and divide it into L equal intervals centered at
s;,1 < j < L with width As = % Then, using the long time series, one can calculate the
appropriate statistics of approximate pdf’s denoted here by ppe(x, s;) by doing conditional
statistics of the time series of the trajectory to the sets, {t,|t — ks;| < £5,k > Ky}. There

are two important points:

(A) Direct FDT Algorithm: If x € RY where N is low dimensional (roughly, N < 4),
and (1) is a low order stochastic model [22, 4], then the entire pdf p,.,(x, s;) can be
found with reasonably high accuracy [22]. In this situation, Theorem 2 on FDT can
be applied directly with the functional

N N A a Lap er(x S')
A(X) = A(x)B%(x,s;), Bf(x,s;) = 2207 91
(%) = A(x)B“(x, 5;) (%, 55) Prer (%, 57) (91)

(B) Quasi-Gaussian FDT Algorithm: On the other hand, if z € RY withN > 1 as occurs
in contemporary climate models [14, 16], one can calculate the low order statistics of
Pper(X, ;) involving the mean and covariance with reasonable precision and build the
quasi-Gaussian approximation as suggested in section 3.2.1

Lapzcjer (X> sj)

BS*i(x, ;) =
ST pa(xs))

(92)

Both the direct algorithm and the approximated algorithm require evaluation of the response
operator, R, 4(t), through the correlation with a suitable B in either (91) or (92), i.e. the

(approximate) response operator, ﬁa, A(t), is given by

RL,t) =~ < AX(t)Ba(X(0)) >
To R
/ X(x,t,5),t+ 5)Ba(X, $)pper(X, s) dxds. (93)
RN
In (93), X(x,t,s) is the trajectory of (1) satisfying the phase shifted dynamical systems,
dX :
rr =FX,t+s)+oX)W, X(0)=x. (94)
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Using ergodicity with respect to X, the discrete approximation described in the paragraph
below (4.2), and the special form for the functionals in (89), we have

T* +T

R ~ LZ / A(X(t+7,5;))x(|s; +t +7 — 50| < P)B(X(,5;)) dr, T 3$95)

With the two approximate formulas for B in (91, 92), this leads to the direct FDT and
Quasi-Gaussian FDT algorithms for systems with periodic forcing. Note that there is
non-trivial phase averaging for general functionals like those in (89); if x = [0, 7] so that we
are interested in only mean averaged statistics, then we can use L =1 in (95) coupled with
(91, 92).

For the case of (1) with zero noise, the exact adjoint formula described in section 3.1
and similar considerations as above in (93, 95) leads to a general response algorithm for
functionals of the form in (89)

R ( ) (96)

7 Z / X(r55) AX(t + T, s;)) ea(X(7,s;))x(|s; +t+ 7 — 50| < P)B(X(Ta sj)) dr,

for T > 1. We call this algorithm, the short-time FDT algorithm after [1, 2, 3]; no
explicit knowledge of the time-periodic equilibrium measure, p,.,, is needed. Clearly, these
algorithms presented here can be combined in time to create blended response algorithms
following [1, 3]. The accuracy of these proposed algorithms depends on the sampling width
P in (89) and the number, L, of trajectories (the width As), as well as the functional A(X),
and the length of the time series available.

5 The Information Content in Linear Response

The linear response operator that we derived above can be used to calculate perturbation
effect on information content which can be further utilized to determine the most sensitive
direction under spatial-temporal separable perturbation using information content as the
criterion. This is potentially quite useful in climate response studies [21] and for ensemble
predictions (see Chapter 15 of [23] and the references therein).

The information content of a pdf p° over another pdf p is defined through the relative
entropy [21] or the Lyapunov function [26]

P
P.5) = / () (= G 5). (97)

It measures the lack of information in p compared with p°. Clearly in both climate response
and ensemble prediction, the perturbations with the largest information deficit for p are the
most significant ones.

It is easy to see that the relative entropy is semi positive definite utilizing Jensen’s
inequality or the elementary inequality Inz < 2 — 1 for instance [23, 26]. Notice that it is
not symmetric nor satisfying triangle inequality.
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For our problem of complex system under periodic in time external forcing, there are
two related concepts of statistical solutions: one associated with the skew-product system
and the other linked to the original time-dependent system. The approach that we provide
below is general enough to handle both situations. We will focus on the case of statistical
solution to the skew-product system since statistical solution to the time-dependent system
can be lifted to a (singular) statistical solution to the skew-product system via (14). We will
remark on the case of information content in terms of the time-dependent system at the end
of this section.

Recall that the perturbed Fokker-Planck equation with space-time separable determin-
istic perturbation a  F and same order noise perturbation takes the form of (26). We also
recall that the Fisher information I associated with p? is defined as

dp®\2

IG5 Y X
I(F°(1) = 5/de_ 5/mdx (98)

Hence the relative entropy P is related to the Fisher information in the following fashion
[21] after a simple manipulation based on the formal expansion for p° = py + dp’ + O(5?).

P(,p) = 6 P(p°,p) + O(8%) (99)
where , e ,
P =y [ = ) (100)

In order to see the effect of system perturbation on relative entropy, we take the time
derivative of the relative entropy and follow a classical argument on H-theorem [26]. Denoting

R’ = %6 and noticing that R0 =1+ 5% + O(6?), we have

_ / (I B (Lppp® + OLaf® - F 4 0Loj?) — B Lppp} + O(6%)

= / {(LY,In R)p + 521; (Lap - F + Lyp) — ROLppp} + O(6°)

VR 1 0R' 1 VR . . .
= [t T+ 204 50 VLN + P (L F 4 L) - BLeni) + O)
~ [1iFes)- VRMpa—R&Np@ V(VR) -~ Blpop— L VR QU
0s 2(}‘36)2

+62‘%(Laﬁ F+ Lop)} + 0%
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— A A A~ A - Aé A~ A~ A/ - ~ -
= [ {PLELR — ROLppp— L VR - QVR + 8L (Lop - F + L,p)} + O(°)
2(R?)? p
72 A,

— VR‘S Qv1~25+52/]_3( oD F 4 Lep) + O(6%)

52 A/ L N _
= 3 V Qv +52/—ALap-F+52/£ALUﬁ+O(53).
p p p

Therefore we have the following result

Proposition 1. The information content represented by the relative entropy P can be esti-
mated via the following general formula,

P(p°(T), p(T))

f;/j/;vw ovil +52/ /— b F+52/ /A/ oD + A/(( + Qd))

The first term correspond to the contribution of noise, the second term is the direct contribu-
tion of the perturbation in deterministic forcing, the third term is the result of perturbation
in noise while the fourth (last) term is the leading order contribution from the perturbation
in initial pdf.

For the quadratic in p’ terms, we could use the explicit formula for p’, (33), to reduce
them to linear terms in p’ and hence again linear response terms (see below). However such
manipulation may lead to the usage of (high) derivatives of p which may be hard to compute
accurately in practice (unless with quasi-Gaussian approximation or its generalization, see
below). Now if we are interested in statistical solutions generated by ensemble of the time-
dependent system (9), i.e., p = p(x,t) x (s —t),p° = p°(x,t) x do(s — t), we see that the
formula remain the same with the hat ~ on the pdf’s removed and integration with respect
to X replaced by x.

5.1 Zero Noise Case

In the special case of zero noise, i.e. @Q = 0, the formula degenerates into one that is very
similar to the perturbation away from equilibrium case [21]. Indeed, we have

T),p(T))

_ 2 a]_at 5_2 () 3
_5// T F(t) dtds + 3 po()d %+ 0(5%)

_ / / (tLFP (%) + /0 [=TLEr L (7)) - F(r) dT) LaP(t) | (1) dra

p(t)

+— (X> dx + O(6°)

_ //T ther gy ) el F(t)]dtd§<+62/t(72a(tﬁ)'F(T)) F(t)drdt
p 0

L8 B g 4 o) (103)
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where

(X (%, 1 —7),1) @ Ba(%, 7)p(7) dX (104)

),T)dsdx  (105)

= < Ba(X(t),t) ® Ba(X(7),7) > (106)

is an auto-correlation matrix of B,(X,7) = L;%}EXT)T ) (see Theorem 2.2 in [21]). The inner
integral may be considered as average over the phases.

Proposition 2. In the case when the external perturbation f‘(t) = F is time-independent,
only the symmetric part of Ra, namely Rasym(t,7) = 3(Ra + RYL) is relevant in the infor-
mation content formula above, i.e., we have

P (T), p(T))
= [T = LT - 0 [ po(x)?
= O'F. / / Rasym(t, ) drdtF + §° / / [eFrrBa(x, 1)) dt - Fpjp (%) dx + — [ 22
o Jo 0 2 Do(X)
B B T I _ 2 A (52
Y OSPTFE - MoqF + 07 / / B (%, 0] dt - (%) dx + o [ PR e oty
0 2 Do(X)
where
def 1 T t
Mar = —/ / Ra,sym(t, T) drdt. (108)
’ T 0 0 ’

The first term represent contribution from pure (independent of perturbation in initial
pdf, i.e. pp) system perturbation in the space-time separable fashion considered in this
manuscript, the second term is the cross contribution to information content of perturbation
in forcing and perturbation in initial pdf, the third term is the contribution to the information
content due to the perturbation in initial pdf.

Furthermore, it is easy to see the following:

e The contribution to the information content due purely to the perturbation in the
Pp(%)?

R Po (%)
(Ba = 0), the relative entropy (information content) is a constant in time in the absence
of noise [13, 26] which is consistent with the relation above to leading order.

initial pdf is positive, i.e. [

dx > 0. In the absence of perturbation in forcing

e The contribution to the information content due to perturbation in forcing alone must
be positive, i.e.
Mar > 0. (109)

Indeed, for the special case of no perturbation in initial pdf, i.e. py = 0, F. /\/la;p]?‘
is the leading order term of the non-negative function P(p°(T), p(T)) and hence must
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be non-negative definite. It then implies that M, 7 > 0 since the matrix is symmetric
and F is arbitrary. Notice that the definition of M 1 is completely independent of
the perturbation pf, to the initial pdf. Hence the conclusion remains valid for general
non-zero p, case. A very useful corollary to this observation is that the direction of
the eigenvector associated with the largest eigenvalue of Mar is the direction with
the largest information content in response at time T in the absence of perturbation in
initial pdf. This is a generalization of a similar result valid for equilibrium unperturbed
pdf [21]. In practical computation, one may approximate R, via the quasi-Gaussian
approach described in section 3.2.1 above. Namely we approximate R, by

Ralt,7) ~ ’RG(t, )

= / BS(X(%,t — 7),1)] @ B (%, 7)p(%, T) d% (110)

where BS(x,7) = % with p%(-,s,7) being the Gaussian that has the same

first and second moments (in x) as p( S ) , 7). In the case of zero noise and the

unperturbed pdf p is given by a finite ensemble like (58), this approximation can be
represented as

RE(t,7) = ij/BG %,(t),1) ® BI(%,(7), 7). (1)

e The contribution from the cross term has no definite sign. However, the overall contri-
bution of the three terms must be non-negative since it is the leading order expansion
of the relative entropy which is non-negative. The computation of this cross term can
be handled using the quasi-Gaussian approximation idea as well.

T ~ T ~
/ /0 [eFrP B, (%, 1)] dt - Fpj(X) dx  ~ / / [eFrrBE (%, 1)] dt - Fp)(X) dx
/ / BS (X (%, 1), t)] dt - Fpl (%) dx(112)

This approximate formula together with the approximate formula for the auto-correlation
(110) can be utilized to investigate the relationships on F, a, pj, (the perturbations) that
maximize (or minimize) the information content.

In the special case of p = p°? being an equilibrium pdf of the system, i.e., Lppp =0, we
recover a formula which is almost the same as the one from [21, 17]. Indeed, we have

Ra(t,7) = Ralt —7,0) & Ra(t — 7) (113)
and hence assuming the auto-correlation matrix decay fast enough
1 T T—oo
Ma,T = T (T — t)Ra,sym(t) dt — M 7-\)fa sym (114)
0
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where

Rasym(t, ) = %(Rawzf) (115)
Ralt) = / i / BL(X(( 7)) @Be(( S (7 )dsdx  (116)
B(x) = 12127(‘1)(5) (117)

Thus, the natural low frequency basis for long times under constant external forcing per-
turbation, zero perturbation in initial data, is the one which diagonalizes the mon-negative
symmetric matriz My (00).

In the special case of a being a constant vector, i.e., perturbation in external forcing only,
and the equilibrium state is Gaussian in x, the phase averaged auto-correlation matrix (116)
is essentially the auto-correlation of x (it is, if the mean is zero).

The inclusion of the effect of initial condition is important conceptually. For instance, this
is potentially useful for us to address the question of for a given external perturbation class,
which kind of perturbation generate largest additional information content in an ensemble
prediction.

5.2 The Effect of Noise

In the presence of noise, we first observe that the effect of the noise term is to decrease
relative entropy as is clear from the semi-positive definiteness of ﬁV% . QV%. This is in

accordance with the general result that noise reduces relative entropy (H-theorem, [13, 26])
although the two statistical solutions under investigation here are not for the same system
(different parameter) since we are studying system perturbation.

The contribution from perturbation in noise, fOT i %Laﬁ, does not seem to have a definite
sign in general. In the case without perturbation in deterministic forcing (L, = 0) and no
perturbation in initial pdf (pf, = 0), this term can be represented as

b A e

(
— /0 /0 t [~ EEr B, (1)) B, (7)]p(7) dkdrdt (118)

%. This can be approx-

imated via quasi-Gaussian approximation among others in practice.

Our second observation is that contribution to the information content of the noise term
through F can be described via a semi-negative definite matrix so long as there is no per-
turbation to the initial pdf, i.e. p; = 0, and there is no perturbation in noise, i.e. L, = 0.

which is the time integral of the auto-correlation of B, (X, 7) =
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Indeed, let

t (t=7)LrpT,
p(t)
we have, after utilizing the formula for perturbative pdf (33), and assuming no perturbation

in initial pdf (pj = 0), no noise perturbation (L, = 0) and constant external perturbation
(F(t) =F)

A/t . A/() N _ 1 T _ ~ . . .
/ / jat Vp(t) dxdt 2/0 /p(t)(V(t)F) QV(t)F)dxdt (119)

~ ¥ /0 ! / ]?VT(t)QV(t) dxdif - (120)

= TF -V F (121)

where
iT /0 / SOVTHQV (1) didt (122)

is a symmetric semi-positive definite matrix.

Proposition 3. In the special case of no perturbation in initial pdf (Do = 0) no perturbation
in noise (L, = 0), and constant perturbation in external forcing (F(t) = F), we have

PGT),H(T) = / / v” QV 4 / / DL F + O
= T&F - ( VTQ+M3T)F+O (6%) (123)

where Vr g is semi-positive definite while My is semi-positive definite. Hence the infor-
mation content is a tug war between noise and system perturbation in constant forcing. The
first tends to diminish information content while the latter tends to increase the information
content.

The positivity of M, follows from the positivity of P and the semi-positivity of Vr .
However, the difference of the two matrices must be semi-positive definite since P(7) > 0.
Therefore we can still conclude that the direction which is most sensitive to information
flow at time T is the direction of the eigenvector associated with the largest eigenvalue
of the semi-positive definite symmetric matrix —Vp o + Ma . This may be viewed as a
generalization of the case without noise discussed in the previous subsection. Quasi-Gaussian
type approximation may be used to approximate the matrices for practical purposes in studies
of model error.

6 Concluding Discussion

Several generalizations of linear response theory have been developed here along with pro-
posed numerical algorithms with potentially significant applications to both finite time en-
semble predictions and climate response with time periodic forcing. For ensemble predictions,
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new formulas to avaluate model error combined with initial ensemble perturbation [27] have
been developed including variation in model noise [25]; an information theoretic perspective
has been used in section 5 to assess these perturbations where the current model has the
largest information deficit. When applied to the equilibrium distribution, this allows for
assessing the most important perturbations with the largest response for a given functional
(see Theorem 2.2 of [21]).

A general framework has been developed in sections 2 and 3 for the general fluctuation
response of a (stochastic) chaotic dynamical system with periodic coefficients as arises with
the seasonal cycle for climate response experiments or the diurnal cycle for moist convec-
tion. This framework leads to new algorithms presented in section 4 for calculating the low
frequency climate response in periodic systems like those with a seasonal cycle.

All of the algorithms and concepts developed here in a theoretical framework for both
climate response and ensemble prediction require further extensive testing and development
to assess their performance. The suite of test models should range from low order stochas-
tic models [22], to versions of the 1-96 and geophysical equilibrium statistical mechanics
models [23] to intermediate [3] and comprehensive climate models [14, 16, 6, 12] with real-
istic dissipation and forcing. The authors intend to do this in the near future with various
collaborators.
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