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NOTES ON WEAK UNITS OF PICARD 1- AND 2-STACKS

ETTORE ALDROVANDI AND AHMET EMIN TATAR

Abstract. The weak units of strict monoidal 1- and 2-categories are defined respectively
in [10] and [9]. In this paper, we recall them for Picard 1- and 2-stacks. We show that
they form a Picard 1- and 2-stack, respectively. We deduce by [13, Theorem 6.4] that there
exists a length 2 (resp. 3) complex of abelian sheaves that represent the Picard stack (resp.
Picard 2-stack) of the weak units. Lastly, we calculate such complexes.

1. Introduction

Saavedra in [12] gives an alternative way of defining units in monoidal categories. He
observes that a unit e in monoidal category C can be defined as a cancellable idempotent
object, an object e with the property that tensoring with e from both sides is an equivalence
and that is equipped with isomorphism ϕ : ee→e. In the traditional way, a unit is an object
equipped with left and right constraints (i.e. the isomorphisms lX : eX→X and rX : Xe→X)
satisfying some compatibility conditions. In [10], Kock analyzes these two definitions of units
in a monoidal category. He calls the units defined as cancellable idempotent objects Saavedra
units, and the units extracted from the definition of bicategories with one object classical
units. He shows that these two notions of units are equivalent and the category they form is
contractible.

In a subsequent work [9], Joyal and Kock carry out the discussion for units of monoidal
categories to units of monoidal 2-categories. They give an alternative definition to the no-
tion of classical unit in monoidal 2-categories. In this classical notion a unit is an object
equipped with left and right constraints which are weakly invertible 1-morphisms and with a
2-isomorphism between the left and the right constraints. These data are required to satisfy
certain conditions (see [9, §6]). On the other hand, Joyal and Kock define a unit of a monoidal
2-category as an appropriate generalization of Saavedra unit. This is an object e with the
property that tensoring with e from both sides is biequivalence and that is equipped with
the weakly invertible morphism ϕ : ee→e. Throughout this paper, we call this alternative
definition of unit Joyal-Kock unit. In [9], Joyal and Kock show, as in the 1-categorical case,
that these two notions of units are equivalent and their 2-category is contractible.

The language of Saavedra units and Joyal-Kock units in the context of Picard 1- and 2-
stacks is very helpful. Their capability of expressing units without referring to left and right
constraints is very beneficial if one considers the amount of data and coherence conditions
required to define Picard 1- and 2-stacks. There is no need of mentioning units in their
definitions because the fact every object is cancellable is part of the Picard data and these
notions of units are equivalent to classical notions. The benefits of this economical way of
defining Picard 1- and 2-stacks becomes more significant when it comes to define (2-)functors.
With Saavedra units and Joyal-Kock units, we don’t need to assume that a unit is transferred
to a unit. It is enough to assure that the (2-)functor transfers the Picard structure to the
Picard structure.

In this paper, we consider the Saavedra units (resp. Joyal-Kock units) in a Picard stack
(resp. Picard 2-stacks). We prove they form Picard stacks (resp. 2-stack) of their own
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which we denote by I (C ) (resp. I(C)). Due to the contractibility results of Kock in [10]
and Joyal-Kock in [9], we expect these (2-)stacks to be equivalence relations with contractible
quotients, i.e, to be ultimately contractible spaces. We confirm this both by a direct geometric
analysis and by explicitly computing complexes of abelian sheaves that represent them. The
explicit computation of these complexes is interesting because we compare them directly to
the complexes representing the homotopy fiber over 1 in the Postnikov exact sequence. The
comparison allows us to characterize the Saavedra units as rigid model of the homotopy
fibers over 1. We study this in more details in [3].
Organization of the paper. In section 2, we quickly recall Saavedra units and Joyal-Kock
units of Picard 1- and 2- categories. In section 3, we remind basics of fibered 1- and 2-
categories over a site. In section 4, we examine Saavedra units of Picard stacks. We show
that Saavedra units of a Picard stack C form a Picard stack I (C ). We calculate a complex
of abelian sheaves such that the Picard stack associated to it is equivalent to I (C ). In
section 5, we follow the same plan as in section 4 for Joyal-Kock units.
Notation and Conventions. We work with strict 2-categories. A 2-groupoid is a 2-category
whose 1-morphisms are weakly invertible and 2-morphisms are isomorphisms. A 2-functor is
used in the sense of [8]. For compactness in the diagrams, we denote the tensoring operation
in any category by juxtaposition. The usual notation ⊗ is used in the names of functors (i.e.
X⊗− denotes the functor tensoring by X) and in cases to avoid ambiguities. We use capital
roman letters for categories (C, D, . . .), calligraphic letters for 2-categories (C, D, . . .), script
letters for stacks (C , D , . . .) and double letters for 2-stacks (C, D, . . .).

2. Quick Recall on Weak Units

In this section, we recall briefly the weak units of Picard 1- and 2- categories. The main
references are [10] and [9] where these units are defined for strict monoidal 1- and 2- categories.
For definitions of Picard 1- and 2-categories, we refer to [5].

2.1. Saavedra Units. Let C be a Picard category. A pair (e, ϕ) is called a unit element
where e is an object and ϕ : ee→e is an isomorphism in C . A unit morphism (e1, ϕ1)→(e2, ϕ2)
is given by an isomorphism u : e1→e2 in C such that the diagram

(2.1)

e1e1
uu //

ϕ1

��

e2e2

ϕ2

��

�

e1 u
// e2

commutes. This defines the groupoid of Saavedra units I(C).
In [10] these units are called Saavedra units since they were first mentioned by Saavedra in

[12]. I(C) is a Picard category since the classical notion of unit extracted from the definition
of monoidal category is equivalent to the notion of Saavedra unit and I(C) is contractible
([10, Proposition 2.19]). Moreover due to the contractibility, I(C) is always a Picard category
whether C is Picard or not. We define the tensor product of Saavedra units (e1, ϕ1) and
(e2, ϕ2) as the Saavedra unit (e1e2, ϕ) where ϕ is the composition

(2.2) (e1e2)(e1e2)
a
−1

// ((e1e2)e1)e2
a
−1

ca // ((e1e1)e2)e2
a // (e1e1)(e2e2)

ϕ1ϕ2 // e1e2 ,

with a−1ca given by

(2.3) ((e1e2)e1)e2
a
−1

//(e1(e2e1))e2
c //(e1(e1e2))e2

a //((e1e1)e2)e2 .
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The isomorphisms a and c represent the associativity and the braiding constraints, respec-
tively. There is a choice involved in the definition of ϕ, but any two such choices are connected
by a unique isomorphism. This unique isomorphism would be the pasting of the isomorphisms
of the Picard data. We also note that our definition coincides with the one in [10, §2.21] if
one assumes strict associativity and uses the compatibility between the braiding constraint
and left and right unit constraints.

In [6], Deligne points out that C always has a Saavedra unit, since tensoring by an object
X in C is an equivalence (see the proof of Proposition (2.1)).

2.2. Joyal-Kock Units. Let C be a Picard 2-category. A pair (e, ϕ) is called a unit el-
ement in C where e is an object and ϕ : ee→e is a 1-morphism in C. A unit 1-morphism
(e1, ϕ1)→(e2, ϕ2) is given by a pair (f, θf ) where f : e1→e2 is a weakly invertible 1-morphism
and θf is the 2-isomorphism

(2.4)

e1e1
ff //

ϕ1

��

e2e2

ϕ2

��
e1

f
// e2

����
>Fθf

A unit 2-morphism (f, θf )⇒(g, θg) is given by a 2-isomorphism δ : f⇒g in C such that

(2.5)

e1e1
ff

//

ϕ1

��

gg

!!
e2e2

ϕ2

��

� �� �
KS

δδ

e1
f

// e2

����
>Fθf =

e1e1
gg //

ϕ1

��

e2e2

ϕ2

��
e1

g //

f

== e2� �� �
KS

δ

����
>Fθg

Unit elements, unit 1-morphisms, and unit 2-morphisms of a Picard 2-category C form the
2-groupoid I(C) of Joyal-Kock units. We define the tensor product on I(C) in the same as
the one on I(C). As in the case of Saavedra units, whether C is Picard or not, I(C) is always
a Picard 2-category. However if C is Picard, then I(C) is not empty.

Proposition 2.1. A Picard 2-category C always has a Joyal-Kock unit.

This result is not surprising since Picard 2-categories have classical units that are equivalent
to Joyal-Kock units [9, Thereom E]. We give a proof of this fact without referring to this
equivalence. This Proposition and its proof generalize to group-like 2-categories.

Proof of Proposition 2.1. For any object X in C, the 2-functor − ⊗ X from C to C is a
biequivalence. Therefore, for any X ∈ C there exists eX ∈ C with a 1-morphism f : eXX→X.
ideX ⊗ f is a 1-morphism in the category HomC(eX(eXX), eXX). a

−1
eX ,eX ,X

◦ (ideX ⊗ f) is a

1-morphism in the category HomC((eXeX)X, eXX) which is equivalent to HomC(eXeX , eX),
since tensoring is a biequivalence. We define ϕ : eXeX→eX as the image of ideX ⊗ f under
this equivalence. �
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3. Quick Recall on Fibered 2-Categories

In this section, we briefly recall fibered 2-categories following [8, §1]. We also give a
characterization of fibered 2-categories which generalizes [14, Proposition 3.22].

Consider a 2-category C associated with a 2-functor p : C→S. We say C is a 2-category
over S. For any U ∈ S, we denote by CU the fiber of C over U . It is a 2-category whose
objects, 1-morphisms, and 2-morphisms respectively map to U , idU , and ididU .

Let ϕ : V→U be in S, X ∈ CV , and Y ∈ CU . Homϕ(X,Y ) denotes the category of
morphisms f : X→Y in C that are mapped to ϕ by p. If U = V and ϕ = idU , then we denote
the collection of these maps by HomU (X,Y ).

For any f ∈ Homϕ(X,Y ), there exists a natural transformation

f̃ : HomU (−,X) // Homϕ(−, Y ) ,

defined by post composing with f . We say that f is cartesian if f̃ is an equivalence, that is,
if there exists a natural transformation

G : Homϕ(−, Y ) // HomU (−,X)

such that f̃ ◦G ≃ id and G ◦ f̃ ≃ id. More precisely, for any X ′ ∈ CU , the functor

f̃X′ : HomU (X
′,X) // Homϕ(X

′, Y ) ,

is an equivalence.
We call a 2-category C over S fibered if:

(1) for any morphism ϕ : V→U in S and any object Y ∈ CU , there exists a cartesian
morphism f : X→Y over ϕ,

(2) composition of cartesian morphisms is cartesian.

We say C is fibered in 2-groupoids if for any U ∈ S, CU is a 2-groupoid.
In [14], Vistoli gives a characterization for fibered categories in groupoids (see [14, Propo-

sition 3.22]). We generalize this to fibered 2-categories in 2-groupoids.

Proposition 3.1. Let p : C→S be a 2-category over the site S. Then C is fibered in 2-
groupoids if and only if

(i) every 1-morphism is cartesian,
(ii) given Y ∈ CU and ϕ : V→U in S, there exists f : X→Y with p(f) = ϕ.

The following auxiliary result is needed in the proof of the Proposition 3.1:

Lemma 3.2. Let p : C→S be a 2-category over the site S satisfying (i) and (ii) of the
Proposition 3.1. Then for any X,Y ∈ CU , HomU (X,Y ) is fibered over S/U .

Proof. Given a morphism ϕ : i2⇒i1 in S/U and g ∈ HomU (X,Y ) over i1, we want to find a
cartesian morphism α : f⇒g in HomU (X,Y ) over ϕ. By (ii), we can pull back the objects
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X|V1 and Y|V1 along ϕ as shown in the diagram.

X|V1|V2

hXϕ //

f

��

X|V1

hX1 //

g

��

X

Y|V1|V2
hYϕ

// Y|V1
hY1

//

����
>Fα

Y

V2
ϕ //

i2

44V1
i1 // U

By (i), g, hXϕ , and h
Y
ϕ are cartesian. Therefore there exists f : X|V1|V2→Y|V1|V2 over i2 and

a 2-isomorphism α : f⇒g. α is a cartesian since it is an isomorphism. �

Proof of the Proposition 3.1. First we assume that C satisfies (i) and (ii). Let ϕ : V→U be
in S and Y ∈ CU . By (ii), there exists f : X→Y over ϕ which is cartesian by (i). Also
by (i), composition of cartesian is cartesian. Hence, all we need to show is that fibers are
2-groupoids.

Let f : X→Y be an object in HomU (X,Y ). Since f is cartesian,

f̃Y : HomU (Y,X) // HomU (Y, Y ) ,

is an equivalence. There exists h ∈ HomU (Y,X) such that f ◦ h ≃ idY . On the other hand,
h is also cartesian. Therefore

h̃X : HomU (X,Y ) // HomU (X,X) ,

is an equivalence, as well. Using essential surjectivity of h̃X , we find f ′ ∈ HomU (X,Y ) with
h ◦ f ′ ≃ idX from which we deduce by composing both sides by f that f ≃ f ′. This shows f
is weakly invertible.

Let α : f⇒g be a 1-morphism in HomU(X,Y ). By Lemma 3.2, HomU (X,Y ) is fibered
over S/U . Assume that α is over idU . Then there exists β : g⇒f such that α ◦ β = idg. By
repeating the same argument for β, we show β ◦ α = idf .

Conversely, we assume that C is a fibered 2-category in 2-groupoids. (ii) follows imme-
diately from the definition. To verify that f : X→Y a morphism of C over ϕ : U→V is
cartesian, we have to show that

f̃ : HomU (−,X) // Homϕ(−, Y ) ,

is an equivalence. Let X ′ ∈ CU and let g ∈ Homϕ(X
′, Y ) be cartesian. Then g̃ is an

equivalence and there exists h ∈ HomU (X
′,X) such that g ◦ h ≃ f . Since fibers of C

are 2-groupoids, h is weakly invertible. So h̃ is an equivalence. It follows that so does

g̃ ◦ h̃ = g̃ ◦ h ≃ f̃ . This finishes the proof. �

4. Weak Units of Picard Stacks

We define weak units of a Picard stack C . We call these units Saavedra units of C . We
show that such units form a Picard stack I (C ). We deduce by [6, Lemme 1.4.13] that there
exists a complex of abelian sheaves that represents I (C ). We calculate such a complex. We
end this section by extending the discussion to non Picard case using [2, Theorem 5.3.6].
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4.1. Saavedra Units of a Picard Stack. We consider a Picard stack C represented by an
abelian complex λ : A→B. C can be modeled by Tors(A,B), the Picard stack of (A,B)-
torsors. For details of Tors(A,B), we refer to [4] and [7]. Here, we give a brief reminder.
An (A,B)-torsor is a pair (L, x), where L is an A-torsor and x : L→B is an A-equivariant
morphism of sheaves. A morphism between two pairs (L, x) and (K, y) is an A -equivariant
morphism of sheaves ψ : L→K such that the diagram

(4.1)

L

x
��=

==
==

==
=

ψ //

�

K

y
����

��
��

�

B

commutes. The tensor product on Tors(A,B) is

(4.2) (L, x)⊗ (K, y) := (L ∧A K,x ∧ y),

where L∧AK is the contracted product and x∧y is the A-equivariant morphism from L∧AK
to B given by x(l) + y(k) with (l, k) in L ∧A K.

A Saavedra unit in Tors(A,B) is an idempotent (A,B)-torsor, that is, an (A,B)-torsor
(L, x) with an (A,B)-torsor morphism

(4.3) ϕ : (L, x)⊗ (L, x) //(L, x).

In other words, we have an (A,B)-torsor morphism

(4.4) ϕ : (L ∧A L, 2x) //(L, x).

We denote these units by ((L, x), ϕ).
A morphism of Saavedra units in Tors(A,B)

((L, x), ϕ) //((K, y), σ) ,

is given by an (A,B)-torsor morphism ψ : (L, x)→(K, y) satisfying the commutative diagram

(4.5)

(L ∧A L, 2x)
ψ∧ψ //

ϕ

��

(K ∧A K, 2y)

σ

��

�

(L, x)
ψ

// (K, y)

This defines the groupoid of Saavedra units of a Picard stack C . We denote it by I (C ).

Example 4.1. We consider the trivial (A,B)-torsor A with the A-equivariant map ζ : A→B.
We note immediately that ζ is nothing but the morphism λ since ζ(0A) = 0B and from the
A-equivariance ζ(a) = ζ(0A+ a) = ζ(0A)+ λ(a) = λ(a). We denote this trivial (A,B)-torsor
by (A, 0). We equip (A, 0) with the composition

(4.6) (A ∧A A, 0)
Φ //(A, 0)

α //(A, 0).

α ∈ ker(λ) represents the A-equivariant map that sends the global section 0A to α and Φ is
the canonical morphism

(4.7) Φ : (A ∧A A, 0) //(A, 0)
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that sends the global section (0A, 0A) to the global section 0A. The composition (4.1) is an
(A,B)-torsor morphism, since

λ ◦ α ◦Φ(0A, 0A) = 0A = λ(0A) + λ(0A).

In other words, since the diagram

(4.8)

(A ∧A A, 0)
α◦Φ //

λ+λ
%%JJJJJJJJJJ
�

(A, 0)

λ
||zzz

zzz
zz

B

commutes. Therefore, (A, 0) equipped with (4.6) is a Saavedra unit. We denote it by
((A, 0), α). In case α = 0A, we obtain the special Saavedra unit ((A, 0), 0).

4.2. Contractibility of Saavedra Units. In [10, Proposition 2.19], Kock proves that
Saavedra units of a monoidal category form a contractible category. His proof is based
on the following. First, he proves that the category of classical units of a monoidal category
is contractible. Second, he shows that the category of Saavedra units is equivalent to the
category of classical units. In this section, we prove the same result for Picard stacks by
directly constructing the unique isomorphism between any two Saavedra units.

Proposition 4.2. All Saavedra units of C are uniquely isomorphic to each other. That is,
I (C ) is a contractible groupoid over the site S.

Proof. Let ((L, x), ϕ) be a Saavedra unit of C and u be a local section of L. Since L is locally
isomorphic to A, there exists a unique aϕ in A such that

(4.9) ϕ(u, u) = u+ aϕ.

From the commutativity of the diagram (4.1), we deduce the relation 2x(u) = x(u) + λ(aϕ)
which simplifies to

(4.10) x(u) = λ(aϕ).

If we choose another section u′ with u′ = u+ α for some α in A, then there exists unique a′ϕ
in A such that u′ satisfies relations

(4.11) ϕ(u′, u′) = u′ + a′ϕ, x(u′) = λ(a′ϕ)

similar to (4.9) and (4.10). On the other hand,

(4.12) ϕ(u′, u′) = ϕ(u+ α, u+ α) = ϕ(u, u + 2α) = ϕ(u, u) + 2α.

Putting the relations (4.9) and (4.11) in (4.12) we find

(4.13) a′ϕ = aϕ + α.

We consider the section s = u− aϕ. From (4.13), s = u′ − a′ϕ. This shows that s is a global
section of the Saavedra unit ((L, x), ϕ). We also note that

(4.14) x(s) = 0B and ϕ(s, s) = s.

Let ((L, x), ϕ) and ((K, y), σ) be two Saavedra units of C with global sections s and t,
respectively. We construct an isomorphism

(4.15) ψ : ((L, x), ϕ) //((K, y), σ)

by sending s to t. From (4.14), it follows that ψ is a Saavedra unit morphism. ψ is unique
because s and t are uniquely determined by ϕ and σ, respectively. �
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4.3. Picard Stack of Saavedra Units. The category of Saavedra units I (C ) of a Picard
stack C is defined in section 4.1. In this section, we show that I (C ) is in fact a Picard stack.
We still assume that C is modeled by Tors(A,B).

By Proposition 4.2, all morphisms in I (C ) are cartesian. Let f : U→V be a morphism
in S and let ((L, s), ϕ) be a Saavedra unit over V . Since Tors(A,B) is a fibered category
in groupoids, we can pull back ϕ along f to an (A,B)-torsor morphism over U . From the
additivity of the pull back functor f∗ : CV→CU , the restriction of (L, x) over U f∗(L, x) :=
(L|U , x|U ) equipped with f∗(ϕ) : (L|U ∧A L|U , 2x|U )→(L|U , x|U ) is a Saavedra unit over U .
The commutativity of the diagram

(L|U ∧A L|U , 2x|U )
iU∧iU //

f∗(ϕ)

��

(L ∧A L, 2x)

ϕ

��

�

(L|U , x|U )
iU

// (L, x)

implies that the restriction function on the underlying (A,B)-torsor iU : (L|U , x|U )→(L, x)
is a Saavedra unit morphism. From [14, Proposition 3.22], this shows that I (C ) is a fibered
category in groupoids over S. The facts that morphisms of Saavedra units from a sheaf and
every descent datum is effective follow immediately from the Proposition 4.2 showing that
I (C ) is a stack.

The group-like structure on I (C ) is defined by the contracted product

((L, s), ϕ) ⊗ ((K, y), σ) := ((L ∧A K,x ∧ y), ϕ ∧ σ),

where ϕ ∧ σ is defined by the relations (2.2) and (2.3). By Proposition 4.2, this structure is
braided and satisfies Picard axioms. This shows,

Proposition 4.3. I (C ) is a Picard stack.

4.4. The Cocyclic Description of a Saavedra Unit. In this section, we give the cocyclic
description of Saavedra units which helps us find a complex representing the Picard stack of
Saavedra units. These calculations are similar to the ones in the proof of the Proposition 4.2.

Let ((L, x), ϕ) be a Saavedra unit of C over U and V•→U a hypercover. We assume C

is represented by the complex of abelian sheaves λ : A→B. Chosen a local section u ∈ LV0 ,
since L is locally isomorphic to A, there exists a unique a ∈ A(V1) satisfying

(4.16) d∗0(u) = d∗1(u) + a.

By pulling back (4.16) to V2, we find the relation

(4.17) d∗0(a) + d∗2(a) = d∗1(a).

Applying the A-equivariant map x : L→B to (4.16), we obtain

(4.18) d∗0(b) = d∗1(b) + λ(a),

where b = x(u) ∈ B(V0). The pair (a, b) with relations (4.17) and (4.18) is a cocycle that
represents the (A,B)-torsor (L, x). Next, we remember the (A,B)-torsor morphism ϕ that
equips (L, x) with a Saavedra unit structure. Since both ϕ(u, u) and u are in LV0 and L is
locally isomorphic to A, there exists unique aϕ ∈ A(V0) such that

(4.19) ϕ(u, u) = u+ aϕ.
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By pulling back (4.19) to V1 along d∗i for i = 0, 1, we have

(4.20) ϕ(d∗i (u), d
∗
i (u)) = d∗i (u) + d∗i (aϕ).

On the other hand

(4.21) ϕ(d∗0(u), d
∗
0(u)) = ϕ(d∗1(u)+a, d

∗
1(u)+a) = ϕ(d∗1(u), d

∗
1(u)+2a) = ϕ(d∗1(u), d

∗
1(u))+2a.

Putting together (4.20) and (4.21), we find

(4.22) a = d∗0(aϕ)− d∗1(aϕ).

From the commutativity of the diagram (4.1), we deduce the relation 2b = b+ λ(aϕ) which
implies

(4.23) λ(aϕ) = b.

These calculations show that the collection (a, aϕ, b) where a ∈ A(V1), aϕ ∈ A(V0), and
b ∈ B(V0) satisfying the relations (4.17), (4.18), (4.22), and (4.23) represent the Saavedra
unit ((L, x), ϕ). The collection (a, aϕ, b) is a 1-cocycle with values in the complex

(4.24) A
(idA,λ) // ker(λ− idB) .

If we chose another local section u′ ∈ LV0 , we find another 1-cocycle cohomologous to
(a, aϕ, b). Therefore the set of equivalence classes of 1-cocycles with values in the morphism
(4.24) classify Saavedra units. In fact, the equivalence classes form an abelian group which
we denote by H0(∗, A→ ker(λ − idB)). Here ∗ represents the final object of the topos of
sheaves on S, i.e. the sheaf whose value is the point at each object of S.

4.5. A Complex of Abelian Sheaves defining the Stack of Saavedra Units. [6,
Lemme 1.4.13] tells us that any Picard stack can be represented by a length 2 complex of
abelian sheaves. Let C be a Picard stack represented by λ : A→B. In this section, we find a
complex of abelian sheaves that represents I (C ) the Picard stack of Saavedra units in terms
of λ : A→B.

From the cocyclic description of Saavedra units, we know that H0(∗, A→ ker(λ − idB))
classify Saavedra units of C . Hence,

Proposition 4.4. The Picard stack associated to the morphism (4.24) is equivalent to the
Picard stack of Saavedra units I (C ) where C is the Picard stack represented by λ : A→B.

Remark 4.5. [6, Lemme 1.4.13] also tells us that two quasi-isomorphic length 2 complexes of
abelian sheaves represent equivalent Picard stacks. This helps us to find other representations
of I (C ).

(1) Since the morphism idA : A→A is quasi-isomorphic to (4.24), idA provides another
representation of I (C ).

(2) From Proposition 4.2 and Example 4.1, we deduce that ker(λ) parametrizes Saavedra
units of C . As for morphisms of Saavedra units, it is enough to look at the morphisms
between two Saavedra units of the form ((A, 0), α) where α is in ker(λ). Let ψ be the
unique isomorphism between ((A, 0), α) and ((A, 0), β). If we chase the global section
(0A, 0A) of (A∧AA) in a diagram similar to (4.5), we find that ψ(0A) = β−α. Since
ψ is A-equivariant, it is defined by the image of 0. Hence, morphisms of Saavedra
units are also parametrized by ker(λ). These calculations show that the morphism
idker(λ) : ker(λ)→ ker(λ) arises naturally in the realm of Saavedra units. Moreover,
idker(λ) is quasi isomorphic to (4.24) which therefore gives another representation of
I (C ).
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Remark 4.6. We observe that the complex (4.24) is τ≤−1(C
•)[−1] where C• is the cone of the

identity morphism A →A and τ≤−1(C
•)[−1] is the soft truncation of C• with entries shifted

to the right by 1 unit. C• determines a Picard 2-stack CA which satisfies the homotopy fiber
sequence

0 // π1(A )
id // π1(A ) // K // A

id // A EDBC
GF

ι

��
CA

∆ // Tors(A )
id∗ // Tors(A ),

where ∆ is as defined in [2, 6.3.10] and K is the homotopy kernel of idA which is equivalent
to a point. The 0 in the above sequence is in fact π1(K ) which is equal to π2(CA ). From
this sequence, we also observe that CA is the homotopy fiber of id∗. On the other hand,
τ≤−1C

•[−1] represents A ut(ICA
) the Picard stack of automorphisms of the unit object ICA

in CA . Therefore, I (C ) can be characterized as the Picard stack of automorphisms of the
unit object of the homotopy fiber of id∗.

Remark 4.7. We also note that there exists I (C )→C a morphism of Picard stacks defined
by forgetting the morphism (4.4). This corresponds to the strict morphism of complexes

A
(idA,λ) //

idA

��

ker(λ− idB)

prB

��

�

A
λ

// B

under Deligne’s equivalence ([6, Lemme 1.4.13]).

4.6. Non Picard Case. [2, Theorem 5.3.6] implies that a group-like stack G can be repre-
sented by a crossed module λ : G→H of sheaves. This allows us to represent the Saavedra
units of a group-like stack by a length 2 complex of sheaves.

The category I (G ) of Saavedra units of a group-like stack G is defined in the same way
as the category of Saavedra units in the Picard case. The examples given for Picard case (see
Example 4.1) extends to group-like case as follows. We note by (G, 1) the trivial (G,H)-torsor
whose G-equivariant map is λ. (G, 1) equipped with the composition

(4.25) (G ∧G G, 1)
Φ //(G, 1)

α //(G, 1) ,

is a Saavedra unit of G where Φ is the canonical morphism that sends the global section
(1G, 1G) to 1G and α ∈ ker(λ) represents the G-equivariant morphism that maps 1G to α.
We denote these Saavedra units by ((G, 1), α). In particular, if α = 1G, we have a Saavedra
unit denoted by ((G, 1), 1).

The proof of the Proposition 4.2 generalizes without difficulty to non abelian case.

Proposition 4.8. I (G ) is a contractible groupoid over S.

By calculations similar to section 4.4, we show that the elements of the set H0(∗, G→ ker(λinvH))
where invH : h→h−1, classify the Saavedra units of G . The morphism

(4.26) (idG, λ) : G // ker(λinvH)
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is a crossed module of sheaves where the action of ker(λinvH) on G is g(g
′,h′) := gh

′

for any
g ∈ G and (g′, h′) ∈ ker(λinvH). Therefore the crossed module (4.26) represents I (G ). We
observe that (4.26) is the soft truncation of

(4.27) G
(idG,λ) //G⋉H

λinvH //H ,

which is the cone of the morphism id : G→G .
By arguments similar to Remark 4.5, other representations of I (G ) are the complexes

idG : G→G and idker(λ) : ker(λ)→ ker(λ). We can consider 1→1 as an abelian representation.

Remark 4.9. The crossed module structure on (4.26) equips H0(∗, G→ ker(λinvH)) with a

group structure defined by (g1, g
′
1, h1)(g2, g

′
2, h2) = (g

d∗0h2
1 g2, g

′h2
1 g′2, h1h2).

Remark 4.10. We could have first presented the Saavedra units of a group-like stack and
deduced the Picard case. However, taken into account the fact that in the 2-dimensional
case we only know only how to represent stacks with Picard structure by complexes and later
in the paper we talk about 2-stacks, we prefer to focus on the Picard case even in 1-dimension.

Remark 4.11. We would like to point out the relation between IC the Saavedra units of
a (Picard) stack C and C1 the connected components of the identity in C . There exists a
functor from IC to C1 defined by forgetting the morphism ϕ : XX→X. C1 has a richer
structure which makes it more interesting than IC . More details about C1 can be found in
[3].

5. Weak Units of Picard 2-Stacks

In this section, we follow the same plan as in section 4. We define weak units of a Picard
2-stack C. We call them Joyal-Kock units of C. We show that such units form a Picard
2-stack. Therefore by [13, Theorem 6.4], there exists a length 3 complex of abelian sheaves
where the Picard 2-stack associated to it is equivalent to the Picard 2-stack of Joyal-Kock
units. We conclude this section by computing such a complex.

5.1. Joyal-Kock Units of a Picard 2-Stack. Let C be a Picard 2-stack represented by
the abelian complex

(5.1) A
δ //B

λ //C .

That is, C can be modeled by the Picard 2-stack Tors(A , C) of A -torsors that become
trivial over C and where A ≃ Tors(A,B). Let us remind Tors(A , C).

We refer to [4, §6.1] for the definition of a torsor over a group-like stack. For the notion
of an (G ,H )-torsor with a stack morphism Λ : G→H , we refer to [2, §6.3.4]. In this paper,
we work with (G ,H )-torsors where G is the Picard stack A and H is the discrete Picard
stack C. The Picard stack morphism Λ : A →C associates to an (A,B)-torsor (L, x) a point
λ(x) in C. An object of Tors(A , C) consists of a pair (L , x), where L is an A -torsor and
x : L→C is an A -equivariant map with respect to Λ. A morphism between any two pairs
in Tors(A , C) is given by the pair (F, γF )

(F, γF ) : (L , x) //(K , y) ,

where F : L→K is an A -torsor morphism satisfying

(5.2)

L
F //

x
  A

AA
AA

AA
A

�

K

y
~~||

||
||

||

C
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and γF is a 2-morphism

(5.3)

L × A

��

F×id //

������ γF

K × A

��
L

F
// K

expressing the compatibility of the A -torsor structures of L and K .
A 2-morphism

(L , x)

(F,γF )

&&

(G,γG)

88⇓Γ (K , y) ,

is given by a natural transformation Γ : F⇒G satisfying the equation of natural transforma-
tions

(5.4)

L × A

F×id

$$
�� ��
�� Γ×id

G×id
//

��

������ γF

K × A

��
L

G
// K

=

L × A
F×id //

��

������ γG

K × A

��
L

F //
�� ��
�� Γ

G

:: K

The tensor product on Tors(A , C) is similar to the tensor product in the stack case. For
the definition of the contracted product of two A -torsors, the reader can refer to [4, §6.7].

A Joyal-Kock unit in Tors(A , C) is an idempotent (A , C)-torsor. That is, an (A , C)-
torsor (L , x) with an (A , C)-torsor morphism

(5.5) (ϕ, γϕ) : (L , x)⊗ (L , x) //(L , x) ,

where γϕ is a 2-morphism of the form (5.3). In other words, with an (A , C)-torsor morphism

(5.6) (ϕ, γϕ) : (L ∧A
L , 2x) //(L , x) .

We denote these units in short by ((L , x), ϕ).
A morphism of Joyal-Kock units in Tors(A , C)

((L , x), ϕ) //((K , y), σ) ,

is given by an (A , C)-torsor morphism

(ψ, γψ) : (L , x) //(K , y) ,
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and a 2-morphism of (A , C)-torsors

(L ∧A L , 2x)
ψ∧ψ //

ϕ

��

(K ∧A K , 2y)

σ

��
(L , x)

ψ
// (K , y)






BJθψ

We denote these morphisms by the pair (ψ, θψ).
A 2-morphism of Joyal-Kock units in Tors(A , C)

((L , x), ϕ)

(ψ,θψ)

''

(φ,θφ)

77⇓Γ ((K , y), σ) ,

is given by a 2-morphism of (A , C)-torsors Γ : ψ⇒φ satisfying the equation of 2-morphisms
(5.7)

(L ∧A L , 2x)

ψ∧ψ

''
�� ��
�� Γ∧Γ

φ∧φ
//

ϕ

��

(K ∧A K , 2y)

σ

��
(L , x)

φ
// (K , y)






BJθφ =

(L ∧A L , 2x)
ψ∧ψ //

ϕ

��

(K ∧A K , 2y)

σ

��
(L , x)

ψ //
�� ��
�� Γ

φ

77
(K , y)






BJθψ

This defines the 2-groupoid of Joyal-Kock units of a Picard 2-stack C. We denote it by I(C).

Example 5.1. We consider the trivial (A , C)-torsor A with the A -equivariant map ζ : A →C
where ζ is the 2-stack morphism Λ. We denote this trivial (A , C)-torsor by (A , 0). We equip
(A , 0) with the composition

(5.8) (A ∧A A , 0)
Φ //(A , 0)

(L,s)
//(A , 0).

Φ is the canonical morphism

(5.9) Φ : (A ∧A
A ) //(A , 0) ,

that sends the global section ((A, 0), (A, 0)) of A ∧A A to the global section (A, 0). (L, s)
is an A -torsor such that Λ(L, s) := λ(s) = 0. That is, (L, s) is in the homotopy kernel
of the stack morphism Λ. We recall that ker(Λ) is a stack represented by the complex
A→ ker(λ). For details about the homotopy kernel of a stack morphism, we refer to [2, 6.1].
The commutativity of the diagram

(5.10)

(A ∧A A , 0)
(L,s)◦Φ

//

Λ+Λ
%%KKKKKKKKKKK
�

(A , 0)

Λ
||yy

yy
yy

yy
y

C
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shows that the composition (5.8) is an (A , C)-torsor morphism. Therefore, (A , 0) equipped
with (5.8) is a Joyal-Kock unit. We denote it by ((A , 0), (L, s)). In case (L, s) = (A, 0), we
obtain the special Joyal-Kock unit which we denote by abuse of notation by ((A , 0), 0).

5.2. Contractibility of Joyal-Kock Units. In this section, we show that there exists a
Joyal-Kock unit morphism between any two Joyal-Kock units by giving a direct construction
of the morphism. This result has been proven over a point in [9, Theorem C].

Proposition 5.2. All Joyal-Kock units of C are equivalent up to a unique 2-isomorphism.
That is, I(C) is a contractible 2-groupoid over S.

Proof. Let ((L , x), ϕ) be a Joyal-Kock unit of C and ℓ be a local section of L . There exists
an A -torsor (P, s)ϕ unique up to a unique isomorphism such that

(5.11) ϕ(ℓ, ℓ) ≃ ℓ+ (P, s)ϕ.

From the commutativity of the diagram (5.2), we find

(5.12) x(ℓ) = Λ((P, s)ϕ) = λ(s).

Choosing another local section ℓ′ in L results in another set of relations

(5.13) ϕ(ℓ′, ℓ′) ≃ ℓ′ + (P ′, s′)ϕ and x(ℓ′) = λ(s′),

Since L is locally isomorphic to A , there exists an A -torsor (Q, t) with

(5.14) ℓ′ ≃ ℓ+ (Q, t).

By arguments similar to the proof of the Proposition 4.2, the relation (5.14) implies the
unique isomorphism

(5.15) (P ′, s′)ϕ ≃ (P, s)ϕ + (Q, t).

From (5.15), the section s = ℓ− (P, s)ϕ is uniquely isomorphic to ℓ′ − (P ′, s′)ϕ. That is, s is
a global section of the Joyal-Kock unit ((L , x), ϕ) unique up to a unique isomorphism and
it satisfies

(5.16) x(s) = 0C and ϕ(s, s) ≃ s.

As in section 4.2, we define the morphism between two Joyal-Kock units ((L , x), ϕ) and
((K , y), σ) by mapping their global sections to each other. The relations (5.16) guarantee
that this defines a Joyal-Kock unit morphism. This morphism is unique up to the choice of
a global section. �

5.3. Picard 2-Stack of Joyal-Kock Units. We show that Joyal-Kock units of a Picard
2-stack C form a Picard 2-stack denoted by I(C). By repeating the arguments in section
4.3, we show that I(C) satisfies the conditions of the Proposition 3.1. So I(C) is a fibered
2-category in 2-groupoids. By Proposition 5.2, we deduce that I(C) is in fact a 2-stack over
S.

We define a group-like structure on I(C) by

((L , x), ϕ) ⊗ ((K , y), σ) := ((L ∧A
K , x+ y), ϕ ∧ σ),

where ϕ ∧ σ is of the form (2.2). One more time by Proposition 5.2, one can verify that this
group-like structure satisfies the Picard axioms. Hence,

Proposition 5.3. I(C) is a Picard 2-stack.
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5.4. The Cocyclic Description of a Joyal-Kock Unit. In this section, we give a co-
cyclic description of Joyal-Kock units of a Picard 2-stack C modeled by Tors(A , C). This
description help us to find a complex of abelian sheaves that represent I(C). The arguments
presented here are the categorification of the ones in section 4.4.

Let ((L , x), ϕ) be a Joyal-Kock unit of Tors(A , C) over U and V•→U be a hypercover.
Since L is locally not empty and isomorphic to A , upon choosing a local section ℓ ∈ LV0 ,
we find (P, s) an A -torsor over V1 such that

(5.17) d∗0(ℓ) ≃ d∗1(ℓ) + (P, s).

By pulling back (5.17) to V2, we find an isomorphism of A -torsors over V2

(5.18) f : d∗0(P, s) + d∗2(P, s) ≃ d∗1(P, s),

which satisfies a cocycle condition when pulled back to V3. By applying the A -equivariant
morphism x to (5.17), we obtain the equation,

(5.19) d∗0(c) = d∗1(c) + λ(s),

where x(ℓ) = c ∈ C(V0) and λ(s) is a point in C(V1). The collection (f, (P, s)) with the
cocycle condition satisfied by f and relation (5.19) represents the (A , C)-torsor (L , x).

Next, we remember the morphism ϕ that gives (L , x) a Joyal-Kock unit structure. Since
ℓ and ϕ(ℓ, ℓ) are in LV0 and L is locally trivial, there exists an A -torsor (Q, t) over V0 such
that

(5.20) ϕ(ℓ, ℓ) ≃ ℓ+ (Q, t).

Applying d∗i for i = 1, 2 to (5.20), we obtain

(5.21) ϕ(d∗i (ℓ), d
∗
i (ℓ)) ≃ d∗i (ℓ) + d∗i (Q, t).

From (5.17) and A -equivariance of ϕ

(5.22) ϕ(d∗0(ℓ), d
∗
0(ℓ)) ≃ d∗1(ℓ) + d∗1(Q, t) + (P ∧A P, 2s).

After substituting (5.21) in (5.22), we find

(5.23) d∗0(ℓ) + d∗0(Q, t) ≃ d∗1(ℓ) + d∗1(Q, t) + (P ∧A P, 2s),

which simplifies to

(5.24) g : d∗0(Q, t)− d∗1(Q, t) ≃ (P, s),

where −d∗1(Q, t) denotes the inverse of the d∗1(Q, t). By pulling back (5.24), we find

(5.25) d∗0(g) + d∗2(g) = d∗1(g) + f.

Moreover, from the commutativity of the diagram (5.2), we find

(5.26) λ(t) = c.

Hence, the collection (f, (P, s), g, (Q, t), c) where f ∈ AV2 , (P, s) ∈ AV1 , g ∈ AV1 , (Q, t) ∈

AV0 , and c ∈ C(V0) satisfying the relations (5.19), (5.24), (5.25), and (5.26) plus the coherence
condition on f when it is pulled back to V3 describes a Joyal-Kock unit in Tors(A , C). We
note that this collection is a 1-cocycle with coefficients in the morphism of Picard stacks

(5.27) (idA ,Λ) : A // ker(Λ− idC) .

We refer to [1, §6.1] for a detailed treatment of cocycles with coefficients in a stack morphism.
If we choose another local section ℓ′ ∈ LV0 , we find a cohomologous 1-cocycle. Therefore

the classes of 1-cocycles with values in the morphism (5.27) classify up to equivalence Joyal-
Kock units. We denote this set of classes of cocycles by H0(∗,A → ker(Λ− idC)).
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Remark 5.4. We obtain the morphism (5.27) by truncating the homotopy exact sequence of
Picard stacks

A
(idA ,Λ)

//A ⊕ C
Λ−idC //C ,

where A ⊕ C is a Picard stack represented by the complex (λ, idC) : A ⊕ C→B ⊕ C. For
details about exact sequences of group-like stacks, we refer to [2].

5.5. A Complex of Abelian Sheaves defining the 2-Stack of Joyal-Kock Units.

The characterization theorem for Picard 2-stacks [13, Theorem 6.4] implies that all Picard
2-stacks can be represented by a length 3 complex of abelian sheaves. Let C be a Picard
2-stack represented by the complex (5.1). In this section, we compute a length 3 complex
that represents I(C) in terms of (5.1).

Since the elements of the set H0(∗,A → ker(Λ− idC)) classify up to equivalence the Joyal-
Kock units of Tors(A , C), the stack morphism (5.27) which corresponds to the morphism
of complexes

A
(idA,0) //

δ

��

A⊕C

(δ,idC)

��

�

B
(idB ,λ)

// ker(λ− idC)

represents I(C). From [1, Proposition 6.1.6] the 1-cocycles with coefficients in

(5.28) A
(δ,(idA,0)) //B ⊕ (A⊕ C)

(idB ,λ)+(−δ,0)
// ker(λ− idC) .

the cone of (5.27) classify up to equivalence the Joyal-Kock units of Tors(A , C). Hence,

Proposition 5.5. The Picard 2-stack associated to (5.28) is equivalent to the Picard 2-stack
of Joyal-Kock units I(C) where C is the Picard 2-stack represented by (5.1).

Remark 5.6. By [13, Theorem 6.4], length 3 complexes of abelian sheaves quasi-isomorphic
to (5.28) provide other representations of I(C). For instance:

(1) The stack morphism idA : A →A is quasi-isomorphic to (5.27). Therefore its cone

A
(idA,δ) //A⊕B

δ−idB //B,

represents I(C).
(2) From Proposition 5.2 and Example 5.1, we deduce that idker(Λ) the identity of ker(Λ)

the homotopy kernel of Λ represents I(C). Since idker(Λ) is quasi-isomorphic to (5.27),
its cone

A
(idA,δ) //A⊕ ker(λ)

δ−idker(λ) // ker(λ) ,

represents I(C), as well.
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Remark 5.7. We remark that the morphism of Picard 2-stacks I(C)→C defined by forgetting
the morphism (5.6) corresponds to the morphism of complexes

A
(δ,(idA,0)) //

idA

��

B ⊕ (A⊕ C)
(idB,λ)+(−δ,0)

//

prB

��

ker(λ− idC)

prC

��

� �

A
δ

// B
λ

// C

under the equivalence [13, Theorem 6.4].

Remark 5.8. In non-abelian setting, we know how to associate a group-like 2-stack to a
2-crossed module, say (δ, λ) : G→H→K(see [11]). We model this 2-stack by Tors(G ,K)
where G is the group-like stack associated to G→H. By adapting the ideas of section 5 to
the non-abelian case we find, analogously to section 4.6 that Joyal-Kock units of Tors(G ,K)
form a Picard 2-stack represented by the complex

G
(δ,(idG,1)) //H ⊕ (G⊕K)

(idH ,λ)(δ
−1,1)

// ker(λinvK) .

We also remark that it is natural to expect that these results extend in a similar way to
n-stacks that are at least group-like.
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[8] Monique Hakim. Topos annelés et schémas relatifs. Springer-Verlag, Berlin, 1972. Ergebnisse der Math-
ematik und ihrer Grenzgebiete, Band 64.

[9] Andre Joyal and Joachim Kock. Coherence for weak units, 2009.
[10] Joachim Kock. Elementary remarks on units in monoidal categories. Math. Proc. Cambridge Philos. Soc.,

144(1):53–76, 2008.
[11] Behrang Noohi. On weak maps between 2-groups, 2005.
[12] Neantro Saavedra Rivano. Catégories Tannakiennes. Lecture Notes in Mathematics, Vol. 265. Springer-

Verlag, Berlin, 1972.
[13] A. Emin Tatar. Length 3 complexes of abelian sheaves and Picard 2-stacks. Adv. Math., 226(1):62–110,

2011.
[14] Angelo Vistoli. Grothendieck topologies, fibered categories and descent theory. In Fundamental algebraic

geometry, volume 123 of Math. Surveys Monogr., pages 1–104. Amer. Math. Soc., Providence, RI, 2005.

Department of Mathematics, FSU, Tallahassee, USA

E-mail address: aldrovandi@math.fsu.edu

Department of Mathematics and Statistics, KFUPM, Dhahran, KSA

E-mail address: atatar@kfupm.edu.sa


	1. Introduction
	2. Quick Recall on Weak Units
	2.1. Saavedra Units
	2.2. Joyal-Kock Units

	3. Quick Recall on Fibered 2-Categories
	4. Weak Units of Picard Stacks
	4.1. Saavedra Units of a Picard Stack
	4.2. Contractibility of Saavedra Units
	4.3. Picard Stack of Saavedra Units
	4.4. The Cocyclic Description of a Saavedra Unit
	4.5. A Complex of Abelian Sheaves defining the Stack of Saavedra Units
	4.6. Non Picard Case

	5. Weak Units of Picard 2-Stacks
	5.1. Joyal-Kock Units of a Picard 2-Stack
	5.2. Contractibility of Joyal-Kock Units
	5.3. Picard 2-Stack of Joyal-Kock Units
	5.4. The Cocyclic Description of a Joyal-Kock Unit
	5.5. A Complex of Abelian Sheaves defining the 2-Stack of Joyal-Kock Units

	References

