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Abstract5

We investigate the validity of the popular coupled-continuum pipe-flow6

(CCPF) model for flow in a karst aquifer. The (Navier) Stokes-Darcy model7

is used as the “true model” for calibrating the exchange coefficient in the8

CCPF model by minimizing the relative differences between results from the9

two models or at least by having those differences being below a prescribed10

threshold value. We find that although the CCPF model is never in perfect11

agreement with the Stokes-Darcy model, there is an almost universal choice for12

a nearly optimal exchange coefficient such that the relative error is below one13

percent. Our numerics suggest that the nearly optimal choice of the exchange14

coefficient should be sufficiently large instead of being a small quantity that is15
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proportional to the hydraulic conductivity, as suggested in existing literatures.16

We also show that this nearly optimal choice of exchange coefficient is robust17

under a wide range of model parameters. This result demonstrates that the18

CCPF model is a valid approximation for flows in karst aquifers as long as we19

set the fluid exchange coefficient sufficiently large and at least in the simple20

two-dimensional setting that we consider.21

Key words: exchange coefficient, coupled-continuum pipe-flow (CCPF) model,22

Stokes-Darcy model, karst aquifer23

1 Introduction24

Well developed karst aquifers, in addition to a porous limestone matrix, typically25

have large cavernous conduits that are known to largely control groundwater flow26

and contaminant transport within the aquifer (Katz et al. 1998). One of the com-27

monly used approaches to fluid flow in karst aquifers is the coupled continuum28

pipe-flow model (CCPF) (Bauer et al. 2000, 2003; Birk et al. 2003; Chen et al.29

1988; Kiral 1998; MacQuarrie et al. 1996). The CCPF model is a dual flow sys-30

tem consisting of a matrix representing the bulk mass of permeable limestone and a31

conduit system representing the karst conduit network. Flow exchange between the32

two systems is controlled by differences in hydraulic heads as well as the hydraulic33

conductivity and the geometric setting. In the CCPF model, the groundwater flow34

in the matrix is described by the Darcy’s law and the flow in the conduit is modeled35

by a pipe-flow model. The water mass exchange flow rate between the two systems is36

described by a first-order mass exchange model; the exchange flow rate is assumed to37

be linearly proportional to the head difference between the two systems (Barenblatt38

et al. 1960; Sauter 1992; Teutsch 1989). The exchange rate coefficient, denoted αex,39

is a crucial parameter. It is a lumped parameter and its value will depend on many40

factors including, among others, the hydraulic conductivity in the matrix, the ex-41
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change surface between the conduit and matrix, and conduit geometry (Barenblatt42

et al. 1960; Liedl et al. 2003). The value of the exchange rate parameter is not43

usually obtained from measurements but rather through curve-fitting. This CCPF44

model was utilized in studying conduit genesis (Bauer et al. 2000; 2003; Birk et al.45

2003; Clemens et al. 1996; Liedl et al. 2003) and is now incorporated in the latest46

version of the US Geological Survey’s popular groundwater software MODFLOW (47

Shoemaker et al. 2008; Harbaugh 2005) (The conduit flow process part is usually48

termed CFP).49

A major advantage of this approach is its relative simplicity and computational50

efficiency compared to other models (i.e. the coupled Stokes-Darcy system). Ex-51

isting literature suggests that αex should be set to the order of the hydraulic con-52

ductivity (Bauer et al. 2000, 2003). Even so, it has been observed that there is53

high sensitivity of the solution in this regime of the parameter (Bauer et al. 2000,54

2003; Birk et al. 2003; Hua 2009; Liedl et al. 2003). Therefore, there is an urgent55

need to provide guidance on the selection of this critical exchange parameter as56

well as the validity of the CCPF model. On the other hand, there is an alternative57

approach for laminar fluid flows in karst aquifers using the coupled Stokes (in the58

conduit) and Darcy (in the matrix) model (Cao et al. 2010; Discacciati et al. 2002;59

Faulkner et al. 2009, Layton et al. 2003). The two flow systems are coupled via60

the empirical Beavers-Joseph interface boundary condition and the model is known61

to be physically and mathematically sound (Beavers and Joseph 1967; Cao et al.62

2010b; Discacciati et al. 2002, Saffman 1971). It has been demonstrated that this63

model can capture the fluid flow and the transport of contaminants very well in a64

controlled environment (Faulkner et al. 2009). Therefore, it makes sense for us to65

assess the validity of CCPF model, assuming that the coupled Stokes-Darcy model66

is the “true model”.67

In this work, we address the following important issues:68

• What is the (near) optimal choice of the fluid exchange coefficient αex so69
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that the relative error between the solution to the coupled continuum pipe-70

flow model and the solution of the established coupled Stokes-Darcy model is71

(essentially) minimized?72

• How does the (near) optimal choice of exchange coefficient depend on the73

system parameters?74

• How does the minimum discrepancy (under the near optimal choice of exchange75

coefficient) between the two models depend on the system parameters?76

There are several natural criteria that can be used to measure the discrepancy77

between the solutions of the two models. These different criteria will be discussed78

in detail later in section 4.79

The problem that we propose to tackle here is a difficult one since it is an80

optimization problem constrained by partial differential equations (PDEs). In order81

to make the problem relatively amenable, we will make the following assumptions:82

1. We consider a conceptual two dimensional domain for a karst aquifer with a83

straight horizontal conduit imbedded in the middle of a rectangular porous84

media (or matrix). In the coupled continuum pipe-flow model (CCPF), the85

conduit will be simplified to a line located at y = 0, i.e.,Ωc = (0, L)×{y = 0}.86

The matrix domain takes the form of Ωm = (0, L)×(0, Hm)∪(0, L)×(−Hm, 0)87

where 2Hm represents the height of the matrix, L is the horizontal length of the88

conduit and matrix. In the case of Stokes-Darcy model, the conduit domain89

is Ωc = (0, L) × (−Hc, Hc), and the matrix is Ωm = (0, L) × (Hc, Hc +Hm) ∪90

(0, L) × (−Hm −Hc,−Hc)91

2. We will assume that the matrix is homogeneous and isotropic with constant92

permeability Π, and hence constant hydraulic conductivity K = Πg

ν
, where93

ν is the kinematic viscosity of the fluid (water) and g is the gravitational94

acceleration constant.95
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3. We investigate the laminar flow regime so that the relatively simple Stokes-96

Darcy model and the laminar CFP model are applicable.97

4. We consider constant Neumann type boundary condition (equivalent to con-98

stant fixed flux) so that the laminar CCPF model and Stokes-Darcy model99

can be reduced to systems of ordinary differential equations in terms of the100

Fourier coefficients in the horizontal direction. (Of course Fourier expansion101

is not applicable in the original variable but can be used after an appropriate102

translation of the unknown.)103

The linear constant coefficient ODE systems can be reduced to systems of linear104

algebraic equations in the setting that we have adopted here. The optimization (to105

minimize the difference between the CCPF model and the Stokes-Darcy model) is106

then performed on the reduced linear algebraic systems for parameter regime that107

corresponds to the Wakulla Spring in Florida (Tincaid 2004). Instead of only search-108

ing for the optimal exchange coefficient that absolutely minimizes the discrepancy109

between the two models, we also identify those values of exchange coefficient so that110

the relative error is less than or equal to one percent (1%). Such an approach is111

sensible especially in the presence of uncertainties in terms of geometry, hydraulic112

conductivity, boundary conditions etc. The (near) optimal fluid exchange coefficient113

αex depends on the criterion that we use as expected. However, the conventional114

choice of an order one constant multiply the hydraulic conductivity does not seem115

to work. Instead, our study suggests a universal near optimal choice of about 25 for116

the fluid exchange coefficient so that the relative error is below 1% no matter which117

matching criterion is used. Moreover, this near optimal choice of fluid exchange co-118

efficient is robust with respect to change of parameters up to an order of magnitude119

(low sensitivity). This gives us strong indication of the validity of the simplified120

CCPF model provided that we set the fluid exchange coefficient to the near optimal121

value (25 for instance).122

The rest of the paper is organized as follows. We recall the CCPF model and123
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derive its solution formula in section 2. The coupled Stokes-Darcy model is then124

investigated in Section 3. We calibrate the exchange coefficient in the CCPF model125

by matching the solutions to the CCPF model and the Stokes-Darcy model numeri-126

cally in Section 4 under various parameter setting and different matching criterions.127

We then offer our conclusion in Section 5.128

2 CCPF model129

2.1 The Model130

Instead of utilizing the original CCPF model that is discrete in space (Bauer et al.131

2000, 2003), we utilize a modified continuum version (Cao et al. 2011, Hua 2009,132

Wang 2010 ). The exchange coefficient in this continuum model differs from that133

of the original CCPF model by a factor of the length of a typical conduit segment.134

A heuristic derivation of this continuum model from the original CCPF model, as135

well as possible pitfalls of this continuum model in three dimension and reasonable136

fixes, are available in the literature (Wang 2010). We will focus on the two spatial137

dimension case for simplicity in this work.138

2.1.1 The CCPF model139

Under the simplifying assumptions on the geometry of the domain and the homo-140

geneity and isotropy of the porous media, the continuum version of coupled contin-141

uum pipe flow model for laminar flow takes the form ( Cao et al 2011; Hua 2009;142

Shoemaker et al 2008, Wang 2010)143





−K∆φm = −αex(φm − φc)δy=0 + Sm in Ωm

−D∂
2φc

∂x2
= αex(φm(0) − φc) + Sc in Ωc

(1)

where Ωm = (0, L)× (0, Hm)∪ (0, L)× (−Hm, 0) and Ωc = (0, L)×{y = 0} are the144

regions for the matrix and conduit respectively, K = KI is the hydraulic conductivity145
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tensor (where K is taken to be a constant under the homogeneous isotropic media146

assumption), φm is the hydraulic head in the porous matrix, φc is the hydraulic147

head in the conduit, αex is the fluid exchange coefficient between the matrix and148

the conduit (the key parameter to be calibrated), δy=0 is the Dirac delta function149

concentrated on the conduit y = 0, and Sm and Sc are source terms (which will be150

set to zero in this study). D =
d3g
12ν

, where d is the diameter (or the width in two151

dimensional case) of the conduit, g is the Earth’s gravitational acceleration, ν is the152

kinematic viscosity of water, and φm(0) represents the restriction of φm along the153

line y = 0.154

The first equation is a consequence of Darcy’s equation in the matrix where the155

second term in the equation models fluid exchange between the conduit and matrix156

via Barenblatt type approach. The second equation is a consequence of conservation157

of mass in the conduit where the flow in the conduit is modeled via pipe flow model,158

and the second term in the equation models fluid exchange.159

2.1.2 The boundary conditions160

As we mentioned earlier in the introduction, we will postulate the following Neumann161

boundary condition which is equivalent to specifying the flux at the boundary :162






∂φm

∂x

∣∣
x=0

= fml,
∂φm

∂x

∣∣
x=L

= fmr,

∂φc

∂x

∣∣
x=0

= fcl,
∂φc

∂x

∣∣
x=L

= fcr,

∂φm

∂y

∣∣
y=±Hm

= 0.

(2)

Due to the incompressibility of the model, we must have the following compatibil-163

ity condition satisfied on the boundary conditions (equivalent to mass conservation):164

2KHm(fmr − fml) +D(fcr − fcl) = 0. (3)

It is easy to observe that the case with prescribed head can be investigated in165
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a similar fashion. However, we will not focus on this part since the Stokes-Darcy166

system does not seem to enjoy straightforward Fourier expansion in the horizontal167

direction under prescribed pressure head boundary condition.168

2.2 Solution to the CCPF model169

2.2.1 Solution strategy170

Due to the prescribed constant Neumann boundary condition, we can now define171

the following two new unknowns172

∂φ̃m

∂x
(x, y) =

∂φm

∂x
(x, y) − (fml +

x

L
(fmr − fml)), (4)

φ̃′
c(x) = φ′

c(x) − (fcl +
x

L
(fcr − fcl)). (5)

It is easy to see that
∂φ̃m

∂x
(0, y) =

∂φ̃m

∂x
(L, y) = 0 and φ̃′

c(0) = φ̃′
c(L) = 0, giving173

us homogeneous Neumann boundary conditions. Therefore we can employ Fourier174

cosine expansion in the x variable to reduce the CCPF model Eq. (1) into an infinite175

system of decoupled ODEs for the Fourier coefficients that we can solve mode by176

mode.177

2.2.2 The CCPF solution formula178

Solving the infinite decoupled ODEs for the Fourier coefficients and converting the179

Fourier mode solution for the translated unknowns back into our original variables,180

we deduce the following solution formula to the CCPF model:181
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φm(x, y) =fmlx+
1

2L
(fmr − fml)(x

2 − y2) +B

+





Hm

L
(fmr − fml)y +

∞∑

k=1

Ck(e
kπy

L + e
kπ
L

(2Hm−y)) cos

(
kπx

L

)
, y ∈ (0, Hm)

− Hm

L
(fmr − fml)y +

∞∑

k=1

Ck(e
kπ
L

(2Hm+y) + e−
kπy

L ) cos

(
kπx

L

)
, y ∈ (−Hm, 0)

(6)

φc(x) = fclx+
1

L
(fcr − fcl)

(
x2

2
+

D

αex

)
+B +

L

6
(fmr + 2fml − fcr − 2fcl)

+

∞∑

k=1

αex[Ck(1 + e
2kπHm

L ) − Ŝk]

αex + k2π2

L2 D
cos

(
kπx

L

)

(7)

where B is an arbitrary constant (head is only determined up to a constant), and182

the coefficients are given by183

Ck =
c0,kL

2kπ(1 − e
2kπHm

L )
, (8)

with184

c0,k =
2αexD

k2π2

L2 Ŝk(1 − e
2kπHm

L )

αexD
kπ
L

(1 + e
2kπHm

L ) − 2K(1 − e
2kπHm

L )(αex +D k2π2

L2 )
(9)

and185

Ŝk =
2L

(kπ)2
[(fml − fcl) − (−1)k(fmr − fcr)]. (10)
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3 The coupled Stokes-Darcy system186

3.1 The Stokes-Darcy model187

3.1.1 The model188

The coupled Stokes-Darcy model for laminar flow in the karst aquifer under consid-

eration takes the form (Beavers and Joseph 1967, Cao et al 2010b, Discacciati et al.

2002, Layton et al. 2003, Nield 1977 )






νn

Π
~um + n∇pm = −ng~j, ∇ · ~um = 0, in Ωm,

−2ν∇ · D(~uc) + ∇pc = −g~j, ∇ · ~uc = 0, in Ωc,

(1)

where ~j = (0, 1)T denotes the unit vector in (upward) vertical direction, Ωm =189

(0, L)× (Hc, Hc +Hm)∪ (0, L)× (−Hm −HC ,−Hc) and Ωc = (0, L)× (−Hc, Hc) are190

the regions for the matrix and conduit respectively, ~um, ~uc, pm and pc are the velocity191

and the kinematic pressure in the matrix and conduit respectively, ν denotes the192

kinematic viscosity, n the porosity, Π the permeability, and D(~u) = 1
2

(
∇~u+(∇~u)T

)
193

the deformation rate tensor.194

The first equation is the classical Darcy’s equation characterizing fluid flow in195

the matrix while the second equation is the standard Stokes equations governing196

the motion of fluid in the conduit. Compared to the CCPF model, the flow in the197

conduit is now modeled via the Stokes equations instead of the simple pipe flow.198

Moreover, the fluid exchange is no longer explicitly included in the equations but199

modeled through interface boundary conditions described in the next subsection200

instead of in an ad-hoc fashion as in the CCPF model.201

3.1.2 Boundary and interface conditions202

We need to equip the Stokes-Darcy system Eq. (1) with boundary conditions that are203

compatible with the Neumann boundary condition for the CCPF model Eq. (2). For204
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the pressure in the matrix, we prescribe Neumann boundary condition (equivalent205

to prescribed flux). For the velocity in the conduit, we utilize the stream function206

ψ which is related to the velocity through207

~uc =

(
−∂ψ
∂y
,
∂ψ

∂x

)
= ∇⊥ψ. (2)

and we will prescribe the value of the stream function ψ at the ends of the conduit208

(x = 0, L) that are compatible with parabolic profile. Therefore we postulate the209

following boundary conditions.210

∂pm

∂x
(x, y)

∣∣
x=0

= g · fml,
∂pm

∂x
(x, y)

∣∣
x=L

= g · fmr,

∂pm

∂y
(x, y)

∣∣
y=±(Hm+Hc)

= −g,

ψ
∣∣
x=0

= cl(
y3

3H2
c

− y), ψ
∣∣
x=L

= cr(
y3

3H2
c

− y).

(3)

together with the following classical empirical Beavers-Joseph boundary conditions211

(Beavers and Joseph 1967)212

~uc · ~nmc = ~um · ~nmc,

−~nmc ·
(
T(~uc, pc)~nmc

)
= pm,

−~τmc ·
(
T(~uc, pc)~nmc

)
= αBJ

ν√
Π
~τmc · (~uc − ~um),

(4)

where αBJ is an empirical constant determined by the geometry and the material213

(will be set to αBJ = 1 for simplicity in this study), ~nmc is the unit outer normal to214

the matrix at the interface, and ~τmc = (1, 0) is the (positive) unit tangent vector to215

the interface.216

The boundary conditions on the pressure in porous media in Equation (3) are217

consistent with the boundary condition on the head in the porous media for the218

CCPF model in Equation (2) since219

hm =
pm

g
+ y. (5)

11



The prescribed boundary value for the stream-function in Equation (3) implies that220

the horizontal velocity in the conduit enjoys the following parabolic profile221

uc,1

∣∣
x=0

= vl(y) := −cl
(
y2

H2
c

− 1

)
, uc,1

∣∣
x=r

= vr(y) := −cr
(
y2

H2
c

− 1

)
. (6)

The constants in the parabolic profiles for flow in the conduit must be taken in the222

following manner so that they are consistent with the specified discharge (flux) for223

the CCPF model Eq. (2)224

fcr =
−4crHc

3D
, fcl =

−4clHc

3D
. (7)

The mass conservation then dictates225

fmr − fml =
−2(cl − cr)Hc

3KHm

(8)

which is equivalent to Equation (3).226

It is worthwhile to point out that the case with prescribed head can be considered227

as well in principle. However the Fourier methodology may not be applicable. For228

instance, fixed head implies Fourier sine expansion (after appropriate translation)229

for the pressure in the conduit while parabolic profile also suggests Fourier sine230

expansion (after appropriate translation) for the horizontal velocity in the conduit,231

and these two sine expansions are not consistent with the Stokes equations (1).232

It should be noted that the horizontal (x) derivative of the stream function should233

be specified at the ends of the conduit (x = 0, L) as well in order to specify the234

whole velocity. This is implicitly done here by the incompressible condition and the235

assumption that the translated stream-function (10) enjoys sine expansion in the x236

direction in both L2 and H1 space (hence the translated vertical velocity satisfies237

homogeneous Neumann boundary at condition at the ends of the conduit).238
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3.2 Solution to the Stokes-Darcy system239

3.2.1 Solution strategy240

For the Darcy part, we use the pressure pm as the main (prognostic) variable which241

satisfies the Laplace equation. Introducing the following translated new unknown242

p̃m = pm − g

[
x · fml +

x2

2L
(fmr − fml)

]
, (9)

which is equipped with homogeneous Neumann boundary condition ∂epm

∂x
(0, y) = 0 =243

∂epm

∂x
(L, y). Therefore we could employ Fourier cosine expansion in the x variable for244

p̃m.245

As for the Stokes part, we work with the stream-function ψ which satisfies the246

bi-harmonic equation ∆2ψ = 0. In order to homogenize the boundary conditions at247

the lateral ends, we introduce the following translated stream-function248

ψ̃(x, y) = ψ(x, y) +

∫ y

0

[
vl(s) +

x

L
(vr(s) − vl(s))

]
ds. (10)

This translated stream-function is zero (homogeneous Dirichlet boundary condition)249

at the lateral ends (x = 0, L). Hence, the translated velocity ~̃uc = ∇⊥ψ̃ satisfies250

the homogenous Dirichlet boundary condition for the horizontal velocity ũc,1, and251

homogeneous Neumann boundary condition for the translated vertical velocity ũc,2252

at the lateral ends. Therefore we could employ Fourier sine expansion in x for the253

translated horizontal velocity and the stream function, and Fourier cosine expansion254

in x for the translated vertical velocity and pressure in the conduit.255

3.2.2 Solution formula for the Stokes-Darcy model256

Solving the resulting infinitely many decoupled constant coefficient ODEs for the257

Fourier coefficients and revert back to the original variable, we deduce the following258

solution formula for the Stokes-Darcy system Eq. (1) together with the boundary259

conditions Eq. (3) and interface conditions Eq. (4).260
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The head in the matrix is given by261

hm(x, y) = fmlx+
1

2L
(fmr − fml)(x

2 − y2) +B′

+






Hm +Hc

L
(fmr − fml)y +

1

g

∞∑

k=1

(C5e
kπy

L + C6e
− kπy

L ) cos

(
kπx

L

)
, y > Hc

− Hm +Hc

L
(fmr − fml)y +

1

g

∞∑

k=1

(C7e
kπy

L + C8e
− kπy

L ) cos

(
kπx

L

)
, y < −Hc,

(11)

and the velocity in the conduit is given by262

uc,1(x, y) = vl(y) +
x

L
(vr(y) − vl(y)) +

∞∑

k=1

[
− kπ

L
C1e

kπy

L +
kπ

L
C2e

− kπy

L

−
(

1 +
kπy

L

)
C3e

kπy

L −
(

1 − kπy

L

)
C4e

− kπy

L

]
sin

(
kπx

L

)

uc,2(x, y) = − 1

L

∫ y

0

(vr(s) − vl(s))ds+

∞∑

k=1

[
kπ

L
C1e

kπy

L +
kπ

L
C2e

− kπy

L

+
kπ

L
C3ye

kπy

L +
kπ

L
C4ye

− kπy

L

]
cos

(
kπx

L

)

(12)

where the coefficients C1–C8 are determined via solving the following systems of263

linear algebraic equations:264

e
kπ(Hm+Hc)

L C5 − e−
kπ(Hm+Hc)

L C6 = 0 (C1)

e−
kπ(Hm+Hc)

L C7 − e
kπ(Hm+Hc)

L C8 = 0 (C2)

e
kπHc

L C1 + e−
kπHc

L C2 +Hc

(
e

kπHc
L C3 + e−

kπHc
L C4

)
+

Π

ν

(
e

kπHc
L C5 − e−

kπHc
L C6

)
= 0

(C3)
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2ν

(
kπ

L

)2 [
−C1e

kπHc
L + C2e

− kπHc
L −Hc

(
C3e

kπHc
L − C4e

− kπHc
L

)]
−C5e

kπHc
L −C6e

− kπHc
L

= P̂m,k(Hc) −
2νkπ

L
F̂c,1,k(Hc) +

Lν

kπ
F̂ ′′

c,1,k(Hc) (C4)

(
2

(
kπ

L

)2

+
kπαBJ

L
√

Π

)
e

kπHc
L C1 +

(
2

(
kπ

L

)2

− kπαBJ

L
√

Π

)
e−

kπHc
L C2

+

(
2
kπ

L
+
αBJ√

Π

)(
1 +

kπHc

L

)
e

kπHc
L C3 +

(
−2

kπ

L
+
αBJ√

Π

)(
1 − kπHc

L

)
e−

kπHc
L C4

+
kπαBJ

√
Π

Lν

(
e

kπHc
L C5 + e−

kπHc
L C6

)
= F̂ ′

c,1,k(Hc)+
αBJ√

Π

(
F̂c,1,k(Hc) +

Π

ν
F̂m,1,k(Hc)

)

(C5)

e−
kπHc

L C1 + e
kπHc

L C2 −Hc

(
e−

kπHc
L C3 + e

kπHc
L C4

)
+

Π

ν

(
e−

kπHc
L C7 − e

kπHc
L C8

)
= 0

(C6)

2ν

(
kπ

L

)2 [
−e− kπHc

L C1 + e
kπHc

L C2 +Hc

(
e−

kπHc
L C3 − e

kπHc
L C4

)]
−e− kπHc

L C7−e
kπHc

L C8

= P̂m,k(−Hc) −
2νkπ

L
F̂c,1,k(−Hc) +

Lν

kπ
F̂ ′′

c,1,k(−Hc) (C7)
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(
−2

(
kπ

L

)2

+
kπαBJν

L
√

Π

)
e−

kπHc
L C1 −

(
2

(
kπ

L

)2

+
kπαBJν

L
√

Π

)
e

kπHc
L C2

+

(
−2

kπ

L
+
αBJν√

Π

)(
1 − kπHc

L

)
e−

kπHc
L C3+

(
2
kπ

L
+
αBJν√

Π

)(
1 +

kπHc

L

)
e

kπHc
L C4

+
kπαBJ

√
Π

L

(
e−

kπHc
L C7 + e

kπHc
L C8

)
= −F̂ ′

c,1,k(−Hc)+
αBJν√

Π

(
F̂c,1,k(−Hc) +

Π

ν
F̂m,1,k(−Hc)

)

(C8)

and265

F̂m,1,k(y) =
2g

kπ

[
fml − (−1)kfmr

]
for k 6= 0,

F̂m,2,0(y) = g,

(13)

F̂c,1,k(y) =
2

kπ

[
(1 − (−1)k)vl(y) − (−1)k(vr(y) − vl(y))

]
,

F̂c,2,0(y) = − 1

L

∫ y

0

(vr(s) − vl(s))ds.
(14)

The constant B′ should be set in the following way so that head difference be-266

tween the Stokes-Darcy system and the CCPF model can be minimized:267

B′ = B − Hc

L
(fmr − fml)

(
Hm +

Hc

2

)
. (15)

It is observed that the above linear algebraic system for the coefficients C1 −C8268

could be very stiff for large k. However, this stiffness is much easier to handle than269

the stiffness matrix associated with direct numerical discretization.270

4 Calibration results271

Here we calibrate the fluid exchange coefficient αex by matching the solution to272

the CCPF model to that of the Stokes-Darcy model based on the solution formulas273
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presented in the previous two sections. We used 1000 modes in the horizontal274

direction (truncation wave number in k) for our numerical calculation. The 1000275

modes contains more than 99% of the energy of all solutions.276

4.1 Criterions277

There are several criterions that can be used to calibrate the (near) optimal choice278

of the fluid exchange coefficient αex as we mentioned earlier in the introduction. The279

criterions (in the L2 norm) that can be used are280

1. head on the interface, i.e.,
√∫ L

0
|φm(x, 0) − hm(x,Hc)|2 dx;281

2. the normal velocity on the interface which is equivalent to fluid exchange rate282

between the conduit and the matrix, i.e., K
√∫ L

0
(∂φm(x,y)

∂y

∣∣
y=0

− ∂hm(x,y)
∂y

∣∣
y=Hc

)2 dx;283

3. the head in the matrix, i.e.,
√∫ Hm

0

∫ L

0
|φm(x, y) − hm(x, y +Hc)|2 dx dy;284

4. the velocity in the matrix, i.e., K
√∫ Hm

0

∫ L

0
|∇φm(x, y) −∇hm(x, y +Hc)|2 dx dy;285

and286

5. the discharge in the conduit, i.e.,
√∫ L

0
| −Dφ′

c(x) −
∫ Hc

−Hc
uc,1(x, y) dy|2 dx.287

As we will see below that the optimal fluid exchange coefficient depends on the288

choice of the matching criterion used. Fortunately, it seems that there is some kind289

of universality in the sense that an order one choice for the exchange coefficient290

works for all criterions reasonably well.291

4.2 Wakulla Spring Parameters292

We have performed numerical experiments on a set of data corresponding the Wakulla293

Spring in Florida. Additional numerical experiments on a data set corresponding to294

a laboratory set-up investigated earlier (Faulkner et al. 2009) have been performed295

with very much the same result and hence will not be reported here for the sake of296

brevity.297
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We chose parameters for our numerical experiments based on a real life example:298

Wakulla Spring. Wakulla Spring, located near Tallahassee, Florida, is one of the299

largest and deepest freshwater springs in the world. The parameters (together with300

their units) used in the numerics for a flood season are summarized below: Horizontal301

aquifer length (m) L = 32000; Height of the matrix (m) Hm = 100; Half the height302

of the conduit (m) Hc = 2; Conduit inflow velocity at y = 0 (m/s) cl = 0.33H2
c ;303

Conduit outflow velocity at y = 0 (m/s) cr = 0.32H2
c (cl > cr and hence a flood304

season); Gravity acceleration constant (m/s2) g = 9.8; Kinematic viscosity for water305

(m2/s) ν = 10−6; Height of conduit (m) d = 2Hc (this implies that the constant D306

in the CCPF model is given by: D = gd3

12ν
and the unit is (m2/s)); Permeability (m2)307

Π = 350×10−6

3600×24g
; Hydraulic Conductivity (m/s) K = Πg

ν
; Normal derivative of head in308

the matrix on the left lateral boundary (m/s) fml = −5×10−4K−1; Normal derivative309

of head in the conduit on the right end (m/s) fcr = −4crHc

3D
; Normal derivative of head310

in the conduit on the left end (m/s) fcl = −4clHc

3D
; Normal derivative of head in the311

matrix on the right lateral boundary (m/s) fmr = −2(cl−cr)Hc

3KHm
+ fml; CCPF constant312

(m) B = −L
3
fml − L

6
fmr (this is chosen so that the relative error in head can be313

big); Stokes-Darcy constant (m) B′ = B− Hc

L
(fmr−fml)

(
Hm + Hc

2

)
; Beavers-Joseph314

constant (m) αBJ = 1.315

4.3 Numerical results316

The results show the relative error of the root-mean-square (L2-norm) of the differ-317

ence of the solutions derived via the two models, instead of the L2-norm itself. The318

relative error is computed assuming that the Stokes-Darcy model is the true one.319

These results are computed only up to the 1000th Fourier mode for the Wakulla320

Springs data. These 1000 Fourier modes contain more than 99% of the energy321

(L2-norm) of all solutions involved.322

We first tested the conventional wisdom by setting the exchange coefficient αex323

to be exactly the hydraulic conductivity K (Bauer et al. 2000, 2003, Shoemaker324
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et al. 2008). The relative error in terms of head difference on the interface is an325

unacceptable 5000% although the relative error in other measures are much less326

(4.2% in terms of the normal velocity on the interface, 4.7% in terms of the head327

difference in the porous media, and 0.6% in terms of the discharge in the conduit).328

Moreover, there exists high sensitivity on αex in this regime of the parameter as329

observed earlier in the literature (Bauer et al. 2000, 2003; Birk et al. 2003; Hua330

2009; Liedl et al. 2003).331

Next, we tested two extreme cases with αex = 0 and the limit of αex → ∞. In332

both cases we discovered that the relative error is nonzero which gives us confidence333

that we can focus on intermediate values for αex.334

It is observed that the relative error never vanishes for the cases that we tested335

(see for instance Figure 2). This implies that the CCPF model is never a perfect336

match of the Stokes-Darcy model. We also observed that there may not be a finite337

value of αex that minimizes the relative error. (Our numerics with very large wave338

number k may not be very reliable due to the stiffness of the linear algebraic system339

for the coefficients C1 − C8.) However, our numerics demonstrate that there is a340

threshold value beyond which the relative error is always below 1% for instance.341

This threshold value of the exchange coefficient will be viewed as near optimal342

choice. The solid curves in Figure 1 describe relative error as a function of αex343

based on either comparing the discharge in the conduit (bottom right panel), or344

the normal velocity at the interface (top left panel), or head in the matrix (top345

middle panel), or velocity in the matrix, (bottom left), or head at the interface (top346

right). The dotted horizontal line is the line with 1% relative error. Our numerics347

indicate that the relative error will be below the threshold value of 1% provided that348

αex ≥ 22 for the case of comparing head on the interface, the normal velocity on349

the interface criterion requires αex ≥ 0.02, the head in the porous media criterion350

requires αex ≥ 0.02, the velocity in the matrix criterion requires αex ≥ 0.03, and the351

discharge in the conduit criterion leads to the constraint αex ≥ 3.0 × 10−7 with the352
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same threshold level of relative error. Table 1 lists the threshold values of αex with353

difference threshold levels of relative error using various criterions.354
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Figure 1: Graphs of the relative errors in the L2-norm under different criterions.
Each panel shows the critical αex value needed to ensure the relative error to be less
than or equal to 1%.

With the uncertainty concerning the geometry as well as the geological parame-355

ters associated with the model in mind, we naturally inquire if the numerical results356

that we obtained on the (near) optimal choice of fluid exchange coefficient αex are357

robust under perturbation in the geometry and/or geological parameters. Figure 2358

shows the relative error when using normal velocity at the interface as our criterion,359

given different values of several parameters (top left panel: flux in the conduit; top360

right panel: conduit radius; middle left panel: half conduit height; middle right361

panel: permeability; bottom: viscosity). We can observe that an order one choice362

of αex will guarantee that the relative error is at most 1%. Figure 3 describes the363

dependence of the threshold value of αex corresponding to the 1% relative error and364

variation of parameters (top left panel: flux in the conduit; top right panel: con-365

duit radius; middle left panel: half matrix height; middle right panel: permeability;366

bottom panel: viscosity ) using normal velocity at the interface as criterion.367

Extensive numerical tests covering a drought season for the Wakulla Springs368
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Figure 2: Graphs of the relative error using the optimal αex and varying other
parameters.
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Figure 3: Graphs of the optimal αex based on the variation of other parameters.
Using this range of αex, the relative error will remain under 1%.

set-up, flood and drought season for a lab set-up (Faulkner et al. 2009), as well as369

numerous sensitivity tests including sensitivity on the truncation wave number and370

the Beavers-Joseph coefficient (Beavers and Joseph 1967) within the Stokes-Darcy371

model have been conducted. All the numerical results are consistent with the results372

presented here.373
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5 Conclusion374

We have conducted extensive numerical experiments on calibrating the optimal fluid375

exchange coefficient in the CCPF model Eq. (1) assuming the Stokes-Darcy system376

Eq. (1) as the “true model”. Our numerics demonstrate that377

1. The CCPF model is never a perfect match of the Stokes-Darcy model no378

matter how we choose the exchange coefficient αex.379

2. The conventional wisdom of setting αex to be of the order of the hydraulic380

conductivity may lead to large (up to 5000%) relative error depending on the381

criterions used. Moreover, there exists high sensitivity in this regime of the382

exchange coefficient.383

3. It seems that there exists a natural and universal choice for the fluid exchange384

coefficient αex within the CCPF model Eq. (1) that makes the relative error385

small. Indeed, we can set the αex sufficiently large (say αex = 25) and obtain386

an upper bound on the relative error (1%). These results are robust under387

perturbation on parameters as well as in truncation wave numbers in our388

numerics. Therefore, the evidences that we have accumulated strongly suggest389

that the CCPF model is an effective simplified model for laminar flow in karst390

aquifer as long as we choose the fluid exchange coefficient appropriately (at391

least 25).392

Table 1: Threshold values of αex (i.e. the smallest value that alpha can have) to
ensure desired bounds on the listed relative error.

Criterion 5% 1%

Comparing the hydraulic head in the matrix 0.004 0.020
Comparing the hydraulic head at the interface 4.2 22
Comparing the normal velocity at the interface 0.004 0.020
Comparing the total discharge in the conduit 3.0 × 10−9 3.0 × 10−7
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