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Abstract

In this paper we describe special loci on the fibered face of a 3-manifold that correspond
to generalized Penner sequences of mapping classes and to handlebody mapping classes. As
an application, we show that the logarithm of the minimum dilatation of handlebody mapping
classes on a closed genus g surface behaves asymptotically like the inverse of the genus. We also
show that the minimum dilatation of mapping classes with homological dilatation equal to one
shares this asymptotic behavior.

1 Introduction

In [Pen], R. Penner established a technique for constructing a sequence of pseudo-Anosov mapping
classes φg : Sg → Sg, where Sg is a closed oriented surface of genus g, whose dilatations satisfy

λ(φg)
g ≤ C (1)

for some constant C. These mapping classes have the property that up to composition by a periodic
map, φg is supported on a subsurface of fixed type, and its restriction to this subsurface is a fixed
mapping class.

Thurston showed that the set of pseudo-Anosov mapping classes on orientable surfaces of finite type
can be partitioned into subsets corresponding to rational points on special regions called fibered
faces in the first cohomology of hyperbolic 3-manifolds. Convergent sequences of rational points on
fibered faces with increasing denominators correspond to mapping classes with increasing topolog-
ical Euler characteristic and converging normalized dilatation. For such sequences the logarithm
of the dilatation behaves asymptotically like the inverse of the Euler characteristic. Thus, fibered
faces are a natural source of sequences of mapping classes that satisfy inequalities of the type given
in (1). This leads to the question:

∗This work was partially supported by a grant from the Simons Foundation (#209171 to Eriko Hironaka).
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Question 1.1 Let φn : Sn → Sn be a sequence of pseudo-Anoosv mapping classes satisfying

λ(φn)|χ(Sn)| < C

for some constant C. What further conditions are necessary on the sequence to ensure that they
correspond to a sequence on a fibered face?

In this paper, we define a generalized Penner sequence, and show that each Penner sequence
corresponds to a convergent sequence on a fibered face. A version of Penner sequences was also
studied by M. Bauer in [Bau]. In [Val] Valdivia defined a more restrictive version of Penner
sequences than the one given in this paper, and shows that they arise from a single 3-manifold by
analyzing the fundamental group and applying the Mostow-Prasad rigidity theorem. Our definition
of Penner sequence does not require the mapping classes to be of Penner-type (i.e., a product of a
pair of Dehn twists on multicurves), and our proof is constructive.

We next apply Penner sequences to the minimum dilatation problem for pseudo-Anosov handlebody
mapping classes. A mapping class φ on a surface S is a handlebody mapping class if there is an
identification of S with the boundary of a handlebody H so that φ extends to H. Let δHg be the
minimum dilatation of a pseudo-Anosov handlebody mapping class of genus g. Our first application
is the following.

Theorem 1.2 The minimum dilatation of pseudo-Anosov handlebody mapping classes satisfies

log(δHg ) � 1

g
.

In [FLM], Farb Leininger and Margalit proved that the dilatations of pseudo-Anosov mapping
classes in the Torelli subgroup of Mod(Sg) is bounded from below by a constant c > 1. Thus,
mapping classes that act trivially on first homology cannot have small dilatation. If we look,
however, at mapping classes whose action on first homology has spectral radius equal to one, we
get a different story.

Theorem 1.3 The minimum dilatation δ∆
g of pseudo-Anosov mapping classes whose homological

dilatation is one satisfies

log(δ∆
g ) � 1

g
.

This paper is organized as follows. Section 2 contains background on the minimum dilatation
problem. In Section 3 we recall properties of fibered cones and fibered faces. We study the locus of
points on a fibered face corresponding to handlebody mapping classes in Section 4. In Section 5, we
describe a procedure for constructing generalized Penner sequences of mapping classes on fibered
faces, and prove some properties. Section 6 contains two examples of Penner sequences, one is the
Penner’s original example, and the other is a sequence of handlebody mapping classes that has the
properties required to prove Theorem 1.2 and Theorem 1.3.

Acknowledgments: I would like to thank S. Hensel and A. Valdivia for helpful discussions.
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2 Small dilatation problem

Let Sg be a closed oriented surface of genus g, and let Mod(Sg) be the group of isotopy classes
of self-homeomorphisms of Sg, called the mapping class group of Sg. By the Nielsen-Thurston
classification, elements of Mod(Sg) are either periodic, reducible, or pseudo-Anosov. Each pseudo-
Anosov mapping class φ has a dilatation λ(φ) > 1 which measures the uniform rate of stretching
and contraction of φ along an associated pair of φ-invariant transverse measured singular foliations.
The set of logarithms of dilatations for a fixed Sg is the length spectrum for closed Teichmüller
geodesics on the moduli space of Sg, and is a discrete subset of the real numbers strictly greater
than one. The dilatations are also algebraic Perron units of degree bounded by 6g − 6. These and
further properties of pseudo-Anosov mapping classes are developed in [Thu], [FS] and [CB]. In
[Pen] R. Penner studied the minimum dilatations δ(Mod(Sg)) as a function of genus and showed

log(δ(Mod(Sg))) �
1

g
.

Penner’s result has inspired many further questions about minimum dilatations, including the
following.

Question 2.1 For which sequences of subgroups Gg ⊂ Mod(Sg) does

log(δ(Gg)) �
1

g

hold?

We say that a sequence of subgroups Gg ⊂ Mod(Sg) supports small dilatations if the answer to
Question 2.1 is affirmative.

Examples of Gg that do not support small dilatation can be found in [FLM], [BL]. Mapping class
groups that commute with a hyperbolic involution do support small dilatations (see [HK] and [Tsa]).
In this paper, we show that the handlebody subgroup of Mod(Sg) (Theorem 1.2) and the subgroup
of Mod(Sg) consisting of mapping classes with homological dilatation equal to 1 (Theorem 1.3)
both support small dilatations.

Let Sg be a genus g surface, Hg a handlebody of genus g, and p : Sg → Hg an identification of
Sg with the boundary of Hg. Let ModH(Sg, p) ⊂ Mod(Sg) be the subgroup consisting of mapping
classes φ : Sg → Sg so that for some mapping class φh : Hg → Hg, the diagram

Sg
φ //

p

��

Sg

p

��
Hg

φh // Hg

commutes.

The subgroup ModH(Sg, p) ⊂ Mod(Sg) is called a handlebody subgroup of Sg, and has been studied
by several authors. For example, B. Wajnryb found a finite presentation of the handlebody subgroup
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in [Waj]. Although ModH(Sg, p) depends on p, any two such subgroups can be obtained one from
the other by conjugating by an element of Mod(Sg). Hence δ(ModH(Sg, p)) does not depend on the
choice of p. H. Masur showed that the limit set of the handlebody subgroup has measure zero in
Thurston’s sphere of measured foliations [Mas]. Thus, while the handlebody subgroups are small
in a measure theoretic sense, Theorem 1.2 shows that they are general enough to support small
dilatations.

3 Mapping classes and fibered cones.

Thurston’s theory of fibered faces provides a way of associating mapping classes to primitive integral
elements in conical regions, called fibered cones, inside H1(M ;Z), where M is a 3-manifold [Thu].
McMullen introduced a method for analyzing the mapping classes defined by a fibered cone using
multicyclic coverings of M [McM1].

Let P be the collection of all pseudo-Anosov mapping classes on an oriented surfaces of finite type.
Given a mapping class φ ∈ Mod(S), let M(φ) be the mapping torus of φ, defined by

M = S × [0, 1]/(x, 1) ∼ (φ(x), 0).

Given a hyperbolic 3-manifold M , let

Φ(M) = {φ ∈ P : M = M(φ)},

and let
Ψ(M) = {ψ : M → S1 : ψ is a fibration}.

Since the mapping tori of pseudo-Anosov maps are always hyperbolic, for eachM there is a canonical
one to one correspondence between Ψ(M) and Φ(M), and P partitions into a disjoint union of
Φ(M). The following well-known proposition gives a way to identify fibrations of M and their
monodromy using coverings.

Proposition 3.1 The mapping class φ is the monodromy of a fibration ψ : M → S1 if and only
if the Z-covering of M corresponding to the map π1(M) → Z obtained by composing ψ with the
Hurewicz map is homeomorphic to S × R, and the covering automorphism group is generated by
Tφ, where

Tφ : S × R → S × R
(s, u) 7→ (φ(s), u− 1).

Thurston showed how to partition Ψ(M) further in a natural way. He defines a norm, known
as the Thurston norm || ||T on H1(M ;R) considered as a vector space over R. The norm of a
general integral element ψ is the minimum absolute value of the topological Euler characteristic
of a surface representing the dual of ψ after throwing away components of non-negative curvature.
When ψ ∈ H1(M ;Z) is fibered with fiber S, then

||ψ||T = |χ(S)|.
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The Thurston norm ball is the set of elements of H1(M ;Z) with Thurston norm less than or equal
to one.

Theorem 3.2 (Thurston) The Thurston norm ball is the convex hull of a finite set of integral
points. For every top dimensional face F of the Thurston norm ball, let CF = F · R+ be the
corresponding cone. Then

Ψ(M,F ) = CF ∩Ψ(M)

is empty, or it equals CF ∩H1(M ;Z).

If Ψ(M,F ) is nonempty, we say F is a fibered face, and CF is a fibered cone. Let Φ(M,F ) ⊂ P
be the collection of monodromies of Ψ(M,F ). When F is a fibered face, there is a natural way
to associate Φ(M,F ) with rational points on F . To each rational point on a fibered face there
is a corresponding primitive integral element (whose coordinates are relatively prime) on the ray
through the rational point. This determines a fibration of M over S1 with connected fibers S and
a monodromy in Φ(M,F ) ∩Mod(S).

Given a fibered face F , define the normalized dilatation of ψ : M → S1 with monodromy φ to be

λ(ψ) = λ(φ)||ψ||T .

We will sometimes also write λ(φ) = λ(ψ).

Theorem 3.3 (Fried [Fri]) The normalized dilatation extends to a continuous map on the CF
which is constant on rays through the origin, has a unique minimum in the interior of F , and goes
to infinity toward the boundary of F .

See also McMullen [McM1] for an alternate proof.

Corollary 3.4 If Gg ⊂ Mod(Sg) is a sequence of subsets, and

Gg ∩ (Fc · R)

is nonempty for all g, where Fc is a compact subset of F , then Gg supports small dilatations.

Corollary 3.5 Let ψ ∈ Ψ(M,F ), and let ψn be a sequence elements of Ψ(M,F ) whose projections
in F converge to the projection of ψ. Let φn be the monodromy of ψn, and φ the monodromy of ψ.
Then

lim
n→∞

λ(φn) = λ(φ).

The individual fibrations of a 3-manifold M can be studied by associating them to cyclic coverings
M (cf. [McM1], §10). Fix a mapping class φ : S → S, let M be the mapping torus of φ, and
let ψ : M → S1 be the corresponding fibration of M over the circle. Let β1, . . . , βk be elements
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of H1(S;Z)φ−inv that form a basis for H1(S;R)φ−inv. Since M is a quotient space of S × I,

H1(S;R)φ−inv determines a linear subspace of H1(M ;R). Furthermore, {β1, . . . , βk, ψ} forms a
basis of H1(M ;R).

Let
ρβ : S̃ → S

be the unbranched multi-cyclic covering defined by

β = (β1, . . . , βk) : π1(S)→ Zk.

Then the maximal abelian covering ρ : M̃ →M satisfies a commutative diagram

M̃ //

ρ

��3
33

33
33

33
33

33
33

3 S̃ × R
ρβ

��
S × R

��
M,

where M̃ → S̃ × R is a homeomorphism.

Let α : M → S1 be an element of Ψ(M,F ), and let Kα be the kernel of

α∗ : H1(M : Z)→ Z.

Let Mα = M/Kα be the quotient space.

Since α is a fibration, Mα is homeomorphic to Sα × R for some surface Sα.

Lemma 3.6 The monodromy φα is the mapping class induced by any element fα ∈ α−1
∗ (1). That

is, the mapping class φα is the unique mapping class (up to choice of identification of Mα with
Sα × R) that satisfies the commutative diagram

M̃
fα //

��

M̃

��
Sα × R

Tφα // Sα × R.

4 Handlebody locus

In this section, we identify linear slices of a fibered cone of a 3-manifold, so that the monodromy
of the integral points are handlebody mapping classes. Using the notation of the previous section,
we find sufficient conditions on α so that for some realization pα : Sα → Hα of Sα as the boundary
of a handlebody Hα we have φα ∈ ModH(Sα, pα).

Define Wφ,p ⊂ H1(S;Z) to be the subspace consisting of β : H1(S)→ Z, where
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(1) β ∈ H1(S;Z)φ−inv, and

(2) β(Kp) = 0, where Kp is the kernel of p∗ : H1(S)→ H1(H), or equivalently β factors through
a map βh : H1(H)→ Z, making the diagram

H1(S)

β
%%JJ

JJ
JJ

JJ
JJ

p∗ // H1(H)

βh

��
Z

commute.

Since p∗ is surjective βh is determined by β.

Theorem 4.1 Let φ : S → S be a handlebody mapping class, let M = M(φ) be the mapping torus
of φ, let ψ : M → S1 be the corresponding fibration, and let F ⊂ H1(M ;R) be the fibered face of
H1(M : R) containing ψ. Let Vφ,p ⊂ H1(M ;R) be the subspace generated by Wφ,p and ψ. Then the
monodromy of elements of Vφ,p ∩Ψ(M,F ) are handlebody mapping classes.

Proof. Let α ∈ Vφ,p. Write α = β +mψ, where β ∈ Wφ,p. Since β ∈ H1(S;Z), it defines a cyclic

covering ρβ : S̃β → S. Let ζ be a generator of the group of covering automorphisms. We have

intermediate coverings of the maximal abelian covering ρ̃ : M̃ →M as shown in the diagram

M̃
' //

""E
EE

EE
EE

EE

��3
33

33
33

33
33

33
33

33

ρ̃

��-
--
--
--
--
--
--
--
--
--
--
--
- S̃ × R

��

S̃β × R

��
S × R

��
M.

By property (1) of Wφ,p, φ lifts to φ̃ : S̃β → S̃β, and induces a mapping class φh : H → H.
Furthermore, we have a commutative diagram:

S̃βφ̃
)) p̃β //

ρβ

��

H̃β

ρhβ
��

φ̃h
ss

Sφ
&& p // H φh

ww

The map

T
φ̃

: S̃β × R → S̃β × R

(s, t) 7→ (φ̃(s), t− 1).
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defines a covering automorphism of S̃β × R→M , and

T
φ̃h

: H̃β × R → H̃β × R

(s, t) 7→ (φ̃h(s), t− 1).

defines a covering automorphism of H̃β × R→ X, where X is the mapping torus of φh.

The covering automorphism ζ satisfies the commutative diagram

S̃βζ
)) p̃β //

ρβ

��

H̃β

ρhβ
��

ζh
ss

S
p // H.

Let Kα be the kernel of α∗ : H1(M ;Z) → Z. Then M̃/Kα is homeomorphic to the quotient of
S̃β × R by a cyclic subgroup 〈κ〉 ⊂ 〈η, T

φ̃
〉. Here κ generates Kα ∩ 〈ζ, Tφ̃〉. Write κ as

κ = uζ + vT
φ̃
,

and let
κh = uζh + vT

φ̃h
.

Then κ and κh define covering automorphisms on S̃β × R and H̃β × R, respectively.

Let
Sα × R = (S̃β × R)/〈κ〉 = M̃/Kα,

and
Hα × R = (H̃β × R)/〈κh〉.

The various covering maps are shown in the following diagram

M̃
' //

""E
EE

EE
EE

EE

ρ̃α

��.
..
..
..
..
..
..
..
..
..
..
..

ρ̃

��(
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
( S̃ × R

��

S̃β × R

/κ

��

p̃β×id
// H̃β × R

/κh

��
Sα × R

��

f // Hα × R

M.

Since
p̃β × id : S̃α × R→ H̃α × R

8



is an identification of S̃α×R with the boundary of H̃α×R, it follows that since unbranched coverings
are surjective local homeomorphisms, the map defined on the quotient

f : Sα × R→ Hα × R

is also an identification with the boundary. Thus the monodromy of α is a handlebody mapping
class.

Remark. The inclusion
M → X

gives rise to a map
H1(X;Z)→ H1(M ;Z),

and the elements in Vφ,p lie in the image of this map.

The relation between M and X can be thought of as a 1-dimension higher version of surfaces S to
handlebodies H, and there is a natural homomorphism

Mod(X)→ Mod(M).

Theorem 4.1 shows that given a handlebody monodromy φ for a fibration of M , there are linear
sections of the fibered cone determined by φ in H1(M ;Z) that lie in the image of H1(X;Z) and
correspond to handlebody mapping classes.

Question 4.2 What are the distinguishing properties of the image of the map Mod(X)→ Mod(M)?

5 Penner sequences and fibered faces

In this section, we define a (generalized) Penner sequence of mapping classes based on the main
example found in [Pen]. Then we show how these Penner sequences are realized as sequences
of monodromies associated to a convergent sequence of rational points on a single fibered face
(Theorem 5.3).

By Penner sequence we mean a sequence of mapping classes (Sn, φn) which can be written as

φn = rn ◦ δ̂n ◦ η̂n, n ≥ `

where

(i) rn is periodic of period n,

(ii) there is a fundamental domain Σn ⊂ Sn of rn on which η̂n is supported,

(iii) δ̂n is a right Dehn twist centered on a simple closed curve γn, where for

γn ⊂ Σ`
n :=

⋃̀
k=1

(rn)kΣn,

9



(v) (Σn, η̂n|Σn) = (Σ, η̂), for some (Σ, η̂) independent of n, and

(vi) (Σ`
n, γn) = (Σ`, γ) as pairs of topological spaces, where Σ` is a union of ` copies of Σ attached

along boundary segments or components of the boundary, and (Σ`, γ) independent of n.

The arguments in this section work if δ̂n is a left Dehn twist for all n. Penner sequences of the form
φn = rn ◦ ηn ◦ δn may be analyzed in a similar way (see the Remark at the end of this section).

Next we encapsulate the essential data that describe a Penner sequence. A relatively simple closed
curve on a surface S is a curve that is either a simple closed curve in the interior of S or is the
homeomorphic image of a closed interval in S whose interior lies in the interior of S, and whose
boundary lies in the boundary of S. A Penner triple (S, φ, τ) consists of a surface S of finite type,
possible with boundary and punctures, a mapping class φ in Mod(S), and a finite union of relatively
simple closed curves τ such that φ = η ◦δ where η has a representative that fixes τ , and δ is a Dehn
twist along a simple closed curve γ.

Given a Penner triple there is an associated 3-manifold M , the mapping torus of (S, φ), a fibration
ψ : M → S1, and an associated element ψ ∈ H1(M ;Z). There is also an element µ of H1(M ;Z)
defined by

π1(S) → Z
g 7→ ιalg(g, τ).

We will prove the following.

Lemma 5.1 Given a Penner triple (S, φ, τ), the mapping classes (Sn, φn) determined by the se-
quence ψn = µ− nψ on the fibered face of the mapping torus of φ is a Penner sequence.

Let S̃ → S be the Z covering determined by the map

π1(S) → Z
g 7→ ιalg(g, τ).

Identify ζ with a generator for the cyclic group of covering automorphisms for this covering.

Let Στ be the closure of S \ τ so that the boundary of Στ contains the union of two copies of τ ,
τ+ ∪ τ−, where either two connected components of the boundary if τ was a closed curve, or one
connected component of the boundary otherwise. Then we can decompose S̃ as

S̃ =
⋃
n∈Z

ζnΣτ

where ζn(τ+) is identified with ζn+1(τ−) for all n ∈ Z.

Let γ̃ be the lift of γ such that
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(i) γ̃ ∩ Στ 6= ∅, and

(ii) γ̃ ⊂
⋃
n≥0 ζ

nΣτ .

Let ` > 0 be the smallest integer so that γ̃ ∩ ζ`Σ = ∅.

The mapping classes δ and η lift to mapping classes δ̃ and η̃ on S̃, since their induced maps on
π1(S) commute with the defining map of the covering space.

For a ∈ Z, let δ̂a be the Dehn twist on S̃ centered at ζaγ̃. Then we have

(A1) δ̂a ◦ δ̂b = δ̂b ◦ δ̂a for all a, b ∈ Z,

(A2) δ̃ = ◦a∈Z δ̂a, and

(A3) δ̂a = ζ−a ◦ δ̂0 ◦ ζa.

Let η̂a be the restriction of η̃ to ζaΣ. Since η is the identity on τ , η̂a extends by the identity to all
of S̃. By abuse of notation we will also denote by η̂a the mapping class defined by this extension.
Then we have

(B1) η̂a ◦ η̂b = η̂b ◦ η̂a for all a, b ∈ Z,

(B2) η̃ = ◦a∈Zη̂a, and

(B3) η̂a = ζa ◦ η̂0 ◦ ζ−a for all a ∈ Z.

Because δa is the identity map on ζbΣ for all b < a, we have

(C1) ηb ◦ δa = δa ◦ ηb

Let φ̃ be the lift of φ = η ◦ δ to S̃. Then by (A2) and (B2), we have

φ̃ = δ̃ ◦ η̃ = (◦b∈Zδ̂b) ◦ (◦a∈Zη̂a)

For any x ∈ S̃, let a ∈ Z be the maximum element such that x ∈ ζaΣ. Then for any N > `,

φ̃(x) = (◦b∈Zδ̂b) ◦ η̂a
= δ̂a−N ◦ δ̂a−N+1 ◦ · · · ◦ δ̂a ◦ η̂a
= δ̂a−N ◦ ηa−N ◦ · · · ◦ δ̂a ◦ η̂a
= ζa−N (ζ ◦ φ̂)Nζ−a,

where φ̂ = η̂0 ◦ δ̂0.
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Let x ∈ ζaΣ, and let N > `. Then

ζN (T
φ̃
)(x, t) = ζa

(
(ζ ◦ φ̂)N (x), t+ 1

)
ζ−a.

Define

RN : S̃ × R → S̃ × R

(x, t) 7→ (ζ ◦ φ̂(x), t+
1

N
)

We thus have the following.

Lemma 5.2 The mapping class (RN )N is conjugate to ζNT
φ̃

for all large enough N .

The covering automorphism group of S̃ × R→M is generated by Z = ζ × id and

T = T
φ̃

: S̃ × R → S̃ × R

(s, t) 7→ (φ̃(s), t− 1).

Let Kn ⊂ 〈T,Z〉 be the subgroup generated by T−1Zn. If ψ : M → S1 is the fibration corresponding
to φ, and µ ∈ H1(M ;Z) is dual to Z, under the isomorphism

H1(M ;Z) ' Hom(H1(M ;Z),Z),

then Kn is the kernel of the map
ψn = nψ − µ.

Let F be the fibered face in H1(M ;Z) that contains the projection of ψ to the boundary of the
Thurston norm ball. Let Π ⊂ H1(M ;Z) be the plane spanned by ψ and µ. Then the projections of
the sequence ψn on the boundary of the Thurston norm ball are eventually in F ∩Π and converge
to the projection of ψ.

Let Xn be the quotient of S̃ × R by TZn. Then since the normalization of ψn is eventually in F ,
Xn is isomorphic to Sn × R for some surface Sn, and Z induces a mapping class φn on Sn so that
M is the quotient of Sn × R by Tφn .

By Lemma 3.6, the mapping class (Sn, φn) induced by Z is the monodromy of ψn. Lemma 5.2
implies

φn = rn ◦ δ̂n ◦ η̂n,

where rn, η̂n, and δ̂n are the maps induced on Xn by R, η̂0, and δ̂0. This completes the proof of
Lemma 5.1.

We have shown the following.

Theorem 5.3 Let (Sn, φn), n ≥ ` be a Penner sequence. For any fixed n > `, let S be the quotient
of Sn by rn, and let qn : Sn → S be the quotient map. Let τ = qn(Σn ∩ ζΣn), and let γ = q(γn).
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Let φ = δ ◦ η, where η is induced by (Sn, η̂n), and δ is the right Dehn twist centered at γ. Then
(S, φ, τ) is a Penner triple independent of n, and (Sn, φn) is its associated Penner sequence. Thus,
the mapping torus for the mapping classes in a Penner sequence is a 3-manifold that is independent
of n.

Proposition 5.4 Let (Sn, φn) be a Penner sequence, and (S, φ, τ) the associated Penner triple.
Then φn is pseudo-Anosov for all n if and only if φ is pseudo-Anosov.

Proof. The maps φ and φn are the monodromy of fibrations of Mφ = Mφn . Thus if one of the
mapping classes is pseudo-Anosov, then they all are.

Proposition 5.5 If (Sn, φn) is a pseudo-Anosov Penner sequence, with associated triple (S, φ, τ),
then

lim
n→∞

λ(φn) = λ(φ).

From the proof of Theorem 5.3 we obtain the following lemma, which will be useful in Section 6.

Lemma 5.6 The topological Euler characteristic of Sn satisfies

χ(Sn) = nχ(Στ )− s,

where s is the number of components of τ which intersect that boundary of Sn.

Proof. The surface Sn can be identified with the union of n-copies of Στ glued together along τ+

and τ−, where the nth copy of Στ is identified using ηn ◦ δn with the first ` copies of Στ .

Remark. Mapping classes of the form φn = rn ◦ η̂n ◦ δ̂n (where the order of ηn and δn is reversed)
may be studied in a the same way as above. In this case the Penner sequence of a Penner triple
will be the monodromies associated to

ψn = nψ + µ.

6 Example

In this section, we compute the Alexander and Teichmüller polynomials for two sequences con-
structed from Penner triples: the first is Penner’s original example, and the second is a Penner
sequence of handlebody mapping classes. This allows us to find explicit equations for the homolog-
ical and geometric dilatations of the corresponding Penner sequences. The Teichmüller polynomial
is defined in [McM1]. Other computations of Teichmüller polynomials can be found in, for example,
in [AD], [KT] and [Hir].
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Figure 1: Penner triple.

6.1 Penner’s original example

Penner’s original sequence (Sg, φg) of mapping classes in [Pen] is shown in Figure 1. The surface
Sg has genus g and two boundary components. The mapping class φg is the composition of Dehn
twists along the curves ag, bg and cg with a rotation rg of period g. This Penner sequence is formed
from the Penner triple (S, φ, τ) illustrated in Figure 2, where φ is the mapping class on the torus
with two boundary components given by the product of Dehn twists δc ◦ δ−1

b ◦ δa centered at the
curves a, b and c, and τ = d is the path d connecting the two boundary components.

Proposition 6.1 Penner’s original sequence of mapping classes φg satisfies

lim
g→∞

λ(φg) = λ(φ) ≈ 46.9787.

Figure 2: Penner’s original example.

The action of φ on the first homology H1(S,Z) is given by the matrix 1 1 0
1 2 0
0 0 1
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and hence has a 1-dimensional invariant subspace. Thus, the mapping torus M has b1(M) = 2.
The cyclic covering S̃ → S defined by τ is drawn in Figure 3. Let ζ generate the group of covering
automorphisms. Then ζ ×{id} and T

φ̃
define generators for H1(M ;Z). Let µ be the dual of ζ × id,

that is, the extension of the map π1(S) → Z defined by τ , and let ψ be the fibration map dual to
φ.

Figure 3: The simultaneous cyclic covering of Penner’s examples.

Let t, u ∈ H1(M ;Z) be duals to µ and T
φ̃

respectively. Let t be the train track for φ given by

smoothing the union of a, b and c at the intersections (see [Pen]). The Teichmüller polynomial is
the characteristic polynomial for the action of the lift of φ on the cyclic covering of S defined by
τ on the lift t̃ of t, or more precisely on the space of allowable measure on t̃. Using the switch
conditions, we can replace the space of allowable measures with the space of labels on the lifts of
the curves a, b and c. Then the Teichmüller polynomial of the fibered face defined by φ is a factor
of the characteristic polynomial of the matrix 1 1 0

1 2 1 + t
1 + t−1 2(1 + t−1) 1 + (1 + t)(1 + t−1).

 ,
and is given by

Θ(u, t) = u2 − u(5 + t+ t−1) + 1. (2)

The Alexander polynomial ∆ is the characteristic polynomial of the action of the lift φ̃ of φ on the
first homology of S̃. The lifts of a, b and c generate H1(S̃;Z) as a Z[t, t−1] module, and the action
of φ̃ on these generators is given by 1 1 0

1 2 1− t
1− t−1 2(1− t−1) 1 + (1− t)(1− t−1)

 .
We thus have

∆(u, t) = Θ(u,−t) = u2 − u(5− t− t−1) + 1. (3)
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By the relation between the Alexander and Thurston nomrs [McM2], it follows that the fibered
cone Cψ in H1(M ;R) containing ψ is given by elements αψ + βµ, where

α > |β|,

and the Thurston norm is given by

||(a, b)||T = max{2|a|, 2|b|}.

The dilatation λ(φ(α,β)) corresponding to primitive integral points (α, β) in Cψ is the largest solution
of the polynomial equation

Θ(xα, xβ) = 0.

In particular, Penner’s examples (Sg, φg) correspond to the points (g, 1) ∈ Cψ, and we have the
following.

Proposition 6.2 The dilatation of φg is given by the largest root of the polynomial

Θ(xg, x) = x2g − xg+1 − 5xg − xg−1 + 1.

The symmetry of Θ with respect to t 7→ −t and Theorem 3.3 implies that the minimum normalized
dilatation realized in Φ(M,F ) must occur at (α, β) = (1, 0). Thus, we have the following.

Proposition 6.3 The minimum normalized dilatation for the monodromies in Cψ is given by
λ(φ) ≈ 46.9787.

A pseudo-Anosov mapping class is orientable if it has orientable invariant foliations, or equivalently
the geometric and homological dilatations are the same, and the spectral radius of the homological
action is realized by a real (possibly negative) eigenvalue (see, for example, [LT] p. 5). Given a
polynomial f , the largest complex norm amongst its roots is called the house of f , denoted h(f).
Thus, φg is orientable if and only if

h(∆(xg, x)) = h(Θ(xg, x)). (4)

Proposition 6.4 The mapping classes (Sg, φg) are orientable if and only if g is even.

Proof. By Equation (3), the homological dilatation of φg is the largest complex norm amongst
roots of

∆(xg, x) = x2g + xg+1 − 5xg + xg−1 + 1.

Let λ be the real root of ∆(xg, x) with largest absolute value. Plugging λ into Θ(xg, x) gives

Θ(λg, λ) = −2λg+1 − 2λg−1 6= 0.

while for −λ we have

Θ(−λg,−λ) = (−λ)g+1 − (λ)g+1 + (−λ)g−1 − (λg−1).

It follows that h∆(xg, x) = λ = hΘ(xg, x) if and only if g is even.
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6.2 Handlebody example

In this section, we find a Penner triple (S, φ, τ) that produces a Penner sequence of handlebody
mapping classes.

Figure 4: Two simple closed curves on the surface S bounding disks in the handlebody H.

Consider the two simple closed curves a (in red/light gray) and b (in blue/dark gray) on the genus
2 surface S pictured in Figure 4. Let p : S → H be the inclusion of S as the boundary of the genus
2 handlebody shown in the drawing. Let η = δa be the right Dehn twists centered at a and let
δ = δ−1

b be the left Dehn twist centered at b. Let φ = δ ◦ η.

Since a is homologically trivial in S, the Dehn twist η is an element of the Torelli subgroup of
Mod(S), that is, it acts trivially on H1(S;Z). Thus, the induced action of φ on H1(S;Z) is that of
the Dehn twist δ, and λhom(φ) = 1.

Proposition 6.5 The space Wφ,p ⊂ H1(S,R) equals to the kernel K of the map

p∗ : H1(S;Z)→ H1(H;Z)

Proof. Both a and b have trivial algebraic intersection with elements in K.

It follows that Wφ,p is freely generated by the boundaries of the two shaded (green) disk in Figure 4.

Corollary 6.6 The fibered cone for the fibration of Mφ associated to φ has a 2-dimensional subcone
for which the monodromy of integral elements are handlebody mapping classes.

Corollary 6.7 For any τ in the kernel p∗, (S, φ, τ) is a Penner triple.

Let τ be the boundary of the disk labeled with a c in Figure 4.

Figure 5 illustrates the cyclic covering S̃ → S defined by the element µ ∈ H1(M ;Z) corresponding
to τ .
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Figure 5: Cyclic covering corresponding to an element of Wφ,p

Let Π ⊂ H1(M : R) be the planar section spanned by ψ and µ. Consider the sequence of elements
ψn = nψ − µ ∈ H1(M ;Z). We know that for large n, ψn belongs to the fibered face of ψ, and
by Theorem 4.1, the monodromy φn of ψn is a handlebody mapping class for all n. Corollary 3.5
implies the following.

Proposition 6.8 The normalized dilatations λ(φn) satisfy

lim
n→∞

λ(φn) = λ(φ)

As in our first example, the dilatation λ(φ) and its normalization can be computed by considering
the action of φ on the space of allowable measure on the train track that are generated by the
unoriented curves a and b. The transition matrix for φ restricted to this subspace is given by[

1 8
8 65

]
.

It follows that λ(φ) is the largest root of the polynomial equation

x2 − 66x+ 1 = 0.

Thus we have λ(φ) ≈ 65.9848, and λ(φ) ≈ (65.98)2 ≈ 4353.99.

The transition matrix for the lifting φ̃ on the lifted train track is given by[
1 4 + 4t

4 + 4t−1 16(1 + t)(1 + t−1) + 1

]
,

and the Teichmüller polynomial for the fibered face F of M corresponding to φ specialized to the
planar section F ∩Π is thus

Θ(u, t) = u2 − u(34 + 16(t+ t−1)) + 1.

This implies the following.

Proposition 6.9 For each n ≥ 1, the dilatations of φn is the largest root of

x2n − 16xn+1 − 34xn − 16xn−1 + 1 = 0,

and the normalized dilatations λ(φn) converge to λ(φ) ≈ 4353.99.
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The following proposition completes our proof of Theorem 1.2.

Proposition 6.10 The genus of Sn is g = n+ 1.

Proof. The Euler characteristic of Sn is −2n by Lemma 5.6.

The surface Sn is a union of n copies of Σ, which has genus g = 1 and 2 boundary components
labeled τ+ and τ− (see Figure 6). These are glued together in a cyclic manner yielding the desired
genus, and

φn = rn ◦ δn ◦ ηn,

where an is the red/light grey curve, and bn is the blue/dark grey curve.

Figure 6: The mapping class (Sn, φn).

The homological action of φn is that of a Dehn twist on a multicurve, and hence the homological
dilatation is equal to one. This proves Theorem 1.3.

References

[AD] J. Aaber and N. Dunfield. Closed surface bundles of least volume. Algebr. Geom. Topology
10 (2010), 2315–2342.

[Bau] M. Bauer. Examples of pseudo-Anosov homeomorphisms. Trans. Amer. Math. Soc. 330
(1992), 333–359.

[BL] C. Boissy and E. Lanneau. Dynamics and geometry of the Rauzy-Veech induction for
quadratic differentials. Ergodic Theory and Dynamical Systems 29 (2009), 767–816.

[CB] A. Casson and S. Bleiler. Automorphisms of surfaces after Nielsen and Thurston. Cam-
bridge University Press, 1988.

[FLM] B. Farb, C. Leininger, and D. Margalit. The lower central series and pseudo-Anosov
dilatations. Amer. J. Math. 30 (2008), 799–827.

19



[FS] A. Fathi and M. Shub. Some dynamics of psuedo-Anosov diffeomorphisms. In Travaux de
Thurston sur les surfaces, volume 66-7 of Astérisque. Soc. Math. France, Paris, 1979.
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