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Summary. We present an algorithm model, called Riemannian BFGS (RBFGS),
that subsumes the classical BFGS method in R

n as well as previously proposed
Riemannian extensions of that method. Of particular interest is the choice of trans-
port used to move information between tangent spaces and the different ways of
implementing the RBFGS algorithm.

1 Introduction

Optimization on manifolds, or Riemannian optimization, concerns finding an
optimum (global or local) of a real-valued function defined over a smooth man-
ifold. A brief introduction to the area can be found in [1] in this volume, and
we refer to [3] and the many references therein for more details. Optimization
on manifolds finds applications in two broad classes of situations: classical
equality-constrained optimization problems where the constraints specify a
submanifold of Rn; and problems where the objective function has continuous
invariance properties that we want to eliminate for various reasons, e.g., effi-
ciency, consistency, applicability of certain convergence results, and avoiding
failure of certain algorithms due to degeneracy. As a result, the generalization
to manifolds of algorithms for unconstrained optimization in Rn can yield
useful and efficient numerical methods; see, e.g., recent work on Riemannian
trust-region methods [2] and other methods mentioned in [3]. Since BFGS is
one of the classical methods for unconstrained optimization (see [7, 10]), it is
natural that its generalization be a topic of interest.

Some work has been done on BFGS for manifolds. Gabay [9, §4.5] discussed
a version using parallel transport. Brace and Manton [6] have a version on the
Grassmann manifold for the problem of weighted low-rank approximations.
Savas and Lim [11] apply a version on a product of Grassmann manifolds to
the problem of best multilinear low-rank approximation of tensors.
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Gabay’s Riemannian BFGS [9, §4.5] differs from the classical BFGS
method in Rn (see, e.g., [10, Alg. 6.1]) in five key aspects: (i) The search space,
to which the iterates xk belong, is a Riemannian submanifold M of Rn speci-
fied by equality constraints; (ii) The search direction at xk is a tangent vector
to M at xk; (iii) The update along the search direction is performed along
the geodesic determined by the search direction; (iv) The usual quantities sk

and yk that appear in the secant equation are tangent vectors to M at xk+1,
obtained using the Riemannian parallel transport (i.e., the parallel transport
induced by the Levi-Civita connection) along the geodesic. (v) The Hessian
approximation Bk is a linear transformation of the tangent space Txk

M that
gets updated using a generalized version of the BFGS update formula. This
generalized formula specifies recursively how Bk applies to elements of Txk

M .
In this paper, we present an algorithm model (or meta-algorithm), dubbed

RBFGS, that subsumes Gabay’s Riemannian BFGS method. Whereas Gabay’s
method is fully specified by the Riemannian manifold, the cost function, and
the initial iterate, our RBFGS algorithm offers additional freedom in the
choice of a retraction and a vector transport (see Section 2 for a brief re-
view of these two concepts). This additional freedom affects points (iii) and
(iv) above. For (iii), the curves along which the update is performed are spec-
ified by the retraction. For (iv), the Levi-Civita parallel transport is replaced
by the more general concept of vector transport. If the retraction is selected
as the Riemannian exponential and the vector transport is chosen to be the
Levi-Civita parallel transport, then the RBFGS algorithm reduces to Gabay’s
algorithm (barring variations of minor importance, e.g., in the line-search
procedure used).

The impact of the greater freedom offered by the RBFGS algorithm varies
according to the manifold of interest. On the sphere, for example, the com-
putational cost of the Riemannian exponential and the Levi-Civita parallel
transport is reasonable, and there is not much to be gained by choosing com-
putationally cheaper alternatives. In contrast, as we will show in numerical
experiments, when the manifold is the Stiefel manifold, St(p, n), of orthonor-
mal p-frames in Rn, the improvement in computational time can be much
more significant.

This paper also improves on Gabay’s work by discussing the practical
implementation of the algorithm. When the manifold M is a submanifold of
Rn, we offer the alternatives of either representing the tangent vectors and
the approximate Hessian using a basis in the tangent spaces, or relying on the
canonical inclusion of M in Rn. The latter leads to representations of tangent
vectors as n-tuples of real numbers and of the approximate Hessian as an n×n
matrix. This approach may offer a strong advantage when the co-dimension
of M is sufficiently small.

Another feature of RBFGS is that it does not assume that M is a subman-
ifold of a Euclidean space. As such, it can be applied to quotient manifolds
as well. However, in this paper, we concentrate the practical implementation
discussion on the submanifold case.
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This paper is a first glimpse at ongoing work that aims at a systematic
analysis and evaluation of the Riemannian versions of the BFGS algorithm.
It is organized as follows. The general RBFGS algorithm is given in Section 3.
The two implementation approaches and the particular implementation on
certain manifolds are given in Section 4. In Section 5, we summarize the re-
sults of our numerical experiments for two application problems: the Rayleigh
quotient problem on the sphere Sn−1 and a matrix Procrustes problem on the
compact Stiefel manifold.

2 Mathematical preliminaries

The notion of retraction on a manifold, due to Adler et al. [4], encompasses
all first-order approximations to the Riemannian exponential. Here we recall
the definition as given in [3].

Definition 1. A retraction on a manifold M is a mapping R from the tangent
bundle TM onto M with the following properties. Let Rx denote the restriction
of R to TxM .

1. R is continuously differentiable.
2. Rx(0x) = x, where 0x denotes the zero element of TxM .
3. With the canonical identification T0x

TxM " TxM , Rx satisfies DRx(0x) =
idTxM , where D denotes the derivative and idTxM denotes the identity
mapping on TxM .

The retraction is used as a way to take a step in the direction of a tangent
vector. Choosing a good retraction amounts to finding an approximation of
the exponential mapping that can be computed with low computational cost
while not adversely affecting the behavior of the optimization algorithm.

Next we recall the concept of vector transport, which specifies how to move
a tangent vector from one tangent space to another. This is also used to move
a linear operator from one tangent space to another, e.g., the approximate
Hessian in (4). The notion of vector transport was introduced in [3] for reasons
similar to those that motivated the introduction of retractions, namely, to
provide a framework for using computationally less expensive approximations
of the Levi-Civita parallel translation. The definition below, illustrated in
Figure 1, invokes the Whitney sum TM ⊕TM , which stands for the set of all
ordered pairs of tangent vectors with same foot.

Definition 2. A vector transport on a manifold M is a smooth mapping:
TM ⊕ TM → TM, (ηx, ξx) %→ Tηx

(ξx) ∈ TM satisfying the following proper-
ties for all x ∈ M .

1. (Associated retraction) There exists a retraction R, called the retraction
associated with T , such that, for all ηx, ξx, it holds that Tηx

ξx ∈ TRx(ηx)M .
2. (Consistency) T0x

ξx = ξx for all ξx ∈ TxM ;
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Fig. 1. Vector transport.

3. (Linearity) The mapping Tηx
: TxM → TR(ηx)M, ξx %→ Tηx

(ξx) is linear.

Note that, in general, vector transports are not isometries; in fact, the defi-
nition of a vector transport does not even assume an underlying Riemannian
metric. When M is a Riemannian manifold and the vector transport is se-
lected to be the Levi-Civita parallel translation, then it is an isometry. When
it exists, the inverse of the linear map Tηx

is denoted by (Tηx
)−1. Observe

that (Tηx
)−1(ξRx(ηx)) belongs to TxM . If M is an embedded submanifold of

a Euclidean space and M is endowed with a retraction R, then a particular
choice of vector transport is given by

Tηx
ξx := PRx(ηx)ξx, (1)

where Px denotes the orthogonal projector onto TxM . Depending on the man-
ifold, this vector transport may be much less expensive to compute than the
Levi-Civita parallel transport. Other choices may also be used to achieve com-
putational savings. It may happen that the chosen vector transport and its
inverse are not defined everywhere, but then the set of problematic points
is usually of measure zero, and no difficulty is observed in numerical experi-
ments.

3 The RBFGS Algorithm

The structure of the RBFGS algorithm is given in Algorithm 1. Recall that,
given a smooth scalar field f on a Riemannian manifold M with Riemannian
metric g, the gradient of f at x, denoted by grad f(x), is defined as the unique
element of TxM that satisfies:

gx(gradf(x), ξ) = Df(x)[ξ], ∀ξ ∈ TxM. (2)

The line-search procedure in Step 4 of RBFGS uses Armijo’s condition.
The RBFGS algorithm can also be reformulated to work with the inverse

Hessian approximation Hk = Bk
−1 rather than with the Hessian approxima-

tion Bk. In this case, Step 6 of RBFGS is replaced by
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Algorithm 1 RBFGS
1: Given: Riemannian manifold M with Riemannian metric g; vector transport T

on M with associated retraction R; smooth real-valued function f on M ; initial
iterate x0 ∈ M ; initial Hessian approximation B0.

2: for k = 0, 1, 2, . . . do

3: Obtain ηk ∈ Txk
M by solving Bkηk = −grad f(xk).

4: Set step size α = 1, c = g(grad f(xk), ηk). While f(Rxk
(2αηk))− f(xk) < αc,

set α := 2α. While f(Rxk
(αηk)) − f(xk) ≥ 0.5αc, set α := 0.5α. Set xk+1 =

Rxk
(αηk).

5: Define sk = Tαηk
(αηk) and yk = grad f(xk+1) − Tαηk

(grad f(xk)).
6: Define the linear operator Bk+1 : Txk+1

M → Txk+1
M by

Bk+1p = B̃kp −
g(sk, B̃kp)

g(sk, B̃ksk)
B̃ksk +

g(yk, p)
g(yk, sk)

yk for all p ∈ Txk+1
M, (3)

with
B̃k = Tαηk

◦ Bk ◦ (Tαηk
)−1. (4)

7: end for

Hk+1p = H̃kp −
g(yk, H̃kp)

g(yk, sk)
sk −

g(sk, pk)

g(yk, sk)
H̃kyk

+
g(sk, p)g(yk, H̃kyk)

g(yk, sk)2
sk +

g(sk, sk)

g(yk, sk)
p (5)

with
H̃k = Tηk

◦Hk ◦ (Tηk
)−1. (6)

This yields a mathematically equivalent algorithm. It is useful because it
makes it possible to cheaply compute an approximation of the inverse of the
Hessian. This may make RBFGS advantageous even in the case where we have
a cheap exact formula for the Hessian but not for its inverse.

4 Practical Implementation of RBFGS

4.1 Two Approaches

A practical implementation of RBFGS requires the following ingredients: (i)
an efficient numerical representation for points x on M , tangent spaces TxM
and the inner products gx(ξ1, ξ2) on TxM ; (ii) an implementation of the chosen
retraction Rx : TxM → M ; (iii) efficient formulas for f(x) and grad f(x); (iv)
an implementation of the chosen vector transport Tηx

and its inverse (Tηx
)−1;

(v) a method for solving

Bkηk = −gradf(xk), (7)
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where Bk is defined recursively through (3), or alternatively, a method for
computing ηk = −Hkgradf(xk) where Hk is defined recursively by (5). Point
(v) is the main difficulty. In this paper, we restrict to the case where M is a
submanifold of Rn, and we construct explicitly a matrix representation of Bk.
We discuss two implementation approaches.

Approach 1 realizes Bk as an n×n matrix B(n)
k . Since M is a submanifold

of Rn, tangent spaces TxM are naturally identified with subspaces of Rn

(see [3, §3.5.7] for details), and it is very common to use the same notation
for a tangent vector and its corresponding element of Rn. However, to explain
Approach 1, it is useful to distinguish the two objects. To this end, let ιx
denote the natural inclusion of TxM in Rn, ιx : TxM → Rn, ξx %→ ιx(ξx).

To represent Bk, we pick B(n)
k ∈ Rn×n such that, for all ξxk

∈ Txk
M ,

B(n)
k ιxk

(ξxk
) = ιxk

(Bkξxk
). (8)

Note that condition (8) does not uniquely specify B(n)
k ; its action on the

normal space is irrelevant. Solving the linear system (7) then amounts to
finding ιxk

(ηk) in ιxk
(Txk

M) that satisfies

B(n)
k ιxk

(ηk) = −ιxk
(gradf(xk)). (9)

It remains to give an expression for the update formula (3). To this end,

let T (n)
αηk

be the n × n matrix that satisfies T (n)
αηk

ιxk
(ξxk

) = ιxk+1
(Tαηk

ξxk
)

for all ξxk
∈ Txk

M and T (n)
αηk

ζk = 0 for all ζk ⊥ ιxk
(Txk

M). Since M is an
embedded submanifold of Rn, the Riemannian metric is given by g(ξx, ηx) =
ιx(ξx)T ιx(ηx) and the update equation (3) is then

B(n)
k+1 = B̃(n)

k −
B̃(n)

k ιxk+1
(sk)ιxk+1

(sk)T B̃(n)
k

ιxk+1
(sk)T B̃(n)

k ιxk+1
(sk)

+
ιxk+1

(yk)ιxk+1
(yk)T

ιxk+1
(yk)T ιxk+1

(sk)
,

where B̃(n)
k = T (n)

αηk
B(n)

k

(

(Tαηk
)(n)

)†
and † denotes the pseudoinverse.

Approach 2 realizes Bk by a d×d matrix B(d)
k using bases, where d denotes

the dimension of M . Given a basis (Ek,1, . . . , Ek,d) of Txk
M , if Ĝk ∈ Rd is

the vector of coefficients of gradf(xk) in the basis and B(d)
k is the d × d

matrix representation of Bk in the basis, then we must solve B(d)
k η̂k = −Ĝk

for η̂k ∈ Rd, and the solution ηk of (7) is given by ηk =
∑d

i=1 Ek,i(η̂k)i.

4.2 Implementation on the Unit Sphere

We view the unit sphere Sn−1 = {x ∈ Rn : xT x = 1} as a Riemannian
submanifold of the Euclidean space Rn. In the rest of the paper, we abuse the
notation by ignoring the inclusions to simplify the formulas.

The tangent space at x, orthogonal projection onto the tangent space at
x, and the retraction chosen are given by
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TxSn−1 = {ξ ∈ R
n : xT ξ = 0}

Pxξx = ξ − xxT ξx

Rx(ηx) = (x + ηx)/‖(x + ηx)‖,

where ‖ · ‖ denotes the Euclidean norm.
Vector transport (1) on Sn−1 is given by

Tηx
ξx =

(

I −
(x + ηx)(x + ηx)T

‖x + ηx‖2

)

ξx (10)

which takes a vector ξx that belongs to the orthogonal complement of x (be-
cause it is in the tangent space to the sphere at x) and projects it along (x+ηx)
into the orthogonal complement of (x + ηx). To invert (10), we start from a
vector in the orthogonal complement of (x+ ηx) and project it along (x + ηx)
into the orthogonal complement of x. The result is an oblique projection

(Tηx
)−1(ξRx(ηx)) =

(

I −
(x + ηx)xT

xT (x + ηx)

)

ξRx(ηx) (11)

For the unit sphere, the Levi-Civita parallel transport of ξ ∈ TxSn−1 along
the geodesic, γ, from x in direction η ∈ TxSn−1 is [5]

P t←0
γ ξ =

(

In + (cos(‖η‖t) − 1)
ηηT

‖η‖2
− sin(‖η‖t)

xηT

‖η‖

)

ξ.

This parallel transport and its inverse have computational costs comparable
to the chosen vector transport and its inverse.

4.3 Implementation on the Compact Stiefel Manifold St(p, n)

We view the compact Stiefel manifold St(p, n) = {X ∈ Rn×p : XT X = Ip}
as a Riemannian submanifold of the Euclidean space Rn×p endowed with the
canonical Riemannian metric g(ξ, η) = tr(ξT η). The tangent space at X and
the associated orthogonal projection are given by

TXSt(p, n) = {Z ∈ R
n×p : XT Z + ZT X = 0}

= {XΩ + X⊥K : ΩT = −Ω, K ∈ R
(n−p)×p}

PXξX = (I − XXT )ξX + Xskew(XT ξX)

We use the retraction given by RX(ηX) = qf(X + ηX), where qf(A) denotes
the Q factor of decomposition of A ∈ R

n×p
∗ as A = QR, where R

n×p
∗ denotes

the set of all nonsingular n × p matrices, Q ∈ St(p, n) and R is an upper
triangular n × p matrix with strictly positive diagonal elements.

Vector transport (1) and its inverse on St(p, n) are given by
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TηX
ξX = (I − Y Y T )ξX + Y skew(Y T ξX)

(TηX
)−1ξY = ξY + ζ,

where Y := RX(ηX), ζ is in the normal space at Y which implies ζ = Y S
where S is a symmetric matrix, and (ξY + Y S) ∈ TxSt(p, n) which implies
XT (ξY + Y S) is skew symmetric. We therefore have

XT Y S + SY T X + XT ξY + ξT
Y X = 0.

Therefore, S can be found by solving a Lyapunov equation.
For St(p, n), the parallel transport of ξ ,= H along the geodesic γ(t) from

Y in direction H , denoted by w(t) = P t←0
γ ξ, satisfies [8, §2.2.3]:

w′(t) = −
1

2
γ(t)(γ′(t)T w(t) + w(t)T γ′(t)), w(0) = ξ. (12)

In practice, the differential equation is solved numerically and the computa-
tional cost of parallel transport may be significantly higher than that of vector
transport.

5 Applications and numerical experiment results

We have experimented extensively with the versions of RBFGS described
above. Here we present the results of two problems that provide leading evi-
dence supporting the value of using retraction and vector transport in RBFGS
and its limits. We obtained similar iteration counts using different x0.

For a symmetric matrix A, the unit-norm eigenvector, v, corresponding to
the smallest eigenvalue, defines the two global minima, ±v, of the Rayleigh
quotient f : Sn−1 → R, x %→ xT Ax. The gradient of f is given by

gradf(x) = 2Px(Ax) = 2(Ax − xxT Ax).

We show results of the minimization of the Rayleigh quotient to illustrate the
performance of RBFGS on Sn−1.

On St(p, n) we consider a matrix Procrustes problem that minimizes the
cost function f : St(p, n) → R, X → ‖AX − XB‖F given n × n and p × p
matrices A and B respectively. The gradient of f on the submanifold of Rn×p

used to represent St(p, n) is

grad f(X) = PXgrad f̄(X) = Q − Xsym(XT Q),

Q := AT AX − AT XB − AXBT + XBBT .

The versions of RBFGS that update B and B−1 perform similarly for these
problems so we report data from the B−1 version. Approach 1 and Approach 2
display similar convergence behavior and on these manifolds Approach 2 has
a higher computational complexity so we report data from Approach 1.
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Table 1. Vector transport vs. Parallel transport

Rayleigh Procrustes
n = 300 (n, p) = (12, 7)

Vector Parallel Vector Parallel

Time (sec.) 4.0 4.2 24.0 304.0

Iteration 97 95 83 175
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Fig. 2. Update of B−1, Parallel and Vector Transport for Procrustes. n=12, p=7.

Since parallel transport and vector transport by projection have similar
computational costs on Sn−1, the corresponding RBFGS versions have a sim-
ilar computational cost per iteration. Therefore, we would expect any perfor-
mance difference measured by time to reflect differences in rates of conver-
gence. Columns 2 and 3 of Table 1 show that vector transport produces a
convergence rate very close to parallel transport and the times are close as
expected. This is encouraging from the point of view that the more flexible
vector transport did not significantly degrade the convergence rate of RBFGS.

Given that vector transport by projection is significantly less expensive
computationally than parallel transport on St(p, n), we would expect a signif-
icant improvement in performance as measured by time if the vector transport
version manages to achieve a convergence rate similar to parallel transport.
The times in columns 4 and 5 of Table 1 show an advantage to the vector trans-
port version larger than the computational complexity predicts. The iteration
counts provide an explanation. Encouragingly, the use of vector transport ac-
tually improves convergence compared to parallel transport. We note that
the parallel transport version performs the required numerical integration of
a differential equation with a stepsize sufficiently small so that decreasing it
does not improve the convergence rate of RBFGS but no smaller to avoid
unnecessary computations. Figure 2 illustrates in more detail the significant
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improvement in convergence rate achieved for vector transport. It provides
strong evidence that a careful consideration of the choice of vector transport
may have significant beneficial effects on both cost per step and overall con-
vergence. More detailed consideration of this observation and the convergence
theory for RBFGS will be presented in a future paper.
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