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Abstract

A closed topological n-manifold Mn is of S2- (resp. P2)-category 2
if it can be covered by two open subsets W1,W2 such that the inclusions
Wi → Mn factor homotopically through maps Wi → S2 (resp. P2).
We characterize all closed n-manifolds of S2-category 2 and of P2-
category 2. 1 2

1 Introduction

While studying the minimal number of critical points of a closed smooth n-
manifold Mn, denoted by crit(Mn), Lusternik and Schnirelmann introduced
what is now called the Lusternik-Schnirelmann category of Mn, denoted by
cat(Mn), which is defined to be the the smallest number of sets, open and
contractible in Mn that are needed to cover Mn. They showed that cat(Mn)
is a homotopy type invariant with values between 2 and n+1 and furthermore
that cat(Mn) ≤ crit(Mn). This invariant has been widely studied, many
references can be found in [CLOT].
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In 1968 Clapp and Puppe [CP] generalized this invariant as follows: Let
A be a class of topological spaces. For a space A ∈ A a subset B in Mn is
A-contractible if there are maps f : B −→ A and α : A −→ Mn such that
the inclusion map i : B −→ Mn is homotopic to α · f . Then catAM

n is
the smallest number m such that Mn can be covered by m open sets, each
A-contractible in Mn, for some A ∈ A. If A = {A} consists only of one
space A write catAM

n instead of cat{A}M
n. Clapp and Puppe also pointed

out relations between catAM
n and the set of critical points of smooth func-

tions of Mn to R. For n = 3 Khimshiashvili and Siersma [KhS] obtained a
relation between catS1(M3) and the set of critical circles of smooth functions
M3 → R. In [GGH],[GGH1],[GGH2] we obtained a complete classification
of the closed (topological) n-manifolds with catS1(Mn) = 2.

Motivated by the work of Gromov [G] (see also [I]) we define catameM
n

to be the smallest number of open and amenable sets needed to cover Mn;
here a set A ⊂ M is amenable if for each path-component Ak of A the im-
age of the inclusion induced homomorphism im(ι∗ : π(Ak) → π(Mn)) is an
amenable group. Gromov has shown [G] that if Mn is a closed n-manifold
with positive simplicial volume then catame(M

n) = n+ 1 . Hence, by Perel-
man (see [MT]), if catameM

3 ≤ 3 then M is a graph manifold. If A is the
class of connected CW-complexes with amenable fundamental groups then
catameM

n ≤ catAM
n ≤ catKM

n ≤ n+ 1 for any K in A. Examples of such
K are P (a point), S1, S2, P2, S1×̃S1 (an S1-bundle over S1).

In the present paper we consider the cases of catS2(Mn) and catP2(Mn).
The main results are Theorem 1 which gives a classification of (topolog-
ical) n-manifolds with catS2(Mn) = 2, and Theorem 2 which exhibits a
complete list of the fundamental groups of all (topological) n-manifolds with
catP2(Mn) = 2. In particular, for n = 3 we obtain in Corollary 2 a complete
list of all 3-manifolds of catP2(M3) = 2.

The paper is organized as follows: In section 2 we point out that if
catK(Mn) = 2 for a CW-complex K then Mn can be covered by two compact
K-contractible submanifolds that meet only along their boundaries and we
show how to pull back K-contractible subsets of M to covering spaces of M .
In section 3 we associate to a decomposition of M into two K-contractible
submanifolds (where K = S2 or P2) a graph of groups and compute the
fundamental group of this graph of groups. This, together with information
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about the homology of Mn developed in section 4 is used to prove Theorem
1 in section 5 and Theorem 2 in section 6.

2 K-contractible subsets

In this section we assume that M = Mn is a closed connected n-manifold
and K is a CW-complex.

A subset W of M is K-contractible (in M) if there are maps f : W → K
and α : K →M such that the inclusion ι : W →M is homotopic to α · f .

catK(M) is the smallest number m such that M can be covered by m
open K-contractible subsets.

Note that a subset of a K-contractible set is also K-contractible. It is
easy to show that catK is a homotopy type invariant.

In particular, if catK(M) = 2 then M is covered by two open sets W0,W1

and for i = 0, 1, there are maps fi and αi such that the diagram below is
homotopy commutative:

Wi M

K

-ι

@
@Rfi �

���
αi

The following proposition allows us to replace the open sets Wi by com-
pact submanifolds that meet only along their boundaries.

Proposition 1. If catKM = 2 then M can be expressed as a union of two
compact K-contractible n-submanifolds W0, W1 such that W0∩W1 = ∂W0 =
∂W1.

This was proved in [GGH] for K = S1 using topological transversality
(see [KS] and [Q]). The same proof applies for any finite complex K.
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Now suppose p : M̃ → M is a covering map. For α : K → M let K̃p be
the pullback of

M̃

K M
?

p

-α

i.e. K̃p = { (x, y) ∈ K × M̃ | α(x) = p(y) } and let q : K̃p → K, α̃ : K̃p → M̃
be the maps induced by the projections q(x, y) = x, α̃(x, y) = y.

Lemma 1. Let W ↪→ M be K-contractible in M with ι ' α · f and let
p : M̃ → M be a covering map. Then W̃ := p−1(W ) is K̃p-contractible in
M̃ .

Proof. We have a diagram

W̃ M̃

K̃p

K

W M

-ι̃

@
@
@R

f̃

?

p′

?

p

�
�
��α̃

?

q

@
@
@@R

α
�
�
���f

-ι

where p′ is the restriction of p and ι̃ is the inclusion. The homotopy ι ' α · f
lifts to a homotopy ι̃ ' h̃ for some map h̃ : W̃ → M̃ such that (α·f)·p′ = p·h̃.
Now define f̃ by f̃(z) = (fp′(z), h̃(z)) to get q · f̃ = f · p′ and (α̃ · f̃) = h̃ ' ι̃.

4



3 Fundamental group

In this section we consider the structure of π1(M
n) for a closed n-manifold

Mn with catS2(Mn) = 2 or catP2(Mn) = 2 by using the theory of graphs of
groups ([S]).

Since clearly catS2(S1) = catP2(S1) = 2 we assume from now on that
n > 1.

By Proposition 1 we may assume that

• Mn = W0∪W1 such that F := W0∩W1 = ∂W0 = ∂W1. Here Wi = W n
i

are K-contractible n-submanifolds of M where K = S2 or K = P2.

Consider the graph G of (M,F ) whose vertices (resp. edges) are in one-
to-one correspondence with the components W j

i of Wi, i = 0, 1 (resp. with
the components Fjk = W j

0 ∩W k
1 of F ). Vertices of G corresponding to W j

0

and W k
1 are joined by the edges corresponding to the components of W j

0∩W k
1 .

For the associated graph G of groups the group Gv associated to a vertex v
corresponding to a component W j

i of Wi is im(π1(W
j
i ) → π1(M)) and the

group Ge associated to an edge e corresponding to a component Fk of F
is im(π1(Fk) → π1(M)). In our case these groups are either Z2 or trivial.
For the vertices v,v′ of e the monomorphisms Ge → Gv and Ge → Gv′ are
induced by inclusions.

The fundamental group of M is isomorphic to the fundamental group πG
of G (see for example [SW]).

For the computation of πG we follow [S]: Pick an orientation of each edge
of G. For each (oriented) edge e from a vertex v to a vertex v′ the corre-
sponding element in πG is denoted by ge. The monomorphism Ge → Gv

(resp. Ge → Gv′) sends a generator ae of Ge to a generator bv of Gv (resp.
to a generator bv′ of Gv′). Let T be a maximal tree T in G. Then πG is
generated by the ge for each (oriented) edge e in G − T and the generators
bv of Gv and defining relations are gebvg

−1
e = bv′ for e ∈ G − T and bv = bv′

for e ∈ T .
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From this presentation of πG it follows that if all vertex groups of G are
trivial then πG ∼= F, for some free group F, hence

Lemma 2. If catS2(Mn) = 2 then πG is a free group (possibly trivial).

So the only closed 2-manifold of S2-category 2 is S2.

So assume now that catP2(Mn) = 2. If the group associated to a vertex v
(resp. edge e) is Z2 we say that v (resp. e) is a Z2-vertex (resp. a Z2-edge).
An edge-path in G consisting of Z2-vertices and Z2-edges will be called a
Z2-path.

Lemma 3. Assume there are more than two Z2-vertices in G. Then the
subgraph of G consisting of the Z2-vertices and Z2-edges is connected.

Proof. G is a bipartite graph with vertices colored by the components of W0

and W1. We may assume that there are at least two Z2-vertices v, v′ corre-
sponding to different components W 0

0 , W k
0 of W0. We claim that there is a

Z2-path in G from v to v′.

To see this note that we have a homotopy-commutative diagram

W 0
0 ∪W k

0 M

P2

-

Q
QQsf0 �

�
��3
α0

and since v and v′ are Z2-vertices, there are loops β and γ in int(W 0
0 ) and

int(W k
0 ) which are not trivial in M . Both are homotopic to a loop represent-

ing the non trivial element of the image of α0∗ : π1(P2) → π1(M). Hence β
and γ are homotopic in M .

Let H : S1×I →M be a homotopy between β and γ. By general position
we may assume that H−1(F ) is a union of disjoint simple closed curves in
int(S1 × I). Let s0 = S1 × {0} and let s1, s2, . . . sr−1 be the essential com-
ponents of H−1(F ) (those which do not bound disks in S1 × I) indexed in
such a way that si separates s0 from si+1 (i = 1, ..., r− 2). Let sr = S1×{1}
(r is odd ≥ 3). For any i, H restricted to si defines a loop homotopic to β
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and therefore Hsi is nontrivial in M .

There is a path ω : [0, 1] → S1 × I, joining S1 × {0} to S1 × {1},
which does not intersect inessential components of H−1(F ) and such that,
for j = 0, ..., r − 1,
i) Hω([j/r, (j + 1)/r]) is contained in a component W j

i of Wi, where i is j
mod 2 and
ii) Hω(j/r) is in a component F j of F for 0 < j < r.

v (resp. v′) is the vertex associated to W 0
0 (resp. W r−1

0 = W k
0 ) and the

edges corresponding to the sequence F 1, F 2, . . . , F r−1 define a Z2-path from
v to v′.

This proves the claim.

By the same proof we see that any Z2-vertex associated to a component of
W1 can be joined by a Z2-path in G to the vertex corresponding to W 1

1 . Hence
the subgraph of G consisting of the Z2-vertices and Z2- edges is connected.

Now we can describe the structure of πG:

Lemma 4. If catP2(Mn) = 2 then πG is one of the following groups:
F, Z2 ∗ Z2 ∗ F, (Z2 × F′) ∗ F
where F and F′ are free groups (possibly trivial).

Proof. πG is generated by the ge for each (oriented) edge e in G−T and the
generators bv of Gv

∼= Z2 for each Z2-vertex v.

If all vertex groups are trivial then πG ∼= F, for some free group F.

If all vertex groups but one is trivial then πG ∼= Z2 ∗ F = (Z2 × F′) ∗ F
for F′ = 1.

Assume that all vertex groups but two are trivial. If all edge groups are
trivial then πG ∼= Z2 ∗ Z2 ∗ F. If there is at least one nontrivial edge group
then πG ∼= (Z2 × F) ∗ F′ for some free groups F,F′.
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If there are more than two non-trivial (Z2-)vertex groups then by Lemma
3 the subgraph G′ of G consisting of all non-trivial vertex and edge groups
is connected and we may choose a maximal tree T ′ in G′ with T ′ ⊂ T . Then
πG ∼= πG ′′, where G′′ = G/T ′ is obtained by collapsing T ′ to a vertex and G ′′
is as in the previous paragraph.

4 Homology groups

In this section we compute the homology groups of a closed n-manifold Mn

with catK(Mn) = 2 for certain CW-complexes K.

We assume that

• Mn = W0 ∪W1 such that F := W0 ∩W1 = ∂W0 = ∂W1.

Let R be a ring for which M is orientable over R. The exact cohomology
sequence of (M,Wi) is isomorphic via Lefschetz-Duality to the exact homol-
ogy sequence of (M,Wi−1), (i = 0, 1) and we obtain a commutative diagram

Hn−j(Mn,W1−i;R) Hn−j(Mn;R) Hn−j(W1−i;R)

Hj(Wi;R) Hj(M
n;R) Hj(M

n,Wi;R)
?

∼=

-

?

∼=

-
ι∗n−j

?

∼=

-
ιj∗ -

where ι∗n−j and ιj∗ are induced by inclusion. Thus we have an exact se-
quence

(∗) 0→ im ιj∗ → Hj(M
n;R)→ im ι∗n−j → 0

If Ki is a CW-complex and Wi is Ki-contractible (i = 0, 1) with inclusions
ιi ' αi · fi, then i∗ and i∗ can be factored as
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ιj∗ : Hj(Wi;R)
fi∗→ Hj(Ki;R)

αi∗→ Hj(M
n;R)

ι∗n−j : Hn−j(Mn;R)
α∗i→ Hn−j(K1−i;R)

f∗i→ Hn−j(W1−j;R)

Example 1. Wi is Ki-contractible and K0 = K1 = S2.
For 0 < j < n and R = Z or Z2 the images im ιj∗ , im ι∗n−j are cyclic (possibly
trivial) for j = 2, j = n− 2, respectively, and 0 otherwise. In particular for
n 6= 4 it follows that Hj(M

n;Z2) = 0 for j 6= 0, 2, n− 2, n and Hj(M
n;Z2) is

0 or Z2 for j = 2, n− 2.
If n = 3 we obtain H1(M

3;Z2) = 0 or ∼= Z2. Since π1(M
3) is free (by Lemma

2) it follows that π1(M
3) = 1 or Z and so M3 is either S3 or an S2-bundle

over S1.
If n > 3 thenH1(M

n;Z2) = 0 soMn is orientable and, by Lemma 2, π(Mn) =
1. We can therefore apply (∗) with R = Z.

Example 2. Wi is Ki-contractible and K0 = K1 = P2.
For 0 < j < n and R = Z or Z2 the images im ιj∗; im ι∗n−j are cyclic (possibly
trivial) for j = 1, 2; j = n − 1, n − 2, respectively, and 0 otherwise. In
particular
H1(M

n;Z2) has order ≤ 4 for n = 3
H1(M

n;Z2) has order ≤ 2 for n > 3
If Mn is orientable then H1(M

n;Z) is finite (of order at most 4 for n = 3
and order at most 2 for n > 3).

Example 3. Wi is Ki-contractible and K0 = K1 = 2P2 (the disjoint union
of two projective planes).
If Mn is orientable then H1(M

n;Z) is finite (of order at most 16 for n = 3
and order at most 4 for n > 3).

5 catS2(Mn) = 2

E. Turner [T] shows that for n > 5, a smooth closed n-manifold of type
(n, k, 1) admits a decomposition as a union of two Dn−2-bundles over Sk

along their boundaries. Hence these manifolds have catSk(Mn) = 2. We use
Turners definition without the assumption that M is smooth:
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Definition 1. A topological n-manifold M is of type (n, k, r) if M is simply-
connected, 3 < 2k+ 1 < n, and Hk(M) = Hn−k(M) = Zr the only nontrivial
homology groups in positive dimensions less than n.

Now assume that M is a topological n-manifold M with catS2(M) = 2

For n > 3 we know from Example 1 that M is simply-connected and
furthermore for n > 4 possibly nontrivial homology groups (in positive di-
mensions less than n) occur at most for dimensions 2 and n − 2, in which
case the homology groups are cyclic.

If n > 4 and H2(M) = 0 then Hn−2(M) = 0 by Poincaré Duality
and since M is simply connected, πj(M) = Hj(M) = 0 for j < n, and
πn(M) = Hj(M) = Z for j = n by Hurewicz. Let f : Sn → M represent a
generator of πn(M). Then f induces isomorphisms f∗ : H∗(S

n)→ H∗(M), so
f is a homotopy equivalence by Whitehead. Hence M is homeomorphic to Sn.

If n > 5 and H2(M) 6= 0 then from Poincaré and Universal Coefficients
the torsion subgroups tor(H2(M)) = tor(Hn−2(M)) = tor(Hn−3(M)) = 0
and so H2(M) = Z and Hn−2(M) = H2(M) = Hom(H2(M);Z) = Z. Hence
M has type (n, 2, 1).

If n = 4 then tor(H2(M)) = tor(H2(M)) = tor(H1(M)) = 0 and it fol-
lows from Example 1 and (∗) with R = Z that H2(M) is either 0, Z, or Z2.
These simply-connected 4-manifolds have been classified by Friedman [F]:
M4 is one of the following:
S4, S2 × S2, CP 2, CP 2#CP 2, CP 2#(−CP 2),
∗CP 2, ∗(CP 2#CP 2), ∗(CP 2#(−CP 2)).
Here ∗M denotes a (nonsmoothable) manifold homotopy equivalent to M
with nonzero Kirby-Siebenmann invariant.
Conversely each of these is homotopy equivalent to a manifold which is a
union of two submanifolds each homeomorphic to D4 or a D2-bundle over S2

so they are of catS2 = 2.

If n = 5 then H4(M5;Z2) = H1(M
5;Z2) = 0, so the Kirby-Siebenmann

invariant in H4(M5;Z2) is zero and therefore M5 is smoothable (Thm. 5.4
p.318 of [KS]). The simply-connected smooth 5-manifolds M with H2(M)
cyclic have been classified by Barden (Theorem 2.3 in [B]). M5 is one of the
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following (with the notations from [B]):
X0 = S5, X−1, X∞ or M∞ = S3 × S2.
Here X−1 is the Wu-manifold, the only simply-connected 5-manifold with
second homology a nontrivial finite cyclic group and X∞ is the nontrivial
S3-bundle over S2. Since this is the double of the nontrivial D3-bundle over
S2 it has catS2 = 2.

We sum up these results in

Theorem 1. Let Mn be a closed topological n-manifold with catS2(Mn) = 2.
Then Mn is one of the following:

Mn ≈



S2 if n = 2

S3, an S2-bundle over S1 (there are two) if n = 3

S4, S2 × S2, CP 2, CP 2#CP 2, CP 2#(−CP 2),

∗CP 2, ∗(CP 2#CP 2), ∗(CP 2#(−CP 2)) if n = 4

S5, an S3-bundle over S2 (there are two), Wu’ s manifold if n = 5

Sn or of type (n, 2, 1) if n > 5

Let us say that Mn is a twisted double over a Dn−2-bundle over S2 if
M = V0 ∪ V1 with V0 ∩ V1 = ∂V0 = ∂V1 and V0 ≈ V1 homeomorphic to either
the trivial or nontrivial Dn−2-bundle over S2.

We now show that for n > 5 all the manifolds other than Sn in this
Theorem are such twisted doubles, so all the manifolds Mn in the Theorem
do have catS2(Mn) = 2.

Corollary 1. For n > 5 a closed (topological) n-manifold M has catS2(Mn) =
2 if and only if Mn is Sn or a twisted double over a Dn−2-bundle over S2.

Proof. If n = 6 the (not necessarily smooth) manifolds of type (6, 2, 1) have
been classified by P. E. Jupp ( [J], Proposition 1). They are obtained as a
union of two D4-bundles over S2 along their boundaries.

If M has type (n, 2, 1) for n > 6 then H4(M ;Z2) = 0 and M has a
PL-structure since the Kirby-Siebenmann obstruction is 0. Now a generator
of H2(M) can be represented by a Pl-embedded locally flat 2-sphere in M
with normal bundle V0 the trivial or nontrivial Dn−2 bundle over S2. Let
V1 = M − V0. From the homology and cohomology sequences of (M,V1) it
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follows (compare e.g. [GGH2], proof of Prop. 3) that V1 has the homology
of S2. Furthermore V1 is 1-connected and smoothable. Embedding a smooth
S2, representing the generator of H2(V1), in the interior of V1 it follows from
Theorem 4.1 of [SM] that V1 is a Dn−2-bundle over S2. Note that V1 is
homeomorphic to V0 since ∂V1 = ∂V0 and the boundary of the nontrivial
Dn−2-bundle is not homeomorphic to Sn−3 × S2 (since its second Stiefel
Whitney class is non zero).

The twisted doubles of Dn−2 × S2 are classified by Levine [L] (page 40
section 5.4).

6 catP2(Mn) = 2

In this section we classify the fundamental groups of all closed n-manifolds of
P2-category 2. Recall that π1(M

n) is isomorphic to the fundamental group
πG of G as in Lemma 4.

Theorem 2. Let Mn be a closed n-manifold with catP2(Mn) = 2. Then
π1(M

n) is one of the following groups:

π1(M
n) =


Z if n = 1

1 if n = 2

1, Z2, Z2 ∗ Z2, Z2 × Z if n = 3

1, Z2 if n > 3

Proof. For n = 1 write S1 as a union of two intervals. For n = 2 note that
catP2(P2) = 1 and the fundamental group of any other non simply-connected
M2 is not in the list of Lemma 4. So suppose from now on that n > 2.

If Mn is orientable then H1(M
n;Z) is finite by Example 2 and the only

possibilities for the groups in Lemma 4 are 1, Z2, Z2 ∗ Z2. Furthermore if
n > 3 Example 2 shows that H1(M

n;Z2) has order ≤ 2 so the only possibil-
ities in this case are 1, Z2.

Thus assume thatMn is non-orientable. We check the groups in Lemma 4.

We claim that π1(M
n) can not be free. Otherwise, if p : M̃ → M is the

two-fold orientable cover then π1(M) and π1(M̃) are free of rank ≥ 1 and we
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have a homotopy commutative diagram

(∗∗)
Wi M

P2

-

@
@Rfi �

���
αi

such that the image αi∗π1(P2) is trivial in π1(M). Hence αi has two lifts to
M̃ and it follows that the pullback P̃2 of

(∗ ∗ ∗)

M̃

P2 M
?

p

-αi

is homeomorphic to 2P2, the disjoint union of two copies of P2. By Lemma 1
W̃i := p−1(Wi) is P̃2-contractible in M̃ . Hence catP̃2(M̃) = 2 and H1(M̃ ;Z)
is finite by Example 3, a contradiction.

If π1(M
n) = Z2 ∗Z2 ∗F or π1(M

n) = (Z2×F′) ∗F then since by Example
2, H1(M

n;Z2) has order ≤ 2, (≤ 4) for n > 3, (n = 3, respectively), it
follows that π1(M

n) = Z2 for n > 3 and for n = 3 we have the possibilities
π1(M

3) = Z2 ∗ Z2, Z2, Z2 × Z, or Z2 ∗ Z.

To complete the proof of the Theorem we show that for n = 3, π1(M
3) �

Z2 ∗ Z.

Assuming that π1(M
3) = Z2 ∗ Z it follows from Kneser’s Conjecture

(proved by Stallings [ST]) and Perelman that M = P3#(S2×̃S1) and for
the two-fold orientable cover p : M̃ → M we have M̃ = P3#(S2 × S1)#P3.
Note that p∗π1(M̃) is a normal subgproup of π1(M) that contains elements
of order 2. Since in Z2 ∗ Z all elements of order 2 are conjugate, p∗π1(M̃)
contains all elements of order 2 and therefore (referring to diagram (∗∗)),
αi∗(π1P2) ⊂ π1(M̃). As before this implies that the pullback P̃2 of (∗ ∗ ∗) is
homeomorphic to 2P2, W̃i = p−1(Wi) is P̃2-contractible in M̃ , catP̃2(M̃) = 2
and H1(M̃ ;Z) is finite, which is not the case.
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In particular for closed 3-manifolds M3 we obtain

Corollary 2. catP2(M3) = 2 if and only if M3 is one of the following 3-
manifolds: S3, P3, P3#P3, P2 × S1.

Proof. By Perelman [MT] the closed 3-manifolds with fundamental groups
1 and Z2 are S3 and P3. By Kneser’s conjecture, if π1(M) = Z2 ∗ Z2 then
M = M1#M2 for some closed Mi with π1(Mi) = Z2 and so M = P3#P3. If
π1(M) = Z2 × Z then by Epstein’s Theorem [E] the element of finite order
is carried by a 2-sided projective plane in M and so the orientable double
cover M̃ of M has fundamental group Z. By Perelman M = S2 × S1 and it
follows from Tao [TA]) that M = P2 × S1.

Conversely every M3 in the list has catP2 = 2, since M3 is a union of two
3-submanifolds along their boundary, each a 3-ball or I-bundle over P2.
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