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Abstract
A closed topological n-manifold M™ is of S'-category 2 if it can be
covered by two open subsets W1,Ws, such that the inclusions W; — M™
factor homotopically through maps W; — S!. We show that for n > 3
the fundamental group of such an n-manifold is either trivial or infinite
cyclic. 2

1 Introduction

The concept of the A-category of a manifold was introduced by Clapp and Puppe
[1]. For a closed, connected n-manifold M it is defined as follows: Let A be a
closed connected k-manifold, 0 < k < n — 1. A subset B in the 3-manifold M
is A-contractible if there are maps ¢ : B — A and a : A — M such that
the inclusion map i : B — M is homotopic to « - ¢. The A-category cata M
of M is the smallest number of sets, open and A-contractible needed to cover
M. Note that 2 < cataM < n+ 1. For A a point P we obtain the classical
Lusternik-Schnirelman category cat M = catpM. We are interested here in the
case A = S*.

In dimension 3, cat M3 = 2 if and only if 71 (M?) = 1, hence by the Poincaré
conjecture cat M3 = 2 if and only if M? = S3. In [5] it was shown that
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cat M3 = 3 if and only if 71 (M) is a non-trivial free group, hence it follows from
the Poincaré conjecture cat M2 = 3 if and only if M? is a connected sum of 52-
bundles over S!. It was conjectured that also for dimensions n > 3, cat M™ = 3
implies that 71 (M) is a non-trivial free group. This was proven to be true in [3].

In [6] it was shown that for a closed 3-manifold M3 we have catgi M3 = 2 if
and only if 71 (M?3) is cyclic. By results of Olum [10] and Perelman [9] this
implies that catgiM? = 2 if and only if M? is a lens space or M3 is the
non-orientable S%-bundle over S'. For the case n > 3 we showed [6] that
catgi M™ = 2 implies that 7 (M™) is cyclic or a nontrivial product with amal-
gamation A x¢c B of cyclic groups. In this paper we show that in this case
m1(M™) is in fact cyclic (Corollaries 1 and 2):

Theorem: If M is a closed n-manifold for n > 3 and with catg1 M = 2
then 7(M) is trivial or infinite cyclic.

The paper is organized as follows: In section 2 we relate cat M to catyx M
for a 1-dimensional CW-complex K to show that for n > 3, m1(M) is either
trivial or infinite. In section 3 we describe the main technique used in [6], the
graph of groups associated to a decomposition of M into two S'-contractible
submanifolds, and review the propositions of [6] needed for our proof. Homol-
ogy considerations are then used to obtain the Theorem in the orientable case.
Finally in section 4 we prove the Theorem in the non-orientable case.

2 m(M) is trivial or infinite

For a cell-complex K, a subspace W of the manifold M™ is K-contractible (in
M™) if there exist maps f: W — K and a : K — M™ such that the inclusion
t: W — M™ is homotopic to a - f.

Notice that a subset of a K-contractible set is also K-contractible.

cat g M is the smallest m such that there exist m open K-contractible subsets
of M whose union is M.

In particular, when catgi M™ = 2, there are two open subsets Wy, Wy of M
such that M = Wy U Wy and for ¢ = 0, 1, there are maps f; and «; as in the
diagram below, such that the inclusion W; «— M is homotopic to «a; - f;.
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Lemma 1. Let K be a cell-complex of dimension < n. Then

cat M < catgM - cat K



Proof. Suppose W is an open K-contractible subset of M with inclusion factor-

ing homotopically through W LK%M Ifcat K = k, there is a cover of K
by open subsets K1, ..., K, each contractible in K. It is now easy to see that
{f~Y(K1), -, f"Y(Kk)} is an open cover of W with each f~1(K;) contractible
in M. Hence if catx M = m, then M can be covered by m - k open sets, each

contractible in M.
O

In the next lemma we assume that a: K — M is an inclusion map. We can
do this by the following

Remark 1. Every map of a finite 1-complex into an n-manifold, n > 3, is
homotopic to an embedding.

This follows since such a map can be approximated by an embedding ([2],
Corollary 26.3A).

Lemma 2. Let K be a cell-complex of dimension < n embedded in M and let
p: M — M bea covering map. If W C M is K -contractible then W= p L (W)
is p~1(K)-contractible in M.

In particular, if dim(K) <1 and M s simply connected, then W is contractible
m M.

Proof. There is a map f : W — K C M and a homotopy h; : W — M such
that hg is the inclusion and hi = f Define ho W — M to be the inclusion.
By the homotopy lifting theorem hg extends to a homotopy hy : W — M such
that fu (W) € p~L(F()) C p~1(K). ]
If dim(K) < 1 and M is simply connected then p~!(K) is contractible in M

and therefore Ay is homotopic to the constant map.
O

We now consider K = St.

Proposition 1. Suppose M is a closed n-manifold for n > 3 with catgi M = 2.
Then w1 (M) is trivial or infinite.

Proof. Suppose 71 (M) is finite and non-trivial. For the universal cover M of
M, a cover {Wy, W} of M by S'-contractible subsets lifts to a cover (W, Wg}
of M by (in M) contractible subsets (Lemma 2). Hence cat M = 2 and M is

a (homotopy) n-sphere ([4]). By a theorem of Krasnosel’skii’ ([8]) this implies
that cat M = n+1. By Lemma 1, catgi M > <M — "H > 2, a contradiction.

cat ST T
0
3 The orientable case

The next proposition asserts that instead of open sets we can choose compact
submanifolds intersecting only along their boundary.



Proposition 2. Let M be an n-manifold with catgs M = 2. Then M can be
expressed as a union of two compact S'-contractible n-submanifolds Wy, Wi
such that Wo N W, = 0Wy N OW1 is a properly embedded (n — 1)-submanifold
F. Hence for i = 0,1, there are maps f; and «; such that the diagram (x) is
homotopy commutative. Furthermore for n > 2, we may assume that a; is an
embedding and 041-(5’1) does not intersect Wo N Wj.

This follows from Corollary 1 and Proposition 1 of [6]; the hypothesis that
M be closed is not used in the proofs. (The statement that we may assume
that a; is an embedding was used without justification in [6], but follows from
Remark 1).

For a decomposition as in proposition 2, we consider the graph G of (M, F').
The vertices correspond to the components W of W;, i = 0, 1; for a component
Fj, of Wy N W1 there is an edge joining the corresponging vertices. w1 (M) is
the fundamental group of G, the graph of cyclic groups of (M, F'). The vertex
groups are the cyclic groups G(W}) := im(m W/ — m; M), the edge groups are
the cyclic groups G(Fji) := im(m Fji — m1 M ). Note that the edge homomor-
phisms G(Fj;) — G(Wf ) are injective. If every component of F is separating
then the graph G is a tree. Since W; can be deformed into a circle contained in
M — F (i =0,1) we can show ([6] Lemma 9) that there is a sub-graph G¢ of
G homeomorphic to a point or a segment such that the fundamental group of
the restriction of G to G is all of w1 (M). Furthermore at most two of the edge
monomorphisms corresponding to edges of G are not epimorphisms. From
this we obtain the following Proposition below (Theorem 2 of [6]). Again the
hypothesis that M be closed is not used in the proofs.

For a path-connected subspace Y of M we let G(Y) := im(mY — m M)

Proposition 3. Suppose M = Wy N Wy is as in proposition 2. Assume that
n > 2 and every component of F' is separating.

(a) If ag(SY) is contained in Wy or a1(S') is contained in Wy then w1 (M) is
cyclic.

(b) If a;(SY) is contained in W; (i=0,1) and F' is a component of F separating
ao(S1) from a1 (SY) let X; be the component of M — F' containing a;(S').
Then G(Xl) = G(az(Sl)) and 1 (M) = G(_XO) *G(F/) G(Xl)

By abelianizing 71 (M) = G(Xo) *¢(r) G(X1) (and noting that G(X;) and
G(F") are cyclic) we obtain the “abelianized free product with amalgamation”
Hy (M) = G(Xo) Sole10 20 G(Xl)

This implies that G(Xg) = im(Hy (W) — H1(M)), G(X1) = im(H; (W) —
Hy(M)) and G(F') = im(H1(F) — H1(M)).
Lemma 3. Suppose M is a closed orientable n-manifold, n > 2, and M = WyU

W1 where Wy and Wy are compact K -contractible n-submanifolds with K a cell-
complex of dimension < n—1. If every component of FF = WoNW; = 0WyNoW,



separates then
(1) im(H1(Wo) — Hi(M)) = im(H1(F) — H1(M)) = im(H(W1) — Hi(M))
and

(2) H1(F)— Hi(M)), Hi(F) — Hy(W;) is onto (fori=0,1).

Proof. In the exact sequence
HO (W) o HP (M) — H*(M,W;) & B (W) " 5o ()

we have H™(W;) = 0 since W; is not closed and H,(M) = Z since M
is closed and orientable. By excision and Poincaré duality, H™(M,W;) =
H"(Wh—;,0Wh—;) = Ho(Wh—;) = Z¥~*, where w; is the number of compo-
nents of W;. Now i}_; = 0 because it factors through H"~!(K) = 0. Hence §

is surjective and H" (W) = Z~i-1~1.

Since every component of F' separates, the graph of (M, F) is a tree and
therefore wy + w; — v = 1, where v is the number of components of F'.

Hence by Poincaré duality Hy(W;, F) & H"=Y(W;) = ZV~¥i.

From the homology sequence of (W;, F) we have Z7~% = ker(Hy(F) —
Ho(W;)) = im(j. : Hi(W;, F) — Ho(F)). Hence j, is injective and Hy(F) —
Hy(W;) is surjective. From this (1) follows.

In the Mayer Vietoris sequence
Kx [
H(Wy) ® HH(W7) = H1(M) = Hy(F) LA Hy(Wy) ® Hy(W1) - Ho(M) = Z,
[0 must be injective since wyp + w1 =y + 1. Hence 6, = 0 and . is onto, hence
(1) implies that Hy(W;) — Hi(M) is onto (for ¢ = 0,1) and (2) follows.
O

Corollary 1. If M is a closed orientable n-manifold for n > 3 and with
catgr M = 2 then w(M) is trivial or infinite cyclic.

Proof. Write M as a union of two S!-contractible submanifolds as in Proposition
2. Since a component F’ of WyNW; is S'-contractible, the inclusion induced ho-
momorphism factors as H,_1(F';Z2) — Hp—1(SY;Za) — H,—1(M"™;Zs), and
since H,,_1(S';Zy) = 0, F’ is separating. From Proposition 3, w1 (M) is cyclic
or m (M) = G(Xo) *gr) G(X1) where the images of G(Xo) and G(X;) in
Hy(M) are the images of Hy(Wy) and Hy(W7) in Hi(M). By lemma 3 they
coincide; hence G(Xy) = G(X1) = G(F’) and 71 (M) is again cyclic. Now the
result follows from Proposition 1.

O



4 The non-orientable case

Lemma 2. Suppose M is a closed non-orientable n-manifold, n > 2, and M =
WoUW; where Wy and Wi are compact K -contractible n-submanifolds with K a
cell-complex of dimension < n—1. If every component of F' = WyNW; = dWyN
OW; separates, then coker(H(F) — Hy(M)) and coker(Hy(W;) — Hy(M) are
groups of odd order (for i =0, 1).

Proof. The proof is similar to that of Lemma 3, taking Z coefficients. O

Corollary 2. If M is a closed non-orientable n-manifold for n > 3 and with
catg: M = 2 then w(M) is infinite cyclic.

Proof. As in the proof of Corollary 1 we obtain M as a union of two S'-
contractible submanifolds as in Propositions 2 and 3. Then (M) is cyclic
or m (M) = G(Xo) *gr G(X1) where the images of G(Xo) and G(X;) in
Hy(M) are the images of Hy(Wy) and Hy(W1) in Hy(M). By lemma 3 the
index of G(X;) in Hi(M) = G(Xo) ®g(p)G(X1) is odd. This index is the same
as the index of G(F”) in G(X;).

Now let p : M — M be the orientable two-fold covering. Since im (H (o (S"))
— Hy{(M)) = im(H,(W;) — Hy(M)) has odd order, «; is an orientation re-
versing loop and S := p~!(a(S!)) is homeomoprhpic to S'. By Lemma 2,
M = Wy U Wy, where W; = p~'W; is S-contractible. Hence catg: (M) =2 and
it follows from Corollary 1 that mm; (M) is 1 or Z. If 7 (M) = 1 then 7y (M) = Zo
which is impossible by Proposition 1.

Hence 71 (M) = 7Z, a subgroup of index 2 of m (M) = G(Xo) *qry G(X1),
with [G(Xp) : G(F)] and [G(X1) : G(F)] odd. The only noncyclic extensions
of Z by Zs are Z x Zo and the infinite dihedral group Zs * Zo (see e.g. Lemma
1.2 of [7]) and it is easy to see that these two groups are not a free product with
amalgamation A ¢ B of cyclic groups with [A : C] and [B : C] odd. Hence
1 (M) =7.

O
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