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Abstract

We introduce non-linear Dirac operators in Rn associated to the
p-harmonic equation and we extend to other contexts including spin
manifolds and the sphere.

1 Introduction

Associated to each type of Laplacian one usually sees a first order lineariza-
tion, to a Dirac operator. For instance associated to the Laplacian in Rn is
the euclidean Dirac operator arising in Clifford analysis. For the Laplace-
Beltrami operator associated to a Riemannian manifold there is the Hodge-
Dirac operator d + d!, where d is the exterior derivative and d! is the Hodge
codifferential which is the formal adjoint to d. Further, in reverse order,
to the Atiyah-Singer-Dirac operator on a spin manifold there is the spinorial
Laplacian. Also on Sn one has a conformal Dirac operator and the conformal
Laplacian. See for instance [3, 5, 9, 11] for details.

Besides the Laplacian in Rn there are also the non-linear operators re-
ferred to as p-Laplacians. See for instance [7, 8, 10]. Despite being non-linear
these second order operators posses properties very similar to the usual Lapla-
cian in euclidean space. Further when p = 2 this operator corresponds to the
usual Laplacian in euclidean space.

Here we shall introduce a first order nonlinear differential operator which
in the case p = 2 coincides with the euclidean Dirac operator. The confor-
mal covariance of these operators are established. The n-harmonic equation
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arising here is Clifford algebra valued and the invariance of weak solutions
to this equation under conformal transformations is only an invariance up
to a factor of the pin group, the double covering of the orthogonal group.
This is in contrast to weak solutions to the usual n-harmonic equation. We
illustrate that we have a prpoer covariance not involving the pin group when
we restrict to the scalar part of our clifford valued equations.

Further a non-linear Cauchy-Riemann equation is introduced and its
covariance under composition with non-constant holomorphic functions is
described.

Also a p-Dirac and a p-harmonic equation are set up on spin manifolds.
We describe the behaviour of weak solutions to the n-Dirac equation under
conformal rescaling of the metric on a spin manifold.

We conclude by introducing p-Dirac and p-harmonic equations on the
sphere Sn and introducing solutions to these equations.
Dedication This paper is dedicated to the memory of J. Bures.

2 Preliminaries

The p-Laplace equation is the non-linear differential equation div‖∇f‖p−2∇f =
0, where f is a a sufficently smooth, scalar valued function defined on a do-
main in Rn. Further the operator ∇ is one of the simplest examples of a
Dirac operator. One role here is to see how introducing a Dirac operator to
the setting of p-Laplace equations might deepen ones perspective of such an
equation. In order to introduce Dirac operators we need to first look at some
basics of Clifford algebras.

Following [12] and elsewhere one can consider Rn as embedded in the
real Clifford algebra Cln. For each x ∈ Rn we have within Cln the mul-
tiplication formula x2 = −‖x‖2. If e1, . . . , en is an orthonormal basis for
Rn this relationship defines an anti-commuting relationship eiej + ejei =
−2δij. If this relationship is the only relationship assumed on Cln then
1, e1, . . . , en, . . . , ej1 . . . ejr , . . . , e1 . . . en is a basis for Cln. Here 1 ≤ r ≤ n
and j1 < . . . jr. It follows that the dimension of Cln is 2n. Further this
algebra is associative.

We shall need the following antiautomorphism

∼: Cln → Cln :∼ (ej1 . . . ejr) = ejr . . . ej1 .

For each A ∈ Cln we shall write Ã for ∼ (A).
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Note for x = x1e1 +x2e2 + . . .+xnen that e1(x)e1 = −x1e1 +x2e2 + . . .+
xnen. So we have a reflection in the e1 direction. Similarly for y ∈ Sn−1,
the unit sphere in Rn, one has that yxy is a reflection in the y direction.
Consequently for y1, . . . yJ ∈ Sn−1 we have that y1 . . . yJxyJ . . . y1 is an or-
thogonal transformation acting on the vector x. In fact we have the group
Pin(n) := {a ∈ Cln : a = y1 . . . yJ : y1, . . . yJ ∈ Sn−1 and J = 1, 2, 3, . . .}.
In [12] and elsewhere it is shown that Pin(n) is a double covering of the
orthogonal group O(n). When we restrict J to be even we obtain a subgroup
known as the spin group and denoted by Spin(n). Further Spin(n) is a dou-
ble covering of the special orthogonal group, SO(n). We shall also need the
Lipschitz group L(n) = {a = x1 . . . xJ : x1, . . . , xJ ∈ Rn\{0} and J ∈ N}.

For A = a0 +a1e1 + . . .+a1...ne1 . . . en ∈ Cln we define the norm, ‖A‖ , of
A to be (a2

0 + . . . + a2
1...n)

1
2 . Conjugation on the Clifford algebra is defined to

be the anti-automorphism − : Cln → Cln : −(ej1 . . . ejr) = (−1)rejr . . . ej1 .
For A ∈ Cln we write A for −(A). Note that the real part, Sc(AA), of AA is
‖A‖2. Further for A and B ∈ Cln the product AB defines a Clifford algebra
valued inner product on Cln for which Sc(AB) is the standard dot product
on R2n

.
It is well known, see [12], that as a vector space Cln is canonically

isomorphic to the alternating al gebra Λ(Rn).
To the vector x ∈ Rn we can associate the differential operator D :=∑n

j=1 ej
∂

∂xj
. This is the Dirac operator in euclidean space. Note that if f

is a C1 real valued function defined on a domain U in Rn then Df = ∇f .
Further D2 = −(n where (n is the Laplacian in Rn.

In [1] it is shown that given a Möbius transformation M(x) over the
one point compactification of Rn one can write this transformation as (ax +
b)(cx+d)−1 where a, b, c and d ∈ Cln and they satisfy the following conditions
(i) a, b, c and d are all products of vectors
(ii) ãc, c̃d, d̃b and b̃a ∈ Rn

(iii) ãd− b̃c = 1.
If y = M(x) then, [13], we have cx+d ∈ L(n). Consequently cx+d has a

multiplicative inverse in Cln. It is shown in [4] that J−1(M, x)−1DxJ1(M, x) =
Dy where Dx is the Dirac operator with respect to x and Dy is the Dirac

operator with respect to y. Further J−1(M, x) = c̃x+d
‖cx+d‖n+2 and J1(M, x) =

c̃x+d
‖cx+d‖n . Moreover DJ1(M, x) = 0. See [13]. Consequently we have:

Lemma 1 Suppose ψ is a C1 function with compact support and y = M(x).
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Then Dyψ(y) = (c̃x + d)−1Dx(c̃x + d)ψ(M(x)).

Proof We know that Dyψ(y) = J−1(M, x)−1DxJ1(M, x)ψ(M(x)). But DJ1(M, x) =
0. The result now follows from Leibniz rule. !

It may be seen that (c̃x + d)−1Dx(c̃x + d) is a dilation and orthogonal
transformation acting on Dx.

3 n-Dirac and n-Laplace Equations and Con-
formal Symmetry

If v(x) is a C1 vector field then the real or scalar part of Dv is divv(x). Keep-
ing this in mind we formally define the n-Dirac equation for a C1 function
f : U → Cln, with U a domain in Rn, to be D‖f‖n−2f = 0. This is a non-
linear first order differential equation for n > 2. When f = Dg for some Cln
valued function g then the n-Dirac equation becomes D‖Dg‖n−2Dg = 0. Fur-
ther when g is a real valued function the scalar part of this equation becomes
div(‖∇g‖n−2∇g) = 0 which is the n-Laplace equation described earlier. In
the Clifford algebra context the n-Laplace equation extends to the equation
D‖Du‖n−2Du = 0. We shall refer to this equation as the n-Cln Laplace equa-
tion. The function ln‖x‖ is a solution to this equation on Rn\{0}. When u
is scalar valued on identifying the Clifford algebra Cln with the alternating
algebra Λ(Rn), the nonscalar part of the equation D‖Du‖n−2Du = 0 be-
comes d‖du‖n−2du = 0 where d is the exterior derivative. When n = 3 using
the Hodge star map this equation becomes in vector calculus terminology
∇× ‖∇u‖n−2∇u = 0.

Noting that D x
‖x‖n = 0 one may see that x

‖x‖2 is a solution to the n-Dirac

equation on Rn\{0}. We will assume that all Cln valued test functions have
components in C∞

0 (U).

Definition 1 Suppose f : U → Cln is in Ln
loc(U), so each component of f is

in Ln
loc(U). Then f is said to be a weak solution to the n-Dirac equation if

for each Cln valued test function η defined on U
∫

U

(‖f‖n−2fDη)dxn = 0.

Note that for g ∈ W 1,n
loc (U) then Dg is a weak solution to the n-Dirac

equation.
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We now proceed to establish a conformal covariance for the n-Dirac
equation.

Theorem 1 Suppose f : U → Cln is a weak solution to the n-Dirac equa-
tion. Suppose also y = M(x) = (ax + b)(cx + d)−1 is a Möbius trans-
formation such that cx + d is non-zero on the closure of M−1(U). Then
(cx + d)−1f(M(x)) is a weak solution to the n-Dirac equation on M−1(U).

Proof: Consider
∫

U(‖f(y)‖n−2f(y)Dyη(y))dyn. As the Jacobian of M is
1

‖cx+d‖2n and Dy = J−1(M, x)−1DxJ1(M, x) this integral transforms to

∫

M−1(U)

(‖f(M(x))‖n−2f(M(x))J1(M, x)DxJ1(M, x)η(M(x))dxn.

Redistributing terms in J1(M, x) this integral becomes
∫

M−1(U)

(‖(cx + d)−1f(M(x))‖n−2(cx + d)−1f(M(x))DxJ1(M, x)η(M(x)))dxn.

As cx+d is bounded on M−1(U) then J1(M, x)η(M(x)) is a test function on
M−1(U). Further as cx + d is bounded and C∞ on M−1(U) then (cx + d)−1

is a bounded C∞ function on M−1(U). Consequently (cx + d)−1f(M(x)) ∈
Ln

loc(M
−1(U)). The result follows. !

Definition 2 Suppose f : U → Cln belongs to W 1,n
loc (U) and

∫

U

(‖Df‖n−2DfDη)dxn = 0

for each Cln valued test function defined on U . Then f is called a weak
solution to the n-Cln Laplace equation.

We shall now examine the conformal symmetry of weak solutions to
the n-Cln Laplace equation. Our arguments follow the lines for A-harmonic
morphisms given in [7].

Theorem 2 Suppose f : U → Cln is a weak solution to the n-Cln Laplace
equation. Suppose further that y = M(x) = (ax + b)(cx + d)−1 is a Möbius
transformation and cx + d is non-zero on the closure of M−1(U). Then
f(M(x)) is a weak solution to the equation DM‖Df(M(x))‖n−2DMf(M(x)) =

0 on M−1(U), where DM := Σn
j=1

(cx+d)
‖cx+d‖ej

c̃x+d
‖cx+d‖

∂
∂xj

.
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Proof As DJ1(M, x) = 0 then on changing variables and applying Lemma 1
the integral

∫
U(‖Df‖n−2DfDη)dyn becomes

∫

M−1(U)

‖cx + d‖2n(‖DMf(M(x))‖n−2DMf(M(x))DMη(M(x)))
dxn

‖cx + d‖2n

=

∫

M−1(U)

‖DMf(M(x))‖n−2DMf(M(x))DMη(M(x))dxn.

In [2] it is shown that ‖(cx + d)A‖ = ‖cx + d‖‖A‖ for any A ∈ Cln. Conse-
quently ‖DMf(M(x))‖ = ‖Df(M(x))‖. The result follows. !

Note that c̃x+d
‖cx+d‖ belongs to the pin group Pin(n). So the covariance

we have described here for weak solutions to the n-harmonic equation is
not the same as for the classical n-harmonic equation descibed in [10] and
elsewhere. We shall return to this point in the next section. First though let
us note that it follows from [2] that Sc(DM‖Df(M(x))‖n−2DMf(M(x))) =
Sc(D‖Df(M(x))‖n−2Df(M(x))) and

Sc(‖Df(M(x)‖n−2DMf(M(x))DMη(M(x))) = Sc(‖Df(M(x))‖n−2Df(M(x))Dη(M(x))).

When f is scalar valued this establishes the conformal invariance of the n-
Laplace equation.

4 p-Dirac and p-Cln Laplace Equations and
Möbius Transformations

We now turn to the more general case. For any real positive number p a
differentiable function f : U → Cln is said to be a solution to the p-Dirac
equation if D‖f‖p−2f = 0. For 1 < p < n the function x

‖x‖
n+p−2

p−1
is a solution

to this equation on Rn\{0}. We obtain this solution by again noting that
D x
‖x‖n = 0 and solving the equation ‖f‖p−2f = x

‖x‖n .

Definition 3 Suppose that f : U → Cln belongs to Lp
loc(U). Then f is a

weak solution to the p-Dirac equation if for each Cln valued test function η
defined on U we have

∫
U(‖f‖p−2fDη)dxn = 0.

Besides the p-Dirac equation we also need the following equation

D‖g‖p−2A(x)g(x) = 0
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where g : U → Cln is a differentiable function and A(x) is a real valued,
smooth function. We shall call this equation the A, p-Dirac equation. The
A, p-Dirac equation is a natural generalization of the A-harmonic functions
defined in [7] and elsewhere.

Definition 4 Suppose that g : U → Cln is in Lp
loc(U) and A : U → R+

is a smooth bounded function. Then g is a weak solution to the A, p-Dirac
equation if for each Cln valued test function η defined on U we have

∫

U

(A(x)‖g(x)‖p−2g(x)Dη(x))dxn = 0.

By similar arguments to those used to prove Theorem 1 we now have:

Theorem 3 Suppose g : U → Cln is a weak solution of the p-Dirac equation
and y = M(x) = (ax + b)(cx + d)−1 is a Möbius transformation with cx + d
non-zero on the closure of M−1(U). Then (cx + d)−1g(M(x)) is a weak
solution to the A, p-Dirac equation on M−1(U), with A(x) = ‖cx + d‖p−n.

Definition 5 Suppose h : U → Cln is a solution to the equation

D‖Dh(x)‖p−2Dh(x) = 0

then h is called a p-harmonic function.

For 1 < p < n the function ‖x‖
p−n
p−1 is a solution to this equation. Again

when u is scalar valued one may identify Cln with Λ(Rn). In this case the
non-scalar part of this p-harmonic equation becomes d‖du‖p−2du = 0. Also
when n = 3 the Hodge star map may be used to see that this equation
becomes ∇× ‖∇u‖p−2∇u = 0.

Note that when h is real valued then the real part of the equation ap-
pearing in Definition 5 is the usual p-harmonic equation described in [7].

Definition 6 For a function h : U → Cln in W 1,p
loc (U), then h is called a weak

solution to the p-harmonic equation if for each test function η : U → Cln
∫

U

(‖Dh‖p−2DhDη)dxn = 0.
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Definition 7 For h : U → Cln a differentiable function and A as in Defini-
tion 4, then h is called an A, p-harmonic function if

DA(x)‖Dh(x)‖p−2Dh(x) = 0.

Further if M(x) = (ax + b)(cx + d)−1 is a Möbius transformation then h is
called an A, p,M -harmonic function if

DMA(x)‖Dh(M(x))‖p−2DMh(M(x)) = 0.

Definition 8 Suppose h : U → Cln belongs to W 1,p
loc (U) and A is as in

Definition 4. Then h is called a weak solution to the A, p-Laplace equation,
or A, p-harmonic equation if for each test function η : U → Cln

∫

U

(A(x)‖Dh(x)‖p−2Dh(x)η(x))dxn = 0.

Further it is a weak solution to the A, p,M -harmonic equation if
∫

M−1(U)

A(x)‖Dh(M(x))‖p−2DMh(M(x))DMη(M(x))dxn = 0.

Further by similar arguments to those used to prove Theorem 2 we have:

Theorem 4 Suppose that h : U → Cln is a weak solution to the p-harmonic
equation and M(x) = (ax + b)(cx + d)−1 is a Möbius transformation with
cx+d non-zero on the closure of M−1(U). Then h(M(x)) is a weak solution
to the A, p,M -harmonic equation on M−1(U) where A(x) = ‖cx+d‖2(p+2−n).

Again Sc(DMA(x)‖Dh(M(x))‖p−2DMh(M(X))) = Sc(DA(x)‖Dh(M(x))‖p−2Dh(M(x)))
and

Sc(A(x)‖Dh(M(x))‖p−2DMh(M(x))DMη(M(x))) = Sc(A(x)‖Dh(M(x))‖p−2Dh(M(x))Dη(M(X))).

So when h is scalar valued this again re-establishes the A, p covariance of the
p-harmonic equation.
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5 The p-Cauchy-Riemann Equation

So far we have considered p-Dirac equations in dimensions n ≥ 3. We
now turn to look at the case n = 2. In this setting the Dirac operator is
e1

∂
∂x + e2

∂
∂y . This can be written as e1(

∂
∂x + e−1

1 e2
∂
∂y ) and ∂

∂x + e−1
1 e2

∂
∂y =

∂
∂x − e1e2

∂
∂y = ∂

∂x + e2e1
∂
∂y . Now (e2e1)2 = −1. Consequently we can identify

e2e1 with i, the square root of minus one. Then the operator ∂
∂x + e2e1

∂
∂y can

be identified with the Cauchy-Riemann operator ∂
∂z . If we restrict attention

to functions taking values in the even subalgebra of Cl2 spanned by 1 and
e1e2 and identify this algebra with C in the usual way then such a solution
to the Dirac equation becomes a holomorphic function and vice versa.

A differentiable function g : U → C is said to be a solution to the
p-Cauchy-Riemann equation if it satisfies ∂

∂z‖g(z)‖p−2g(z) = 0. A function
g : U → C belonging to Lp

loc(U) is said to be a weak solution to the p-Cauchy-
Riemann equation if for each test function η defined on U

∫

U

‖g(z)‖p−2g(z)
∂

∂z
η(z)dxdy = 0.

Note that if h : U → C is a p-harmonic function then g(z) := ∂
∂zh(z) is

a solution to the p-Cauchy-Riemann equation.
Let us now suppose that U is a bounded domain in the complex plane

and f : U → C is a non-constant holomorphic function with f ′(z) += 0 on U .
Using the identities η(ζ) = 1

π

∫
U

∂η(z)
∂z

1
z−ζ dxdy and η(ζ) = 1

π
∂
∂z

∫
U

η(z)
z−ζ dxdy for

any test function η : U → C, and placing z = f(u), then one may determine
that

∂

∂w
f ′(ζ)−1η(w) = f ′(ζ)−1 ∂

∂ζ
η(f(ζ))

where w = f(ζ).

Theorem 5 Suppose g : U → C is a weak solution to the p-Cauchy-Riemann
equation and f(z) is a holomorphic function defined on U with f ′(z) += 0.
Then f ′(ζ)‖g(f(ζ))‖p−2g(f(ζ)) is a weak solution to the equation

∂

∂ζ
f ′(ζ)‖g(f(ζ))‖p−2g(f(ζ)) = 0.

The proof follows the same lines as the proof of Theorem 1.
Note that if f ′(ζ)‖g(f(ζ))‖p−2g(f(ζ)) is differentiable, then as f is holo-

morphic, g(f(ζ)) is a solution to the p-Cauchy-Riemann equation.
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6 p-Dirac and p-Harmonic Sections on Spin
Manifolds

The material presented here depends heavily on the dot product in Rn. In
fact one can readily extend many of the basic concepts given here to more
general inner product spaces. We shall turn to the context of spin manifolds.
Amongst other sources basic facts on spin manifolds can be found in [9].

Suppose that M is a connected, orientable, Riemannian manifold. As-
sociated to such a manifold is a principle bundle with each fiber isomorphic
to the group SO(n). If this bundle has a lifting to a further principle bundle
with each fiber isomorphic to the group Spin(n), then M is said to have a
spin structure and M is called a spin manifold. Associated to a spin manifold
is a vector bundle Cl(M) with each fiber isomorphic to Cln.

The Levi-Civita connection ∇ on M lifts to a connection ∇′ on the
spin structure. Associated to that connection is the Atiyah-Singer-Dirac
operator D′. If e1(x), . . . , en(x) is a local orthonormal basis on M then
locally D′ = Σn

j=1ej(x)∇ej(x). Further [6] the inner product associated to the
Riemannian structure of M lifts to a Clifford algebra valued inner product
on Cl(M). We denote this inner product by < , >.

Suppose now that U is a domain in M and f : U → Cl(M) is a differen-
tiable section. Then f is said to be a solution to the p-Atiyah-Singer-Dirac
equation if D′‖f(x)‖p−2f(x) = 0. Further a section f : U → Cl(M) be-
longing to Lp

loc(U) is said to be a weak solution to the p-Atiyah-Singer-Dirac
equation if for each test section η : U → Cl(M) we have

∫
U < ‖f‖p−2f, D′η >

dU = 0 where dU is the volume element induced by the metric on M .
Besides the p-Atiyah-Singer-Dirac equation we may also introduce p-

spinorial harmonic functions. A twice differentiable section h : U → Cl(M)
is said to be p-spinorial harmonic if D′‖D′h‖p−2D′h = 0. Further if we
assumed that h ∈ W 1,p

loc (U), then h is a weak solution of the p-spinorial
harmonic equation if for each test section η : U → Cl(M) we have

∫

U

< ‖D′h‖p−2D′h, D′η > dU = 0.

As Cln contains an identity there is a projection operator Sc : Cl(M)→
ClR(M) where ClR(M) is the line bundle of Cl(M) with each fiber the real
part of the fiber of Cl(M). It makes sense to now talk of the equation

∫

U

Sc < ‖D′h‖p−2D′h, D′η > dU = 0. (1)

10



This last integral arises from the vanishing of the first variation associated
to the Dirichlet integral

∫
U ‖D

′h‖pdU . When p = 2 this integral gives rise to
the spinorial Laplace equation D′2h = 0.

We can go a little further if our manifold is both a spin manifold and a
conformally flat manifold. A manifold is said to be conformally flat if it has
an atlas whose transition functions are Möbius transformations.

Suppose M is a conformally flat spin manifold. For a Möbius transition
function M : U ⊂ Rn → V ⊂ Rn with M(x) = (ax + b)(cx + d)−1 = (−ax−
b)(−cx−d)−1 we can make an identification (x, X)↔ (M(x),±(cx+d)−1X)
where x ∈ U and X ∈ Cln. As M is a spin manifold signs can be chosen
so that these identifications are globally compatible over the manifold M .
Consequently we have a vector bundle on M . Given the conformal covariance
of the n-Dirac equation described in Theorem 1 it now follows from Theorem
1 that one can set up weak solutions to the n-Dirac equation over domains
in M , and taking values in this vector bundle.

Similarly one can now use Theorem 2 and the remarks following it to see
the conformal invariance of Equation 1.

Two metrics gij and g′ij on a Riemannian manifold are said to be con-
formally equivalent if there is a function k : M → R+ such that g′ij(x) =
k(x)gij(x) for each x ∈ M . We now investigate how weak solutions to the
n-Dirac equation transform under such conformal changes of metric on a
spin manifold. We shall denote the inner product on the spinor bundle of M
associted to the metric gij by < , >1 and the inner product associated to g′ij
by < , >2. Further we denote the respective norms by ‖ ‖1 and ‖ ‖2. We
denote the Dirac operator associated to <, >1 by D1 and the Dirac operator
associated to < , >2 by D2. Consequently the integral

∫

U

< ‖f‖n−2
2 f, D2η >2 dU

becomes ∫

U

<< f, f >
n−2

2
2 f, D2η >2 dU

=

∫

U

<< f(x), f(x) >
n−2

2
2 f(x), D2η(x) >1 k(x)2ndU.

However, D1kn−1(x) = kn+1(x)D2. See for instance [6].
Consequently the previous integral becomes

∫

U

<< f(x), f(x) >
n−2

2
1 kn−2(x)f(x), k(x)−n−1(x)D1k

n−1(x)η(x) >1 k2n(x)dU.

11



This is equal to
∫

U

< ‖k(x)f(x)‖n−2
1 k(x)f(x), k(x)n−2D1k

n−1(x)η(x) >1 dU.

This calculation describes the change in the n-Dirac equation under con-
formal rescaling of the metric on a spin manifold. Similar transformations are
possible for weak solutions to the p-Dirac equation under conformal changes
in metric.

7 The p-Dirac and p-Harmonic Equation on
Sn

Here we shall consider the unit sphere Sn in Rn+1 = span{e1, . . . , en+1}, and
we shall consider functions defined on domains on Sn and taking values in the
Clifford algebra Cln+1. The stereographic projection from Sn\{en+1} to Rn

corresponds to the Cayley transformation. Consequently one might expect
that p-Dirac and p-harmonic equations can be set up on Sn. This indeed is
the case. In [11] and elsewhere it is shown that the Dirac operator on Rn

conformally transforms to the conformal Dirac operator DS := x(Γ + n
2 ) on

Sn where Γ = Σ1≤j<k≤neiej(xi
∂

∂xj
− xj

∂
∂xi

) and x ∈ Sn.

Definition 9 Suppose U is a domain on Sn and f : U → Cln+1 is a differen-
tiable function. Then f is called a solution to the p-spherical Dirac equation
if DS‖f‖p−2f = 0.

Note that for y ∈ Sn the function x−y
‖x−y‖2 is a solution to the n-spherical

Dirac equation. This follows as under the Cayley transformation the Clifford-
Cauchy kernel u−v

‖u−v‖n in Rn conformally transforms to x−y
‖x−y‖n on Sn and

DS
x−y

‖x−y‖n = 0. For the same reason for 1 < p ≤ n the function x−y

‖x−y‖
n+p−2

p−1
is

a solution to the p-spherical Dirac equation.

Definition 10 Suppose U is a domain on Sn and f : U → Cln+1 belongs
to Lp(U). Then f is a weak solution to the p-spherical Dirac equation if for
each test function η : U → Cln+1

∫

U

(‖f‖p−2fDSη)dU = 0

where dU is a volume element arising from the Lebesgue measure on Sn.

12



One needs to be a bit careful in setting up a p-harmonic equation on the
sphere. This is because the differential operator on Sn that is conformally
equivalent to the Laplacian in Rn is not D2

S but is the conformal Laplacian
or Yamabe operator YS described in [3] and elsewhere. In [2] it is shown that
YS = DS(DS − x).

In [11] it is shown that (DS + p
2x)‖x− y‖−n+p = −n+p

2
x−y

‖x−y‖n−p . Bearing

this in mind and that the fundamental solution to DS is x−y
‖x−y‖n we define the

p-spherical harmonic equation as follows.

Definition 11 Suppose U is a domain on Sn and f : U → Cln belongs to
W 1,p

loc (U). Then f is a weak solution to the p-spherical harmonic equation if
weakly DS‖(DS + p

2x)f(x)‖p−2(DS + p
2x)f(x) = 0.

Solutions to the p-spherical harmonic equation include ‖x− y‖
p−n
p−1 .
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