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Abstract. We use Fourier multipliers of the Dirac operator and Cauchy
transform to obtain composition theorems and integral representations.
In particular we calculate the multiplier of the Π-operator. This opera-
tor is the hypercomplex version of the Beurling Ahlfors transform in the
plane. The hypercomplex Beuling Ahlfors transform is a direct general-
ization of the Beurling Ahlfors transform and reduces to this operator in
the plane. We give an integral representation for iterations of the hyper-
complex Beurling Ahlfors transform and we present here a bound for the
Lp-norm. Such Lp-bounds are essential for applications of the Beurling
Ahlfors transformation in the plane. The upper bound presented here is
m(p∗−1) where m is the dimension of the Euclidean space on which the
functions are defined, 1 < p < ∞ and p∗ = max(p, p/(p − 1)). We use
recent estimates on second order Riesz transforms to obtain this result.
Using the Fourier multiplier of the Π operator we express this operator
as a hypercomplex linear combination of second order Riesz transforms.
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1. Introduction

We determine the Fourier multipliers of the hypercomplex Cauchy transform
T and the Vekua Π-operator over Rn+1. Various relations between these op-
erators, and the Dirac and Laplacian operator, are easily obtained using these
multipliers. Theorem 3.2 is a convolution identity on C∞0 (Rn+1) involving the
iterated Cauchy kernel and Dirac operator. This is a special case of results
in [4]. See also [5] and [6]. Theorem 4.2 shows that a similar convolution
integral, with the iterated Cauchy kernel conjugated in this case, represents
powers of the Π-operator. The notation Π was used by Vekua [21]. See also
[13] and [12]. In the plane this operator has applications to quasiconformal
analysis and in that context is called the Beuling-Ahlfors transform [16], [17]
. Lemma 4.3 represents the Π-operator as a hypercomplex combination of
second order Riesz transforms. This shows that a hypercomplex combination



2 Craig A. Nolder and Guanghong Wang

of Riesz transforms is a square root of the Π-operator. In the plane it is an
important open problem to determine the exact value of the Lp norms of
the Beurling-Ahlfors transform, in particular as an application to two dimen-
sional geometric function theory [16]. Using recent estimates of the Lp-norms
of second order Riesz transforms, obtained in [19], we obtain estimates of the
Lp-norms of the Π-operator in higher dimensions. In [19] this was done for
another higher-dimensional analogue of the Beurling-Ahlfors transform, S,
to a Grassman algebra. We explore the distinctions between the operators Π
and S.

2. Preliminaries

We write C`n for the real universal Clifford algebra over Rn. This Clifford
algebra is generated as an algebra over R by the elements

{e0, e1, e2, ..., en}. (1)

Here {e1, e2, ..., en} is a basis of Rn with the relation eiej + ejei = −2δij and
e0 = 1 is the identity and commutes with the basis elements. The dimen-
sion of C`n is R2n

. We have an increasing tower R ⊂ C ⊂ H ⊂ C`3 ⊂ · · ·.
Here H is the quaternions. Using the above relations, products of the el-
ements {e1, e2, ..., en} can be expressed in the form ±ej1ej2 · · · ejk , where
{j1, j2, ..., jk} ⊂ {1, 2, ..., n} with j1 < j2 < · · · < jk, 1 ≤ k ≤ n. We call the
representations ej1ej2 · · · ejk reduced products.

Notice that an element u ∈ C`n can be written as a linear combination
of these reduced products

u = u0e0 + Σαuαeα

where the α are the indices of the reduced products, u0 and the uα are real.

The Clifford algebra C`n is a graded algebra as C`n = ⊕nk=0 C` kn where
C` kn are linear combinations of elements whose reduced Clifford products

have k basis factors, k ≥ 1 and C`0n = R. We use the conjugation (ej1 ...ejk) =
(−1)kejk ...ej1 .

For A,B ∈ C`n we write AB for the resulting Clifford product. The
product AB defines a Clifford valued inner product on C`n. We have AB =

B̄Ā and A = A. For A ∈ C`n, Sc(A) denotes the scalar part of A, that is
the coefficient of the element e0. The scalar part of a Clifford inner product,
Sc(AB), is the usual inner product in R2n

when A and B are identified as
vectors. We will denote this usual inner product as 〈A,B〉.

The space C`n is a Hilbert space with this inner product.

The resulting norm is the usual Euclidean norm given by |u0e0+Σαuαeα| =
(u2

0 + Σαu
2
α)1/2.

A Clifford valued function f : Rn+1 → C`n can be written as f =
f0e0 + Σαfαeα where f0 and each fα is real valued and the eα are reduced
products.
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We write C` 0,1
n for the subspace C` 0

n⊕C` 1
n . A nonzero element ζ ∈ C` 0,1

n

has a multiplicative inverse as ζζ̄ = |ζ|2. We will identify Rn+1 with C` 0,1
n

throughout.
We write Lp(Rn+1, C`n), p > 0, for those functions f : Rn+1 → C`n such

that

‖f‖p = (

∫
Rn+1

|f(x)|pdx)1/p

is finite. Here and elsewhere, dx denotes usual Lebesgue measure. We also
define the inner product

(f, g) =

∫
Rn+1

〈f(x), g(x)〉dx.

We use the following Cauchy-Riemann operators, with (x0, x1, ..., xn) coor-
dinates of Rn+1,

D =
∂

∂x0
+ Σn1 ei

∂

∂xi
and

D̄ =
∂

∂x0
− Σn1 ei

∂

∂xi
.

We have DD̄ = D̄D = ∆ where ∆ is the Dirac Laplacian. For h : Rn+1 → R
we define the Fourier transform

ĥ(ζ) =

∫
Rn+1

h(x) exp(−i〈x, ζ〉)dx.

The complex i is not identified with any of the basis elements e1, e2, ..., en,
commutes with each of them and is invariant under Clifford conjugation,
ī = i. Extend the definition linearly

f̂ = f̂0e0 + Σαf̂αeα.

Identifying ζ = Σn0 ζiei and ζ̄ = Σn0 ζiēi,

D̂f = iζf̂

and ̂̄Df = iζ̄f̂ .

A given ζ defines a linear transformation of C`n to itself by the Clifford
product : ω → ζω. The matrix in the standard basis (1) is of the form

[ζ] = ζ0I +O

where the matrix O satisfies

Ot = −O = (|ζ|2 − ζ2
0 )O−1.

Furthermore

[ζ̄] = ζ0I −O.
It follows that

[iζ̄]t = [iζ]
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corresponding to the roles of D and D̄ as adjoint operators. It also follows
here that

[iζ][iζ̄] = −ζ2
0I +O2 = −|ζ|2I.

This is the matrix for the Laplacian.
For a given convolution operator A with a ∈ C`n and kernel k : Rn+1 →

C`n,
Af(x) = af(x) +

∫
Rn+1

k(x− y)f(y)dy,

we write Ā for the conjugate operator

Āf(x) = āf(x) +

∫
Rn+1

k(x− y)f(y)dy.

3. The Cauchy Transform

We assume throughout this section that f ∈ C∞0 (Rn+1, C`n). We define the
Cauchy transform T by

Tf(x) = − 1

ω

∫
Rn+1

x− y
|x− y|n+1

f(y)dy.

Here ω is the area of the unit sphere in Rn+1. It is well known that T -operator
serves as a right inverse to D and T̄ is a right inverse to D̄ :

DTf = f,

D̄T̄ f = f.

See [12] and [13]. It follows that

D̂Tf = iζT̂ f = f̂ (2)

and

̂̄DT̄f = iζ̄ ̂̄Tf = f̂ . (3)

Hence the Fourier multiplier of T is −i ζ̄
|ζ|2 , while the Fourier multiplier

of T̄ is the conjugate −i ζ
|ζ|2 . The multipliers also show that T and D commute

on compactly supported functions and that T̄ T is ∆−1.

Lemma 3.1.
a) TD = T̄ D̄ = I,

b) T T̄∆ = T̄ T∆ = I.

This identifies T T̄ as the Riesz potential of order two,

T T̄f(x) = Φ2f(x) =
1

ωn+1(2− (n+ 1))

∫
Rn+1

f(y)

|y − x|(n+1)−2
dy, (4)

Hence Φ̂2f = −1
|ζ|2 f̂ . We now define the iterated Cauchy kernel. For m =

1, 2, ..., we define the kernel Km : C`n → C`n by
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Km(x) =
(−1)mx̄(x+ x̄)m−1

ωn2m−1(m− 1)!|x|n+1
. (5)

We also define the operator

Tmf(x) =

∫
Rn+1

Km(y − x)f(y)dy. (6)

When m = 1 this is the usual Cauchy operator T = T1. It follows from
direct calculation the for m = 2, 3, ...,

DTm = Tm−1. (7)

Because of this we have

T̂mf =
1

(iζ)m
f̂ ,

and we see that Tm is the m-fold convolution of T :

Tm = TT · · · T = T ◦ T ◦ · · · ◦ T
m times. The next result is a special case of results in [4] and [6] and follows
from the above multipliers.

Theorem 3.2. For m = 1, 2, ...,

f(x) =

∫
Rn+1

Km(y − x)Dmf(y)dy. (8)

4. The Beurling Ahlfors transform

We define the Hypercomplex Beurling Ahlfors Vekua transform :

Πf = D̄Tf.

Explicitly

Πf(x) = − 1

ω

∫
Rn+1

(n− 1) + (n+ 1) (y−x)
2

|y−x|2

|y − x|n+1
f(y)dy +

1− n
1 + n

f(x).

When n = 1 this reduces to the usual Beurling Ahlfors transformation in the
plane

Bf(z) = − 1

π

∫
C

f(ζ)

(ζ − z)2
dζ.

The operator Π is bounded on Lp and is an isometry on L2. See [12]. Using
(2) it follows that

Π̂f = iζ̄T̂ f =
(ζ̄)2

|ζ|2
f̂ .

As such the multiplier of the Beurling Ahlfors transform is (ζ̄)2

|ζ|2 . When n = 1

this is the multiplier of the Beurling Ahlfors transform in the plane. Also [12]
we have the formula Π̄ = DT̄ . It follows from the previous multipliers that

the multiplier of Π̄ is ζ2

|ζ|2 , which is the conjugate the multiplier of Π. This
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also follows from the Hecke identities, see [20] and [16]. The above multipliers
give the following results.

Lemma 4.1. On C∞0 (Rn+1, C`n),

a) ΠΠ̄ = Π̄Π = I,

b) ΠD = D̄,

c) DΠ = D̄,

d) Π = D̄2∆−1.

See [12] and [13]. The properties Lemma 4.1 b) and c) are useful to solve
hypercomplex Beltrami equations of the form Df = µ(x)D̄f.

The following result parallels Theorem 3.2. See [8] and [7].

Theorem 4.2. Assume that n > 1 and f ∈ C∞0 (Rn+1, C`n). For m = 1, 2, ...,

Πmf(x) =

∫
Rn+1

Km(y − x)D̄mf(y)dy =

∫
Rn+1

Km(y − x)Dmf(y)dy. (9)

The Riesz transforms are defined, for j = 0, ..., n, as follows

Rjf(x) = − 1

ω

∫
Rn+1

xj − yj
|x− y|n+2

f(y)dy.

It is well known (and follows from the Hecke identities [20],[17]) that

R̂jf =
iζj
|ζ|
f̂ .

We also define the Clifford Riesz transforms as

R = R0 + Σnj=1Rjej

and

R̄ = R0 − Σnj=1Rjej .

Since ζ̄
|ζ| is the square root of the multiplier for Π, H = 1

i R̄ is the square

root of Π and so

Π = HH = −R̄R̄.
We remark that

HH̄ = −RR̄ = −R0
2 − Σnj=1Rj

2 = I.

Hence H serves as a Clifford valued Hilbert transform. Furthermore the op-
erator Π can be expressed in terms of second order Riesz transforms.

Lemma 4.3.

Π = −R2
0 + Σnj=1R

2
j + 2Σnj=1R0Rjej .
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The matrix form of the multiplier of Π is then given by

2ζ2
0 − |ζ|2

|ζ|2
I +

2ζ0
|ζ|2
O,

while that of Π̄ is
2ζ2

0 − |ζ|2

|ζ|2
I − 2ζ0
|ζ|2
O.

In the complex case, n = 1, the matrix O is of the form(
0 −ζ1
ζ1 0

)
(10)

and the matrix of the multiplier of Π is

1

|ζ|2

(
ζ2
0 − ζ2

1 −2ζ0ζ1
2ζ0ζ1 ζ2

0 − ζ2
1

)
. (11)

In the case of the quaternions, n = 2, the matrix O is of the form
0 −ζ1 −ζ2 0
ζ1 0 0 ζ2
ζ2 0 0 −ζ1
0 −ζ2 ζ1 0

 . (12)

Hence the matrix of the multiplier of Π in this case is

1

|ζ|2


2ζ2

0 − |ζ|2 −2ζ0ζ1 −2ζ0ζ2 0
2ζ0ζ1 2ζ2

0 − |ζ|2 0 2ζ0ζ2
2ζ0ζ2 0 2ζ2

0 − |ζ|2 −2ζ0ζ1
0 −2ζ0ζ2 2ζ0ζ1 2ζ2

0 − |ζ|2

 . (13)

The complex Beurling Ahlfors transform has also been generalized to
the Grassman algebra, [16], [17], by the following definition :

S = (dδ − δd)∆−1 : Λkn+1 → Λkn+1.

Here Λn+1 = ⊕kΛkn+1 is the graded Grassman algebra over Rn+1 , generated
by dx0, dx1, ..., dxn, with exterior derivative d and formal Hodge adjoint δ.
Notice the similarities with the formula in Lemma 4.1 d).

Although S is also expressed in terms of second order Riesz transforms
the internal structures of Π and S are quite different. First the operator S
preserves the grading of the Grassman algebra where as Π : C`kn → C`k+2

n ⊕
C`kn ⊕ C`k−2

n . Because of this, unlike Π, S has a block diagonal form : S =
diag(1, S1, ..., Sn,−1) where Sk : Λkn+1 → Λkn+1. In the plane, n = 1, the
matrix of Π has the form

Π =

(
R2

1 −R2
0 −2R0R1

2R0R1 R2
1 −R2

0

)
. (14)

This is identical with the Beurling-Ahlfors transform. In comparison,

S =

1 0 0
0 S1 0
0 0 −1

 (15)
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where

S1 =

(
R2

0 −R2
1 −2R0R1

−2R0R1 R2
1 −R2

0

)
. (16)

Hence S1 can be identified with Π under a linear change of variables
in the case that n = 1. In higher dimensions the matrix of Π is 2n × 2n. In
comparison the matrix of S is 2n+1 × 2n+1 and the kth blocks have dimen-

sions (n+1)!
(n+1−k)!k!×

(n+1)!
(n+1−k)!k! . Moreover the diagonal entries of Π are identical,

always having the form in the matrix (13). In comparison the diagonal entries
of S have minus signs that are permuted across the sums. See [16]. Because
of these observations the operators do not directly compare in dimensions
n+ 1, n ≥ 2.

Next we give an estimate of the Lp−norm of the Π operator. For the op-
erator S a similar result appears in [19]. The inequalities follow by separately
estimating the norms of the second order Riesz transforms. It is suspected
that the true values of these norms will be revealed from a study of the in-
ternal structure of these operators and the averaging properties which they
possess. See the work [14].

Theorem 4.4. The Lp-norm of Π : Lp(Rn+1, C`n)→ Lp(Rn+1, C`n), 1 < p <
∞, has the estimate

‖Π‖p ≤ (n+ 1)(p∗ − 1).

Here p∗ = max(p, p/(p− 1)).
In 1983 Iwaniec proposed the following conjecture [15],

Conjecture 4.5. When n = 1 the complex Beurling Ahlfors transform has
Lp-norm, 1 < p <∞,

‖B‖p = p∗ − 1.

Unfortunately, Theorem 4.4 does not attain the conjectured constant in
the plane, reducing to 2 instead of 1. As such the bound is far away from the
Iwaniec conjecture. In the plane the constant 2 was obtained in [18] using a
special Bellman function. See also [9], [10] and [11].

Using martingale transforms the constant 2 is obtained in [3] and is
reduced to 1.575 in [1]. Martingale techniques have been used subsequently
to improve Lp-bounds for the Grassmann operator, S, see [2].

Although often results in complex analysis in the plane do not extend
to hypercomplex analysis, the algebraic similarities of the Fourier multipliers
suggest the following conjecture.

Conjecture 4.6. The norm of the hypercomplex Beurling Ahlfors transform
Π : Lp(Rn+1, C`n)→ Lp(Rn+1, C`n), 1 < p <∞, is

‖Π‖p = p∗ − 1,

in all dimensions.
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This conjecture for the S-operator appears in [16].

5. Proof of Theorem 4.4

We include an outline of the proof of Theorem 4.4 here for completeness.
Theorems 5.1 and 5.2 are proved in [19]. Below E denotes a Hilbert space
with inner product 〈, 〉E and corresponding norm | · |E . Here Rl, l = 0, ..., n
are the Riesz transforms as above, φ, ψ : Rn+1 → E are test functions and
φ̃, ψ̃ are extensions of φ and ψ to Rn+2

+ . These extensions are solutions to the
heat equation with φ and ψ as initial data.

Theorem 5.1. For j, k = 0, ..., n.∫
Rn+1

〈RjRkφ, ψ〉Edx = −2

∫
Rn+2

+

〈 ∂
∂xj

φ̃,
∂

∂xk
ψ̃〉Edxdt.

Theorem 5.2. For 1/p+ 1/q = 1,

2Σni,j=0

∫
Rn+2

+

| ∂
∂xi

φ̃|E |
∂

∂xj
ψ̃|Edxdt

≤ (n+ 1)(p− 1)‖φ‖Lp(Rn+1,E)‖ψ‖Lq(Rn+1,E).

Using the representation of Lemma 4.3, Theorem 5.1 and Theorem 5.2
with E = C`n and Hölder’s inequality we obtain

|(Πφ, ψ)| = |
∫
Rn+1

〈Πφ, ψ〉|

≤ |
∫
Rn+1

〈R2
0φ, ψ〉|+ Σnj=1|

∫
Rn+1

〈R2
jφ, ψ〉|

+Σnj=1|
∫
Rn+1

〈R0Rjφ, ψ〉|+ Σnj=1|
∫
Rn+1

〈RjR0φ, ψ〉|

= 2|
∫
Rn+2

+

〈 ∂
∂x0

φ̃,
∂

∂x0
ψ̃〉|+ 2Σnj=1|

∫
Rn+2

+

〈 ∂
∂xj

φ̃,
∂

∂xj
ψ̃〉|

+2Σnj=1|
∫
Rn+2

+

〈 ∂
∂x0

φ̃,
∂

∂xj
ψ̃〉|

+2Σnj=1|
∫
Rn+2

+

〈 ∂
∂xj

φ̃,
∂

∂x0
ψ̃〉| ≤ 2Σni,j=0

∫
Rn+2

+

| ∂
∂xi

φ̃|| ∂
∂xj

ψ̃|

≤ (n+ 1)(p− 1)‖φ‖p‖ψ‖q.

With the choice ψ = Πφ|Πφ|(p/q)−1 and using density and duality, we
obtain Theorem 4.4.
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