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Abstract. We propose a ‘geometric Chevalley-Warning’ conjecture, that is a motivic
extension of the Chevalley-Warning theorem in number theory. It is equivalent to a par-
ticular case of a recent conjecture of F. Brown and O.Schnetz. In this paper, we show
the conjecture is true for linear hyperplane arrangements, quadratic and singular cubic
hypersurfaces of any dimension, and cubic surfaces in P3. The last section is devoted to
verifying the conjecture for certain special kinds of hypersurfaces of any dimension. As a
by-product, we obtain information on the Grothendieck classes of the affine ‘Potts model’
hypersurfaces considered in [AM].

1. introduction

Let Fq be the finite field of q elements with q a prime power. The Chevalley-Warning
theorem states that the number of solutions in Fq of a system of polynomial equations with
n variables is divisible by q, provided that the sum of the degrees of these polynomials is
less than n. In [BS], §3.3, F. Brown and O. Schnetz conjecture that a similar statement
holds in the Grothendieck ring of varieties over a C1 field k. They conjecture that the class
of an affine k-variety defined by equations satisfying the same degree condition should be
a multiple of the class L of the affine line A1

k. Even the ‘geometric’ case, i.e., when k is
an algebraically closed field, appears to be open. We propose the following variant of this
conjecture:

Conjecture 1 (Geometric Chevalley-Warning). Let f1, . . . , fl be homogeneous polynomials
in k[x0, . . . , xn] such that

∑l
i=1 deg(fi) < n + 1, where k is an algebraically closed field of

characteristic 0. Then [Z(f1, . . . , fl)] ≡ 1(mod L) in K0(V ark), where Z(f1, . . . , fl) denotes
the set of zeros of f1, . . . , fl in Pn.

Over a field k as in this statement, Conjecture 1 is equivalent to the conjecture of Brown
and Schnetz. Indeed, let X = Z(f1, . . . , fl) ⊆ Pn , then [X] · (L− 1) + 1 is the class of the
zero-locus of f1, . . . , fl in An+1; the Brown-Schnetz conjecture would imply that this class
is ≡ 0 mod L, and this is equivalent to [X] ≡ 1 mod L.

In this paper, we show that Conjecture 1 is true for hyperplane arrangements, for qua-
dratic hypersurfaces of any dimension, for cubic surfaces in P3, and for singular cubic
hypersurfaces in any dimension. Along the way, we also establish a result which settles
some special cases of the conjecture in higher dimensions. The hypothesis that k is an
algebraically closed field of characteristic zero is used in our proofs, and it is underlying the
contextual remarks that follow in this introduction.

We note that the statement of Conjecture 1 (for any l) is equivalent to the case of
hypersurfaces (l = 1). Indeed, we have the equality [Z(f1, f2)] = [Z(f1)]+[Z(f2)]−[Z(f1f2)]
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in K0(V ar), and the condition on degrees is satisfied by polynomials on one side of the
equation whenever it is satisfied by polynomials on the other side of the equation. It follows
that the conjecture is true for Z(f1, f2) as long as it is true for the hypersurfaces Z(f1),
Z(f2), and Z(f1f2). The same type of considerations applies to the zero set of any finite
numbers of polynomial equations.

When the variety in consideration is a hypersurface, the condition on degree asked by
the geometric Chevalley-Warning conjecture becomes deg(f) < n + 1. This condition is
reminiscent of results concerning the “weakened rationality” of varieties. Recall that a
variety is rationally chain connected if two general points on the variety can be joined by
a chain of rational curves. It is known that a smooth hypersurface of degree d in Pn is
rationally chain connected if and only if d < n + 1 [KMM92]. Moreover, if we fix the degree
of the hypersurface, and make the dimension of the ambient projective space large enough,
then it is proved that a general such hypersurface is unirational [HV92].

Introducing the notion of L-rationality, Conjecture 1 admits an equivalent reformulation.

Definition 1.1. [AM11] A variety is L-rational if its class in K0(V ar) is 1 modulo L.

Conjecture 2. Every hypersurface of degree < n + 1 in Pn is L-rational.

Conjecture 2 postulates that L-rationality behaves in a sense as rational chain connect-
edness does. For instance, we know that neither cubic nor quartic smooth threefolds in
P4 are rational, [IM71], [CG72], while they would be both L-rational and rationally chain
connected according to Conjecture 2 and previous discussion.

The notion of L-rationality is motivated by stable rationality. We recall that two non-
singular irreducible varieties X and Y are “stably birational” if X × Pk is birational to
Y × Pl for some k and l. We say that a nonsingular, complete irreducible variety is ‘stably
rational’ if it is stably birational to projective space. For nonsingular varieties, L-rationality
and stable rationality are equivalent. The argument is the following. Recall that the ideal
generated by L in K0(V ar) has a concrete meaning in stably birational geometry. Denote
by Z[SB] the monoid ring generated by stably birational classes of smooth complete irre-
ducible varieties. Then M. Larsen and V. Lunts prove in [LL03] that there exists a surjective
homomorphism ΨSB : K0(V ar)→ Z[SB], mapping the class of a smooth complete variety
in K0(V ar) to its class in Z[SB], and the kernel of this homomorphism is precisely (L).
Thus, a smooth projective variety is stably birational to projective space precisely when its
class in K0(V ar) is 1 modulo L.

The reader should note that e.g., every cone is L-rational; cf. Lemma 2.4. Also, according
to the result we recalled above, a smooth projective rational variety is L-rational. However,
singular rational varieties may well not be L-rational. For example, if the normalization
morphism of an irreducible rational curve is not set theoretically injective, then the curve
itself is not L-rational. Thus, ‘most’ singular rational curves are not L-rational. Examples
in higher dimension may be obtained by applying Lemma 3.3. While all varieties considered
in this paper are ruled or rational, it is by no means obvious a priori that they should be
L-rational as prescribed by conjecture 1, and as we prove below.

We wrap up this discussion by noting that rationally chain connectedness admits a de-
scription analogous to the description of stable rationality we just recalled. In [KR], B. Kahn
and R. Sujatha construct a category of pure birational motives by localizing the category
of pure motives with respect to certain classes of birational morphisms. They prove ([KR],
§3.1) that if X is a rationally chain connected smooth projective F -variety, then h◦(X) = 1
in Mot◦rat(F, Q). Thus, h◦(X) plays for rational connectedness a role analogous to the role
played by the class of X in Z[SB] ∼= K0(V ar)/(L) for stable rationality.
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2. A few simple cases of the conjecture

In this section we verify that the conjecture is true when the degrees of the homogeneous
polynomials defining the variety are low. Namely, we will show the following results:

Proposition 2.1. If X is the union of n or fewer hyperplanes in Pn, then X is L-rational.

Proposition 2.2. Any quadratic hypersurface in Pn (n > 1) is L-rational.

Proposition 2.1 can be proved in a way similar to the reduction of the varieties in
Conjecture 1 to hypersurfaces. In fact, the equation of X can be written as f1 . . . fl

where l is the numbers of hyperplanes and the fi’s are all linear equations. Then [X] =
Z[f1 . . . fl−1] + Z[fl] − Z[f1 . . . fl−1, fl]. The notation Z[. . .] indicates the set of common
zeros of the equations appearing in the bracket, separated by commas, as mentioned in
Conjecture 1. The last term is the class of the union of l − 1 hyperplanes in Pn−1. By
induction, all terms on the right side of the equation are equivalent to 1 modulo L, so is
[X].

To prove Proposition 2.2, we observe that any singular quadratic hypersurface is a cone.
According to the following lemma and its corollary, the singular case can be taken care of
generally, and we are left to consider the class of a nonsingular quadratic hypersurface.

Lemma 2.3. Let Z be the join of varieties X and Y, which is obtained by connecting pairs
of points from X and Y by P1 and assuming these rational curves only meet at points of X
or Y. If either X or Y is L-rational, then Z is also L-rational.

Proof. Taking out X and Y from the variety Z, we get a bundle over X × Y whose fiber is
P1 taken out 2 points. Thus the class of Z in K0(V ar) is [X] · [Y ] · (L − 1) + [X] + [Y ] =
[X] · [Y ] · L− ([X]− 1) · ([Y ]− 1) + 1. �

Corollary 2.4. If the projective variety X ′ ⊂ Pm is a cone over another projective variety
X ⊂ Pn, n < m, then X ′ is L-rational.

Remark 2.5. The union of n or fewer hyperplanes in Pn is a cone (over an arbitrary point
in the set of the intersection). Thus we get a new proof of Propostion 2.1.

A special case of the result by Larsen-Lunts mentioned in the introduction gives an effec-
tive treatment of the Chevalley-Warning problem for nonsingular quadratic hypersurfaces,
as
Lemma 2.6. Every rational smooth complete variety is L-rational.

Proof. A rational smooth complete variety has the same stable birational class as a point.
Thus the difference of its class in K0(V ar) and 1 is in the ideal generated by L. [LL03] �

The previous lemmas settle the Chevalley-Warning problem for quadratic hypersurfaces.
However, we can give another proof for the nonsingular one avoiding using Lemma 2.6. Let
Q be a nonsingular quadratic hypersurface. The projection from the “north pole” gives a
nice birational map between Q and An which allows us to stratify Q.

Proof of Proposition 2.2 in the nonsingular case. First, let’s fix some notations. Let Qn be
the nonsingular quadratic hypersurface in Pn+1 defined by the equation X2

0 + X2
1 + . . . +

X2
n+1 = 0 and Yn be the affine variety defined by

∑n+1
i=1 y2

i = 1 in An+1.
Projecting from the point P = (0, 0, . . . , 1), we can establish a birational map between

Yn and An. The formula is given by:

xi = − yi

yn+1 − 1
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Here, the xi’s are coordinates of the affine space An.
The inverse rational map from An to Qn is given by the formula:

yi =
2xi∑n

i=1 x2
i + 1

yn+1 =
∑n

i=1 x2
i − 1∑n

i=1 x2
i + 1

From this description, it is easy to see the closed set Z(
∑

x2
i + 1) is not in the image of

the polar projection. Then we have the following relation in K0(V ar):

(1) [Yn]− [Z(
n∑

i=1

y2
i )] = [An]− [Yn−1]

In addition to this relation, we also have the trivial relation

(2) [Qn] = [Qn−1] + [Yn]

Because the variety Z(
∑n

i=1 y2
i ) is a cone, by the proof of 2.4, we get Z(

∑n
i=1 y2

i ) is equal
to 1 + (L− 1)[Qn−2] in K0(V ar). So we can replace our first equation by:

(3) [Yn]− (1 + (L− 1)[Qn−2]) = [An]− [Yn−1]

With the last two equations and the simple cases [Q1] = L + 1, [Y0] = 2, [Y1] = L − 1,
we can conclude by an induction on dimension that [Qn] ≡ 1 (mod L) when n > 0 and
[Yn] ≡ 0 (mod L) when n > 1. �

3. cubic hypersurfaces

The next easiest case to consider is the variety defined by a cubic equation in P3. We
have the following theorem:

Theorem 3.1. Any cubic surface in P3 is L-rational.

In fact, we can prove something more:

Theorem 3.2. Any singular cubic hypersurface in Pn (n > 3) is L-rational.

The following lemma helps to analyze singular cubic hypersurfaces.

Lemma 3.3. Let X ⊆ Pn have equation F = xnfk(x0, . . . , xn−1) + fk+1(x0, . . . , xn−1) = 0
where fk and fk+1 are homogeneous polynomials of degree k and k + 1 respectively. X is
L-rational if and only if the variety in Pn−1 defined by fk = 0 is L-rational.

Proof of Lemma 3.3. On the hypersurface Z(F ), the equation fk = 0 defines a cone over the
point (0, . . . , 1). By Corollary 2.4, this subvariety of the hypersurface Z(F ) is L-rational.
On the other hand, we have the isomorphism between the affine open set fk 6= 0 in Pn−1 and
Z(F )−Z(fk) provided by (x0, . . . , xn−1)→ (x0, . . . , xn−1,−fk+1

fk
). We see the L-rationality

of X is equivalent to the condition that the class of the affine open set fk 6= 0 is in the
ideal generated by L. This happens if and only if the hypersurface fk = 0 in Pn−1 is
L-rational. �

Proof of theorem 3.2. For a singular cubic hypersurface, we can assume one of its singular
point is (0 : . . . : 0 : 1) by a change of projective coordinates. We keep using the notation of
the previous lemma. The equation of the cubic surface is written as xnf2(x0, . . . , xn−1) +
f3(x0, . . . , xn−1) = 0 or f3(x0, . . . , xn−1) = 0, depending on the singular point is a double
point or a triple point. Then the L-rationality of the singular cubic hypersurface follows
immediately from lemma 3.3, proposition 2.2 or corollary 2.4. �
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Proof of theorem 3.1. A nonsingular cubic surface arises from the blow-up of P2 at 6 general
points. In particular, it is rational. The L-rationality follows from Lemma 2.6. The singular
case has been done by theorem 3.2. �

Remark 3.4. One can also approach theorem 3.1 by the classification of cubic surfaces given
in [BW79]. That is, one can directly compute their class in K0(V ar) according to the
standard equations given in this reference. This however leads to a lengthy computation.

Remark 3.5. The criterion we derived in lemma 3.3 can be applied to give another proof
of proposition 2.2. Since as long as the rank of the quadratic form is greater or equal to 2,
the equation can be written as F = x0x1 + x2

2 + . . ..

Corollary 3.6. If a singular quartic hypersurface in P4 has a triple point, then it is L-
rational.

Proof. Assuming the triple point is (0 : 0 : 0 : 0 : 1), then the equation of the quartic
hypersuface can be written as F = x4f3(x0, x1, x2, x3)+g4(x0, x1, x2, x3). The L-rationality
follows immediately from lemma 3.3 and theorem 3.1. �

4. L-rationality of higher dimensional varieties

Theorem 4.1. If the equation of a hypersurface of degree n in Pm (m > n > 4) can be writ-
ten as F = xn . . . x4f3(x0, x1, x2, x3) +

∑n
i=5 xn . . . xigi−1(x0, . . . , xi−2) + gn(x0, . . . , xn−1),

then this hypersurface is L-rational.

Proof. When m > n, not all coordinates of Pm appear in F . In this case F defines a cone
in Pm and the L-rationality of this hypersurface follows from lemma 2.4. When m = n,
Rewrite the polynomial as

F = xn[xn−1 . . . x4f3(x0, x1, x2, x3) +
n−1∑
i=5

xn−1 . . . xigi−1(x0, . . . , xi−2)

+ gn−1(x0, . . . , xn−2)] + gn(x0, . . . , xn−1).

Then the proof follows by induction, lemma 3.3 and corollary 3.6. �

Theorem 4.2. If the equation of the hypersurface of degree at most n in Pn (n > 4) has
degree 1 in all variables except at most 4 variables, then this hypersurface is L-rational.

Proof. Suppose the 4 possibly non-linear variables are x0, x1, x2, and x3. Proceed the
proof by an induction on n. When n = 4, the equation of the hypersurface is either
x4fk(x0, x1, x2, x3) + fk+1(x0, x1, x2, x3) = 0 (k 6 3) or fk(x0, x1, x2, x3) = 0 (k 6 4).
Since we have checked the L-rationality of cubic surfaces, quadratic hypersurfaces, the
L-rationality of such hypersurfaces are guaranteed by lemma 3.3 or corollary 2.4. When
n > 4, if the equation of the hypersurface is written only in terms of x0, x1, x2, x3, then it
is a cone. Otherwise, let xn be one of its linear variables. Then the equation of the hyper-
surface is xnfk(x0, . . . , xn−1) + fk+1(x0, . . . , xn−1) where fk is again linear in all variables
except at most 4 variables. So the L-rationality follows from lemma 3.3 and the induction
hypothesis. �

Remark 4.3. Theorem 4.2 generalizes Corollary 3.3 from [AM11], since the equations of the
“graph hypersurfaces” considered there are linear in all variables, they must be L-rational
by Theorem 4.2.



6 XIA LIAO

Example 4.4 (Affine Potts model hypersurface). The previous theorem also gives an easy
way to calculate the modulo L class of the affine Potts model hypersurfaces appearing in
[AM] definition (2.2) equation (2.5). The equations for such affine hypersurfaces are

ZG(q, t) =
∑

G′⊆G′

qk(G)
∏

e∈E(G′)

te,

where G′ is a subgraph of G, k(G′) and E(G′) are the number of connected components
and the set of edges of the graph G′ respectively. Fix q in this equation and denote by
n the number of edges of the graph G, then this equation defines the affine Potts model
hypersurface in An. Its class in K0(V ar) is congruent to 1 modulo L if n is odd and
congruent to −1 modulo L when n is even.

The calculation goes as follows. These hypersurfaces are defined by inhomogoneous
polynomials of degree n in An, linear in all variables, where n is the number of the edges
of the graph in consideration. Homogenize the equation and write it as F = 0, then
clearly F is a homogeneous polynomial of degree n linear in all variables except the variable
x0 introduced in homogenizing. Now the class of the affine Potts model hypersurface is
[Z(F )]− [Z(x0, x1x2 . . . xn)]. Z(F ) is L-rational by the previous theorem, and now we are
left to calculate [Z(x0, x1x2 . . . xn)] which is the class of the union of n hyperplanes in Pn−1.

Let x1, . . . , xn be the projective coordinates of Pn−1. Consider the complement of Z(x1x2 . . . xn),
which can be explicitly expressed as points (x1 : · · · : xn) such that all projective coordinates
are nonzero. We see this affine open set is isomorphic to the (n− 1)-fold cartesian product
of (A1−{pt}). So the class of the union of n hyperplanes in Pn−1 equals [Pn−1]−(L−1)n−1.
Taking into account that [Pn−1] = 1 + L + · · ·+ Ln−1, we see this class is 1 + (−1)n modulo
L. We conclude the class of the affine Potts model hypersurface is L-rational when n is odd
and congruent to −1 modulo L when n is even.
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