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Abstract

In this paper, we show that to each planar line arrangement defined over the real numbers,
for which no two lines are parallel, one can write down a corresponding relation on Dehn twists
that can be read off from the combinatorics and relative locations of intersections. This gives an
alternate proof of Wajnryb’s generalized lantern relations, and of Endo, Mark and Horn-Morris’
daisy relations.

1 Introduction

The study of hyperplane arrangements has a rich history in the realms of topology, algebraic ge-
ometry, and analysis (see, for example, [O-T]). Several authors have studied the topology of planar
line arrangements using braid monodromy (see, for example, [MT], [C-S], [Cor]). While easy to
draw, the deformation theory of real planar line arrangements holds many mysteries. For example,
there are topologically distinct real line arrangements with equivalent combinatorics [ARCM] (see
also, [Ryb].); and by the Silvester-Gallai theorem [ES] there are planar line arrangements defined
over complex numbers, whose combinatorics cannot be duplicated by a real line arrangement, for
example, the lines through the 9 flexes of a smooth cubic plane curve.

In this paper, we use the theory of line arrangements to generate relations on Dehn twists in the
mapping class group MCG(S) of an oriented surface S of finite type. The lantern relation on Dehn
twists is of interest because it is one of five simple to state relations that generate all relations
in the Dehn-Lickorish-Humphreys presentation of MCG(S) [Waj1] (see also [Lic], [Hum], [Bir],
[Mat]). The lantern relation also plays an important role in J. Harer’s proof that the abelianization
of MCG(S) is trivial if S is a closed surface of genus g ≥ 3 [Har] (see also [FM], Sec. 5.1.2).

To state the lantern relations, we first fix notation. Let S be an oriented surface of finite type. If S
is closed, the mapping class group MCG(S) is the group of isotopy classes of self-homeomorphisms
of S. If S has boundary components, then the definition of MCG(S) is the same, except that we
impose the condition that all maps fix the boundary of S pointwise. For a compact annulus A,
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MCG(A) is isomorphic to Z and is generated by a right or left Dehn twist around its core curve.
As illustrated in Figure 1, a right Dehn twist takes a path on A transverse to the core curve to a
path that wraps once around the core curve turning in the right hand direction (a left Dehn twist
correspondingly turns in the left direction) as it passes through c. The Dehn twist can also be
thought of as being obtained by rotating one of the boundary components by 360◦ while leaving
the other boundary component fixed. Each simple closed curve c on S determines a right Dehn

c
c

Figure 1: Right Dehn twist.

twist on an annulus neighborhood of c, and this Dehn twist extends by the identity to all of S. The
isotopy class δc of this map is the (right) Dehn twist centered at c and is an element of MCG(S).

The original statement and proof of the lantern relation appears in Dehn’s 1938 paper [Deh] and
relates a product of three interior Dehn twists to four boundary twists on a genus zero surface with
four boundary components. The relation was little known until it was rediscovered by D. Johnson
[Joh]. B. Wajnryb gave the following generalized version in [Waj2] (Lemma 1.17).

Theorem 1 Let Sc0,n+1 ⊂ S be a surface of genus zero with n+1 boundary components d0, d1, . . . , dn.
There is a collection of simple closed curves ai,j , 1 ≤ i < j ≤ n in the interior of Sc0,n+1, so that

(i) for each i, j, ai,j separates di ∪ dj from the rest of the boundary components, and

(ii) there is a relation on Dehn twists

∂0(∂1, . . . , ∂n)n−2 = α1,2α1,3, . . . , α1,n, α2,3, . . . , α2,n, . . . , αn−2,n−1, αn−2,n, αn−1,n, (1)

where αi,j = δai,j is the right Dehn twist around ai,j, and ∂i = δdi is the right Dehn centered
at a curve parallel to the boundary components di.

We now restate Theorem 1 in terms of line arrangements in R2.

Theorem 2 Let L be a union of n ≥ 3 distinct lines in the (x, y)-plane over the reals with distinct
slopes and no slope parallel to the y-axis. Let I = {p1, . . . , ps} be the intersection points on L
numbered by largest to smallest x-coordinate. For each L ∈ L, mL is the number of points in I ∩L.
Let Sc0,n+1 be a surface of genus zero and n+ 1 boundary components dL, one for each L ∈ L and
an extra boundary component d0. Then there are simple closed curve apk , k = 1, . . . , s on Sc0,n+1

so that the following holds:
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(i) each apk separates ⋃
pk∈L∈L

dL

from the rest of the boundary curves; and

(ii) the Dehn twists ∂L = δdL and αpk = δapk satisfy

∂0
∏
L∈L

∂mL−1
L = αps · · ·αp1 . (2)

Remark 1. In Equation (2), the terms on the left side commute, while the ones on the right
typically don’t. Thus, the ordering of p1, . . . , ps matters, and reflects the subtle combinatorics of
line arrangements. The curves apk can be found explicitly (see Section 2.2, Lemma 3).

Remark 2. The relations in MCG(Sc0,n+1) give rise to relations on MCG(S) for any surface S
admitting an embedding Sc0,n+1 ↪→ S.

L2

L3

L1

1,3

2,3 1,2

d0

d2

a2,3
a1,3 a1,2

d1d3

d0

d3

d1

d2

a2,3

a1,3 a1,2

Figure 2: Three lines in general position, and curves defining associated lantern relation drawn two
ways

When n = 3, Theorem 1 gives the standard Lantern relation

∂0∂1∂2∂3 = α1,2α1,3α2,3.

The core curves for these Dehn twists and the corresponding line arrangements are shown in
Figure 2. The diagram to the right is the motivation for the name of this relation.

Here is the main idea of our proof of Theorem 2. First consider a great ball B ⊂ C2 containing
all the points of intersection of L. Let CP2 be the projective compactification of C2. Then the
complement of B in CP2 is a neighborhood of the “line at infinity” or L∞ = CP2 \ C2. Thus the
monodromy of ρ restricted to the exterior of B depends only on the way L intersects L∞. If no
lines in L are parallel to each other, then without changing any slopes, and hence the topology
of CP2 \ B, it is possible to move the lines in L to obtain a new configuration T where all lines
meet at a single point. Since moving the lines in the arrangement in this way does not change
the monodromy, we get an equality between the two monodromies defined by L and T . Thus,
Theorem 2 follows from an analysis of the monodromy of line arrangements on compactified fibers
of a generic projection. The monodromy is reinterpreted as point pushing maps, and we keep track
of twisting on the boundary components of the compactified fibers using the complex coordinate
system on C2.
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This paper is organized as follows. In Section 2.1 we recall the Moishezon-Teicher braid monodromy
representation of a free group associated to a planar line arrangement. We refine the representation
so that its image is the the mapping class group of compactified fibers in Section 2.2. In Section 2.3,
we prove Theorem 2 using deformations of line arrangements and give further variations of the
lantern relation, including the daisy relation Theorem 7.

Acknowledgments: The author is grateful to J. Mortada and D. Margalit for helpful discussions
and comments.

2 Real line arrangements and relations on Dehn twists

In this section, we recall properties of line arrangements L in the complex plane defined by real
equations and the monodromy on generic fibers under linear projections

C2 \ L → C.

A key ingredient to our analysis is B. Moishezon and M. Teicher description of the monodromy
as elements of the pure braid group (see, for example, [MT] and [Hir] ). We generalize this braid
monodromy by studying the action of the monodromy not only on generic fibers of ρ, but also on
their compactifications as genus zero surfaces with boundary. This leads to a proof of Theorem 2.

The ideas in this section can be generalized to more arbitrary plane curves. An investigation of the
topology of plane curve complements using such general projections appears in work of O. Zariski
and E. van Kampen [Kam]. We leave this as a topic for future study.

2.1 Braid monodromy defined by planar line arrangements over the reals

In this section we recall the braid monodromy associated to a real line arrangement. For convenience
we choose Euclidean coordinates (x, y) for C2 so that no line is parallel to the y-axis, and no two
intersection points have the same x coordinate. For i = 1, . . . , n, let Li be the zero set of a linear
equation in x and y with real coefficients:

Li : y = mix+ ci mi, ci ∈ R,

and assume that the lines are ordered so that the slopes satisfy:

m1 > m2 > · · · > mn.

Let I = I(L) = {p1, . . . , ps} ∈ C2 be the collection of intersections points of L ordered so that the
x-coordinates are strictly decreasing.

Let ρ : C2 → C be the projection of C2 onto C given by ρ(x, y) = x. For each x ∈ C, let

Fx = ρ−1(x) \ L.
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The y coordinate allows us to uniformly identify Fx with the complement in C of n points Li(x),
where Li(x) is the unique point in

ρ−1(x) ∩ Li.

Let x0 ∈ R be greater than any point in ρ(I). Then there is a natural map

γ : [0, 1]→ C \ ρ(I)

from paths based at x0 to a braid on n strands in C parameterized by

{Li(γ(t)) : i = 1, . . . , n}.

Since two homotopic paths give rise to isotopic braids, and composition of paths corresponds to
composition of braids, this defines a homomorphism

β : π1(C \ ρ(I), x0)→ B(S2, n+ 1)

from the fundamental group to the spherical braid group on n+ 1 strands.

The (braid) monodromy of (C2,L) with respect to the projection ρ and basepoint x0 is the homo-
morphism

σL : π1(C \ ρ(I), x0)→ MCG(Fx0), (3)

given by the composition of β and the braid representation

B(S2, n+ 1)→ MCG(S0,n+1) = MCG(Fx0),

from the braid group to the mapping class group on a genus zero surface with n+ 1 punctures..

We now study the image of simple generators of π1(C \ ρ(I), x0) in MCG(Fx0).

1x x xN 2

Figure 3: Simple loop generators for π1(C \ ρ(I)).

By a simple loop in π1(C \ ρ(I), x0), we mean a path of the form g = fpgpf
−1
p , where

gp : [0, 1] → C \ ρ(I)

t 7→ p+ εpe
2πit

and fp is a path from x0 to p + ε whose image is in the upper half plane except at its endpoints.
Since π1(C \ ρ(I), x0) is generated by simple loops, it is enough to understand the monodromy in
the image of these elements.

In order to describe the monodromy of a simple loop Lp = fpgpf
−1
p , we study how F cx is transformed

as x follows each of the segments of Lp.
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Figure 4: Monodromy defined by gp with the real part of L drawn in.

First we look at gp. Let Lj1 , Lj2 , . . . , Ljk be the lines in L that pass through p. We can assume by
a translation of coordinates that p = (0, 0), and Ljr is defined by an equation of the form

y = mrx

where m1 > m2 > · · · > mk. Then as t varies in [0, 1], the intersection of Ljr with Fgp(t) is given by

Ljr(t) = (εpe
2πit,mrεpe

2πit).

The other lines in L locally can be thought of as having constant slope, hence their intersections
with Fgp(t) retain their order and stay outside a circle on Fgp(t) enclosing Lj1(gp(t)), . . . , Ljk(gp(t))

(see Figure 4). Let aloc
p ⊂ Fp+ε be this circle. The restriction of ρ to C2 \ L defines a trivial

bundle over the image of fp. Thus aloc
p determines a simple closed curve ap on Fx0 separating

Lj1(x0), . . . , Ljk(x0) from the rest of the Lj(x0).

Next we notice that lifting over fp defines a mapping class on Fx0 . This is because there is a
canonical identification of Fx0 and Fx for any x ∈ R \ ρ(I) given by the natural ordering of
L ∩ ρ−1(x) by the size of the y-coordinate from largest to smallest. Thus fp determines a braid βp
on n strands. We have shown the following.

Lemma 3 The image σL(g) in MCG(Fx0), where g = fpgpf
−1
p is given by

βp · σp · β−1p ,

where σ is a right Dehn twist around the pullback of ap.
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2.2 Monodromy on compactified fibers

In this section, we define the monodromy representation of π1(Fx0 , y0) into MCG(F cx0), where F cx0
is a compactification of Fx0 as a compact surface with boundary.

As before choose coordinates for C2, and let L = ∪ni=1Li be a planar line arrangement defined over
the reals with distinct slopes. Assume all points of intersection I have distinct x-coordinates. Let
ε > 0 be such that the ε radius disks Bε(p) around the points p ∈ ρ(I) are disjoint. Let δ > 0 be
such that the δ radius tubular neighborhoods Nδ(Li) around Li are disjoint in the complement of

Bδ(ρ(I)) = ∪p∈ρ(I)ρ−1(Bδ(p)).

Let D be a disk in C containing all points of ρ(I) in its interior, and having x0 on its boundary.
Let N∞ be the product of a disk centered at the origin of C so that C×N∞ contains L∩ ρ−1(D)¿

For each x ∈ C \ ρ(I), let
F cx = ρ−1(x) ∩N∞\ ⊂ Fx \Nε(Li).

For each x ∈ D and i = 1, . . . , n, let

di(x) = ∂Nε(Li) ∩ ρ−1(x),

and let
d∞(x) = ∂N∞ ∩ ρ−1(x).

We are now ready to define the monodromy on the compactified fibers

σcL : π1(Fx0 , y0)→ MCG(F cx0).

Let η be the inclusion homomorphism

η : MCG(F cx0)→ MCG(Fx0).

Then we have a commutative diagram

π1(C \ ρ(I), y0)
σc
L //

σL

((QQQQQQQQQQQQ
MCG(F c0 )

η

��
MCG(F0).

The kernel of η is generated by Dehn twists centered at the boundary components of F cx0 (Theorem
3.18, [FM]). Thus, in order to describe σcL, we need to understand what twists occur near boundary
components in the monodromy associated to the paths gp and fp defined in Section 2.1.

Consider the simplest case when L ⊂ C2 is a single line defined by

y = mx.

Let Nδ(L) be the tubular neighborhood

Nδ(L) = {(x, L(x) + y) : |y| < δ}.
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Then Nδ(L)∩Fg(t) is a disk centered at L(g(t)) of radius δ. The boundary ∂Nδ(L) is a trivial bundle
over C \Bδ(ρ(I)) with trivialization defined by the framing of C by real and complex coordinates.

Now assume that there are several lines Lj1 , . . . , Ljk meeting at p, and that ρ(p)+ε is the basepoint
for gp a loop of going clockwise around a circle of radius epsilon around p. Let L be a line through
p with slope equal to the average of those of Lj1 , . . . , Ljk, and let ε > 0 be such that Nε(L)∩Fρ(p)+ε
contains dj1(gp(0)), . . . , djk(gp(0)), but no other boundary components of Fgp(0). Let

dN (gp(0)) = ∂Nε(L) ∩ Fgp(0).

Then looking back at Figure 4, we see that the points Lj1(gp(t)), . . . , Ljk(gp(t)) rotate as a group
360◦ in the counterclockwise direction as t ranges in [0, 1]. The corresponding mapping class on the
bounded portion of Fgp(0)enclosed by dN can be thought of as being obtained by simultaneously
point pushing the inner boundary components dj1(gp(0)) in a clockwise direction.

Figure 5 and Figure 6 illustrates the Dehn twist ∂dN centered at a simple closed curve parallel to
dN and the monodromy σcL(gp) in the case when L is a union of 4 lines meeting at a single point p.
The middle picture illustrates the fiber Fgp(0.5) half way around the circle traversed by gp. From

Figure 5: The mapping class ∂dN .

Figure 6: The monodromy defined by gp, .

the effect of the mapping class on relative curves, we see the equality

σcL(gp) = (∂d1∂d2∂d3∂d4)
−1∂dN .

More generally we have the following lemma.

Lemma 4 Let Lj1 , . . . , Ljk be the lines meeting at p, and let

gp : [0, 1] → C \ L
t 7→ ρ(p) + εe2πit.

Then the monodromy on F cgp(0) defined by gp is given by

σcL(gp) = (∂dj1 · · · ∂djk )−1∂dN .
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2.3 Deformations of line arrangements

To finish our proof we analyze the effect of deforming a line arrangement.

Let

L =
n⋃
i=1

Li

be a finite union of real lines in the Euclidean plane, R2 with no two lines parallel. Let T be the
complexified real line arrangement with all n lines intersecting at a single point p0. Let ρ : C2 → C
be a generic projection, and let D ⊂ C be a disk of radius r centered at the origin containing ρ(I)
and ρ(p0) in its interior. Let

γ : [0, 1] → C
t 7→ re2πit.

Lemma 5 The monodromies σL(γ) and σT (γ) are the same.

Proof. Identify C2 with CP2 \ L∞, were L∞ is a projective line. Identify the points in L∞ with
slopes of lines in C2. The complement

N∞ = CP2 \ ρ−1(D)

is naturally identified with a disk bundle over L∞ punctured at a point. Since the restriction of ρ
to N∞ ∩ T and to N∞ ∩ L are the same, the monodromy over the boundary path γ of D is the
same.

Proof of Theorem 2. By Lemma 5, σL(γ) = σT (γ). Figure —refpathhomotopy-fig gives and
illustration of two equivalent representations of the homotopy type of γ. Let

1
x1xx 2Nx x xN 2

Figure 7: Two representatives of γ in π1(C \ ρ(I)).

By Lemma 3 and Lemma 4, we have

σT (γ) = (∂d1 · · · ∂dn)−1∂d∞ .

Let p1, . . . , ps be the elements of I numbered by decreasing x-coordinate. Then for each i = 1, . . . , s,
we have

σL(fpigpifpi) = (∂dj1 ◦ ∂djk )−1αpi

where
αpi = ∂f∗pidNpi
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is the pullback of dNpi
along the path fpi . Thus,

σL(γ) = (∂m1
d1
◦ ∂ms

ds
)−1αps ◦ αp1 ,

where mi is the number of elements in I ∩ Li.

To show that Theorem 1 follows from Theorem 2, we need to show that the ordering given in
Equation (1) can be obtained by a union of lines L satisfying the conditions. To do this, we start
with a union of lines T intersecting in a single point. Let L1 be the line in T with largest slope.
Translate L1 in the positive x direction without changing its slope. The translated line L′1 intersect
the other lines in simple points starting with L2 and ending with Ln. Continue for each line from
highest to lowest slope, making sure with each time that the shifting L creates new intersections
lying to the left of all previously created ones.

More generally, we can deform the lines through a single point T to one in general position L so
that the only condition on the resulting ordering on the pairs of lines is the following. A pair (i, j)
must preceed (i, j+ 1) for each 1 ≤ i < j ≤ n. Thus, we obtain another restatement of Theorem 1.

Theorem 6 Let {p1, . . . , ps} be an ordering of the pairs (i, j), 1 ≤ i < j ≤ n, so that for all i, the
sequence

(i, i+ 1), (i, i+ 2) . . . , (i, n)

is strictly decreasing. Then there a lantern relation of the form

∂0(∂1 · · · ∂n)n−2 = αp1 · · ·αps .

3 Applications

Although it is known that all relations on the Dehn-Lickorish-Humphreys generators can be ob-
tained from the braid, chain, lantern and hyperelliptic relations, there are some other nice symmetric
relations that come out of line arrangements that are not trivially derived from the four generating
ones. We conclude this paper with a sampling.

3.1 Daisy relation

Consider the line arrangements given in Figure 8. As pointed out to me by D. Margalit, this relation
was recently also discovered H. Endo, T. Mark, and J. Van Horn-Morris using rational blowdowns
of 4 manifolds [EMHM]. We follow their nomenclature and call this the daisy relation.

Let Sc0,n+1 denote the compact surface of genus 0 with n + 1 boundary components. Consider
the configuration of simple closed curves shown in Figure ??. Let d0, . . . , dn be the boundary
components of Sc0,n+1. Let d1 be the distinguished boundary component at the center of the
arrangement, and let d0, d2, . . . , dn be the boundary components arranged in a circle (ordered in
the clock wise direction around d1). Let a1,k be a simple closed loop encircling d1 and dk, where
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Figure 8: Line arrangement, and associated arrangement of curves (n=6).

k = 0, 2, 3, . . . , n. Let ∂i be the Dehn twist centered at di, and let α1,k be the Dehn twist centered
at a1,k.

Theorem 7 [Daisy-relation] For n ≥ 3, the Dehn twists on Sc0,n+1 satisfy the relation

∂0∂
n−2
1 ∂2 · · · ∂n = α1,0α1,n · · ·α1,2

where ∂i is the Dehn twist centered at the boundary component di, and α1,j is the Dehn twist
centered at curves a1,j.

When n = 3, Theorem 7 specializes to the usual lantern relation.

Proof. We associate the boundary component di with Li for i = 1, . . . , n, and d0 with the “line at
infinity”. Theorem 2 applied to the line arrangement in Figure 8 gives:

∂0(∂1 · · · ∂n)−1 = Rpn . . . Rp1

where p1, . . . , pN are the intersection points of the line arrangement L ordered by largest to smallest
x-coordinate. For this configuration, pk gives rise to

Rpk = (∂1∂k+1)
−1α1,k+1,

for k = 1, . . . , n− 1. Noting that the loop that separates d2 ∪ · · · ∪ dn from d0 ∪ d1 can be written
as a1,0, we have

Rpn = ∂2 · · · ∂n−1α1,0

yielding the desired formula.

Remark 3. Let
β : B(S2, n+ 1)→ MCG(S0,n+1)
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1

L 3

L 4

L 2

d1

d2

d3

a1,2

a1,3a1,4

d0

d4

a1,0

L

Figure 9: Alternate drawing of the daisy configuration (n=4)

be the braid representation from the spherical braid group to the mapping class group. Recall the
relation R in B(S2, n+ 1) given by

(σ21)(σ−11 σ22σ1) · · · (σ−11 σ−12 · · ·σn−1σ
2
nσn−1 · · ·σ1) = σ1 · · ·σn−1σ2nσn−1 · · ·σ1.

= 1

This induces a relation R′ in MCG(S0,n+1). The daisy relation can be considered as the lift of R′

under the inclusion homomorphism η.

3.2 Flying saucer relation

As a final example, we consider a configuration of n ≥ 5 lines, with n − 2 meeting in a single
point. There are several ways this can be drawn. We give one example in Figure 10. Other
line arrangements satisfying these conditions will give similar relations, but the drawings of the
associated curves will be more complicated.

1

L 2

L 3

L 4

L 5

d1

d0

d5

d3 d2d4

L

Figure 10: Configuration of lines and associated configuration of curves (n = 5).

As before, let d0, . . . , dn be the boundary components of Sc0,n+1. The boundary component di is
associated to the line Li for i = 1, . . . , n, and d0 is the boundary component associated to the “line
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at infinity”. Let ai,j be the loop encircling di ∪ dj and no other boundary component. Let c be the
loop encircling d3, . . . , dn drawn in Figure 10 (with n=5). For convenience a1,n is drawn as a loop
encircling d2 ∪ dn ∪ d0. An alternate drawing is given in Figure 10.

Theorem 8 (Flying saucer relation) Let ∂i be the right Dehn twist centered at di, αi,j the right
Dehn twist centered at ai,j, and β the right Dehn twist centered at c. Then

δ0δ
n−2
1 δ2 · · · δn−1δn−2n = αn−1,nαn−2,n · · ·α2,n β α1,nα1,n−1 · · ·α1,2

Proof. Theorem 2 applied to the line arrangement in Figure 10 gives the equation

∂0(∂1 · · · ∂n)−1 = Rp1 · · ·Rpn−2Rpn−1RqRs1 · · ·Rsn−2 ,

where

Rpk = (∂1∂k+1)
−1α1,k+1

Rq = (∂2 · · · ∂n−1)−1β
Rsk = (∂n∂k+1)

−1αk+1,n.

Putting these together yields the desired formula.

One sees from Figure 10 that the order of Rpn−1 and Rq may be interchanged.

5

d1

d0
d3

d4
d2

d

Figure 11: Alternate drawing of the saucer configuration (n=5)
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