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§0. Introduction. Let k ≥ 3, and let α = (α0, . . . , αk), β = (β0, . . . , βk) be (k + 1)-tuples of complex
numbers. We consider a k-step linear fractional recurrence

xn+k+1 =
α0 + α1xn+1 + · · · + αkxn+k

β0 + β1xn+1 + · · · + βkxn+k
(0.1)

Given a k-tuple (x1, . . . , xk), the relation (0.1) generates a sequence {xj , j ≥ 1} as long as the denominator
does not vanish. The question has been raised (see [GL] and [CL]) to find the α and β for which (0.1)
is periodic. By “periodic” we mean that the sequence {xj , j ≥ 0} is periodic for every starting point
(x1, . . . , xk). There are a number of works in the literature that have considered this question under the
hypothesis that all numbers are positive. Here we consider it natural to examine this question over the field
of complex numbers.

The case k = 2 was considered in [BK1] for general α and β, and it was shown that the only possible
nontrivial periods are 6, 5, 8, 12, 18, and 30. (Here, “nontrivial” means that the map cannot be reduced
to a simpler map, e.g. linear or 1-dimensional.) McMullen [M] observed that these periods are the orders of
certain Coxeter groups and showed that these maps represent the corresponding Coxeter elements. The case
of dimension 3 is determined in [BK2]: the only possible nontrivial periods are 8 and 12. The 3-step, period
8 maps had been found previously; there are two essentially different maps, one is in [L], and the other is in
[CsLa]. Here we show that the period 12 corresponds to a phenomenon that holds for k-step recurrences for
all k:

Theorem 0.1. For each k, there are k different recurrences of the form (0.1) with α, β as in (5.3), which
have period 4k.

Our approach is similar to that of [BK1,2]: we consider (0.1) in terms of the associated birational map

fα,β(x1, . . . , xk) =

(

x2, . . . , xk,
α0 + α1x1 + · · · + αkxk

β0 + β1x1 + · · · + βkxk

)

(0.2)

of k-dimensional space. We may consider fα,β as a birational map of complex projective space Pk, as well
as any space X which is birationally equivalent to Pk. For a rational map f of X , there are well-defined
pull-back maps f∗ on the cohomology groups Hp,q(X), as well as on the Picard group Pic(X). We may
define a notion of growth by

δ(f) := lim
n→∞

||(fn)∗||
1
n .

Here we work on Pic(X) (or H1,1), where δ(f) is equivalent to degree growth. To determine δ(f), we replace
Pk with a space X with the property that passage from f to f∗ is compatible with iteration. Specifically,
we “regularize” the map f in the sense that we replace Pk by an X such that (fn)∗ = (f∗)n holds on
Pic(X); so in this case we obtain δ(f) as the modulus of the largest eigenvalue of f∗. The way we find our
space X is to analyze the “singular” behavior of f , by which we mean the behavior that prevents fα,β from
being a diffeomorphism. Namely, there are hypersurfaces E with the property that either f(E) or f−1(E)
has codimension > 1. Such a hypersurface is called exceptional. The existence/nonexistence of exceptional
hypersurfaces depends on the choice of representative X for f , and the regularity of fX is determined by
the behavior of the orbits of exceptional hypersurfaces.

In §2 we show that for generic α and β we have δ(fα,β) = ∆k > 1. In particular, we conclude that a
generic fα,β is not periodic. In order to prove Theorem 0.1, we find a space X for which f∗

X is periodic,
and we use this to conclude that f is periodic. Although our map fX is not an automorphism, de Fernex
and Ein [dFE] have shown that since f is periodic there will exist a space Z so that the induced map fZ is
biholomorphic.
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Next we consider the mappings

h(x1, . . . , xk) =

(

x2, . . . , xk,
a + x2 + x3 + · · · + xk

x1

)

, (0.3)

which have been discussed in several places, often under the name of “Lyness map” because of its origin in
[L]. Except in two exceptional cases, these maps are not periodic, but they exhibit an integrability which
has been studied by several authors: ([KLR], [KL], [Z], [CGM1–3], [GBM], [HKY], [GKI]). Applying our
analysis to h we construct a rather different regularization and obtain:

Theorem 0.2. If k > 3, or if a 6= 1, the degree of hn is quadratic in n.

In dimension k = 2, there is a strong connection (see [DF] and [G]) between polynomial degree growth
and integrability. Namely, if g is a birational surface map, then linear degree growth corresponds to preserving
a rational fibration; and quadratic degree growth corresponds to preserving an elliptic fibration. In §6 we
discuss the structure of rational functions that are invariant under f which were found in [GKI].

§1. Birational maps. Let us recall a few notions from algebraic geometry that we will use. The reader
is referred to [B] for further details. A rational map of projective space Pk is given by a k + 1-tuple of
homogeneous polynomials f = [f0 : f1 : · · · : fk] of a common degree d = deg(f0) = · · · = deg(fk). We refer
to d as the degree of f . Without loss of generality we assume that the fj’s have no common factor, so the
degree is well defined. The indeterminacy locus is I(f) = {x : f0(x) = · · · = fk(x) = 0}. Since the fj’s
have no common factor, I(f) always has codimension at least 2. The map f is holomorphic at all points
of Pk − I(f) but cannot be extended to be continuous at any point of I. If V is a variety for which no
irreducible component is contained in I then the strict transform f(V ) is defined as the closure of f(V −I).
The strict transform is again a variety. We say that a map f is dominant if its image contains an open set.
Given two rational maps f and g, there is a rational map f ◦ g, and f ◦ g is equal to f(g(x)) for all x /∈ I(g)
such that g(x) /∈ I(f). The map f is said to be birational if there is a rational map g such that f ◦ g and
g ◦ f are both the identity.

If f is a rational map, we say that a subvariety E is exceptional if E /∈ I, and the dimension of f(E) is
strictly less than the dimension of E. We let E denote the set of exceptional hypersurfaces of f . We will say
that f is a pseudo-automorphism if there is no exceptional hypersurface.

We will define manifolds by the procedure of blowing up. If p ∈ X is a point, then the blowup of X at
p is given by a new manifold Y with a holomorphic projection π : Y → X such that π : Y − π−1p → X − p
is biholomorphic, and π−1p is equivalent to Pk−1. Similarly, if S is a smooth submanifold of X , we may
define a blowup of X along the center S. Given a blowup π : Y → X , the preimage π−1S of S under π will
be called the exceptional blowup fiber. If f : X 99K X is a rational map, then there is an induced rational
map fY := π−1 ◦ fX ◦ π on Y .

We refer to a variety of pure codimension 1 as a hypersurface. We say that two hypersurfaces S1 and S2

are linearly equivalent if there is a rational function r such that the divisor of {r = 0} is S1 −S2. By Pic(X)
we denote the set of all divisors modulo linear equivalence. The spaces X that we will deal with all arise
from Pk by blowups, so that in fact Pic(X) is isomorphic to the Dolbeault cohomology group H1,1(X). If
π : Y → X is a blowup along a smooth center S, and if S denotes the exceptional blowup fiber over S, then
Pic(Y ) is generated by Pic(X), together with the class of S.

Suppose that f : X 99K X is a rational map. Given a hypersurface S = {p = 0} we define the pullback
f∗S as the closure of {p(f) = 0} − I(f). This gives a well defined linear map f∗ of Pic(X). We say that f
is 1-regular if (fn)∗ = (f∗)n holds on Pic(X). The (first) dynamical degree of fX is defined by the growth
of the iterates on Pic(X):

δ(fX) := lim
n→∞

||(fn
X)∗|Pic(X)||

1
n

This is independent of the choice of norm || · ||. And since π : X → Pk is holomorphic, we have (fX)n =
(π−1 ◦ f ◦ π)n = π−1 ◦ fn ◦ π = (fn)X , so δ(f) = δ(fX).

§2. Linear Fractional Recurrences We may interpret equation (0.2) as a rational map f : Pk
99K Pk

by writing it in homogeneous coordinates as
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f [x0 : · · · : xk] = [x0β · x : x2β · x : . . . : xkβ · x : x0α · x] (2.1)

where α · x = α0x0 + α1x1 + · · ·αkxk. Let us set B = (−α1, 0, . . . , 0, β1), α′ = (α0, α2, . . . , αk, 0) and
β′ = (β0, β2, . . . , βk, 0). The inverse of f is given by the map

f−1[x0 : · · · : xk] = [x0B · x : x0α
′ · x − xkβ′ · x : x1B · x : · · · : xk−1B · x] (2.2)

We assume that
(β1, β2, . . . , βk) 6= (0, 0, . . . , 0),

α is not a multiple of β, and

(αi, βi) 6= (0, 0) for i = 1 and some 1 < i ≤ k.

(2.3)

If (α1, β1) = (0, 0) then f does not depend on x1 and thus f can be realized as a k − 1 step recurrence
relation. If (αi, βi) = (0, 0) for all i = 2, . . . , k then fk is an essentially 1-dimensional mapping.

Let us set γ = β1α − α1β and C = β1α
′ − α1β

′. For 0 ≤ i ≤ k we use notation Σi = {xi = 0} and
ei = [0 : · · · : 0 : 1 : 0 : · · · : 0], the point whose i-th coordinate is nonzero and everything else is zero. We
also use Σβ = {β · x = 0}, Σγ = {γ · x = 0}, ΣB = {B · x = 0}, and ΣC = {C · x = 0}. To indicate the
intersection we combine their subscripts, for example Σ0β = {x0 = β · x = 0} and Σ01 = {x0 = x1 = 0}.
The Jacobian of f is a constant multiple of x0(β ·x)k−1(γ ·x). The Jacobian vanishes on three hypersurfaces
Σ0, Σβ , Σγ ; these hypersurfaces are exceptional and are mapped to the lower dimensional linear subspaces:

f(Σ0) = Σ0B = Σ0k, f(Σβ) = ek, f(Σγ) = ΣBC .

The Jacobian of f−1 is a constant multiple of x0(B · x)k−1(C · x) and we have

f−1 : Σ0 7→ Σ0β , ΣB 7→ e1, and ΣC 7→ Σβγ .

The indeterminacy locus of f is I+ = {e1, Σ0β , Σβγ} and f−1 is I+ = {ek, Σ0B , ΣBC}.

Let us consider the maps which satisfy (2.3) and the following:

β1 6= 0 and β1αj − α1βj 6= 0 for all j = 2, . . . , k (2.4)

For every choice of parameters α, β satisfying (2.3–4), we have

f : Σ0 7→ Σ0k 7→ Σ0 k−1 k 7→ · · · 7→ Σ0 3 ... k 7→ e1  ΣB (2.5)

We first modify the orbit of Σ0. Let π : Y → Pk be the complex manifold obtained by blowing up e1

and then Σ0 3 ... k and continuing successively until we reach Σ0 k. That is, we let Σ3 ... k denote its strict
transform in the space obtained by blowing up e1, and then we blow up along the center Σ3 ... k, etc. We let
E1 = π−1e1 denote the exceptional fiber over e1, and let S0,j denote the exceptional fiber over Σ0 j ... k for
all j ≥ 3. Let us set α(j) = (0, α1, . . . , αj, 0, . . . , 0), and β(j) = (0, β1, . . . , βj , 0, . . . , 0). For 3 ≤ j ≤ k we use
local coordinates near S0 j

πsj : (s, x2, . . . , xj−1, ξj , . . . , ξk)sj
7→ [s : 1 : x2 : · · · : xj−1 : sξj : · · · : sξk] ∈ Pk

and for the neighborhood of the exceptional divisor E1 we use

πe1
: (s, ξ2, . . . , ξk)e1

7→ [s : 1 : sξ2 : · · · : ξk] ∈ Pk.

Working with the induced birational map fY := π−1 ◦ f ◦ π we have

fY : Σ0 ∋ [0 : x1 : x2 : · · · , xk] 7→

(

0, x2, . . . , xk,
α(k) · x

β(k) · x

)

sk

∈ S0 k

Similarly we have for all j = 2, . . . , k − 1

fY : S0,j+1 ∋ (0, x2, . . . , xj , ξj+1 . . . , ξk)sj+1
7→

(

0, x3/x2, . . . , xj/x2, ξj+1, . . . , ξk,
α(k) · x

β(k) · x

)

sj

∈ S0 j

For the points of E1, we have

fY : E1 ∋ (0, ξ2, . . . , ξk) 7→ [β1 : β1ξ2 : · · · : β1ξk : α1] ∈ ΣB.

By condition (2.4), we see that α(j) is not a constant multiple of β(j) for all 2 ≤ j ≤ k. It follows that
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Lemma 2.1. The map fY is a local diffeomorphism at generic points of Σ0, E1, and S0,j+1 for 2 ≤ j ≤ k−1.

Since the induced map fY is a local diffeomorphism at points of Σ0 ∪ E1 ∪
⋃k

j=3 S0,j , Σ0 and all the
exceptional (blowup) divisors E1 and S0,j for j = 3, . . . , k are not exceptional for fY . Thus the exceptional
set for fY consists of two divisors: E+

Y = {Σβ , Σγ}. The indeterminacy locus for fY is I+
Y = {Σ0β, Σβγ}. For

the inverse map f−1
Y we have E−

Y = {Σ0, ΣC} and I−

Y = {{ek}, ΣBC}.
Let us consider the ordered basis of Pic(Y ) : H , E1, S0,3, . . . , S0,k. Using the discussion above, we have

Lemma 2.2. With the given ordered basis the action of f∗

Y on Pic(Y ) is given by

f∗

Y : E1 7→ S0,3 7→ · · · 7→ S0,k

S0,k 7→ {Σ0} = H − E1 − S0,3 − · · · − S0,k

H 7→ 2H − E1.

Under the same ordered basis the action of f−1
Y is:

f−1
Y

∗

: S0,k 7→ S0,k−1 7→ · · · 7→ S0,3 7→ E1

E1 7→ {ΣB} = H − E1 − S0,3 − · · · − S0,k

H 7→ 2H − E1 − S0,3 − · · · − S0,k.

Now let us consider the following condition on exceptional hypersurfaces

fn
Y E 6⊂ Σβγ ∪ Σ0β for all n ≥ 0 E = Σβ, Σγ

f−n
Y E 6⊂ ΣBC ∪ {ek} for all n ≥ 0 E = Σ0, ΣC

(2.6)

When (2.6) holds, fY is regular in the sense that (f∗

Y )n = (fn
Y )∗ holds on Pic(Y ), and similarly for f−1

Y .
Thus the dynamical degree δ(f) is the spectral radius of f∗

Y acting on Pic(Y ).

Theorem 2.3. For generic parameters, the dynamical degrees satisfy the properties:
(i) δ(f) = ∆+

k is the largest root of xk − (xk − 1)/(x − 1),
(ii) δ(f−1) = ∆−

k is the largest root of xk − xk−1 + (−1)k−1.
Furthermore we have

lim
k→∞

∆+
k = 2, and lim

k→∞

∆−

k = 1.

Proof. It is clear that for a generic map f , the critical triangle is nondegenerate. Next we claim that (2.6)
holds for a generic map. Since (2.6) defines the complement of countably many varieties inside C2k+2, it
suffices to show that there is one parameter value (α, β) for which (2.6) holds. For each k ≥ 3 let us consider
α = (0, 1, 0, . . . , 0) and β = (0, 1, . . . , 2 − k). In this case γ = (0, 0,−1, . . . , k − 2) and B = (1, 0, . . . , 0,−1)
and C = (0,−1, . . . ,−1, k − 2, 0). It follows that

fY Σγ = ΣB C ∋ [1 : 1 : · · · : 1] and fY [1 : . . . : 1] = [1 : . . . : 1]

We also have fk+1
Y : Σβ = [1 : 0 : · · · : 0 : 1] and

fY : [1 : 0 : · · · : 0 : 1] 7→ [1 : 0 : · · · : 0 : 1 : 0] 7→ · · · 7→ [1 : 1 : 0 : · · · : 0] 7→ [1 : 0 : · · · : 0 : 1]

Thus Σβ is pre-periodic and there exists a fixed point in Σγ \ Σβ . It follows that this mapping satisfies the
the first half of (2.6). The second part of condition (2.6) follows similarly.

The matrix representation of f∗

Y and f−1
Y

∗

is given by k × k matrices:

f∗

Y =















2 0 · · · 0 1
−1 0 −1

0 1
...

0
. . .

...
0 0 1 −1















, f−1
Y

∗

=















2 1 0
−1 −1 1 0
...

...
. . .

...
... 1

−1 −1 0 0 0















The dynamical degrees ∆+
k and ∆−

k are given by the spectral radius of the above matrix representations. Now
(2.6) implies that fY is regular, so the spectral radius of f∗

Y gives the dynamical degree. The polynomials in
statements (i) and (ii) are the characteristic polynomials of these matrices.
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Corollary 2.4. For every f of the form (0.2), we have δ(f) ≤ ∆+
k and δ(f−1) ≤ ∆−

k .

Proof. Thus we have δ(fα,β) = ∆+
k and δ(f−1

α,β) = ∆−

k for generic α and β. The general inequality follows
because the function (α, β) 7→ δ(fα,β) is lower semicontinuous.

§3. Non-Periodicity We call the set of exceptional hypersurfaces {Σ0, Σβ , Σγ} the critical triangle. When
these three hypersurfaces are distinct, we say the critical triangle is nondegenerate.

Lemma 3.1. If β1 6= 0 and β1αj − α1βj = 0 for all j 6= 0 then there is unique exceptional hypersurface.
If β1 = 0, then there are only two distinct exceptional hypersurfaces. Otherwise the critical triangle is
nondegenerate.

Proof. Using the condition (1.3) we see that Σ0 6= Σβ and ΣB 6= ΣC . It follows that f and f−1 has at least
two distinct exceptional hypersurfaces. If β1 = 0, we have γ = −α1β and B = (−α1, 0, . . . , 0). It follows
that Σβ = Σγ and Σ0 = ΣB. If β1 6= 0 and β1αj − α1βj = 0 for all j 6= 0, then γ = C = β1(α0, 0, . . . , 0) and
therefore Σ0 = Σγ = ΣC .

For j = 2, . . . , k let us consider the codimension k − j + 2 linear subspaces

Lj := Σ0β ∩

k
⋂

ℓ=j

{β1xk−ℓ+1 + β2xk−ℓ+2 + · · ·βjxk−ℓ+k = 0}.

Lemma 3.2. Let j∗ be the largest integer such that βj 6= 0. If j∗ > 1 then ek 6∈ Lj∗ and Σ0 is pre-fixed
under f−1:

f−(k−j∗+1)Σ0 = Lj∗ , f−1Lj∗ = Lj∗ .

In case j∗ = 1 we have
f−1 : Σ0 7→ Σ0 1 7→ Σ0 1 2 7→ · · · 7→ ek  Σβ.

Proof. In case j∗ > 1, since βj∗ 6= 0 it follows that ek 6∈ Lj∗ . The second part is the immediate consequence
of (1.5).To show that Lj∗ is fixed under f−1, first notice that Lj∗ has codimension 2+k− j∗. A generic point
p ∈ Lj∗ can be written in terms of xk−j∗+2, . . . , xk and xk−j∗+1 = −(β2xk−j∗+2 + · · · + βj∗xk). It follows
that the image of this point f−1p is [0 : y1 : · · · : yk] where yi = xi−1 for i ≥ 2 and there for codimension of
f−1Lj∗ is 2 + k − j∗. When j∗ = 1, Lj = Σ0 1 ··· k+1−j for j = 1, . . . , k.

If the mapping f is periodic with period p then f−1 is also periodic and for every hypersurface H in Pk

fpH = H and therefore the codimension of fpH has to be equal to 1. Thus we have

Corollary 3.3. If βj 6= 0 for some j ≥ 2, then f is not periodic.

§4. Critical Case We say f is critical if βj = 0 for all j > 1 and the critical triangle is non-degenerate.
Using (1.4) we may also set αk = 1, and by Lemma 2.1, we may assume that

α = (α0, 0, α2, . . . , αk−1, 1) and β = (β0, 1, 0, . . . , 0), α2 · · ·αk−1 6= 0. (4.1)

Let us consider the involution τ [x0 : x1 : · · · : xk] = [x0 : xk : · · · : x1] gotten by interchanging the variables
xj ↔ xk−j+1, 1 ≤ j ≤ k. We see that f is reversible in the sense that f−1 = τ ◦ f ◦ τ . If (4.1) holds, we have

γ = β1α − α1β = α, B = (0, . . . , 0, 1), and C = β1α
′ − α1β

′ = α′.

When the mapping is critical, we use the conjugacy by τ and apply Lemma 2.2 to f−1 to obtain:

fY : Σβ 7→ ek  Σ0 1 ... k−2  Σ0 1 ...,k−3  · · · Σ0 1 = Σ0β  Σ0 (4.2)

where ek, Σ0 1 ... k−2, . . . , Σ0 1 are the strict transforms in Y of the corresponding linear subspaces in Pk.
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Let us consider a complex manifold πX : X → Y obtained by a successive blowing up the sets ek,
Σ0 1 ... k−2, . . ., Σ0 1. We denote the exceptional divisors over ek, Σ0 1 ... k−2, . . ., Σ0 1 be Ek, P0,k−2, . . ., P0,1.
We will see that the induced maps on the blowup fibers are dominant:

fX : Σβ → Ek 7→ P0,k−2 7→ · · · 7→ P0,1 7→ Σ0 7→ S0,k 7→ · · · 7→ S0,3 7→ E1 7→ ΣB. (4.3)

To see the mapping is dominant, we also work with local coordinates. For near Ek

πek
: (s, ξ1, . . . , ξk−1)ek

7→ [s : sξ1 : · · · : sξk−1 : 1]

and for 1 ≤ j ≤ k − 2, we use the following local coordinates for the neighborhood of P0,j such that
{s = 0} = P0,j:

πpj : (s, ξ1, . . . , ξj , xj+1, . . . , xk−1)pj
7→ [s : sξ1 : · · · : sξj : xj+1 : · · · : xk−1 : 1]

Then the induced birational map fX acts on Σβ and each exceptional divisors as follows:

fX :Σβ ∋ [x0 : −β0x0 : x2 : · · · : xk] 7→ (0, x2/x0, . . . , xk/x0)ek
∈ Ek

Ek ∋ (0, ξ1, . . . , ξk)ek
7→ (0, ξ2, . . . , ξk−1, β0 + ξ1)pk−2

∈ P0,k−2

For all 2 ≤ j ≤ k − 2

fX : P0,j ∋ (0, ξ1, . . . , ξj , xj+1, . . . , xk−1)pj
7→ (0, ξ2, . . . , ξj ,

β · ξ xj−1

α · x
, . . . ,

β · ξ xk−1

α · x
)pj−1

∈ P0,j−1

where β · ξ = β0 + ξ1 and α · x = αj+1xj+1 + · · · + αk−1xk−1 + αk. And we also have

fX : P0,1 ∋ (0, ξ1, x2, . . . , xk−1)p1
7→ [0 : x2β · ξ : · · · : xk−1β · ξ : β · ξ : α2x2 + · · · + αk−1xk−1 + αk] ∈ Σ0

On the other hand the induced map f−1
X acts as followings:

f−1
X :Σ0 ∋ [0 : x1 : · · · : xk] 7→ (0, (α′ · x − β0xk)/xk, x1/xk−1, . . . , xk−2/xk−1)p1

∈ P0,1

Ek ∋ (0, ξ1, . . . , ξk−1)ek
7→ [1 : −β0 : ξ1 : · · · : ξk−1] ∈ Σβ

Hence fX is a local diffeomorphisms at points on Σβ ∪Ek ∪
⋃k−2

j=1 P0,j and f−1
X is a local diffeomorphisms at

points on Σ0 ∪ Ek ∪
⋃k−2

j=1 P0,j. It follows that

Lemma 4.1. In the critical case, the induced map fX has only one exceptional hypersurface Σγ ; Σβγ is the
only component of the indeterminacy locus I(fX) which blows up to a hypersurface.

Lemma 4.2. Suppose that f is critical. Then with the ordered basis of H1,1(X): H , E1, S0,3, . . ., S0,k,
P0,1, . . ., P0,k−2 Ek, the action on cohomology classes f∗

X on H1,1(X) is given by

f∗

X : E1 7→ S0,3 7→ · · · 7→ S0,k

S0,k 7→ {Σ0} = H − E1 − S0,3 − · · · − S0,k − P0,1 − · · · − P0,k−2 − Ek

P0,1 7→ P0,2 7→ · · · 7→ P0,k−2 7→ Ek

Ek 7→ {Σβ} = H − P0,1 − · · · − P0,k−2 − Ek

H 7→ 2H − E1 − P0,1 − · · · − P0,k−2 − Ek.

(4.4)

The action on cohomology f−1
X

∗

is similar. In fact, the matrix representation for f∗

X and f−1
X

∗

are the same up
to the order of basis. Furthermore the spectral radius is given by the largest root of x2k−1 − (xk −1)/(x−1).

Let us denote ∆c
k the largest root of the polynomial x2k−1 − (xk − 1)/(x − 1). Using the fact that the

dynamical degree is upper semi-continuous, we obtain the largest dynamical degree in critical cases.
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Theorem 4.3. In the critical case, δ(fX) ≤ ∆c
k and δ(f−1

X ) ≤ ∆c
k.

§5. Periodic Mappings In this section, we consider the induced birational mapping fX such that the
orbit of Σγ ends up with Σβγ , that is for some n⋆ ≥ 0

fX : Σγ 7→ ΣBC 7→ fXΣBC 7→ · · · 7→ fn⋆ΣBC = Σβγ

and f j
XΣBC 6∈ Σ0∪Σβ∪Σγ for j = 0, . . . , n⋆−1. Let πZ : Z → X be a complex manifold obtained by blowing

up the orbit of ΣBC = fXΣγ and denote Fj the exceptional divisor over f j−1
X ΣBC for j = 1, . . . , n⋆ + 1.

Lemma 5.1. If there exists a positive integer n⋆ such that fn⋆

X ΣBC = Σβγ , the dynamical degree is given
by the largest root of the polynomial

χk,n⋆
(x) = (x1+2k+n⋆ − x2k+n⋆ − x1+k+n⋆ + x1+n⋆ + x2k − xk − x + 1)/(x − 1). (5.1)

Proof. Since fX is well defined on ΣBC , . . . , fn⋆−1Σ, it suffices to check the mapping on Σγ and Σβγ . By
the induced map fZ the generic point on Σγ map to a point on F1 :

fZ : Σγ ∋[x0 : x1 : · · · : xk−1 : −α0x0 − α2x2 − · · · − αk−1xk−1]

7→ (x2/x0, . . . , xk−1/x0, 0, x0/(β0x0 + x1))f1
∈ F1

where we use a local coordinates near F1 :

πf1
: (x1, . . . , xk−2, s, ξk)f1

7→ [1 : x1 : · · · : xk−2 : −α0 − α2x1 − · · · − αk−1xk−2 + s : sξk]

Also under the inverse map f−1
Z we have

f−1
Z :ΣC ∋ [x0 : · · · : xk−2 : −α0x0 − α2x1 − · · · − αk−1xk−2 : xk]

7→ (x0, 0, x2, . . . , xk−2, xk/x0)fn⋆
∈ Fn⋆

where we use a local coordinates near Fn⋆
:

πfn⋆
: (x0, s, x2, . . . , xk−2, ξk)fn⋆

7→ [x0 : −β0x0 + s : x2 : · · · : xk−2 : −α0 − α2x2 − · · · − αk−1xk−1 : sξk].

It follows that fZ is a local diffeomorphism at points on Σγ ∪
⋃n⋆

j=1 Fj . Further more fZ doesn’t have any

exceptional hypersurfaces and therefore fZ is 1-regular. To compute the action on H1,1(Z) let us choose the
ordered basis H , E1, S0,3, . . ., S0,k, P0,1, . . ., P0,k−2 Ek, Fn⋆

, . . ., F1. The action on cohomology classes f∗

Z

on H1,1(Z) is given by

f∗

X : E1 7→ S0,3 7→ · · · 7→ S0,k

S0,k 7→ {Σ0} = H − E1 − S0,3 − · · · − S0,k − P0,1 − · · · − P0,k−2 − Ek

P0,1 7→ P0,2 7→ · · · 7→ P0,k−2 7→ Ek

Ek 7→ {Σβ} = H − P0,1 − · · · − P0,k−2 − Ek

Fn⋆
7→ · · · 7→ F1 7→ {Σγ} = H − E1 −Fn⋆

H 7→ 2H − E1 − P0,1 − · · · − P0,k−2 − Ek.

(5.2)

The spectral radius of the action given by (5.2) is the largest root of χk,n⋆
(x)

Lemma 5.2. If n⋆ > (k2 + k)/(k − 1) then f has exponential degree growth.

Proof. The derivative of χ at x = 1 is negative if n⋆ > (k2 + k)/(k− 1). It follows that n⋆ > (k2 + k)/(k− 1)
implies that χ has a real root which is strictly bigger than 1.

Lemma 5.3. For a critical map, n⋆ ≥ k − 1.

Proof. Since we have ΣBC ⊂ Σk, Σβγ 6⊂ Σj , for j ≥ 2, and f : Σk 7→ Σk−1 7→ · · · 7→ Σ1, it requires at least
k − 1 iterations for ΣBC to be mapped to Σβγ .
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Lemma 5.4. If k > 3 and n⋆ > k + 2 then the dynamical degree is strictly bigger than 1. If k = 3, the
dynamical degree for n⋆ = 6 = (k2 + k)/(k − 1) is equal to 1 and the dynamical degree for n⋆ ≥ 7 is strictly
bigger than 1.

Proof. The second derivative of (x − 1)χk,n⋆
(x) at x = 1 is 2((1 − k)n⋆ + k(k + 1)). It follows that

χ′

k,n⋆
(1) < 0 and therefore the dynamical degree is strictly bigger than 1 if and only if n⋆ > (k2 +k)/(k−1).

Since k + 3 = (k2 + k + (k − 3))/(k − 1), k + 3 > (k2 + k)/(k − 1) if k > 3 and k + 3 = (k2 + k)/(k − 1) if
k = 3.

In case n⋆ = k + 2, we have χ′

k,n⋆
(1) = 2. Using the computer we checked for each 4 ≤ k ≤ 20 and

found that χk,k+2(x) has complex conjugate pair or roots whose modulus is strictly bigger than 1.

Theorem 5.5. Let f be a critical map with k ≥ 3. If there exists a positive integer n⋆ such that fn⋆ΣBC =
Σβγ , then one of the following must occur:

(i) If n⋆ = k − 1 then the mapping is periodic with period 3k − 1

(ii) If n⋆ = k then the mapping is periodic with period 4k

(iii) If n⋆ = k + 1 then the mapping is periodic with period 3k(k + 1).

Proof. Using (5.1) it is not hard to show that χk,k−1 = (x3k−1 − 1), χk,k = (xk − 1)(x2k + 1) and χk,k+1 =
(xk+1 − 1)(x2k − xk + 1). In each case f is linear fractional. Suppose f [x0 : x1 : · · · : xk] = [

∑

i a0,ixi :
∑

i a1,ixi : · · · :
∑

i ak,ixi]. Using the fact that E1 and Ek is fixed under fX we see that aj,1 = 0 for all j 6= 1
and aj,k = 0 for all j 6= k. Since we are in the projective space we may assume that a1,1 = ak,k = 1. For
each fixed co-dimension j subspace we obtain j + 1 equations on aj,i. We continue this procedure for other
fixed linear subspaces to conclude that the mapping is actually periodic.

The case of dimension k = 2 is not covered by Theorem 5.5; the numbers corresponding to the cases
(i–iii) are 5, 8, and 18. These are all found to occur in [BK1], where it was shown that there are also
the possibilities of period 6, 12, and 30. If k = 2 then χ′

2,n⋆
(1) = 6(6 − n⋆) and therefore we have more

possibilities for periodic mappings, that is n⋆ could be k + 2 and k + 3 which correspond to the cases of
period 12 and period 30. The mapping with period 6 occurs when ΣBC = Σβγ . This cannot happen in
dimension 3 or higher, since ΣBC and Σβγ are linear spaces of positive dimension, and there exists a point
[1 : 1 − β0 : x2 : · · · : xk−2 : −α0 − α3x2 − · · · − αk−1xk−2 : 0] ∈ ΣBC \ Σβγ . In the case of dimension k = 3,
[BK2] shows that the only possible periods are 8 and 12 (which correspond to cases (i) and (ii) in Theorem
5.5); the possibility n⋆ = k + 1 = 4 does not occur in dimension 3.

Theorem 5.6. If αk−1 = (−1)1/k and

β = (αk−1
k−1, 1, 0, . . . , 0) and α = (αk−2

k−1/(1 − αk−1), 0, αk−2
k−1, . . . , α

2
k−1, αk−1, 1) (5.3)

then fα,β is periodic with period 4k.

Proof. It is suffices to show that with these choices of parameter values we have fkΣBC = Σβγ . Let us set
A := −(α0x0 + α2x1 + · · · + αk−1xk−2). The generic point p ∈ ΣBC can be written as [x0 : x1 : · · · : xk−2 :
A : 0]. The last coordinate of f(p) is given by

x0(α0x0 + α2x2 + · · · + αk−2xk−2 − αk−1A).

Since αk−1αj = αj−1 for j = 3, . . . , k and α0 − αk−1α0 = αk−2
k−1, the last coordinate of f(p) becomes

x0(α
k−2
k−1x0 − αk−1

k−1x1) = −αk−1
k−1(−α−1

k−1x0 + x1)x0 = −αk−1
k−1x0β · x.

It follows that f : ΣBC ∋ [x0 : x1 : · · · : xk−2 : A : 0] 7→ [x0 : x2 : · · · : xk−2 : A : 0 : −αk−1
k−1x0] and using that

αk
k−1 = −1 we have

f : ΣBC 7→ {xk−1 = 0} ∩ {x0 − αk−1xk = 0}.
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From (2.1) it is not hard to see that

f : {xk−1 = 0} 7→ {xk−2 = 0} 7→ · · · 7→ {x1 = 0}

f : {x0 − αk−1xk = 0} 7→ {x0 − αk−1xk−1 = 0} 7→ · · · 7→ {x0 − αk−1x2 = 0}.

That is fk−1ΣBC = {x1 = 0} ∩ {x0 − αk−1x2 = 0}. Now let us map forward a point p = [αk−1x2 : 0 : x2 :
· · · : xk]. Since β · p = −x2 we have

f :[αk−1x2 : 0 : x2 : · · · : xk] 7→

[−αk−1x2 : −x2 : · · · : −xk : αk−1(α0αk−1 + α2)x2 + αk−1α3x3 + . . . + αk−1xk].

It follows that β · fp = −αk
k−1x2 − x2 = 0 and γ · fp = αk−1(α0(αk−1 − 1) + α2)x2 + (−α2 + αk−1α3)x3 +

· · · + (−αk−1 + αk−1)xk = 0 and therefore fkΣBC = Σβγ .

§6. Non-periodic maps; integrability. Let us consider the critical map given by α = (a, 0, 1, . . . , 1)
and β = (0, 1, 0, . . . , 0):

f [x0 : · · · : xk] = [x0x1 : x2x1 : · · · : xkx1 : x0(ax0 + x2 + · · · + xk)]

f−1[x0 : · · · : xk] = [x0xk : x0(ax0 + x1 + · · · + xk−1) : x1xk : · · · : xk−1xk].
(6.1)

It follows that we have

f :
Σβ 7→ ek  Σ0 1 ... k−2  Σ0 1 ... k−3  · · · Σ0 1 = Σ0β  Σ0

Σ0 7→ Σ0k 7→ Σ0 k−1 k 7→ · · · 7→ Σ0 3 ... k 7→ e1  ΣB

(6.2)

In addition, since β0 = 0 we have

f : ΣB = Σk 7→ Σk−1 7→ · · · 7→ Σ1 = Σβ (6.3)

so we expect to find (after blowing up) a closed orbit of hypersurfaces containing Σβ , Σ0, and ΣB.
Our first task will be to make f 1-regular. For j = 1, . . . , k − 1 let us set qj = [0 : · · · : 0 : 1 : −1 : 0 :

· · · : 0], the point whose j-th coordinate is 1, whose j + 1-th coordinate is −1, and every other coordinate is
zero. Let us consider a complex manifold π1 : Z1 → Pk obtained by blowing up the k + 1 points e1, ek, and
qj , j = 1, . . . , k − 1. We denote by Qj the exceptional divisor over the point qj . We also denote by E1 and
Ek the exceptional divisors over the points e1 and ek.

Lemma 6.1. The induced map fZ1
is a local diffeomorphism at generic points of Qj , j = 2, . . . , k − 1.

Furthermore we have dominant maps

fZ1
: Qk−1 7→ Qk−2 7→ · · · 7→ Q2 7→ Q1

Proof. Let us consider the local coordinates near Qk−1 and Qk−2

πk−1 : Z1 ∋ (s, ξ1, · · · , ξk−1)k−1 7→ [s : sξ1 : · · · : sξk−2 : 1 + sξk−1 : −1] ∈ Pk

πk−2 : Z1 ∋ (s, ξ1, · · · , ξk−2, ξk)k−2 7→ [s : sξ1 : · · · : sξk−3 : 1 + sξk−2 : −1 : sξk] ∈ Pk.

Note that in those coordinates, {(s, ξ1, · · · , ξk−1)k−1 : s = 0} = Qk−1, and we see that

fZ1
: Qk−1 ∋ (0, ξ1, · · · , ξk−1)k−1 7→ (0, ξ2, . . . , ξk−1,

a

ξ1
+ ξ2 + · · · ξk−1)k−2 ∈ Qk−2.

It follows that fZ1
is locally diffeomorphic at generic points of Qk−1. For j = 2, . . . , k − 2, the proof is

identical.
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By constructing Z1, we create three new exceptional hypersufaces including E1 and Ek for each fZ1
and

f−1
Z1

. Let us consider the local coordinates π1 : (s, ξ1, ξ3 . . . , ξk)1 7→ [s : 1 + sξ1 : −1 : sξ3 : · · · : sξk] near
Q1. We also use the local coordinates πe1

: (s, ξ2, . . . , ξk)e1
7→ [s : 1 : sξ2 : · · · : sξk] near E1. With these

coordinates, we see that

fZ1
: Q1 ∋ (0, ξ1, ξ3 . . . , ξk)1 7→ (0, ξ3, . . . , ξk,−1)e1

∈ E1 ∩ {x0 + xk = 0} ⊂ E1.

Similarly with the local coordinates πek
: (s, ξ1, . . . , ξk−1)ek

7→ [s : sξ1 : · · · : sξk−1 : 1] near Ek and the local
coordinates near Qk−1 defined above, we have

f−1
Z1

: Qk−1 ∋ (0, ξ1, ξ2 . . . , ξk−1)1 7→ (0,−1, ξ1, . . . , ξk−2)ek
= Ek ∩ {x0 + x1 = 0} ∈ Ek.

Thus we have

fZ1
: Ek ∩ {x0 + x1 = 0} Qk−1 and f−1

Z1
: E1 ∩ {x0 + xk = 0} Q1 (6.4)

Lemma 6.2. fk
Z1

ΣBC = Ek ∩ {x0 + x1 = 0} and f−k
Z1

Σβγ = E1 ∩ {x0 + xk = 0}.

Proof. Let us consider the forward map first. A generic point p in ΣBC can be written as [x0 : · · · : xk−2 :
−ax0 − x1 − · · · − xk−2 : 0]. Using (6.1) we have

fX : [x0 : · · · : xk−2 : −ax0−x1−· · ·−xk−2 : 0] 7→ [x0x1 : x2x1 : · · · : (−ax0−x1−· · ·−xk−2)x1 : 0 : −x0x1].

It follows that fXΣBC ⊂ {xk−1 = 0, x0 + xk = 0}. Since ΣBC is not indeterminate for f we see that
fXΣBC = {xk−1 = 0, x0 +xk = 0}. Note that fk−2{xk−1 = 0} = {x1 = 0}, fk−2{x0 +xk = 0} = {x0 +x2 =
0} and therefore fk−1

X ΣBC = {x1 = 0, x0 + x2 = 0} Using the coordinates near Ek we see that

fX : Σ1 ∋ [x0 : 0 : x2 : · · · : xk] 7→ (0,
x2

x0
, . . . ,

xk

x0
)ek

∈ Ek

Thus we have
fX : fk−1

X ΣBC 7→ (0,−1, ξ2, . . . , ξk−1)ek
∈ Ek.

The argument for f−1 is essentially identical.

Now let us construct a complex manifold π2 : Z2 → Z1 obtained by blowing up the sets f j
XΣBC , j =

0, . . . , k, Qj , j = 1, . . . k − 1 and f−j
X Σβγ , j = k, . . . , 0. We denote Fj the exceptional divisor over the set

f j
XΣBC , and we also denote Hj the exceptional divisor over the set f−j

X Σβγ .

Lemma 6.3. The induced map fZ2
is a local diffeomorphism at a generic points of

⋃

j Fj ∪
⋃

j Hj . Thus
fZ2

has four exceptional hypersurfaces Σ0, Σβ , E1, and Ek.

Proof. It suffices to check at the points in Σγ ∪ Fk ∪Q1 ∪H0. Let us define local coordinates :

(x1, . . . , xk−2, s, ξ) 7→ [1 : x1 : · · · : xk−2 : s − a − x1 − · · · − xk−2 : sξ] near F1

(s, η, ξ2, . . . , ξk−1) 7→ (s,−1 + sη, ξ2, . . . , ξk−1)ek
near Fk

(s, ξ2, . . . , ξk−2, η) 7→ (s, ξ2, . . . , ξk−2,−1 + sη, )e1
near Hk

(s, x2, . . . , xk−1, ξ) 7→ [1 : s : x2 : · · · : xk−1 : −a − x2 − · · · − xk−1 + sξ] near H1.

Then we have

fZ2
:

Σγ ∋ [x0 : x1 : · · · : xk−1 : −ax0 − x2 − · · · − xk−1] 7→ (x2, . . . , xk−1, 0, x0x
−1
1 ) ∈ F1

Fk ∋ (0, η, ξ2, . . . , ξk−1) 7→ (0, ξ2, . . . , ξk−1,−η + a + ξ2 + · · · + ξk−1) ∈ Qk−1

Q1 ∋ (0, ξ1, ξ3, . . . , ξk) 7→ (0, ξ3, . . . , ξk, a + ξ1 + ξ3 + · · · + ξk) ∈ Hk

H1 ∋ (0, x2, . . . , xk−1, ξ) 7→ [1 : x2 : · · · : xk−1 : −a − x2 − · · · − xk−1 : ξ] ∈ ΣC .

It follows that the induced map fZ2
is local diffeomorphism on the orbit of Σγ .

10



For other two exceptional hypersurfaces Σ0 and Σβ , we construct a blowup space πZ : Z → Z2 obtained
by blowing up the strict transform of the sets Σ0 k, . . . , Σ0 3 ... k−1 k, Σ0 ... k−2, . . . , Σ01 in (6.4). We use the same
notation for the space X in §3. That is, the exceptional divisors over Σ0 1 ... k−2, . . . , Σ0 1 are P0,k−2, . . . ,P0,1

and S0,j are the exceptional divisors over Σ0 j ... k for all j ≥ 3. Since are only consider a generic point on
these exceptional divisors, the same computations as in §3 and §4 work and thus we conclude that fZ is
local diffeomorphic at a generic points on these new exceptional divisors as well as E1, Ek, Σ0 and Σβ. It
follows that:

Lemma 6.4. The induced map fZ has no exceptional hypersurface and therefore fZ is 1-regular.

Now to compute the dynamical degree we use the following basis of Pic(Z):

H, E1,S0,3, . . . ,S0,k,P0,1, . . . ,P0,k−2, Ek,H0, . . . ,Hk,Qk−1, . . . ,Q1,Fk, . . . ,F0.

Using (6.2), Lemma 6.1 and Lemma 6.2 we have:

Lemma 6.5. The action on cohomology f∗

Z
is given by

f∗

Z : E1 7→ S0,3 7→ · · · 7→ S0,k 7→ {Σ0}

P0,1 7→ P0,2 7→ · · · 7→ P0,k−2 7→ Ek 7→ {Σβ}

H3k+1 7→ H3k 7→ · · · 7→ H1 7→ {Σγ}

H 7→ 2H − E1 − P0,1 − · · · − P0,k−2 − Ek −H0 −Hk −
k−1
∑

j=2

Qj −Fk.

(6.5)

where

{Σ0} = H − E1 − S0,3 − · · · − S0,k − P0,1 − · · · − P0,k−2 − Ek −Hk −

k−1
∑

j=1

Qj −Fk

{Σβ} = H − P0,1 − · · · − P0,k−2 − Ek −H0 −

k−1
∑

j=2

Qj −Fk −Fk−1

{Σγ} = H − E1 −H0 −Hk −
k−1
∑

j=2

Qj

Theorem 6.6. For every k > 3, the map f defined in (6.1) has quadratic degree growth.

Proof. The characteristic polynomial of the action on cohomology given in (6.5) is given by

χ̂k(x) = ±(xk − 1)(xk+1 − 1)(x3k−1 − 1).

It follows that 1 is a zero of χ̂k(x) with multiplicity 3. Furthermore there is unique (up to scalar multiple)
eigenvector v corresponding to an eigenvalue 1:

v = − (k + 1)H + (k − 1)E1 +

k−2
∑

j=1

j S0,k+1−j +

k−2
∑

j=1

j P0,j + (k − 1)Ek

+
k−1
∑

j=0

Hj + kHk + (k − 1)
k−1
∑

j−1

Qj + kFk +
k−1
∑

j=0

Fk

It follows that the Jordan decomposition has 3 × 3 block with 1 on the diagonal. Thus the powers of this
matrix grow quadratically.

11



We say that a rational function ϕ is an integral of f if ϕ = ϕ ◦ f at generic points. Some integrals of f
have been found (see [KLR], [KL] [CGM1], [GKI]). Here we describe a rationale for re-finding these (known)
integrals. We start by finding homogeneous polynomials p which are invariant in the sense that

p ◦ f = J · p (6.6)

where J = x0(β · x)k−1(γ · x) is the Jacobian of f . This is the same as finding a meromorphic k-form η,
written as dx1 ∧ · · · ∧ dxk/p(1, x1, . . . , xk) on the affine coordinate chart {x0 = 1}, and which is invariant in
the sense that f∗η = η. If p1, . . . , pr satisfy (6.6), then

∑

λjpj will also satisfy (6.6). And the quotient of
any two of these polynomials

∑

λjpj will give an integral.
Since f has degree 2, J has degree k+1, so we look for polynomials p of degree k+1, so that the degrees

of p ◦ f and Jp will both be 2(k + 1). The invariant rational functions will then be given as quotients of
invariant functions h = p1/p2. Recall that f maps Σβ to ek. Thus by (6.6) we see that p will vanish to order
at least k − 1 at ek, since J vanishes to order k − 1 at Σβ. Similarly, since f(Σ0) = Σ0,k, we see that p must
vanish at Σ0,k. Now starting with a point z ∈ Σ0,k, we have f(z) ∈ Σ0,k−1,k, so by (6.6), p vanishes to order
at least 2 on Σ0,k−1,k. Continuing this way, we see that p vanishes to order at least k− j on Σj+1,j+2,...,k for
1 ≤ j ≤ k − 1. Finally, since J vanishes on Σγ , and f(Σγ) = ΣBC , we see that p vanishes on ΣBC . Iterating
this, we see that p must vanish on f j(ΣBC) for j = 0, . . . , k.

In order to refine the equation (6.6), we define A = α · x, B = β · x = x1 and C = x0, so J = ABk−1C.
Looking for linear functions which vanish on certain of the sets above, we define three families:

ℓj(x) := xj , 0 ≤ j ≤ k, mj(x) := x0 + xj , 1 ≤ j ≤ k, nj := x0 + xj + xj+1, 1 ≤ j ≤ k − 1,

and n0 = nk−1 ◦ f and m0 = A + x1 = ax0 + x1 + · · · + xk. Thus we have a refined form of (6.6)

ℓj ◦ f = Bℓj+1, mj ◦ f = Bmj+1, 1 ≤ j ≤ k − 1, nj ◦ f = Bnj+1, 1 ≤ j ≤ k − 2

ℓk ◦ f = Aℓ0, ℓ0 ◦ f = Cℓ1, mk ◦ f = Cm0, m0 ◦ f = Am1, n0 ◦ f = ABCn1.
(6.7)

By (6.7) it is evident that p0 := ℓ0ℓ1 · · · ℓk and p1 := m0m1 · · ·mk satisfy (6.6). If k ≥ 3, then
p2 := n0 · · ·nk−1 also satisfies (6.6).

Now let us use the notation j for the product ℓjmj . If k ≥ 5 is odd, we define

Φeven := 0 2 4 · · · (k − 1) Φodd := 1 3 5 · · ·k.

If q is a polynomial for which q ◦ f is divisible by J , we let T denote the operator T (q) = q ◦ f · J−1, so
that (6.6) holds exactly when p is a fixed point of T . By (6.7) we have j ◦ f = (j + 1) B2 for 1 ≤ j ≤ k − 1;
and k ◦ f = 0 AC, and 0 ◦ f = 1 AC. Thus TΦeven = Φodd, and TΦodd = Φeven. We conclude that
p3 := Φeven + Φodd satisfies (6.6).

If k > 5 is even, we consider two functions:

Ψa := 0 n1 3 5 7 · · · (k − 1), Ψb := 1 3 5 7 · · · (k − 1) ℓk.

By (6.7) we see that Ψb ◦ f = A ℓ0 2 4 6 8 · · · k Bk = J B 2 4 6 8 · · · k. Thus TΨb = ℓ1 2 4 6 8 · · · k.
Applying T to Ψa, we have

TΨa = 1 n2 4 6 8 · · · k, T 2Ψa = 0 2 n3 5 7 9 · · · (k − 1)k,

. . . T k−2Ψa = 0 2 4 · · · (k − 2) nk−1

(6.8)

Now we claim that
p3 =

(

Ψa + TΨa + · · · + T k−2Ψa

)

+ (Ψb + TΨb)

satisfies (6.6). For this, it suffices to have

Ψa + Ψb = T k−1Ψa + T 2Ψb. (6.9)
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Applying T to T k−2Ψa in (6.8), and using (6.7), we find T k−1Ψa = n0 1 3 5 · · · (k − 1). Now apply T to
the expression for TΨb found above, we find T 2Ψb = 0 ℓ2 3 5 · · · (k − 1). Thus (6.9) is a consequence of
the simple identity

0 n1 + 1 ℓk = n0 1 + 0 ℓ2,

and we conclude that p3 satisfies (6.6).
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