S^2 - and P^2 -category of manifolds J. C. Gómez-Larrañaga^{*} F. González-Acuña[†] Wolfgang Heil[‡]

Abstract

A closed topological *n*-manifold M^n is of S^2 - (resp. \mathbb{P}^2)-category 2 if it can be covered by two open subsets W_1, W_2 such that the inclusions $W_i \to M^n$ factor homotopically through maps $W_i \to S^2$ (resp. \mathbb{P}^2). We characterize all closed *n*-manifolds of S^2 -category 2 and of \mathbb{P}^2 category 2. ¹ ²

1 Introduction

While studying the minimal number of critical points of a closed smooth *n*manifold M^n , denoted by $crit(M^n)$, Lusternik and Schnirelmann introduced what is now called the Lusternik-Schnirelmann category of M^n , denoted by $cat(M^n)$, which is defined to be the the smallest number of sets, open and contractible in M^n that are needed to cover M^n . They showed that $cat(M^n)$ is a homotopy type invariant with values between 2 and n+1 and furthermore that $cat(M^n) \leq crit(M^n)$. This invariant has been widely studied, many references can be found in [CLOT].

^{*}Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto. México and Instituto de Matemáticas, UNAM, Ciudad Universitaria, 04510 México, D.F. México. jcarlos@cimat.mx

[†]Instituto de Matemáticas, UNAM, 62210 Cuernavaca, Morelos, México and Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto. México. fico@math.unam.mx

[‡]Department of Mathematics, Florida State University, Tallahasee, FL 32306, USA. heil@math.fsu.edu

¹AMS classification numbers: 57N10, 57N13, 57N15, 57M30

²Key words and phrases: Lusternik-Schnirelmann category, coverings of *n*-manifolds with open S^2 -contractible or \mathbb{P}^2 -contractible subsets

In 1968 Clapp and Puppe [CP] generalized this invariant as follows: Let \mathcal{A} be a class of topological spaces. For a space $A \in \mathcal{A}$ a subset B in M^n is A-contractible if there are maps $f: B \longrightarrow A$ and $\alpha : A \longrightarrow M^n$ such that the inclusion map $i: B \longrightarrow M^n$ is homotopic to $\alpha \cdot f$. Then $\operatorname{cat}_{\mathcal{A}} M^n$ is the smallest number m such that M^n can be covered by m open sets, each A-contractible in M^n , for some $A \in \mathcal{A}$. If $\mathcal{A} = \{A\}$ consists only of one space A write $\operatorname{cat}_{\mathcal{A}} M^n$ instead of $\operatorname{cat}_{\{A\}} M^n$. Clapp and Puppe also pointed out relations between $\operatorname{cat}_{\mathcal{A}} M^n$ and the set of critical points of smooth functions of M^n to \mathbb{R} . For n = 3 Khimshiashvili and Siersma [KhS] obtained a relation between $\operatorname{cat}_{S^1}(M^3)$ and the set of critical circles of smooth functions $M^3 \to \mathbb{R}$. In [GGH],[GGH1],[GGH2] we obtained a complete classification of the closed (topological) n-manifolds with $\operatorname{cat}_{S^1}(M^n) = 2$.

Motivated by the work of Gromov [G] (see also [I]) we define $cat_{ame}M^n$ to be the smallest number of open and amenable sets needed to cover M^n ; here a set $A \subset M$ is *amenable* if for each path-component A_k of A the image of the inclusion induced homomorphism $im(\iota_* : \pi(A_k) \to \pi(M^n))$ is an amenable group. Gromov has shown [G] that if M^n is a closed *n*-manifold with positive simplicial volume then $cat_{ame}(M^n) = n + 1$. Hence, by Perelman (see [MT]), if $cat_{ame}M^3 \leq 3$ then M is a graph manifold. If \mathcal{A} is the class of connected CW-complexes with amenable fundamental groups then $cat_{ame}M^n \leq cat_{\mathcal{A}}M^n \leq cat_{\mathcal{K}}M^n \leq n+1$ for any \mathcal{K} in \mathcal{A} . Examples of such \mathcal{K} are P (a point), S^1 , S^2 , \mathbb{P}^2 , $S^1 \times S^1$ (an S^1 -bundle over S^1).

In the present paper we consider the cases of $cat_{S^2}(M^n)$ and $cat_{\mathbb{P}^2}(M^n)$. The main results are **Theorem 1** which gives a classification of (topological) *n*-manifolds with $cat_{S^2}(M^n) = 2$, and **Theorem 2** which exhibits a complete list of the fundamental groups of all (topological) *n*-manifolds with $cat_{\mathbb{P}^2}(M^n) = 2$. In particular, for n = 3 we obtain in **Corollary 2** a complete list of all 3-manifolds of $cat_{\mathbb{P}^2}(M^3) = 2$.

The paper is organized as follows: In section 2 we point out that if $cat_K(M^n) = 2$ for a CW-complex K then M^n can be covered by two compact K-contractible submanifolds that meet only along their boundaries and we show how to pull back K-contractible subsets of M to covering spaces of M. In section 3 we associate to a decomposition of M into two K-contractible submanifolds (where $K = S^2$ or \mathbb{P}^2) a graph of groups and compute the fundamental group of this graph of groups. This, together with information

about the homology of M^n developed in section 4 is used to prove Theorem 1 in section 5 and Theorem 2 in section 6.

2 K-contractible subsets

In this section we assume that $M = M^n$ is a closed connected *n*-manifold and K is a CW-complex.

A subset W of M is K-contractible (in M) if there are maps $f: W \to K$ and $\alpha: K \to M$ such that the inclusion $\iota: W \to M$ is homotopic to $\alpha \cdot f$.

 $cat_K(M)$ is the smallest number m such that M can be covered by m open K-contractible subsets.

Note that a subset of a K-contractible set is also K-contractible. It is easy to show that cat_K is a homotopy type invariant.

In particular, if $\operatorname{cat}_K(M) = 2$ then M is covered by two open sets W_0, W_1 and for i = 0, 1, there are maps f_i and α_i such that the diagram below is homotopy commutative:

The following proposition allows us to replace the open sets W_i by compact submanifolds that meet only along their boundaries.

Proposition 1. If $\operatorname{cat}_K M = 2$ then M can be expressed as a union of two compact K-contractible n-submanifolds W_0 , W_1 such that $W_0 \cap W_1 = \partial W_0 = \partial W_1$.

This was proved in [GGH] for $K = S^1$ using topological transversality (see [KS] and [Q]). The same proof applies for any finite complex K.

Now suppose $p: \tilde{M} \to M$ is a covering map. For $\alpha: K \to M$ let \tilde{K}_p be the pullback of

i.e. $\tilde{K}_p = \{ (x, y) \in K \times \tilde{M} \mid \alpha(x) = p(y) \}$ and let $q : \tilde{K}_p \to K, \tilde{\alpha} : \tilde{K}_p \to \tilde{M}$ be the maps induced by the projections $q(x, y) = x, \tilde{\alpha}(x, y) = y$.

Lemma 1. Let $W \hookrightarrow M$ be K-contractible in M with $\iota \simeq \alpha \cdot f$ and let $p: \tilde{M} \to M$ be a covering map. Then $\tilde{W} := p^{-1}(W)$ is \tilde{K}_p -contractible in \tilde{M} .

Proof. We have a diagram

where p' is the restriction of p and $\tilde{\iota}$ is the inclusion. The homotopy $\iota \simeq \alpha \cdot f$ lifts to a homotopy $\tilde{\iota} \simeq \tilde{h}$ for some map $\tilde{h} : \tilde{W} \to \tilde{M}$ such that $(\alpha \cdot f) \cdot p' = p \cdot \tilde{h}$. Now define \tilde{f} by $\tilde{f}(z) = (fp'(z), \tilde{h}(z))$ to get $q \cdot \tilde{f} = f \cdot p'$ and $(\tilde{\alpha} \cdot \tilde{f}) = \tilde{h} \simeq \tilde{\iota}$.

3 Fundamental group

In this section we consider the structure of $\pi_1(M^n)$ for a closed *n*-manifold M^n with $cat_{S^2}(M^n) = 2$ or $cat_{\mathbb{P}^2}(M^n) = 2$ by using the theory of graphs of groups ([S]).

Since clearly $cat_{S^2}(S^1) = cat_{\mathbb{P}^2}(S^1) = 2$ we assume from now on that n > 1.

By Proposition 1 we may assume that

• $M^n = W_0 \cup W_1$ such that $F := W_0 \cap W_1 = \partial W_0 = \partial W_1$. Here $W_i = W_i^n$ are K-contractible n-submanifolds of M where $K = S^2$ or $K = \mathbb{P}^2$.

Consider the graph G of (M, F) whose vertices (resp. edges) are in oneto-one correspondence with the components W_i^j of W_i , i = 0, 1 (resp. with the components $F_{jk} = W_0^j \cap W_1^k$ of F). Vertices of G corresponding to W_0^j and W_1^k are joined by the edges corresponding to the components of $W_0^j \cap W_1^k$. For the associated graph \mathcal{G} of groups the group G_v associated to a vertex vcorresponding to a component W_i^j of W_i is $im(\pi_1(W_i^j) \to \pi_1(M))$ and the group G_e associated to an edge e corresponding to a component F_k of Fis $im(\pi_1(F_k) \to \pi_1(M))$. In our case these groups are either Z_2 or trivial. For the vertices v, v' of e the monomorphisms $G_e \to G_v$ and $G_e \to G_{v'}$ are induced by inclusions.

The fundamental group of M is isomorphic to the fundamental group $\pi \mathcal{G}$ of \mathcal{G} (see for example [SW]).

For the computation of $\pi \mathcal{G}$ we follow [S]: Pick an orientation of each edge of G. For each (oriented) edge e from a vertex v to a vertex v' the corresponding element in $\pi \mathcal{G}$ is denoted by g_e . The monomorphism $G_e \to G_v$ (resp. $G_e \to G_{v'}$) sends a generator a_e of G_e to a generator b_v of G_v (resp. to a generator $b_{v'}$ of $G_{v'}$). Let T be a maximal tree T in G. Then $\pi \mathcal{G}$ is generated by the g_e for each (oriented) edge e in G - T and the generators b_v of G_v and defining relations are $g_e b_v g_e^{-1} = b_{v'}$ for $e \in G - T$ and $b_v = b_{v'}$ for $e \in T$. From this presentation of $\pi \mathcal{G}$ it follows that if all vertex groups of \mathcal{G} are trivial then $\pi \mathcal{G} \cong F$, for some free group F, hence

Lemma 2. If $cat_{S^2}(M^n) = 2$ then $\pi \mathcal{G}$ is a free group (possibly trivial).

So the only closed 2-manifold of S^2 -category 2 is S^2 .

So assume now that $cat_{\mathbb{P}^2}(M^n) = 2$. If the group associated to a vertex v (resp. edge e) is Z_2 we say that v (resp. e) is a Z_2 -vertex (resp. a Z_2 -edge). An edge-path in G consisting of Z_2 -vertices and Z_2 -edges will be called a Z_2 -path.

Lemma 3. Assume there are more than two Z_2 -vertices in \mathcal{G} . Then the subgraph of G consisting of the Z_2 -vertices and Z_2 -edges is connected.

Proof. G is a bipartite graph with vertices colored by the components of W_0 and W_1 . We may assume that there are at least two Z_2 -vertices v, v' corresponding to different components W_0^0, W_0^k of W_0 . We claim that there is a Z_2 -path in G from v to v'.

To see this note that we have a homotopy-commutative diagram

and since v and v' are Z_2 -vertices, there are loops β and γ in $int(W_0^0)$ and $int(W_0^k)$ which are not trivial in M. Both are homotopic to a loop representing the non trivial element of the image of $\alpha_{0*} : \pi_1(\mathbb{P}^2) \to \pi_1(M)$. Hence β and γ are homotopic in M.

Let $H: S^1 \times I \to M$ be a homotopy between β and γ . By general position we may assume that $H^{-1}(F)$ is a union of disjoint simple closed curves in $int(S^1 \times I)$. Let $s_0 = S^1 \times \{0\}$ and let $s_1, s_2, \ldots s_{r-1}$ be the essential components of $H^{-1}(F)$ (those which do not bound disks in $S^1 \times I$) indexed in such a way that s_i separates s_0 from s_{i+1} (i = 1, ..., r-2). Let $s_r = S^1 \times \{1\}$ (r is odd ≥ 3). For any i, H restricted to s_i defines a loop homotopic to β and therefore Hs_i is nontrivial in M.

There is a path $\omega : [0,1] \to S^1 \times I$, joining $S^1 \times \{0\}$ to $S^1 \times \{1\}$, which does not intersect inessential components of $H^{-1}(F)$ and such that, for j = 0, ..., r - 1, i) $H\omega([j/r, (j+1)/r])$ is contained in a component W_i^j of W_i , where *i* is *j* mod 2 and

ii) $H\omega(j/r)$ is in a component F^j of F for 0 < j < r.

v (resp. v') is the vertex associated to W_0^0 (resp. $W_0^{r-1} = W_0^k$) and the edges corresponding to the sequence $F^1, F^2, \ldots, F^{r-1}$ define a Z_2 -path from v to v'.

This proves the claim.

By the same proof we see that any Z_2 -vertex associated to a component of W_1 can be joined by a Z_2 -path in G to the vertex corresponding to W_1^1 . Hence the subgraph of G consisting of the Z_2 -vertices and Z_2 - edges is connected.

Now we can describe the structure of $\pi \mathcal{G}$:

Lemma 4. If $cat_{\mathbb{P}^2}(M^n) = 2$ then $\pi \mathcal{G}$ is one of the following groups: F, $\mathbb{Z}_2 * \mathbb{Z}_2 * F$, $(\mathbb{Z}_2 \times F') * F$ where F and F' are free groups (possibly trivial).

Proof. $\pi \mathcal{G}$ is generated by the g_e for each (oriented) edge e in G - T and the generators b_v of $G_v \cong \mathbb{Z}_2$ for each Z_2 -vertex v.

If all vertex groups are trivial then $\pi \mathcal{G} \cong F$, for some free group F.

If all vertex groups but one is trivial then $\pi \mathcal{G} \cong \mathbb{Z}_2 * F = (\mathbb{Z}_2 \times F') * F$ for F' = 1.

Assume that all vertex groups but two are trivial. If all edge groups are trivial then $\pi \mathcal{G} \cong \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{F}$. If there is at least one nontrivial edge group then $\pi \mathcal{G} \cong (\mathbb{Z}_2 \times \mathbb{F}) * \mathbb{F}'$ for some free groups \mathbb{F}, \mathbb{F}' .

If there are more than two non-trivial (\mathbb{Z}_2) -vertex groups then by Lemma 3 the subgraph G' of G consisting of all non-trivial vertex and edge groups is connected and we may choose a maximal tree T' in G' with $T' \subset T$. Then $\pi \mathcal{G} \cong \pi \mathcal{G}''$, where G'' = G/T' is obtained by collapsing T' to a vertex and \mathcal{G}'' is as in the previous paragraph. \Box

4 Homology groups

In this section we compute the homology groups of a closed *n*-manifold M^n with $cat_K(M^n) = 2$ for certain CW-complexes K.

We assume that

• $M^n = W_0 \cup W_1$ such that $F := W_0 \cap W_1 = \partial W_0 = \partial W_1$.

Let \mathcal{R} be a ring for which M is orientable over \mathcal{R} . The exact cohomology sequence of (M, W_i) is isomorphic via Lefschetz-Duality to the exact homology sequence of (M, W_{i-1}) , (i = 0, 1) and we obtain a commutative diagram

where ι_{n-j}^{*} and ι_{*}^{j} are induced by inclusion. Thus we have an exact sequence

(*)
$$0 \to im \iota_*^j \to H_j(M^n; \mathcal{R}) \to im \iota_{n-j}^* \to 0$$

If K_i is a CW-complex and W_i is K_i -contractible (i = 0, 1) with inclusions $\iota_i \simeq \alpha_i \cdot f_i$, then i_* and i^* can be factored as

$$\iota_*^j : H_j(W_i; \mathcal{R}) \xrightarrow{f_{i*}} H_j(K_i; \mathcal{R}) \xrightarrow{\alpha_{i*}} H_j(M^n; \mathcal{R})$$
$$\iota_{n-j}^* : H^{n-j}(M^n; \mathcal{R}) \xrightarrow{\alpha_i^*} H^{n-j}(K_{1-i}; \mathcal{R}) \xrightarrow{f_i^*} H^{n-j}(W_{1-j}; \mathcal{R})$$

Example 1. W_i is K_i -contractible and $K_0 = K_1 = S^2$.

For 0 < j < n and $\mathcal{R} = \mathbb{Z}$ or \mathbb{Z}_2 the images $im \iota_*^j$, $im \iota_{n-j}^*$ are cyclic (possibly trivial) for j = 2, j = n - 2, respectively, and 0 otherwise. In particular for $n \neq 4$ it follows that $H_j(M^n; \mathbb{Z}_2) = 0$ for $j \neq 0, 2, n-2, n$ and $H_j(M^n; \mathbb{Z}_2)$ is 0 or \mathbb{Z}_2 for j = 2, n-2.

If n = 3 we obtain $H_1(M^3; \mathbb{Z}_2) = 0$ or $\cong \mathbb{Z}_2$. Since $\pi_1(M^3)$ is free (by Lemma 2) it follows that $\pi_1(M^3) = 1$ or \mathbb{Z} and so M^3 is either S^3 or an S^2 -bundle over S^1 .

If n > 3 then $H_1(M^n; \mathbb{Z}_2) = 0$ so M^n is orientable and, by Lemma 2, $\pi(M^n) = 1$. We can therefore apply (*) with $\mathcal{R} = \mathbb{Z}$.

Example 2. W_i is K_i -contractible and $K_0 = K_1 = \mathbb{P}^2$.

For 0 < j < n and $\mathcal{R} = \mathbb{Z}$ or \mathbb{Z}_2 the images $im \iota_*^j$; $im \iota_{n-j}^*$ are cyclic (possibly trivial) for j = 1, 2; j = n - 1, n - 2, respectively, and 0 otherwise. In particular

 $H_1(M^n; \mathbb{Z}_2)$ has order ≤ 4 for n = 3 $H_1(M^n; \mathbb{Z}_2)$ has order ≤ 2 for $n \geq 2$

 $H_1(M^n; \mathbb{Z}_2)$ has order ≤ 2 for n > 3

If M^n is orientable then $H_1(M^n; \mathbb{Z})$ is finite (of order at most 4 for n = 3 and order at most 2 for n > 3).

Example 3. W_i is K_i -contractible and $K_0 = K_1 = 2\mathbb{P}^2$ (the disjoint union of two projective planes).

If M^n is orientable then $H_1(M^n; \mathbb{Z})$ is finite (of order at most 16 for n = 3 and order at most 4 for n > 3).

5 $cat_{S^2}(M^n) = 2$

E. Turner [T] shows that for n > 5, a smooth closed *n*-manifold of type (n, k, 1) admits a decomposition as a union of two D^{n-2} -bundles over S^k along their boundaries. Hence these manifolds have $cat_{S^k}(M^n) = 2$. We use Turners definition without the assumption that M is smooth:

Definition 1. A topological *n*-manifold M is of type (n, k, r) if M is simplyconnected, 3 < 2k + 1 < n, and $H_k(M) = H_{n-k}(M) = \mathbb{Z}^r$ the only nontrivial homology groups in positive dimensions less than n.

Now assume that M is a topological n-manifold M with $cat_{S^2}(M) = 2$

For n > 3 we know from Example 1 that M is simply-connected and furthermore for n > 4 possibly nontrivial homology groups (in positive dimensions less than n) occur at most for dimensions 2 and n - 2, in which case the homology groups are cyclic.

If n > 4 and $H_2(M) = 0$ then $H_{n-2}(M) = 0$ by Poincaré Duality and since M is simply connected, $\pi_j(M) = H_j(M) = 0$ for j < n, and $\pi_n(M) = H_j(M) = Z$ for j = n by Hurewicz. Let $f : S^n \to M$ represent a generator of $\pi_n(M)$. Then f induces isomorphisms $f_* : H_*(S^n) \to H_*(M)$, so f is a homotopy equivalence by Whitehead. Hence M is homeomorphic to S^n .

If n > 5 and $H_2(M) \neq 0$ then from Poincaré and Universal Coefficients the torsion subgroups $tor(H_2(M)) = tor(H^{n-2}(M)) = tor(H_{n-3}(M)) = 0$ and so $H_2(M) = \mathbb{Z}$ and $H_{n-2}(M) = H^2(M) = Hom(H_2(M); \mathbb{Z}) = \mathbb{Z}$. Hence M has type (n, 2, 1).

If n = 4 then $tor(H_2(M)) = tor(H^2(M)) = tor(H_1(M)) = 0$ and it follows from Example 1 and (*) with $\mathcal{R} = \mathbb{Z}$ that $H_2(M)$ is either 0, \mathbb{Z} , or \mathbb{Z}^2 . These simply-connected 4-manifolds have been classified by Friedman [F]: M^4 is one of the following:

 $\begin{array}{l} S^4, \, S^2 \times S^2, \, \mathbb{C}P^2, \, \mathbb{C}P^2 \# \mathbb{C}P^2, \, \mathbb{C}P^2 \# (-\mathbb{C}P^2), \\ *\mathbb{C}P^2, \, *(\mathbb{C}P^2 \# \mathbb{C}P^2), \, *(\mathbb{C}P^2 \# (-\mathbb{C}P^2)). \end{array}$

Here *M denotes a (nonsmoothable) manifold homotopy equivalent to M with nonzero Kirby-Siebenmann invariant.

Conversely each of these is homotopy equivalent to a manifold which is a union of two submanifolds each homeomorphic to D^4 or a D^2 -bundle over S^2 so they are of $cat_{S^2} = 2$.

If n = 5 then $H^4(M^5; \mathbb{Z}_2) = H_1(M^5; \mathbb{Z}_2) = 0$, so the Kirby-Siebenmann invariant in $H^4(M^5; \mathbb{Z}_2)$ is zero and therefore M^5 is smoothable (Thm. 5.4 p.318 of [KS]). The simply-connected smooth 5-manifolds M with $H_2(M)$ cyclic have been classified by Barden (Theorem 2.3 in [B]). M^5 is one of the following (with the notations from [B]): $X_0 = S^5, X_{-1}, X_{\infty}$ or $M_{\infty} = S^3 \times S^2$.

Here X_{-1} is the Wu-manifold, the only simply-connected 5-manifold with second homology a nontrivial finite cyclic group and X_{∞} is the nontrivial S^3 -bundle over S^2 . Since this is the double of the nontrivial D^3 -bundle over S^2 it has $cat_{S^2} = 2$.

We sum up these results in

Theorem 1. Let M^n be a closed topological *n*-manifold with $cat_{S^2}(M^n) = 2$. Then M^n is one of the following:

$$M^{n} \approx \begin{cases} S^{2} & \text{if } n = 2\\ S^{3}, \text{ an } S^{2} \text{-bundle over } S^{1} \text{ (there are two)} & \text{if } n = 3\\ S^{4}, S^{2} \times S^{2}, \mathbb{C}P^{2}, \mathbb{C}P^{2} \# \mathbb{C}P^{2}, \mathbb{C}P^{2} \# (-\mathbb{C}P^{2}), \\ & *\mathbb{C}P^{2}, *(\mathbb{C}P^{2} \# \mathbb{C}P^{2}), *(\mathbb{C}P^{2} \# (-\mathbb{C}P^{2})) & \text{if } n = 4\\ S^{5}, \text{ an } S^{3} \text{-bundle over } S^{2} \text{ (there are two)}, Wu' \text{ s manifold } \text{if } n = 5\\ S^{n} \text{ or of type } (n, 2, 1) & \text{if } n > 5 \end{cases}$$

Let us say that M^n is a *twisted double* over a D^{n-2} -bundle over S^2 if $M = V_0 \cup V_1$ with $V_0 \cap V_1 = \partial V_0 = \partial V_1$ and $V_0 \approx V_1$ homeomorphic to either the trivial or nontrivial D^{n-2} -bundle over S^2 .

We now show that for n > 5 all the manifolds other than S^n in this Theorem are such twisted doubles, so all the manifolds M^n in the Theorem do have $cat_{S^2}(M^n) = 2$.

Corollary 1. For n > 5 a closed (topological) n-manifold M has $cat_{S^2}(M^n) = 2$ if and only if M^n is S^n or a twisted double over a D^{n-2} -bundle over S^2 .

Proof. If n = 6 the (not necessarily smooth) manifolds of type (6, 2, 1) have been classified by P. E. Jupp ([J], Proposition 1). They are obtained as a union of two D^4 -bundles over S^2 along their boundaries.

If M has type (n, 2, 1) for n > 6 then $H^4(M; \mathbb{Z}_2) = 0$ and M has a PL-structure since the Kirby-Siebenmann obstruction is 0. Now a generator of $H_2(M)$ can be represented by a Pl-embedded locally flat 2-sphere in Mwith normal bundle V_0 the trivial or nontrivial D^{n-2} bundle over S^2 . Let $V_1 = \overline{M - V_0}$. From the homology and cohomology sequences of (M, V_1) it follows (compare e.g. [GGH2], proof of Prop. 3) that V_1 has the homology of S^2 . Furthermore V_1 is 1-connected and smoothable. Embedding a smooth S^2 , representing the generator of $H_2(V_1)$, in the interior of V_1 it follows from Theorem 4.1 of [SM] that V_1 is a D^{n-2} -bundle over S^2 . Note that V_1 is homeomorphic to V_0 since $\partial V_1 = \partial V_0$ and the boundary of the nontrivial D^{n-2} -bundle is not homeomorphic to $S^{n-3} \times S^2$ (since its second Stiefel Whitney class is non zero).

The twisted doubles of $D^{n-2} \times S^2$ are classified by Levine [L] (page 40 section 5.4).

$\mathbf{6} \quad cat_{\mathbb{P}^2}(M^n) = 2$

In this section we classify the fundamental groups of all closed *n*-manifolds of \mathbb{P}^2 -category 2. Recall that $\pi_1(M^n)$ is isomorphic to the fundamental group $\pi \mathcal{G}$ of \mathcal{G} as in Lemma 4.

Theorem 2. Let M^n be a closed n-manifold with $cat_{\mathbb{P}^2}(M^n) = 2$. Then $\pi_1(M^n)$ is one of the following groups:

$$\pi_1(M^n) = \begin{cases} \mathbb{Z} & \text{if } n = 1\\ 1 & \text{if } n = 2\\ 1, \ \mathbb{Z}_2, \ \mathbb{Z}_2 * \mathbb{Z}_2, \ \mathbb{Z}_2 \times \mathbb{Z} & \text{if } n = 3\\ 1, \ \mathbb{Z}_2 & \text{if } n > 3 \end{cases}$$

Proof. For n = 1 write S^1 as a union of two intervals. For n = 2 note that $cat_{\mathbb{P}^2}(\mathbb{P}^2) = 1$ and the fundamental group of any other non simply-connected M^2 is not in the list of Lemma 4. So suppose from now on that n > 2.

If M^n is orientable then $H_1(M^n; \mathbb{Z})$ is finite by Example 2 and the only possibilities for the groups in Lemma 4 are 1, \mathbb{Z}_2 , $\mathbb{Z}_2 * \mathbb{Z}_2$. Furthermore if n > 3 Example 2 shows that $H_1(M^n; \mathbb{Z}_2)$ has order ≤ 2 so the only possibilities in this case are 1, \mathbb{Z}_2 .

Thus assume that M^n is non-orientable. We check the groups in Lemma 4.

We claim that $\pi_1(M^n)$ can not be free. Otherwise, if $p: \tilde{M} \to M$ is the two-fold orientable cover then $\pi_1(M)$ and $\pi_1(\tilde{M})$ are free of rank ≥ 1 and we

have a homotopy commutative diagram

such that the image $\alpha_{i*}\pi_1(\mathbb{P}^2)$ is trivial in $\pi_1(M)$. Hence α_i has two lifts to \tilde{M} and it follows that the pullback $\tilde{\mathbb{P}}^2$ of

is homeomorphic to $2\mathbb{P}^2$, the disjoint union of two copies of \mathbb{P}^2 . By Lemma 1 $\tilde{W}_i := p^{-1}(W_i)$ is $\tilde{\mathbb{P}}^2$ -contractible in \tilde{M} . Hence $cat_{\tilde{\mathbb{P}}^2}(\tilde{M}) = 2$ and $H_1(\tilde{M};\mathbb{Z})$ is finite by Example 3, a contradiction.

If $\pi_1(M^n) = \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{F}$ or $\pi_1(M^n) = (\mathbb{Z}_2 \times \mathbb{F}') * \mathbb{F}$ then since by Example 2, $H_1(M^n; \mathbb{Z}_2)$ has order ≤ 2 , (≤ 4) for n > 3, (n = 3, respectively), it follows that $\pi_1(M^n) = \mathbb{Z}_2$ for n > 3 and for n = 3 we have the possibilities $\pi_1(M^3) = \mathbb{Z}_2 * \mathbb{Z}_2, \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}$, or $\mathbb{Z}_2 * \mathbb{Z}$.

To complete the proof of the Theorem we show that for n = 3, $\pi_1(M^3) \not\cong \mathbb{Z}_2 * \mathbb{Z}$.

Assuming that $\pi_1(M^3) = \mathbb{Z}_2 * \mathbb{Z}$ it follows from Kneser's Conjecture (proved by Stallings [ST]) and Perelman that $M = \mathbb{P}^3 \# (S^2 \times S^1)$ and for the two-fold orientable cover $p : \tilde{M} \to M$ we have $\tilde{M} = \mathbb{P}^3 \# (S^2 \times S^1) \# \mathbb{P}^3$. Note that $p_* \pi_1(\tilde{M})$ is a normal subgproup of $\pi_1(M)$ that contains elements of order 2. Since in $\mathbb{Z}_2 * \mathbb{Z}$ all elements of order 2 are conjugate, $p_* \pi_1(\tilde{M})$ contains all elements of order 2 and therefore (referring to diagram (**)), $\alpha_{i*}(\pi_1 \mathbb{P}^2) \subset \pi_1(\tilde{M})$. As before this implies that the pullback $\tilde{\mathbb{P}}^2$ of (* * *) is homeomorphic to $2\mathbb{P}^2$, $\tilde{W}_i = p^{-1}(W_i)$ is $\tilde{\mathbb{P}}^2$ -contractible in \tilde{M} , $cat_{\tilde{\mathbb{P}}^2}(\tilde{M}) = 2$ and $H_1(\tilde{M}; \mathbb{Z})$ is finite, which is not the case.

In particular for closed 3-manifolds M^3 we obtain

Corollary 2. $cat_{\mathbb{P}^2}(M^3) = 2$ if and only if M^3 is one of the following 3manifolds: S^3 , \mathbb{P}^3 , $\mathbb{P}^3 \# \mathbb{P}^3$, $\mathbb{P}^2 \times S^1$.

Proof. By Perelman [MT] the closed 3-manifolds with fundamental groups 1 and \mathbb{Z}_2 are S^3 and \mathbb{P}^3 . By Kneser's conjecture, if $\pi_1(M) = \mathbb{Z}_2 * \mathbb{Z}_2$ then $M = M_1 \# M_2$ for some closed M_i with $\pi_1(M_i) = \mathbb{Z}_2$ and so $M = \mathbb{P}^3 \# \mathbb{P}^3$. If $\pi_1(M) = \mathbb{Z}_2 \times \mathbb{Z}$ then by Epstein's Theorem [E] the element of finite order is carried by a 2-sided projective plane in M and so the orientable double cover \tilde{M} of M has fundamental group \mathbb{Z} . By Perelman $M = S^2 \times S^1$ and it follows from Tao [TA]) that $M = \mathbb{P}^2 \times S^1$.

Conversely every M^3 in the list has $cat_{\mathbb{P}^2} = 2$, since M^3 is a union of two 3-submanifolds along their boundary, each a 3-ball or I-bundle over \mathbb{P}^2 . \Box

References

- [B] Barden, Simply Connected Five-manifolds, Ann.Math. 82 (1965), 365– 385.
- [CLOT] O. Cornea, G. Lupton, J. Oprea, D. Tanrè, Lusternik-Schnirelmann Category, Math. Surveys Monographs 103, Amer. Math. Soc. (2003).
- [CP] M. Clapp and D.Puppe, Invariants of the Lusternik-Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986), 603–620.
- [E] D.B.A.Epstein, Projective Planes in 3-manifolds, Proc. London Math. Soc. (3) 11 (1961), 469-484.
- [F] M.H. Friedman, The topology of four-dimensional manifolds, J. Diff. Geometry 17 (1982), 357–454.
- [G] M. Gromov, Volume and Bounded Cohomology, Inst. Hautes tudes Sci. Publ. Math. 56 (1982), 599.
- [GG] J. C. Gómez-Larrañaga and F. González-Acuña, Lusternik– Schnirelmann category of 3–manifolds, Topology 31 (1992), 791–800.

- [GGH] J. C. Gómez-Larrañaga, F.González-Acuña and Wolfgang Heil, Fundamental groups of manifolds with S^1 -category 2, Math. Z. 259 (2008), 419–432.
- [GGH1] J. C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil, Manifolds with S¹-category 2 have cyclic fundamental groups, Math. Z. 266 (2010), 783–788.
- [GGH2] J. C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil, Higher dimensional manifolds of S¹-category 2. Preprint.
- N. V. Ivanov, Foundations of the Theory of Bounded Cohomology, Studies in topology, V. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 143 (1985), 69109, 177178.
- [J] P. E. Jupp, Classification of certain 6-manifolds, Proc. Camb.Phil. Soc. 73 (1973), 293–300.
- [KS] R. Kirby and L. Siebenmann, Some basic theorems about topological manifolds, Foundational Essays on Topological Manifolds, Smoothings and Triangulations, Annals of Mathematics Studies 88 Princeton University Press.
- [KhS] G. Khimshiashvili and D. Siersma, Remarks on minimal round functions. Geometry and topology of caustics—CAUSTICS '02, 159–172, Banach Center Publ., 62, Polish Acad. Sci., Warsaw, 2004.
- [L] J. Levine, Self-equivalences of $S^n \times S^k$, Trans. Am. math. Soc.,143 (1969), 523-544.
- [MT] J. Morgan and G. Tian, Ricci Flow and the Poincarè Conjecture, AMS Clay Math. Monographs, vol 3 (2007)
- [Q] F. Quinn, Ends of maps. III. Dimensions 4 and 5, J. Differential Geom. 17 No. 3 (1982), 503-521.
- [S] J.P. Serre, Trees, Springer-Verlag, 1980.
- [SM] Smale, S. On the structure of manifolds. Amer. J. Math. 84 (1962), 387399.

- [ST] J. Stallings, Grushko's theorem II, Kneser's conjecture. Notices Amer. Math. Soc. 6 (1959), Abstract 559-165, 531-532.
- [SW] P. Scott and C.T.C.Wall, Topological Methods in Group Theory, In Homological Group Theory, London Math. Soc. Lecture Notes Ser. 36, Cambridge Univ. Press (1979).
- [TA] Y. Tao, On fixed point free involutions on $S^1 \times S^2$, Osaka Math. J. 14 (1962), 145-152.
- [T] E.Turner, Diffeomorphisms of product of spheres, Invent.Math. 8 (1969), 69–82.