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Abstract. Let K be a number field with positive unit rank, and let OK

denote the ring of integers of K. A generalization of Artin’s primitive root
conjecture is that that O×

K is a primitive root set for infinitely many prime
ideals. We prove this with additional conjugacy conditions in the case when
K is Galois with unit rank greater than three. This was previously known
under the assumption of the Generalized Riemann Hypothesis. From our
result, we deduce a topological corollary about the structure of quotients
of PSL2(OK).

1. Introduction

It is a classical result that the modular group, PSL2(Z), does not have
the congruence subgroup property (CSP). That is, that there are finite index
subgroups which do not contain the kernel of the entrywise modulo n map for
any integer n ∈ N. Petersson proved that, although there are infinitely many
subgroups of the modular group whose quotient by H has only one cusp, only
finitely many of these are congruence subgroups. He showed that the index
of these groups are exactly the factors of 55440 = 24 · 32 · 5 · 7 · 11, a divisor
of the order of the monster group. This theorem is a consequence of the
fact, famously noticed by Galois, that PSL2(Fp) has an index p subgroup only
for p ≤ 11. There appears to be a connection between this and moonshine.
Moreover, the groups commensurable with the modular group that appear
in moonshine have a cusp transitivity condition which suggests a connection
with the one cusped congruence subgroups (see [3]). Petersson’s result has
been generalized to the Bianchi groups (see [12]) which also fail to have the
CSP. In contrast, for number fields K with positive unit rank, such that

√
−1 6∈

K, there are infinitely many maximal (necessarily congruence) subgroups of
PSL2(OK) whose quotient has a minimal number of cusps. (See section 2 for
details.) This result is conditional, under the assumption of a form of Artin’s
primitive root conjecture (to be specified below). In this paper we prove this
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primitive root conjecture for Galois K with unit rank greater than 3, which
was previously known only under the assumption of the generalized Riemann
hypothesis (GRH) (see [11]).

We now describe the primitive root conjectures. An integer s is called a
primitive root modulo the prime p if s has order p − 1 modulo p. To be
primitive modulo p > 2 it is necessary that s is not a square or -1. Artin
conjectured a specific density for the set of primes for which s is a primitive
root. This density is positive if s is not a square or -1. We will refer to
the conjecture that given an integer s other than -1 or a square there are
infinitely many primes p for which s is a primitive root as Artin’s primitive
root conjecture. In 1967 this was proved conditionally, under the assumption
of the GRH by Hooley [6]. There are many unconditional results related to
Artin’s primitive root conjecture (See [9] for a good exposition.) but at present
there are no integers for which the conjecture is known to be true.

This classical primitive root conjecture has been generalized to number fields
as follows. Let K be a number field with ring of integers OK . Let π be a prime
ideal in OK and ϕπ be the reduction modulo π map from OK to OK/π. Given
a multiplicative set S in OK , ϕπ(S) is contained in (OK/π)×. We say that
S is a primitive root set modulo π if ϕπ(S) = (OK/π)×. If S is generated by
an element s, we say that s is a primitive root modulo π. One generalization
of the classical conjecture is that if K has positive unit rank, then O×K is a
primitive root set for infinitely many prime ideals. One can add congruence
conditions to the above to get the following conjecture. We will use ζq to
denote a primitive qth root of unity.

Conjecture 1.1. Let K be a number field with positive unit rank. Then O×K is
a primitive root set for infinitely many prime ideals. Moreover, given integers
1 ≤ a < q with (a, q) = 1, if Q(ζq) ∩ K = Q then there are infinitely many
prime ideals π such that |NK/Q(π)| ≡ a (mod q) and O×K is a primitive root
set modulo π.

Extending Hooley’s conditional proof, this was proven under the assumption
of the GRH by Weinberger in 1973 [15]. We provide an unconditional proof
of Conjecture 1.1, in the case where K is Galois with unit rank greater than
three. Specifically, we show the following.

Theorem 1.2. Let K/Q be finite Galois of unit rank greater than three. Let a
and q be integers such that 1 ≤ a < q and (a, q) = 1. Assume that Q(ζq)∩K =
Q. Then there are infinitely many degree one prime ideals π in OK such that
|NK/Q(π)| ≡ a (mod q) and O×K is a primitive root set modulo π.

In Section 2 we describe a topological application of Theorem 1.2, in Section
3 we discuss some preliminaries needed for the proof, in Section 4 we prove
Theorem 1.2, and in Section 5 we make some concluding remarks.
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2. A Topological Application

Let K be a number field with r1 real places, and r2 complex places, and let
OK denote the ring of integers of K. Then group PSL2(OK) embeds discretely
in PSL2(R)r1 × PSL2(C)r2 via the map

±
(

α β
γ δ

)
7→

∏
σ

±
(

σ(α) σ(β)
σ(γ) σ(δ)

)
where the product is taken over all infinite places σ of K. The product
PSL2(R)r1 × PSL2(C)r2 is isomorphic to the orientation preserving isometries
of Hr1,r2 = [H2]r1 × [H3]r2 where H2 is the hyperbolic plane, and H3 is hy-
perbolic 3-space. This follows from the fact that Isom+(H2) ∼= PSL2(R) and
Isom+(H3) ∼= PSL2(C). The quotient MK = Hr1,r2/PSL2(OK) is a finite vol-
ume (2r1 + 3r2)-dimensional orbifold equipped with a metric inherited from
Hr1,r2 . This orbifold has hK cusps where hK is the class number of K. If Γ
is a finite index subgroup of PSL2(OK) the quotient MΓ = Hr1,r2/Γ is a finite
volume (2r1 + 3r2)-dimensional orbifold with finitely many cusps. If MΓ has
n cusps, we say that Γ is n-cusped. Any such Γ has at least hK cusps and MΓ

covers MK .
The groups PSL2(OK) and the quotients MK exhibit vastly different be-

havior depending on whether or not the unit rank of K is positive. Only
when K = Q or an imaginary quadratic field is the unit rank zero, and these
quotients are the prototypes for non-compact arithmetic hyperbolic 2- and
3-orbifolds, as all such orbifolds are commensurable to one of these. (Two
orbifolds are commensurable if they share a finite sheeted cover.) A princi-
pal congruence subgroup of PSL2(OK) is the kernel of the entry-wise modulo
J map for some non-zero ideal J in OK and is denoted Γ(J). A finite in-
dex subgroup of PSL2(OK) is a congruence subgroup if it contains a principal
congruence subgroup, and PSL2(OK) is said to have the congruence subgroup
property (CSP) if all finite index subgroups are congruence subgroups. Only
when the unit rank of K is zero does PSL2(OK) fail to have the CSP.

In 1971 Petersson [13] proved that in the case of the modular group, PSL2(Z),
there are only finitely many one-cusped congruence subgroups, although there
are infinitely many maximal one-cusped subgroups. The Bianchi groups are
the groups PSL2(Od) where Od is the ring of integers of the imaginary qua-
dratic Q(

√
−d). The quotients MQ(

√
−d) are hyperbolic 3-orbifolds. The class

number of Od is one precisely when d = 1, 2, 3, 7, 11, 19, 43, 67, or 163, so
only for these values of d can PSL2(Od) have one-cusped subgroups. Of these,
if d 6= 1 or 3 there are infinitely many maximal one-cusped subgroups, and
for d = 1 and 3 there are infinitely many one-cusped subgroups. However, for
d = 11, 19, 43, 67, or 163 there are only finitely many one-cusped congruence
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subgroups, and for d = 1, 2, 3, and 7, there are only finitely many maximal
one-cusped subgroups (see [12]).

If OK has positive unit rank, the situation is quite different. Let π be a
prime ideal in OK with odd norm |NK/Q(π)| = q, let ϕπ : OK → OK/π denote
the reduction modulo π map, and Φπ : PSL2(OK) → PSL2(Fq) be the induced
map with the identification OK/π ∼= Fq. Since ϕπ maps O×K into (OK/π)× we
will also use ϕπ to denote this restriction and let l = [(OK/π)× : ϕπ(O×K)]. If
q is odd, there is a subgroup of PSL2(Fq) isomorphic to the dihedral group
with q + 1 elements. Let Γπ < PSL2(OK) be the ϕπ pull-back of this group.
For π large enough, the principal congruence subgroup Γ(π) has hK l(q + 1)
cusps where hK is the class number of K. From this, one can show that Γπ

has hK l cusps if q ≡ 3 (mod 4). (See [11] for details.) Therefore, PSL2(OK)
contains infinitely many maximal hK-cusped (congruence) subgroups if there
are infinitely many prime ideals π in OK such that |NK/Q(π)| ≡ 3 (mod 4)

and ϕπ(O×K) = (OK/π)×. If
√
−1 /∈ K, a conditional proof of this under the

assumption of the GRH, is a corollary of Weinberger’s result [15]. Theorem
1.2 immediately implies the following corollary.

Corollary 2.1. Let K be Galois with unit rank greater than three, and such
that

√
−1 /∈ K. There are infinitely many maximal hK-cusped subgroups of

PSL2(OK), where hK is the class number of K.

3. Preliminaries

In this section we collect various results that we will use in the proof of
Theorem 1.2. Let K/Q be a finite Galois extension with Galois group G =
Gal(K/Q) and let C be a conjugacy class in G. Let a and q be positive integers
with 1 ≤ a < q and (a, q) = 1. We denote by πC(x, q, a) the number of primes
p ≤ x which are unramified in K such that p ≡ a (mod q) and such that the
Artin symbol (p, K/Q) = C.

Classically, in the case where K = Q, Dirichlet density theorems state that

π(x, q, a) ∼ π(x)

φ(q)

where π(x, q, a) denotes the number of primes ≤ x with the required con-
gruence condition, π(x) denotes the number of primes ≤ x, and φ is Euler’s
function. Estimates of the error term, π(x, q, a)−π(x)/φ(q) have proven to be
very important in many applications. The Riemann Hypothesis for Dirichlet
L-functions implies that it is O

(
x1/2 log qx

)
. Bombieri [1] and Vinogradov [14]

have proven that this estimate holds on the average.. That is, for any A > 0
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there is a B > 0 depending on A so that∑
q≤Q

max
y≤x

max
(a,q)=1

∣∣∣∣π(y, q, a)− π(y)

φ(q)

∣∣∣∣ � y

(log x)A

where Q = x1/2(log x)−B. (The notation f � g means that |f/g| is bounded.)
In general, the Chebotarev density theorem states that

πC(x, q, a) ∼ δ(C, q, a)φ(q)

for some density δ(C, q, a) ≥ 0. In fact, if K∩Q(ζq) = Q where ζq is a primitive
qth root of unity, then δ(C, q, a) = |C|/|G|φ(q). Murty and Murty [10] have
shown the following average formulation.

Proposition 3.1. Let L/Q be a finite Galois extension with Galois group
G = Gal(L/Q). Let C be a conjugacy class in G and let a and q be positive
integers with 1 ≤ a < q, (a, q) = 1. There exist numbers δ(C, q, a) ≥ 0 such
that for any ε > 0 and A > 0, we have∑

q≤Q

max
(a,q)=1

max
y≤x

|πC(y, q, a)− δ(C, q, a)π(y)| � x

(log x)A

with Q = x1/η−ε where η ≥ max(|G|/2, 2) and the summation is over q such
that L ∩Q(ζq) = Q.

If A is an abelian subgroup of G with A ∩C 6= ∅, and d = [G : A]. We can
improve the above by taking

η =

{
d− 2 if d ≥ 4
2 if d ≤ 4.

Moreover, we may replace d above by d∗ where d∗ = min
H

max
ω

[G : H]ω(1)

where the minimum is taken over all subgroups H satisfying the following two
conditions

• H ∩ C 6= ∅
• For every irreducible character ω of H and any non-trivial Dirichlet

character χ, then Artin L-series L(s, ω ⊗ χ) is entire.

The maximum above is over all irreducible characters of H. In particular,
if Artin’s holomorphy conjecture is true for L/Q then we may take d∗ =
maxχχ(1) where the maximum is over all irreducible characters of G.

If πq(x) denotes the number of primes p ≤ x which split completely in
Q(ζq, q

√
s), an estimate of the form∑

q≤Q

∣∣∣∣πq(x)− π(x)

q(q − 1)

∣∣∣∣ � x

(log x)2
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with Q about x1/2 is sufficient to imply Artin’s primitive root conjecture for
s (see [8]). At present, such a result seems to be beyond the reach of modern
technology.

We will also need the following, whose proof is analogous to that of Lemma
2 in [4].

Proposition 3.2. Let K be an algebraic number field. Let M be a monoid in
OK and π be coprime to the elements of M . If M contains r multiplicatively
independent elements, then

#{π : |ϕπ(M)| ≤ Y } � Y (r+1)/r.

The proof is essentially combinatorial in nature. If {b1, . . . , br} is an inde-
pendent set of generators for M , and if |ϕπ(M)| ≤ Y then for |NK/Q(π)| large
enough, there are r-tuples ba1

1 . . . bar
r ≡ bα1

1 . . . bαr
r (mod π). Hence NK/Q(π)

divides the numerator of ba1−α1
1 . . . bar−αr

r − 1. The fact that |ϕπ(M)| ≤ Y
bounds |a1|+ · · ·+ |ar|. Together with the divisibility condition this results in
the required bound.

We also require an application of the lower bound sieve. The conditions we
need are a slight modification of those in [2]. The proof relies upon the linear
sieve in the form given by Iwaniec [7], and the estimates from the Bombieri-
Vinogradov theorem, as extended by Murty and Murty [10].

Proposition 3.3. Let K/Q be a finite Galois extension, such that Q(ζq)∩K =
Q and let tK = maxm{m : K ⊇ Q(ζm)}. Denote by L the Galois extension
K(ζq). For a such that (a, q) = 1, let C be a conjugacy class of the form (a, 1)
in Gal(L/Q). For η as in Proposition 3.1 the number of primes p ≤ x with
Artin symbol (p, L/Q) = C such that for all primes ` dividing (p − 1)/tK,
` > x1/2η−ε is � x/ log2 x.

4. Proof of Theorem 1.2

We form the compositum, L, of Q(ζq) and K, which is Galois over Q as both
K and Q(ζq) are Galois. Let G = Gal(L/Q) and H = Gal(K/Q). Notice that
G ∼= Z/φ(q)Z×H. Let C ∈ G be the conjugacy class (a, 1). For η and ε as in
Proposition 3.1, let S be the set of all primes p ≤ x such that (p, L/Q) ∈ C
and such that for all primes ` which divide (p− 1)/tK , ` > x1/2η−ε. The value
η is given in Proposition 3.1 for the number field L. Proposition 3.3 implies
that #S � x/ log2 x. Notice that the condition that (p, L/Q) = C insures
that all prime ideals π in K lying over p are degree one and have the required
congruence condition.

For p in S, tK divides |ϕπ(O×K)| as the roots of unity in O×K inject into
OK/π for p = NK/Q(π) large enough. Therefore, if ` divides (p− 1)/|ϕπ(O×K)|
then ` divides (p − 1)/tK and is greater than x1/2η−ε. As a result, the index
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(p− 1)/|ϕπ(O×K)| is either one or greater than x1/2η−ε. If the index is not one
then |ϕπ(O×K)| < x1−1/2η+ε.

By Proposition 3.2 #{π : |O×K/π| ≤ x1−1/2η+ε} � x(1−1/2η+ε)(r+1)/r where r
is the rank of O×K . It suffices to show that

O(x(1−1/2η+ε)(r+1)/r) = o

(
x

log2 x

)
.

This occurs when 2η < r + 1.
Recall from Proposition 3.1 that if A is an abelian subgroup of G such that

A ∩ C 6= ∅, setting d = [G : A]

η =

{
d− 2 if d ≥ 4
2 if d ≤ 4.

Taking A isomorphic to Z/φ(q)Z × B where B is an abelian subgroup of H,
d = [H : B]. Notice that A ∩ C 6= ∅. If d ≤ 4, then the inequality is satisfied
when r > 3. If d ≥ 4 then the inequality is 2|H| < |B|(r + 5). Let r1 be
the number of real places of K and r2 be the number of complex places of K.
Then r = r1 + r2− 1 and |H| = r1 +2r2. With this substitution the inequality
becomes 0 < (|B| − 2)r1 + (|B| − 4)r2 + 4|B|. This is satisfied if there is an
abelian subgroup B of H with |B| ≥ 4, which is the case unless |H| divides 6.
If |H| ≤ 3 then r ≤ 3. If |H| = 6 we let |B| = 2 and satisfy the inequality if
r > 3.

The following two corollaries follow immediately.

Corollary 4.1. Let K/Q be finite Galois of unit rank greater than three. Then
there are infinitely many degree one prime ideals π in OK such that O×K is a
primitive root set modulo π.

Corollary 4.2. Let K/Q be finite Galois of unit rank greater than three such
that i 6∈ K. Fix a = ±1. Then there are infinitely many degree one prime
ideals π in OK such that |NK/Q(π)| ≡ a (mod 4) and O×K is a primitive root
set modulo π.

5. Concluding Remarks

There are two possible avenues for further research. The first is the problem
when the unit rank is 1, 2 or 3. This problem may be approached by refining
the techniques of [5], but this refinement will not be straightforward. These
techniques may allow us to treat the case of rank 3. The second problem to
address is the case when K is not Galois. To treat this case, one would have
to extend the results of [10] to the non-Galois situation. This can be done, in



8 M.R. MURTY AND K.L. PETERSEN

principle, though again there are several technical difficulties that need to be
addressed. We hope to investigate both of these problems in future work.
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