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Abstract

This paper is a study of solutions to nonlinear Dirac equations, in
domains in Euclidean space, which are generalizations of the Clifford
Laplacian as well as elliptic equations in divergence form. A Cacciop-
poli estimate is used to prove a global integrability theorem for the im-
age of a solution under the Euclidean Dirac operator. Oscillation spaces
for Clifford valued functions are used which generalize the usual spaces
of bounded mean oscillation, local Lipschitz continuity or local order of
growth of real-valued functions.

1 Introduction

We develop tools for the study of solutions to nonlinear Dirac equations of the
form DA(x,Du) = 0. Here u is a function valued in the universal Clifford alge-
bra over a domain in Euclidean space, D is the usual Euclidean Dirac operator
and A satisfies boundedness and ellipticity conditions. We refer to these as A-
Dirac equations. A study of the conformal invariance of p-Dirac equations, a
special case of A-Dirac equations, appears in [17]. These equations are nonlin-
ear generalizations of the Dirac Laplace equation as well as generalizations of
elliptic equations of A-harmonic type divA(x,∇u) = 0. The study of these equa-
tions is partially motivated by the fact that some arise as the Euler-Lagrange
equations to variational integrals. There is an extensive literature concerning
A-harmonic equations. See [9], [11] and [7]. For other recent work on nonlinear
Dirac equations see [4],[5],[6],[21] and [22].

This paper is organized as follows. Section 2 presents preliminaries. In Sec-
tion 3, A-Dirac equations are defined and a Caccioppoli estimate is given for
solutions. In Section 4 we define the space of Clifford valued functions of p, k-
oscillation. These spaces generalize bounded mean oscillation, local Lipschitz
spaces and local order of growth spaces for real-valued functions. These spaces
are used in the hypotheses for a global integrability theorem for Du when u
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is a solution to an A-Dirac equation. Theorem 4.4 generalizes previous results
for bounded harmonic functions in a ball [12] as well as results for A-harmonic
functions which satisfy a Lipschitz condition in more general domains [3]. See
Section 4 for details. In the last section, Section 5, we present a Poincaré in-
equality. We obtain relationships, for so-called uncoupled solutions, between the
p, k-oscillation condition and the local Lipschitz and order of growth conditions.
It is also shown that the p, k-oscilation condition is equivalent to a certain order
of growth of |Du|. Dedication : This paper is dedicated to the memory of
Juha Heinonen.

2 Preliminaries

We write Un for the real universal Clifford algebra over Rn. The Clifford algebra
is generated over R by the basis of reduced products

{e1, e2, ..., en, e1e2, ..., e1 · · · en}

where {e1, e2, ..., en} is an orthonormal basis of Rn with the relation eiej+ejei =
−2δij . We write e0 for the identity. The dimension of Un is R2n

. We have an
increasing tower R ⊂ C ⊂ H ⊂ U3 ⊂ · · ·. Here H is the quaternions. The
Clifford algebra Un is a graded algebra as Un = ⊕l U l

n where U l
n are those

elements whose reduced Clifford products have length l. We use the conjugation
(ej1 ...ejl) = (−1)lejl ...ej1 . The product AB defines an inner product on Un. We
have AB = B̄Ā and A = A. For A ∈ Un, Sc(A) denotes the scalar part of
A, that is the coefficient of the element e0. The scalar part of a Clifford inner
product Sc(AB) is the usual inner product in R2n

when A and B are identified
as vectors. Throughout, Ω ⊂ Rn is a connected and open set with boundary ∂Ω.
A Clifford valued function u : Ω→ Un can be written as u = Σαuαeα where each
uα is real valued and the eα are reduced products. The norm used here is given
by |Σαuαeα| = (Σαu2

α)1/2. This norm is submultiplicative, |AB| ≤ C|A||B|.
The Dirac operator used here is as follows :

D = Σn
j=1ej

∂

∂xj
. (1)

When u is a scalar function, Du can be identified with ∇u. Also D2 = −∆.
Here ∆ is the Laplace operator with operates only on coefficients. A function is
monogenic when Du = 0. It follows that if u is monogenic, then its coefficients
are harmonic. When u = u1e1 + ... + unen and Du = 0, the coefficients are
the Stein-Weiss conjugate harmonic system. When n = 2 these are conjugate
harmonic functions. See [20].

We use the isometric isomorphism between the Grassman algebra and the
Clifford algebra. The Grassman algebra is denoted by Λ∗(Ω) with grading ⊕l

Λ∗l (Ω). We write d for the exterior derivative and d∗ for its formal adjoint. The
linear extension of the map λ : Λ∗(Ω)→ Un(Ω) defined on reduced multivectors
by
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λ : eα1 ∧ · · · ∧ eαl → eα1 · · · eαl

is an isometric isomorphism between vector spaces independent of the choice of
basis. See [8].

For a Clifford valued function u we write u# for λ−1(u). Via λ, the operator
d− d∗ is mapped to D. By this we mean, in terms of reduced products,

(Du)# = du# − d∗u#.

Notice if du# = d∗u# = 0, that is u# is a harmonic field, then Du = 0
so that u is monogenic. Conversely, if Du = 0, then du# = d∗u# and so
d∗du# = dd∗u# = 0. Moreover (−∆u)# = (D2u)# = (d − d∗)2u# = (−dd∗ −
d∗d)u# = −∆u#. Throughout Q is a cube in Ω with volume |Q|. We write
σQ for the cube with the same center as Q and with sidelength σ times that of
Q. For q > 0 we write Lq(Ω,Un) for the space of Clifford valued functions in
Ω whose coefficients belong to the usual Lq(Ω) space. Also, W 1,q(Ω,Un) is the
space of Clifford valued functions in Ω whose coefficients as well as their first dis-
tributional derivatives are in Lq(Ω). We also write Lq

loc(Ω,Un) for ∩Lq(Ω′,Un),
where the intersection is over all Ω′ compactly contained in Ω. We similarly write
W 1,q

loc (Ω,Un). For a form ω, we write ω ∈ Lp(Ω,Λ∗) when λ(ω) ∈ Lp(Ω,Un). We
similarly denote Sobolev and local spaces for forms.

3 A-Dirac Equations and a Caccioppoli Estimate

We consider nonlinear generalizations of the Clifford-Laplace equation ∆u = 0.
We are partially motivated by the fact that these equations may arise as the
Euler-Lagrange equations of variational integrals. To this purpose, we define
the operator :

A(x, ξ) : Ω× Un → Un.

Here x → A(x, ξ) is measurable for all ξ and ξ → A(x, ξ) is continuous for
a.e. x ∈ Ω. We assume the structure conditions with p > 1:

Sc(A(x, ξ)ξ) ≥ |ξ|p, (2)

and
|A(x, ξ)| ≤ a|ξ|p−1, (3)

for some a > 0.

The exponent p will represent this exponent throughout the rest of this
paper.

We consider weak solutions to

DA(x,Du) = 0 (4)
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for u ∈W 1,p
loc (Ω,Un).

Using integration by parts we express this as follows :
∫

Ω
A(x,Du)Dφ = 0 (5)

for all φ ∈W 1,p(Ω,Un) with compact support.

These equations generalize the important case of the p-Dirac equation :

D(|Du|p−2Du) = 0. (6)

Here A(x, ξ) = |ξ|p−2ξ.
These equations were introduced and their conformal invariance was studied

in [17].
In the case of the p-Dirac equation, |x|(p−n)/(p−1), when p ,= n, and log|x|,

p ,= n, are solutions to (6). See [1] and [2] for a study of the scalar part of these
equations in the plane.

It is important to notice that when u is a function and A maps U1
n to U1

n,
the scalar part of equation (4) is divA(x,∇u) = 0. These equations have been
extensively studied with many applications, including variational calculus and
the theory of quasiregular mappings. See [9].

Notice if u is a solution to (5), then so is u + u0 for any monogenic function
u0.

Next is a Caccioppoli estimate for solutions to (5).

Theorem 3.1 Let u be a solution to (5) and η ∈ C∞
0 (Ω), η > 0. Then

(
∫

Ω
|Du|pηp)1/p ≤ pa(

∫

Ω
|u|p|∇η|p)1/p. (7)

Proof :
Choose φ = −uηp. Then Dφ = −pηp−1(Dη)u− ηpDu. Hence using (5) and

(2),

0 =
∫

Ω
Sc(A(x,Du)Dφ) =

∫

Ω
Sc(A(x,Du)(−pηp−1(Dη)u− ηpDu))

≤ −
∫

Ω
|Du|pηp + p

∫

Ω
|A(x,Du)||u||Dη||η|p−1.

Using Hölder’s inequality and (3) we have
∫

Ω
|Du|pηp ≤ pa

∫

Ω
|u||∇η||Du|p−1|η|p−1

≤ C(
∫

Ω
|u|p|∇η|p)1/p(

∫

Ω
|Du|pηp)(p−1)/p.
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Corollary 3.2 Suppose that u is a solution to (5). Let Q be a cube with σQ ⊂ Ω
where σ > 1. Then there is a constant C, independent of u, such that

(
∫

Q
|Du|p)1/p ≤ paC|Q|−1/n(

∫

σQ
|u|p)1/p. (8)

Proof :

Choose η ∈ C∞
0 (σQ), η > 0, η = 1 in Q and |∇η| ≤ C|Q|−1/n.

Notice that u can be replaced by u + w where w is any monogenic function.

4 Oscillation and Integrability

As an application of the Caccioppoli estimate we prove a global integrability
theorem for Du when u is a solution to (5).

Notice that when u ∈ W 1,q(Q,Un), it follows that u# ∈ W 1,q(Q,Λ∗). In
this case, when q > 1, there exists a constant C, depending only q and n, and
a harmonic field u#

Q such that

(
∫

Q
|u# − u#

Q|
q)1/q ≤ C|Q|1/n((

∫

Q
|du#|q)1/q + (

∫

Q
|d∗u#|q)1/q). (9)

This result appears in [10]. The constant can be taken as the constant for the
unit cube. A scaling argument gives the factor |Q|1/n. We write uQ for λ(u#

Q)
throughout the rest of this paper. Notice that uQ = λ(u#

Q) is a monogenic
function.

Definition 4.1 Assume that u ∈ L1
loc(Ω,Un), q > 0 and that −∞ < k ≤ 1.

We say that u is of q, k-oscillation in Ω when

sup
2Q⊂Ω

|Q|−(qk+n)/qn(
∫

Q
|u− uQ|q)1/q <∞. (10)

When u is a function, uQ is the average value of u over Q. When u a function,
q = 1 and k = 0, (10) is the usual definition of the bounded mean oscillation.
When 0 < k ≤ 1, (10) is equivalent to the usual local Lipschitz condition [14].
See Section 5 for definitions and equivalences about these spaces.

Notice that monogenic functions satisfy (10) just as the space of constants is
a subspace of the bounded mean oscillation and Lipschitz spaces of real valued
functions.

We remark it follows from Hölder’s inequality that if s ≤ q and if u is of
q, k-oscillation, then u is of s, k-oscillation.

The following lemma shows that Definition 4.1 is independent of the expan-
sion factor of the cube.
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Lemma 4.2 Suppose that F ∈ L1
loc(Ω, R), F > 0 a.e., γ ∈ R and σ1, σ2 > 1. If

sup
σ1Q⊂Ω

|Q|γ
∫

Q
F <∞,

then
sup

σ2Q⊂Ω
|Q|γ

∫

Q
F <∞.

Proof : If σ1 ≤ σ2, then the implication is immediate. Assume σ1 > σ2.
Let Q be a cube with σ2Q ⊂ Ω. Dyadically subdivide Q into a finite number of
subcubes {Qi} with l(Qi) ≤ (σ2−1)

σ1
l(Q). Then σ1Qi ⊂ Ω for all i. Moreover

|Q|γ
∫

Q
F ≤ |Q|γΣi

∫

Qi

F

= C(σ1, σ2, γ, n)Σi|Qi|γ
∫

Qi

F.

We use a Whitney decomposition W = {Q} of Ω. The decomposition con-
sists of closed dyadic cubes with disjoint interiors which satisfy

(a) Ω = ∪Q∈W Q,

(b) |Q|1/n ≤ d(Q, ∂Ω) ≤ 4|Q|1/n,

(c) 1
4 |Q1|1/n ≤ |Q2|1/n ≤ 4|Q1|1/n when Q1 ∩Q2 is not empty.

Here d(Q, ∂Ω) is the Euclidean distance between Q and the boundary of Ω.
See [20].

Definition 4.3 We write N(j) for the number of Whitney cubes with side
length 2−j where j is an integer. We say that Ω satisfies a Whitney cube number
condition with exponent 0 < λ < n if there is a constant M <∞ such that

N(j) ≤M2λj .

Notice that there exists j0 such that N(j) = 0 for j ≤ j0. Balls and cubes
satisfy a Whitney cube number condition with λ = n − 1. The geometry of
∂Ω determines the Whitney cube number condition. See [15]. Notice that the
volume of a domain satisfying a Whitney cube number condition is finite.

The following result appears in [18]: There exists a Blaschke product B on
the unit disk D of the complex plane such that

∫

D
|B

′
(z)| =∞.
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This shows that there exist bounded harmonic functions in the disk whose gra-
dients fail to be L1-integrable. The proof shows that

∫

D
|B

′
(z)|(log(2 + |B

′
(z)|))−1 =∞.

Notice that B = u1 + iu2 can be embedded in U2 as F = −u1e1 + u2e2 with
|B′

(z)| = |DF (z)|.
In [12] it is shown that if u is a bounded harmonic function in a ball B ⊂ Rn,

then ∫

B
|∇u|(log(2 + |∇u|))−1−ε <∞

for all ε > 0.
Furthermore the following result follows from calculations in [3]: Suppose

that Ω satisfies a Whitney cube number condition with exponent λ. If u is
a solution to an A-harmonic equation, divA(x,∇u) = 0, and satisfies a local
Lipschitz condition with exponent k, 0 < k < 1, then

∫

Ω
|∇u|q <∞

for q < (n− λ)/(1− k).
The following theorem unites and generalizes these results to Clifford valued

functions. Notice with the logarithmic term in place we attain the endpoint
(n − λ)/(1 − k). A similar result for differential forms appears in [16]. It is
notable here that we include a larger range of regularity than in the previous
results, namely −∞ < k ≤ 1 and the inclusion of order of growth spaces. The
proof is similar to the case of the A-harmonic equation. The main step is to
replace the Caccioppoli estimate for ∇u when u is A-harmonic with a similar
Caccioppoli estimate for Du when u satisfies an A-Dirac equation.

Theorem 4.4 Suppose that u ∈W 1,p
loc (Ω,Un) and Ω is a domain which satisfies

a Whitney cube number condition with exponent λ. If u is of p, k -oscillation,
−∞ < k < 1 and (n− λ)/(1− k) ≤ p, then

∫

Ω
|Du|(n−λ)/(1−k)(log(2 + |Du|))−1−ε <∞

for all ε > 0.

Proof : Let Q be a cube with 2Q ⊂ Ω. Using the Caccioppoli estimate (7),
the p, k-oscillation condition (10) and Lemma 4.2 we have

|Q|(p−pk−n)/pn(
∫

Q
|Du|p)1/p ≤ C|Q|−(pk+n)/pn(

∫
√

2Q
|u− uQ|p)1/p ≤ C, (11)

where C is a constant independent of Q.
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Using Hölder’s inequality and (11),
∫

Q
|Du|(n−λ)/(1−k) ≤ C|Q|λ/n. (12)

Next let Qj ⊂ Ω be a Whitney cube with side length 2−j . Define, for −∞ ≤
k < 1,

Uj = {x ∈ Qj : |Du(x)| ≥ 2(1−k)j/2}.
We have using (12),

∫

Qj

|Du|(n−λ)/(1−k)(log(2 + |Du|))−1−ε

≤ |Qj |2(n−λ)j/2 +
∫

Uj

|Du|(n−λ)/(1−k)(log(2 + |Du|))−1−ε

≤ 2−nj2(n−λ)j/2 + Cj−1−ε

∫

Qj

|Du|(n−λ)/(1−k)

≤ 2−(n+λ)j/2 + Cj−1−ε|Qj |λ/n

= 2−(n+λ)j/2 + Cj−1−ε2−λj .

Let Rj denote the set of Whitney cubes in Ω with side length 2−j . Using
the Whitney cube number condition it follows that

∫

Rj

|Du|(n−λ)/(1−k)(log(2 + |Du|))−1−ε ≤ N(j){2−(n+λ)j/2 + Cj−1−ε2−λj}

≤ C{2−(n−λ)j/2 + j−1−ε}.
Altogether ∫

Ω
|Du|(n−λ)/(1−k)(log(2 + |Du|))−1−ε

≤ Σ∞−∞

∫

Rj

|Du|(n−λ)/(1−k)(log(2 + |Du|))−1−ε <∞.

Notice that by Hölder’s inequality Theorem 4.4 holds with (n − λ)/(1 − k)
replaced with q when q < (n− λ)/(1− k).

5 Poincaré Inequality

We continue to use the notation given in Section 2. We introduce a subclass of
functions valued in Un.

Definition 5.1 A Clifford valued function u is uncoupled in Ω if there is a
constant C such that

max(|du#|, |d∗u#|) ≤ C|Du|
a.e. in Ω.
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Recall that we have

(Du)# = du# − d∗u#.

The difference on the right hand side can only have cancelation when du#

and d∗u# have terms for the same basis element ( and hence the same length )
with appropriate coefficients. If this is not the case, and there is no cancelation,
it follows that u is uncoupled. Notice since d : Λl → Λl+1 and d∗ : Λl → Λl−1

cancelation is only possible if u has two reduced products such that the difference
of their lengths is 2. For example, if u ∈ U l

n for some l, then u is uncoupled.
Notice that it is possible for u to be uncoupled even if some cancelation occurs
in the above difference. We give some examples. Throughout these examples
we consider functions valued in the algebra U2 and defined in domains in R2.
They can be embedded in higher spaces if the coefficients depend only on two
variables.

Example 5.2 Let u = u1e1 + u2e2. Since u is a 1-form, it is uncoupled.
Here

Du = (
∂u2

∂x1
− ∂u1

∂x2
)e1e2 − (

∂u1

∂x1
+

∂u2

∂x2
).

Hence if U + iV is analytic and we set u1 = U and u2 = −V , then u is a
monogenic function.

Notice that if this is the case, then du# = 0 and d∗u# = 0 so that u# is a
harmonic field.

Example 5.3 Let u = u0 + u12e1e2. In this case

Du = (
∂u0

∂x1
+

∂u12

∂x2
)e1 + (

∂u0

∂x2
− ∂u12

∂x1
)e2.

Now set u0 = x2 and u12 = x1. It follows that Du = 0 while du# = d∗u# =
dx2. Hence |Du| = 0, |du#| = |d∗u#| = 1 and u is not uncoupled.

Example 5.4 For u in Example 5.3, let u0 = 2x2 and u2 = x1. Now Du = e2,
du# = 2dx2 and d∗u# = dx2.

Hence u is uncoupled with constant C = 2.

We now give a version of the Poincaré inequality for Clifford valued functions.

Theorem 5.5 Let 1 < q < ∞ and suppose that u ∈ W 1,q
loc (Ω,Un) is uncoupled.

Then for each cube Q ⊂ Ω, there is a monogenic function uQ and a constant C,
independent of u, such that

(
∫

Q
|u− uQ|q)1/q ≤ C|Q|1/n(

∫

Q
|Du|q)1/q. (13)
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Proof : The result follows from (9).
Notice uQ = λ(u#

Q), where u#
Q appears in (9), is a monogenic function.

Moreover |u− uQ| = |u# − u#
Q| and since u is uncoupled,

max(|du#|, |d∗u#|) ≤ C|Du|.

Notice if u is monogenic, then u = uQ.

Definition 5.6 Suppose that u : Ω → Un. We write u ∈locLipk(Ω), 0 < k ≤ 1,
when

sup{ |u(x1)− u(x2)|
|x1 − x2|k

: x1, x2 ∈ Ω, |x1 − x2| <
1

2
√

n
d(x1, ∂Ω)} <∞. (14)

Also we write u ∈locOrdk(Ω), k ≤ 0, when

sup{ |u(x1)− u(x2)|
d(x1, ∂Ω)k

: x1, x2 ∈ Ω, |x1 − x2| <
1

2
√

n
d(x1, ∂Ω)} <∞. (15)

The factor 1
2
√

n
is used for convenience and any factor between zero and one

could be used.
Notice that u = Σαuαeα is in one of these classes if and only if each coefficient

uα is also. Local order of growth spaces are studied in [13].

Theorem 5.7 a) Suppose that u is an uncoupled solution to (5). If u ∈
locLipk(Ω), 0 < k ≤ 1, then u is of p, k-oscillation. If u ∈ locOrdk(Ω), k ≤ 0,
then u is of p, k-oscillation.

b) Suppose that u is a scalar function and a solution to (5). If u is of p, k-
oscillation, then u ∈ locLipk(Ω) when 0 < k ≤ 1 and u ∈ locOrdk(Ω) when
k ≤ 0.

Proof : We use Lemma 4.2 in the proof.

a) Let Q be a cube with 4
√

nQ ⊂ Ω and suppose that x1 ∈ Q. Notice that√
n|Q|1/n < 1

2
√

n
d(x1, ∂Ω). Using the Poincaré and the Caccioppoli inequalities

we have

(
∫

Q
|u− uQ|p)1/p

≤ C|Q|1/n(
∫

Q
|Du|p)1/p

≤ C(
∫

2Q
|u− u(x1)|p)1/p. (16)

If u ∈ locLipk(Ω) and 0 < k ≤ 1, then (16) is

≤ C sup{|x2 − x1|k : x2 ∈ 2Q}|Q|1/p
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= C|Q|(pk+n)/pn.

If u ∈ locOrdk(Ω) and k ≤ 0, then (16) is

≤ Cd(x1, ∂Ω)k|Q|1/p

≤ C|Q|(pk+n)/pn.

Hence u is of p, k-oscillation in Ω.

b) If u is a function and a solution to (5), then u is a solution to the scalar
part of this equation which is an A-harmonic equation. In this case u can be
redefined on a set of measure zero as a continuous solution. Also it follows from
Theorem 3.34 in [9] that if u is such a solution in σQ ⊂ Ω and x1, x2 ∈ Q, then

|u(x1)− u(x2)| ≤ C|Q|1/p(
∫

σQ
|u− uσB |p)1/p. (17)

for σ > 1. If an expansion of σQ is contained in Ω then the p, k-oscillation
condition is used with (17) to obtain

|u(x1)− u(x2)| ≤ C|Q|k/n. (18)

Next let |x1−x2| ≤ 1
2
√

n
d(x1, ∂Ω). Choose a cube Q with center x1 and side

length equal to 1
2
√

n
d(x1, ∂Ω). It follows that 2

√
n|Q|1/n = d(x1, ∂Ω). In this

case (18) with σ =
√

2 shows that u ∈ locOrdk(Ω) for k ≤ 0.
Next suppose that 1

8
√

n
d(x1, ∂Ω) < |x1 − x2| ≤ 1

2
√

n
d(x1, ∂Ω). Then using the

same cube as in the locOrd case above gives

|u(x1)− u(x2)| ≤ C|x1 − x2|k.

Otherwise, in the case that |x1−x2| ≤ 1
8
√

n
d(x1, ∂Ω), choose a cube Q centered

at x1 with |x1 − x2| =
√

n
2 |Q|1/n. It follows from (18) that u ∈ locLipk(Ω).

Notice using the Poincaré inequality we have a converse to (11) when u is
uncoupled :

|Q|−(pk+n)/pn(
∫

Q
|u− uQ|p)1/p ≤ C|Q|(p−pk−n)/pn(

∫

Q
|Du|p)1/p. (19)

Hence the p, k-oscillation condition is equivalent to this local order of growth of
|Du|.

In conclusion, we have presented basic tools for the study of the A-Dirac
equation. Following up on the work in [17] it is natural to consider the invariance
of the solutions under compositions with a quasiregular mapping from Ω→ Rn.
We conjecture that, just as in the case of the A-harmonic equation, the A-Dirac
morphisms, for p = n, are exactly the quasiregular mappings.
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