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Abstract

A closed topological n-manifold M™ is of S2- (resp. P?)-category 2
if it can be covered by two open subsets W1,Ws such that the inclusions
W; — M™ factor homotopically through maps W; — S? (resp. P?).
We characterize all closed n-manifolds of S2-category 2 and of P2-
category 2. 1 2

1 Introduction

While studying the minimal number of critical points of a closed smooth n-
manifold M", denoted by crit(M™), Lusternik and Schnirelmann introduced
what is now called the Lusternik-Schnirelmann category of M™, denoted by
cat(M™), which is defined to be the the smallest number of sets, open and
contractible in M™ that are needed to cover M™. They showed that cat(M™)
is a homotopy type invariant with values between 2 and n+1 and furthermore
that cat(M™) < crit(M™). This invariant has been widely studied, many
references can be found in [CLOT].
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In 1968 Clapp and Puppe [CP] generalized this invariant as follows: Let
A be a class of topological spaces. For a space A € A a subset B in M™ is
A-contractible if there are maps f : B — A and o« : A — M"™ such that
the inclusion map 7 : B — M™ is homotopic to « - f. Then cat4 M" is
the smallest number m such that M™ can be covered by m open sets, each
A-contractible in M", for some A € A. If A = {A} consists only of one
space A write caty M™ instead of caty4y M™. Clapp and Puppe also pointed
out relations between cat 4 M™ and the set of critical points of smooth func-
tions of M"™ to R. For n = 3 Khimshiashvili and Siersma [KhS] obtained a
relation between catgi (M?3) and the set of critical circles of smooth functions
M?* — R. In [GGH],[GGH1],[GGH2] we obtained a complete classification
of the closed (topological) n-manifolds with catg: (M™) = 2.

Motivated by the work of Gromov [G] (see also [I]) we define cat yme M"
to be the smallest number of open and amenable sets needed to cover M™;
here a set A C M is amenable if for each path-component Ay of A the im-
age of the inclusion induced homomorphism im(¢, : m(Ax) — 7(M™)) is an
amenable group. Gromov has shown [G] that if M" is a closed n-manifold
with positive simplicial volume then catgm.(M™) = n+ 1 . Hence, by Perel-
man (see [MT]), if catym.M? < 3 then M is a graph manifold. If A is the
class of connected CW-complexes with amenable fundamental groups then
Catgme M"™ < caty M"™ < catgM™ < n+1 for any K in A. Examples of such
K are P (a point), S, §2?, P2 S1xS! (an S'-bundle over S1).

In the present paper we consider the cases of catgz(M™) and catpz(M™").
The main results are Theorem 1 which gives a classification of (topolog-
ical) m-manifolds with catg2(M"™) = 2, and Theorem 2 which exhibits a
complete list of the fundamental groups of all (topological) n-manifolds with
catpz(M™) = 2. In particular, for n = 3 we obtain in Corollary 2 a complete
list of all 3-manifolds of catp: (M?3) = 2.

The paper is organized as follows: In section 2 we point out that if
cat (M™) = 2 for a CW-complex K then M" can be covered by two compact
K-contractible submanifolds that meet only along their boundaries and we
show how to pull back K-contractible subsets of M to covering spaces of M.
In section 3 we associate to a decomposition of M into two K-contractible
submanifolds (where K = S? or P?) a graph of groups and compute the
fundamental group of this graph of groups. This, together with information
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about the homology of M™ developed in section 4 is used to prove Theorem
1 in section 5 and Theorem 2 in section 6.

2 K-contractible subsets

In this section we assume that M = M" is a closed connected n-manifold
and K is a CW-complex.

A subset W of M is K-contractible (in M) if there are maps f: W — K
and « : K — M such that the inclusion ¢ : W — M is homotopic to a - f.

cat (M) is the smallest number m such that M can be covered by m
open K-contractible subsets.

Note that a subset of a K-contractible set is also K-contractible. It is
easy to show that caty is a homotopy type invariant.

In particular, if caty (M) = 2 then M is covered by two open sets Wy, Wy
and for ¢+ = 0,1, there are maps f; and «; such that the diagram below is
homotopy commutative:

Wi

' M
AN
K

The following proposition allows us to replace the open sets W; by com-
pact submanifolds that meet only along their boundaries.

Proposition 1. If catx M = 2 then M can be expressed as a union of two
compact K -contractible n-submanifolds Wy, W1 such that WoN\W, = 0W,y =
owy.

This was proved in [GGH] for K = S! using topological transversality
(see [KS] and [Q]). The same proof applies for any finite complex K.



Now suppose p : M — M is a covering map. For o : K — M let f(p be
the pullback of

M
P

«

K— M

ie. Ky={(r,y) € KxM | a(z)=p(y)}andlet ¢: K, » K, a: K, — M
be the maps induced by the projections ¢(z,y) = x, a(z,y) = y.

Lemma 1. Let W — M be K-contractible in M with « ~ a - f and let
p: M — M be a covering map. Then W = p 1 (W) is K,-contractible in
M.

Proof. We have a diagram

where p’ is the restriction of p and 7 is the inclusion. The homotopy L~
lifts to a homotopy 7 ~ h for some map h: W — M such that (o f)p

Now defne by He) = (190 by to et o f = F ol ond (3 Py

Q-
b

0= =



3 Fundamental group

In this section we consider the structure of 71 (M™) for a closed n-manifold
M™ with catgz(M™) = 2 or catp2(M™) = 2 by using the theory of graphs of
groups ([S]).

Since clearly catg2(S') = catp2(S') = 2 we assume from now on that
n> 1.

By Proposition 1 we may assume that

o M" = WOUW1 such that F' := Woﬂwl = 8W0 = an Here I/Vz = VVin
are K-contractible n-submanifolds of M where K = S? or K = P2,

Consider the graph G of (M, F') whose vertices (resp. edges) are in one-
to-one correspondence with the components VVZ-j of Wi, i = 0,1 (resp. with
the components Fj, = W7 N WF of F). Vertices of G corresponding to W;
and WF are joined by the edges corresponding to the components of Wg NWE.
For the associated graph G of groups the group G, associated to a vertex v
corresponding to a component W/ of W; is im(m (W?) — m(M)) and the
group (G, associated to an edge e corresponding to a component Fj of F'
is im(my(Fy) — m(M)). In our case these groups are either Z, or trivial.
For the vertices v,0" of e the monomorphisms G, — G, and G, — G, are

induced by inclusions.

The fundamental group of M is isomorphic to the fundamental group 7G
of G (see for example [SW]).

For the computation of 7G we follow [S]: Pick an orientation of each edge
of G. For each (oriented) edge e from a vertex v to a vertex v’ the corre-
sponding element in 7G is denoted by g.. The monomorphism G, — G,
(resp. G. — G,) sends a generator a. of G, to a generator b, of G, (resp.
to a generator b, of Gy). Let T be a maximal tree 7' in G. Then 7§ is
generated by the g. for each (oriented) edge e in G — T" and the generators
b, of G, and defining relations are g.b,g;' = b, for e € G — T and b, = by
foreeT.



From this presentation of 7§ it follows that if all vertex groups of G are
trivial then 7G = F, for some free group F, hence

Lemma 2. If cats:(M™) = 2 then G is a free group (possibly trivial).

So the only closed 2-manifold of S2-category 2 is S2.

So assume now that catpz (M™) = 2. If the group associated to a vertex v
(resp. edge e) is Z; we say that v (resp. e) is a Zy-vertex (resp. a Z-edge).
An edge-path in G consisting of Zj-vertices and Zs-edges will be called a
Zg—path.

Lemma 3. Assume there are more than two Zy-vertices in G. Then the
subgraph of G consisting of the Zy-vertices and Zs-edges is connected.

Proof. GG is a bipartite graph with vertices colored by the components of W,
and Wi;. We may assume that there are at least two Zy-vertices v, v' corre-
sponding to different components W, W§ of W,,. We claim that there is a
Zy-path in G from v to v'.

To see this note that we have a homotopy-commutative diagram

W uwy M

PQ

and since v and v' are Zy-vertices, there are loops # and ~ in int(WQ) and
int(W}) which are not trivial in M. Both are homotopic to a loop represent-
ing the non trivial element of the image of ag, : m (P?) — 71 (M). Hence (3
and v are homotopic in M.

Let H : S'x I — M be a homotopy between 3 and 7. By general position
we may assume that H'(F) is a union of disjoint simple closed curves in
int(S x I). Let sg = S' x {0} and let s, 9, ..., be the essential com-
ponents of H~!(F) (those which do not bound disks in S' x I) indexed in
such a way that s; separates sg from s;,; (1 =1,....,7 —2). Let s, = S* x {1}
(r is odd > 3). For any i, H restricted to s; defines a loop homotopic to 3



and therefore Hs; is nontrivial in M.

There is a path w : [0,1] — S x I, joining S* x {0} to St x {1},
which does not intersect inessential components of H~!(F) and such that,
for j=0,...,r—1,

i) Hw([j/r, (j +1)/r]) is contained in a component W/ of W;, where i is j
mod 2 and
ii) Hw(j/r) is in a component FJ of F for 0 < j < r.

v (resp. v') is the vertex associated to W (resp. W' = W{) and the
edges corresponding to the sequence F', F2 ... F"! define a Z,-path from
v to v,

This proves the claim.

By the same proof we see that any Zs-vertex associated to a component of
W, can be joined by a Zo-path in G to the vertex corresponding to W{. Hence
the subgraph of GG consisting of the Z,-vertices and Z»- edges is connected.

m

Now we can describe the structure of 7G:

Lemma 4. If catpz(M"™) = 2 then ©G is one of the following groups:
F, ZyxZoxF, (Zy x F')x F
where F and F' are free groups (possibly trivial).

Proof. 7§G is generated by the g, for each (oriented) edge e in G — T and the
generators b, of G, = Zy for each Z,-vertex v.

If all vertex groups are trivial then 7G = F, for some free group F.

If all vertex groups but one is trivial then 7G = Zy x F = (Zy x F') x F
for F/ = 1.

Assume that all vertex groups but two are trivial. If all edge groups are
trivial then 7G = 7Zs % Zo x F. If there is at least one nontrivial edge group
then 7G = (Zy x F) x F’ for some free groups F, F’.



If there are more than two non-trivial (Zy-)vertex groups then by Lemma
3 the subgraph G’ of GG consisting of all non-trivial vertex and edge groups
is connected and we may choose a maximal tree 77 in G' with 7" C T. Then
G = 1G", where G” = G/T" is obtained by collapsing 7" to a vertex and G”
is as in the previous paragraph. O

4 Homology groups

In this section we compute the homology groups of a closed n-manifold M™
with catgx(M™) = 2 for certain CW-complexes K.

We assume that

e M"™ = WyUW; such that ' := Wy W, = oWy = OWj.

Let R be a ring for which M is orientable over R. The exact cohomology
sequence of (M, W;) is isomorphic via Lefschetz-Duality to the exact homol-
ogy sequence of (M, W;_4), (i =0,1) and we obtain a commutative diagram

*
Ln—j

H"7(M",W,_;R) — H"7/(M™;R)

Hn_j(Wl_Z‘; R)

R
IR
IR

H;(M",W;R)

where ¢ . and ¢/ are induced by inclusion. Thus we have an exact se-

J
quence

(%) 0—imi — H;(M™R) —imu, ; —0

If K; is a CW-complex and W is K;-contractible (i = 0, 1) with inclusions
L ~ «y - fi, then i, and ¢* can be factored as
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4 Hy (Wi R) 5 H(K;R) %S Hy(M™R)

s HYI(M™R) S HY (K R) L H (Wi i R)

Example 1. W; is K;-contractible and K, = K, = S

For 0 < j < nand R = Z or Zy the images im ¢ , im Ly,—; are cyclic (possibly
trivial) for j = 2, j = n — 2, respectively, and 0 otherwise. In particular for
n # 4 it follows that H;(M";Zs) = 0 for j # 0,2,n —2,n and H;(M";Z,) is
0 or Zs for j =2,n — 2.

If n = 3 we obtain Hy(M?;Z,) = 0 or & Z,. Since m;(M?) is free (by Lemma
2) it follows that 71 (M?) = 1 or Z and so M? is either S* or an S*-bundle
over S

If n > 3 then Hy(M™;Zs) = 0so M™ is orientable and, by Lemma 2, 7(M") =
1. We can therefore apply (%) with R = Z.

Example 2. W, is K;-contractible and K, = K; = P2.

For 0 < j < nand R = Z or Zy the images im J; im Ly,—; are cyclic (possibly
trivial) for 7 = 1,2; j = n — 1,n — 2, respectively, and 0 otherwise. In
particular

H{(M"™,Zs) has order < 4 for n =3

H,(M™;Zy) has order < 2 for n > 3

If M™ is orientable then Hy(M";Z) is finite (of order at most 4 for n = 3
and order at most 2 for n > 3).

Example 3. W, is K;-contractible and K, = K; = 2P? (the disjoint union
of two projective planes).

If M™ is orientable then H;(M";Z) is finite (of order at most 16 for n = 3
and order at most 4 for n > 3).

5 catgp(M") =2

E. Turner [T] shows that for n > 5, a smooth closed n-manifold of type
(n,k,1) admits a decomposition as a union of two D" 2-bundles over S*
along their boundaries. Hence these manifolds have catge (M™) = 2. We use
Turners definition without the assumption that M is smooth:



Definition 1. A topological n-manifold M is of type (n, k,r) if M is simply-
connected, 3 < 2k+1 < n, and Hy(M) = H,,_(M) = Z" the only nontrivial
homology groups in positive dimensions less than n.

Now assume that M is a topological n-manifold M with catg: (M) = 2

For n > 3 we know from Example 1 that M is simply-connected and
furthermore for n > 4 possibly nontrivial homology groups (in positive di-
mensions less than n) occur at most for dimensions 2 and n — 2, in which
case the homology groups are cyclic.

If n > 4 and Hy(M) = 0 then H, (M) = 0 by Poincaré Duality
and since M is simply connected, m;(M) = H;(M) = 0 for j < n, and
(M) = H;j(M) = Z for j = n by Hurewicz. Let f : S™ — M represent a
generator of ,(M). Then f induces isomorphisms f. : H.(S") — H.(M), so
f is a homotopy equivalence by Whitehead. Hence M is homeomorphic to S™.

If n > 5 and Hy(M) # 0 then from Poincaré and Universal Coefficients
the torsion subgroups tor(Hy(M)) = tor(H" 2(M)) = tor(H,_3(M)) = 0
and so Hy(M) =7 and H,_o(M) = H*(M) = Hom(Hy(M);Z) = 7. Hence
M has type (n,2,1).

If n = 4 then tor(Hy(M)) = tor(H*(M)) = tor(H(M)) = 0 and it fol-
lows from Example 1 and (*) with R = Z that Hy(M) is either 0, Z, or Z>.
These simply-connected 4-manifolds have been classified by Friedman [F]:
M* is one of the following:

S 52 x 5%, CP?, CP*#CP? CP?#(—CP?),

*CP?, #(CP?*#CP?), x(CP?#(—CP?)).

Here *M denotes a (nonsmoothable) manifold homotopy equivalent to M
with nonzero Kirby-Siebenmann invariant.

Conversely each of these is homotopy equivalent to a manifold which is a
union of two submanifolds each homeomorphic to D* or a D?-bundle over S?
so they are of catg: = 2.

If n =5 then HY(M?5;Zy) = H,(M?;Zy) = 0, so the Kirby-Siebenmann
invariant in H*(M?®;Z,) is zero and therefore M® is smoothable (Thm. 5.4
p.318 of [KS]). The simply-connected smooth 5-manifolds M with Hy (M)
cyclic have been classified by Barden (Theorem 2.3 in [B]). M? is one of the
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following (with the notations from [B]):

Xo=25° X_1, Xoo or My, = S3 x 52,

Here X _; is the Wu-manifold, the only simply-connected 5-manifold with
second homology a nontrivial finite cyclic group and X, is the nontrivial
S3-bundle over S%. Since this is the double of the nontrivial D3-bundle over
S2 it has catg: = 2.

We sum up these results in

Theorem 1. Let M™ be a closed topological n-manifold with catgz(M™) = 2.
Then M™ is one of the following:

(52 ifn =2
S3 an S?-bundle over S* (there are two) ifn=3
M™ A S 52 x §%2, CP?, CP?#CP? CP?#(—CP?),
*CP?, x(CP?*#CP?), x(CP?#(—-CP?)) if n =4
S® an S3-bundle over S? (there are two), Wu’ s manifold if n =5
L S™ or of type (n,2,1) ifn>5

Let us say that M"™ is a twisted double over a D" 2-bundle over S? if
M = VoUV; with VoN'Vp = 0Vy = 0V; and V) = V; homeomorphic to either

the trivial or nontrivial D" 2-bundle over S2.

We now show that for n > 5 all the manifolds other than S™ in this
Theorem are such twisted doubles, so all the manifolds M™ in the Theorem
do have catgz:(M™) = 2.

Corollary 1. Forn > 5 a closed (topological) n-manifold M has catg:(M™) =
2 if and only if M™ is S™ or a twisted double over a D" %-bundle over S?.

Proof. 1f n = 6 the (not necessarily smooth) manifolds of type (6,2, 1) have
been classified by P. E. Jupp ( [J], Proposition 1). They are obtained as a
union of two D*-bundles over S? along their boundaries.

If M has type (n,2,1) for n > 6 then H*(M;Zy) = 0 and M has a
PL-structure since the Kirby-Siebenmann obstruction is 0. Now a generator
of Hy(M) can be represented by a Pl-embedded locally flat 2-sphere in M
with normal bundle V; the trivial or nontrivial D"~2 bundle over S?. Let
Vi = M — V. From the homology and cohomology sequences of (M, V) it
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follows (compare e.g. [GGH2|, proof of Prop. 3) that V; has the homology
of S%2. Furthermore V; is 1-connected and smoothable. Embedding a smooth
S?, representing the generator of Hy(V}), in the interior of Vi it follows from
Theorem 4.1 of [SM] that V; is a D" %-bundle over S?. Note that V; is
homeomorphic to V; since 0V} = 9V, and the boundary of the nontrivial
D" 2-bundle is not homeomorphic to S"3 x S? (since its second Stiefel
Whitney class is non zero). [

The twisted doubles of D2 x S? are classified by Levine [L] (page 40
section 5.4).

6 catp(M") =2

In this section we classify the fundamental groups of all closed n-manifolds of
P2-category 2. Recall that m;(M") is isomorphic to the fundamental group
mG of G as in Lemma 4.

Theorem 2. Let M™ be a closed n-manifold with catp2(M™) = 2. Then
w1 (M™) is one of the following groups:

/ ifn=1

)1 ifn =2
M) =N g 2w Zy BT ifn=3
1, Zs ifn >3

Proof. For n = 1 write S* as a union of two intervals. For n = 2 note that
catp2(P?) = 1 and the fundamental group of any other non simply-connected
M? is not in the list of Lemma 4. So suppose from now on that n > 2.

If M™ is orientable then Hy(M™;Z) is finite by Example 2 and the only
possibilities for the groups in Lemma 4 are 1, Zs, Zs * Zo. Furthermore if
n > 3 Example 2 shows that Hy(M™;Zsy) has order < 2 so the only possibil-
ities in this case are 1, Z.

Thus assume that M™ is non-orientable. We check the groups in Lemma 4.

We claim that 7 (M™) can not be free. Otherwise, if p : M — M is the

two-fold orientable cover then 71(M) and m (M) are free of rank > 1 and we
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have a homotopy commutative diagram

Wi M
P2

such that the image a;,m (IP?) is trivial in 71 (M). Hence o; has two lifts to
M and it follows that the pullback P? of

M

( * %) b

P2 M

is homeomorphlc to 2IP2, the disjoint union of two copies of P2. By Lemma 1
Wi = p Y(W;) is P%- contractlble in M. Hence catg (M) = 2 and Hy(M;Z)
is finite by Example 3, a contradiction.

If w1 (M"™) = ZoxZo*F or m(M"™) = (Zoy x F') % F then since by Example
2, Hi(M™;Zs) has order < 2, (< 4) for n > 3, (n = 3, respectively), it
follows that m (M™) = Zy for n > 3 and for n = 3 we have the possibilities
11 (M?) = Zo % Ty, Do, Ty X T, ot T % L.

To complete the proof of the Theorem we show that for n = 3, 7 (M?) %
ZZ *x 7.

Assuming that 7m;(M?3) = Zy * Z it follows from Kneser’s Conjecture
(proved by Stallings [ST]) and Perelman that M = P3#(5?xS') and for
the two-fold orientable cover p : M — M we have M = P34(S? x ST)#P3.
Note that p,m1(M) is a normal subgproup of m;(M) that contains elements
of order 2. Since in Z, x Z all elements of order 2 are conjugate, p*m(M )
contains all elements of order 2 and therefore (referring to diagram (*x)),
i (mP?) € m(M). As before this implies that the pullback P? of (* %) is
homeomorphic to 2P?, W; = p~'(W;) is P?-contractible in M, catz, (M) = 2
and H,(M;Z) is ﬁnite, which is not the case.

[
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In particular for closed 3-manifolds M3 we obtain

Corollary 2. catp:(M3) = 2 if and only if M3 is one of the following 3-
manifolds: S3, P3, P3#P3, P? x St

Proof. By Perelman [MT] the closed 3-manifolds with fundamental groups
1 and Zy are S® and P3. By Kneser’s conjecture, if m,(M) = Zg * Z, then
M = M,#M, for some closed M; with 7;(M;) = Zo and so M = P3#P3. If
m (M) = Zy x Z then by Epstein’s Theorem [E] the element of finite order
is carried by a 2-sided projective plane in M and so the orientable double
cover M of M has fundamental group Z. By Perelman M = S? x S' and it
follows from Tao [TA]) that M = P? x S,

Conversely every M? in the list has catp2 = 2, since M? is a union of two
3-submanifolds along their boundary, each a 3-ball or I-bundle over P2. [
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