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Abstract

We establish the mathematical validity of the Prandtl boundary layer theory for a
family of (nonlinear) parallel pipe flow. The convergence is verified under various
Sobolev norms, including the physically important space-time uniform norm, as
well as the L∞(H1) norm. Higher order asymptotics is also studied.

Keywords: Navier-Stokes system, parallel pipe flow, boundary layer, Prandtl
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1. Introduction

Boundary layers associated with slightly viscous incompressible fluid flow
equipped with the physical no-slip no-penetration boundary condition are of
great importance. From the physical point of view, in the absence of body force,
it is the vorticity generated by the boundary layer and later advected into the main

∗Corresponding author, tel: (850)644-6419, fax: (850)644-4053.
1Supported in part by National Science Foundation grant DMS-1009713 and DMS-1009714.
2Supported in part by National Youth grant, China (No. 11001184).
3Supported in part by the National Science Foundation, a COFRA award from FSU, and a 111

project from the Chinese Ministry of Education at Fudan University.

Preprint submitted to Elsevier November 7, 2011



stream that drive the flow (see for instance the classical treatise by Schlichting
[23] and the references therein). Indeed, many physical phenomena cannot be
explained in a satisfactory fashion without accounting for boundary layer effects
(D’Alembert’s paradox is one). From the mathematical point of view, the bound-
ary layer problem is a serious challenge since the slightly viscous fluid equation,
the Navier-Stokes system at small viscosity, can be viewed as a singular perturba-
tion of the Euler system that governs the flow of inviscid fluids (see for instance
the book by Oleinik [20] and the review paper by E [3]).

Moreover, the leading order singular behavior governed by the so-called
Prandtl equation [21, 20] may be ill posed (see the recent work by Guo and
Nguyen [8], Gerard-Varet and Dormy [5], Grenier [7], and E and Engquist [4]).
Even if the Prandtl boundary-layer system is well posed, one still needs to ver-
ify a spectral constraint on the Prandtl solution to ensure the convergence as was
pointed out in [31]. The verification of such kind of spectral constraint may not
be straightforward and it is still unknown if the classical Oleinik profile (as pre-
sented in her classical treatise [20], see also Xin and Zhang [35]) that leads to a
well-posed Prandtl system satisfies the spectral constraint.

The well-posedness of the Prandtl system is already a challenge (see the works
cited above). Our knowledge on the validity on the Prandtl boundary layer the-
ory under Dirichlet boundary condition is also very limited and the validity itself
remains a conudrum. Besides various cases where the Navier-Stokes system re-
duces to the trivial linear heat equation (either in half-space, or in a channel, or
in a disk), the only known results on the validity of Prandtl theory are either for
analytical data in half-space due to Sammartino and Caflisch [22], or channel flow
with uniform injection and suction at the boundary by Temam and Wang [27, 28],
or a special class of plane parallel flow introduced in [30] with the boundary layer
behavior carefully investigated by Mazzucato, Niu and Wang [19]. Therefore, it
is worthwhile to identify special type of flows for which the Prandtl theory may
be rigorously validated.

In this work, we investigate the validity of Prandtl boundary layer theory asso-
ciated with a special type of parallel pipe flow introduced in [30]. In this case we
assume that the fluids occupy an infinitely long pipe with circular cross-section
of radius 1, and with the x− axis being the axis of the pipe. We impose that the
flow is parallel to the axis of the pipe all the time (therefore no component of the
velocity in the radial direction), and the flow is periodic in xwith period L for sim-
plicity. The classical Poiseuille flow is a special case of our ansatz provided we
identify the mean pressure gradient as part of the (periodic in x) body force. Hence
the spatial domain is Q = Ω× [0, L], where Ω = {(r, φ)

∣∣0 ≤ r ≤ 1, φ ∈ [0, 2π]}
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is the unit disk and L is the horizontal period in the cylindrical coordinates with
φ being the azimuthal angle and r being the distance to the axis of the pipe (see
figure 1 below).

Figure 1: Cross section on the circular pipe.

Throughout the paper, we will denote the solution of the Navier-Stokes system
with viscosity coefficient ν by uν , while the solution of the Euler system will be
denoted by u0. For simplicity, we will take the same initial condition for both uν

and u0, which we will denote by u0. This choice can be relaxed.
The special type of parallel pipe flow that we investigate in this manuscript

satisfies the following ansatz for the Navier-Stokes solution:

uν = uνφ(t, r)eφ + uνx(t, r, φ)ex, pν = pν(t, r), (1.1)

where uν , pν are the velocity and pressure field respectively, and eφ, ex, er are
the unit vector in the azimuthal direction, x direction, and radial direction respec-
tively.

Observe that such flow satisfying the incompressibility condition automati-
cally, and the Navier-Stokes system with viscosity ν, external body force f and
the boundary shear velocity β reduces to the following weakly nonlinear system
under the ansatz (1.1)

− (uνφ)2 + r∂rp
ν = 0,
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∂tu
ν
φ =

ν

r
∂r(r∂ru

ν
φ)− ν

r2
uνφ + f1(t, r), (1.2)

∂tu
ν
x +

uνφ
r
∂φu

ν
x =

ν

r
∂r(r∂ru

ν
x) +

ν

r2
∂φφu

ν
x + f2(t, r, φ),

with the following boundary and initial data

uν |r=1 = β := βφ(t)eφ + βx(t, φ)ex,

uν is periodic in x direction, (1.3)
uν |t=0 = u0 := a(r)eφ + b(r, φ)ex.

It is remarkable that the pressure term pν can be uniquely (up to a constant) recov-
ered from the first equation in system (1.2). Therefore the second equation and
third equation of (1.2) form a closed weakly coupled parabolic system, written in
Cartesian coordinates as the following:

∂tu
ν
v − ν∆vu

ν
v = F1,

∂tu
ν
x + (uνv · ∇v)u

ν
x − ν∆vu

ν
x = F2,

(1.4)

with the same boundary and initial conditions as (1.3). It follows in particular
that the ansatz (1.1) is preserved by the evolution of the flow.
Here uνv = (−uφ sinφ, uφ cosφ), F1 =

(
− f1(t, r) sinφ, f1(t, r) cosφ

)
, uν =

(uνv , u
ν
x), F2 = f2(t, r, φ), ∆v = ∂x1x1 + ∂x2x2 ,∇v = (∂x1 , ∂x2).

Similar to the ansatz (1.1), we also assume

u0 = u0
φ(t, r)eφ + u0

x(t, r, φ)ex, p0 = p0(t, r). (1.5)

Then the Euler system reduces to the following system:

− (u0
φ)2 + r∂rp

0 = 0,

∂tu
0
φ = f1, (1.6)

∂tu
0
x +

u0
φ

r
∂φu

0
x = f2,

with initial condition

u0|t=0 = a(r)eφ + b(r, φ)ex, (1.7)

We observe that the no-penetration condition at the walls for the Euler solution is
automatically satisfied in this case.
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Due to the disparity of boundary conditions between the reduced Navier-
Stokes system (1.2) and the reduced Euler system (1.6), a boundary layer must
exist outside of which the flow is expected to be well approximated by the Eu-
ler solution u0. Inside the layer, a flow corrector is needed, which approximates
uν − u0. At leading order, the corrector θ0 is formally governed by the Prandtl-
type equation (2.4) (see the next section for a formal derivation). The goal of
this manuscript is to investigate the mathematical validity of the Prandtl-type ap-
proximation for this special type of flow in a pipe. More precisely, we investigate
whether uν − u0 − θ0 converges to zero in various norms. Our main result is the
rigorous verification of the Prandtl theory in the sense of the following theorem.

Theorem 1.1. Under appropriate smoothness and compatibility assumptions on
the initial and boundary data, we have, for some constant c independent of the
viscosity ν,

‖uν − u0 − θ0‖L∞(0,T ;L2(Ω)) ≤ cν
3
4 , (1.8)

‖uν − u0 − θ0‖L∞(0,T ;H1(Ω)) ≤ cν
1
4 , (1.9)

‖uν − u0 − θ0‖L∞(Ω×[0,T ]) ≤ cν
1
2 , (1.10)

‖pν − p0‖L∞(Ω×[0,T ]) ≤ cν
1
2 , (1.11)

‖pν − p0‖L∞(0,T ;H1(Ω)) ≤ cν
1
4 . (1.12)

Flows with the special symmetry (1.1) were first investigated in [30], where
the convergence in the L∞(L2)-norm of the viscous solution uν to the inviscid
solution u0 as ν → 0 was established via a Kato-Hopf type approach without
referring to the Prandtl theory. Mazzucato and Taylor [18] have recently carried
out an analysis of the boundary layer using semiclassical teachniques and layer
potentials. This approach does not rely as well on the Prandtl theory and does
not require any type of compatibility conditions between the intial and boundary
data. However, it yields only convergence in L∞(Lp) with p ∈ [1,+∞] and does
not provide any estimate on normal gradients at the boundary. Convergence
in L∞(L2) and L2(H1) norm was formally derived and announced in [31]. We
believe that the result presented here is the first rigorous result on the validity
of the Prandtl boundary-layer theory for the Navier-Stokes system in a nonlinear
setting in a domain with curved boundaries. The curvature effect can be discerned
from the pressure estimates which is different from the flat boundary case (see for
instance [19]). The curved boundary also motivated us to further develop certain
classical anisotropic estimates and embeddings. (See Temam and Wang [26, 28]
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for this idea applied to boundary layer associated with the linear and nonlinear
Navier-Stokes equations with Dirichlet boundary conditions with flat boundary.)
In particular, a novel coupled boundary layer and interior domain approach is
developed in order to derive the L∞(H1) estimate in our curved geometry.

We also remark that there exist abundant literature on boundary layer analysis
as well as the related vanishing viscosity limit problem associated with the Navier-
Stokes system equipped with different (non-Dirichlet) boundary conditions. For
instance, for the case of Navier-slip (and the simpler free-slip) boundary condition,
there are many interesting works on the related vanishing viscosity limit as well
as the analysis of the (secondly) boundary layer. (See for example [1, 2, 6, 9, 10,
12, 15, 16, 17, 29, 32, 33, 34, 36] among many others). However it is beyond the
scope of this paper to survey results associated with various kinds of boundary
conditions (non no-slip no-penetration).

The rest of paper is organized as follows. We provide a formal derivation of
the Prandtl-type equation for the leading order corrector θ0 utilizing the Prandtl-
type ansatz in Section 2. The well-posedness of the Prandtl-type boundary-layer
system as well as appropriate decay properties is briefly discussed in Appendix
Appendix A. An approximate solution to the reduced Navier-Stokes system (1.2)
is constructed in the second part of Section 2 utilizing the inviscid solution u0

and the leading order boundary-layer type corrector θ0. The validity of the ap-
proximation proposed in Section 2 is rigorously established in Section 3 under
various norms. Higher-order asymptotic expansions are considered in Section 4.
The regularity of solutions to Euler equations as well as the compatibility condi-
tions needed to ensure the smoothness of the Navier-Stokes system are mentioned
in Appendix Appendix B.

2. Prandtl type equation and approximate solution

2.1. Prandtl-type equation for the corrector
According to the Prandtl boundary layer theory as proposed in [21], the vis-

cous solution and the inviscid solution are close to each other outside a boundary
layer of thickness proportional to

√
ν. Moreover, the viscous solution must make

a sharp transition to the inviscid main flow at the boundary within the bound-
ary layer because of the no-slip boundary no-penetration condition of the viscous
flow. Therefore, we postulate that the solution to the Navier-Stokes system can be
approximated by

uν(t, r, φ) ≈ u0(t, r, φ) + θ0(t,
1− r√
ν
, φ), (2.1)
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pν(t, r, φ) ≈ p0(t, r) + q0(t,
1− r√
ν

), (2.2)

where u0(t, r, φ) = u0
φ(t, r)eφ + u0

x(t, r, φ)ex is the inviscid solution to the Euler
system, and the (boundary-layer-type) corrector θ0(t, 1−r√

ν
, φ) = θ0

φ(t, 1−r√
ν

)eφ +

θ0
x(t,

1−r√
ν
, φ)ex, thanks to our flow ansatz (1.1).

Introducing the stretched variable Z = 1−r√
ν

, we notice that the corrector must
satisfy the following matching conditions

θ0 → 0 as Z →∞, θ0(t, ·, φ)|Z=0 = β(t, φ)− u0(t, 1, φ). (2.3)

It is then convenient to work with the following domain for the corrector θ0:

Ω∞ := [0, 2π]× [0,∞).

Introducing (2.1) and (2.2) into (1.2) and (1.3), utilizing the Euler equation
(1.6) and keeping the leading order terms in ν, we deduce the following Prandtl-
type equation for the leading-order of the boundary-layer profile (corrector) θ0:

∂tθ
0
φ − ∂ZZθ0

φ = 0,

∂tθ
0
x + θ0

φ∂φu
0
x(t, 1, φ) + θ0

φ∂φθ
0
x + u0

φ(t, 1)∂φθ
0
x = ∂ZZθ

0
x,

(θ0
φ, θ

0
x)|Z=0 =

(
βφ(t)− u0

φ(t, 1), βx(t, φ)− u0
x(t, 1, φ)

)
,

(θ0
φ, θ

0
x)|Z=∞ = 0, (θ0

φ, θ
0
x)|t=0 = (0, 0).

(2.4)

The well-posedness of the system is trivial. The decay, as Z → ∞, of the
solution can be derived in a straightforward manner just as in the case of the lin-
earized compressible Navier-Stokes system studied by Xin and Yanagisawa [34],
assuming appropriate compatibility conditions between the initial and boundary
data. These are discussed in Appendix Appendix B. Decay estimates as well as
the main idea of the proof are presented in Appendix A.

It is also easy to realize that the leading-order correction q0 to the pressure
term satisfies

∂Zq
0 ≡ 0, (2.5)

and hence we can conveniently set

q0 ≡ 0. (2.6)
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2.2. Approximate Solution
With the leading-order corrector θ0 and the inviscid solution u0 in hand, we

are now in a position to construct an approximate solution to the Navier-Stokes
system (1.2) with the given ansatz (1.1).

As in Temam and Wang [26, 28] and Mazzucato, Niu and Wang [19], we
introduce a cut-off function to ensure that that the approximate Navier-Stokes
solution ũapp, given below, satisifes the same boundary conditions as the true
Navier-Stokes solution uν . Let ρ(r) be a smooth function defined on [0, 1] such
that

ρ(r) =

{
1 r ∈ [1

2
, 1],

0 r ∈ [0, 1
4
].

(2.7)

Because of (1.1), the approximate solution to the Navier-Stokes equation must
have the form:

ũapp = ũappφ (t, r)eφ + ũappx (t, r, φ)ex, (2.8)

ũappφ (t, r) = u0
φ(t, r) + ρ(r)θ0

φ(t,
1− r√
ν

), (2.8a)

ũappx (t, r, φ) = u0
x(t, r, φ) + ρ(r)θ0

x(t,
1− r√
ν
, φ). (2.8b)

In view of (2.6), we take the pressure associated with the approximate velocity to
be:

papp = p0. (2.9)

It is straightforward to verify that the approximate solution ũapp constructed
above satisfies the Navier-Stokes system with (small) extra body force:

− (ũappφ )2 + r∂rp
app = A,

∂tũ
app
φ −

ν

r
∂r(r∂rũ

app
φ ) +

ν

r2
ũappφ = B + C + f1, (2.10)

∂tũ
app
x +

ũappφ

r
∂φũ

app
x −

ν

r
∂r(r∂rũ

app
x )− ν

r2
∂φφũ

app
x = D + E + F + f2,

where the (small) extra body forces are given by

A = −(ρθ0
φ)2 − 2ρu0

φθ
0
φ,

B = ν

[
−1

r
∂r(r∂ru

0
φ) +

1

r2
u0
φ −

1

r
ρ′(r)θ0

φ +
1

r2
ρθ0

φ − ρ′′(r)θ0
φ

]
,
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C =
√
ν

[
1

r
ρ∂Zθ

0
φ + 2ρ′(r)∂Zθ

0
φ

]
,

D = ρ
(ρ
r
− 1
)
θ0
φ∂φθ

0
x +

(
u0
φ(t, r)

r
− u0

φ(t, 1)

)
ρ∂φθ

0
x (2.11)

+

(
1

r
∂φu

0
x(t, r, φ)− ∂φu0

x(t, 1, φ)

)
ρθ0

φ,

E = −ν
[

1

r
∂r(r∂ru

0
x) +

1

r
ρ′(r)θ0

x + ρ′′(r)θ0
x

+
1

r2
∂φφu

0
x +

1

r2
ρ∂φφθ

0
x

]
,

F =
√
ν

[
2ρ′(r)∂Zθ

0
x +

1

r
ρ∂Zθ

0
x

]
.

This approximate solution satisfies the desired boundary and initial conditions in
the sense that

ũapp|r=1 = βφ(t)eφ + βx(t, φ)ex,

ũapp|t=0 = a(r)eφ + b(r, φ)ex. (2.12)

3. Error Estimates and Convergence Rates

We are now ready to prove our main result, that is, estimates on the error uν −
ũapp. We observe that the convergence of ũapp to uν also implies the convergence
of uν −u0− θ0 to zero due to the choice of the cut-off function ρ in (2.7) and the
decay property of the boundary layer function θ0.

For the purpose of convergence analysis, we introduce the error solution
uerr = uν − ũapp, with associated pressure perr = pν − papp. (We recall that,
due to the symmetry of the flow, the pressure appears only in the equations for the
cross-sectional components of the velocity, which are linear.) The error solution
satisfies the following system of equations:

(uerrφ )2 + 2uerrφ ũappφ − r∂rp
err = A, (3.1a)

∂tu
err
φ −

ν

r
∂r(r∂ru

err
φ ) +

ν

r2
uerrφ = −B − C, (3.1b)

∂tu
err
x +

uνφ
r
∂φu

err
x +

uerrφ
r
∂φũ

app
x −

ν

r
∂r(r∂ru

err
x )

− ν

r2
∂φφu

err
x = −D − E − F, (3.1c)
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where the body forcing terms A through F are given in (2.11), and the boundary
conditions and initial data are specified as:

uerr|r=1 = 0,

uerr|t=0 = 0. (3.2)

Our goal in this section is to show that uerr, perr converge to zero in different s
norms as ν tends to zero. More precisely, we aim at proving the following result.

Theorem 3.1. Suppose the initial data u0, the boundary data β, and the external
forces F are given as in Proposition Appendix B.1. Then there exist positive
constants cs independent of ν, such that for any solution uν of the system (1.2)-
(1.3),

||uν − ũapp||L∞(0,T ;L2(Ω)) ≤ cν
3
4 , (3.3)

||uν − ũapp||L2(0,T ;H1(Ω)) ≤ cν
1
4 , (3.4)

||uν − ũapp||L∞(0,T ;H1(Ω)) ≤ cν
1
4 , (3.5)

||uν − ũapp||L∞(Ω×[0,T ]) ≤ cν
1
2 , (3.6)

||pν − p0||L∞(Ω×[0,T ]) ≤ cν
1
2 , (3.7)

||pν − p0||L∞(0,T ;H1(Ω)) ≤ cν
1
4 . (3.8)

Our main result, Theorem 1.1, follows from the theorem above and the decay
property of the boundary layer corrector θ0, once a choice of cut-off function ρ
has been made.

In view of the estimate

||θ0||L∞(0,T ;L2(Ω)) ≈ cν
1
4 ,

and (3.3), by the triangle inequality we can derive sharp convengence rates in
viscosity as an immediate corollary of Theorem 3.1.

Corollary 3.2. Under the hypotheses of Theorem 3.1, the following optimal con-
vergence rate holds:

c1ν
1
4 ≤ ||uν − u0||L∞(0,T ;L2(Ω)) ≤ c2ν

1
4 , (3.9)

where c1 and c2 are positive constants, independent of ν.
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The proof of Theorem 3.1 consists of several parts. We first show that the
extra body force terms are small. The L∞(L2) and L2(H1) estimates then follows
directly. Estimates in L∞(Ω× [0, T ]) are derived, instead, via the maximum prin-
ciple and the anisotropic embedding theorem. The L∞(H1) estimate requires
a different approach, which entails two distinct bounds, one near boundary, the
other in the interior, obtained by introducing a further cut-off function. The
convergence of the pressure follows from the convergence of the velocity field.

3.1. Smallness of the extra body forcing terms
We first verify that the extra body forcing terms A-F in the right-hand-side of

the equations in (3.1) are all small in some appropriate sense. Here and below,
with a slight abuse of notation, c denotes a generic constant, independent of the
viscosity ν, which may change from line to line. Also, we set 〈Z〉 =

√
1 + Z2.

Lemma 3.3. Suppose the initial data u0, the boundary data β, and the forces
F are given as in Proposition Appendix B.1 in Appendix B. Then the following
estimates for A-F given in (2.11) hold:

||A
r2
||L∞(0,T ;L1(Ω)) ≤ cν

1
2 , (3.10a)

||A
r
||L∞(0,T ;L2(Ω)) ≤ cν

1
4 , (3.10b)

||B + C||L∞(0,T ;L2(Ω)) ≤ cν
3
4 , (3.10c)

||D + E + F ||L∞(0,T ;L2(Ω)) ≤ cν
3
4 , (3.10d)

||∂φ(D + E + F )||L∞(0,T ;L2(Ω)) ≤ cν
3
4 , (3.10e)

||B + C||L∞(Ω×[0,T ]) ≤ cν
1
2 , (3.10f)

||D + E + F ||L∞(Ω×[0,T ]) ≤ cν
1
2 . (3.10g)

||B + C||L∞(0,T ;L2(Ω′)) ≤ cν, (3.10h)
||D + E + F ||L∞(0,T ;L2(Ω′)) ≤ cν, (3.10i)

for any subset Ω′ of Ω such that the closure Ω′ ⊂ Ω.

PROOF. We first observe that inequality (3.10a) follows from the estimate:

||A
r2
||L1(Ω) =

∫ 1

1
4

(ρθ0
φ)2 + 2|ρu0

φθ
0
φ|

r2
rdr
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≤ c
(
1 + ||u0

φ||L∞(Ω)

) ∫ 1

1
4

(
θ0
φ(t,

1− r√
ν

)
)2

+ |θ0
φ(t,

1− r√
ν

)| dr

≤ cν
1
2

(
1 + ||u0

φ||L∞(Ω)

) ∫ ∞
0

(
θ0
φ(t, Z)

)2
+ |θ0

φ(t, Z)| dZ

≤ cν
1
2 , (3.11)

where we have utilized the regularity and decay properties of the corrector θ0
φ

and the fact that the term A contains the cut-off function ρ. (See Lemma Ap-
pendix A.2 and Remark Appendix A.1 in Appendix Appendix A for further
details.) Estimate (3.10b) is deduced in the similar fashion. The constants c in
(3.10a) and (3.10b) depend on the norms of ||u0||H2(Ω), ||F||L∞(0,T ;H2(Ω)) and
||β||L∞(0,T ;H2(Ω)).

We now turn to estimates ||B + C||L∞(0,T ;L2(Ω)) and ||E + F ||L∞(0,T ;L2(Ω)).
Making the change of variable Z = 1−r√

ν
in computing ||θ0

φ||L2(Ω∞) yields a factor

of ν
1
4 in the bounds below, which follow from similar arguments as before:

||B||L∞(0,T ;L2(Ω)) ≤ cν||∆(u0
φeφ)||L∞(0,T ;L2(Ω)) + cν

5
4 ||θ0

φ||L∞(0,T ;L2(0,∞)),

||C||L∞(0,T ;L2(Ω)) ≤ cν
3
4 ||∂Zθ0

φ||L∞(0,T ;L2(0,∞)),

||E||L∞(0,T ;L2(Ω)) ≤ cν||∆u0
x||L∞(0,T ;L2(Ω)) (3.12)

+ cν
5
4

(
||θ0

x||L∞(0,T ;L2(0,∞)) + ||∂φφθ0
x||L∞(0,T ;L2(0,∞))

)
,

||F ||L∞(0,T ;L2(Ω)) ≤ cν
3
4 ||∂Zθ0

φ||L∞(0,T ;L2(0,∞)).

These in turn give immediately (3.10c) and (3.10d).
To estimate the norm ofD, we decomposeD into three parts D = I1+I2+I3,

with

‖I1‖2
L2(Ω) = ||ρ(

ρ

r
− 1)(θ0

φ)∂φθ
0
x||2L2(Ω) =

∫ 2π

0

∫ 1

0

ρ2(
ρ

r
− 1)2(θ0

φ)2(∂φθ
0
x)

2 rdrdφ

≤ c

∫ 2π

0

(∫ 1
2

1
4

(θ0
φ)2(∂φθ

0
x)

2 rdr +

∫ 1

1
2

(r − 1)2(θ0
φ)2(∂φθ

0
x)

2 rdr

)
dφ

≤ c

∫ 2π

0

∫ 3
4
√
ν

1
2
√
ν

ν
3
2 (θ0

φ)2(∂φθ
0
x)

2Z2 dZdφ+

+ c

∫ 2π

0

∫ 1
2
√
ν

0

ν
3
2 (θ0

φ)2(∂φθ
0
x)

2Z2 dZdφ
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≤ cν
3
2 ||θ0

φ||2L∞(0,+∞)|| 〈Z〉 ∂φθ0
x||2L2(Ω∞), (3.13)

and

‖I2‖2
L2(Ω) = ||ρ

(u0
φ(t, r)

r
− u0

φ(t, 1)
)
∂φθ

0
x||2L2(Ω)

=

∫ 2π

0

∫ 1

0

[
ρ
(u0

φ(t, r)

r
− u0

φ(t, 1)
)
∂φθ

0
x

]2

rdrdφ

=

∫ 2π

0

∫ 1

0

[
ρ
r − 1

r

(
∂ru

0
φ(t, ξ)− u0

φ(t, 1)
)
∂φθ

0
x

]2

rdrdφ,

≤ cν
3
2

(
||u0

φ||L∞(Ω) + ||∂ru0
φ||L∞(Ω)

)2|| 〈Z〉 ∂φθ0
x||2L2(Ω∞), (3.14)

and finally

‖I3‖2
L2(Ω) = ||ρ

(∂φu0
x(t, r, φ)

r
− ∂φu0

x(t, 1, φ)
)
θ0
φ||2L2(Ω)

=

∫ 2π

0

∫ 1

0

[
ρ
(∂φu0

x(t, r, φ)

r
− ∂φu0

x(t, 1, φ)
)
θ0
φ

]2

rdrdφ

=

∫ 2π

0

∫ 1

0

[
ρ
r − 1

r

(
∂rφu

0
x(t, ξ, φ)− ∂φu0

x(t, 1, φ)
)
θ0
φ

]2

rdrdφ,

≤ cν
3
2

(
||∂φu0

x||L∞(Ω) + ||∂rφu0
x||L∞(Ω)

)2|| 〈Z〉 θ0
φ||2L2(0,+∞). (3.15)

We remark that we have imposed enough regularity to ensure the validity of the
computations above (see Lemma Appendix A.2, Appendix A.3 and Appendix
B.2 in Appendices Appendix A and Appendix B.) Inequalities (3.10c) and
(3.10d) then follow from (3.12)-(3.15) with constants c depending on ||u0||H4(Ω),
||F||L∞(0,T ;H4(Ω)), ||β||L∞(0,T ;H4(Ω)).

Estimates (3.10h) and (3.10i) contain only the forcing terms C, D and F . We
suppose that Ω̄′ ⊂ B(0, σ) with B(0, σ) being a ball of radius σ < 1. We discuss
in detail how to bound the first term in C, all other terms can be bounded in a
similar fashion:

||1
r
ρ∂Zθ

0
φ||2L2(Ω̄′) ≤ c

∫ σ

0

(
∂Zθ

0
φ(t,

1− r√
ν

)
)2
dr (3.16)

≤ cν
1
2

1− σ

∫ σ

0

1− r√
ν

(
∂Zθ

0
φ(t,

1− r√
ν

)
)2
dr

= cν

∫ 1√
ν

1−σ√
ν

Z(∂Zθ
0
φ)2 dZ ≤ cν|| 〈Z〉 ∂Zθ0

φ||2L2(0,∞)
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Finally, (3.10f) is a direct consequence of the estimates for the corrector θ0

contained in Lemma Appendix A.2 and Lemma Appendix A.3, as well as the
regularity of solutions to the Euler equations stated in Lemma Appendix B.2. The
constant c here depends on ||u0||H4(Ω), ||F||L∞(0,T ;H4(Ω)), ||β||L∞(0,T ;H4(Ω)). One
can derive (3.10g) similarly to (3.10d) employing the L∞ norm instead. The con-
stant c in (3.10g) depends , however, on more regular data in H7(Ω), see Lemma
Appendix A.3.

Remark 3.1. It is mentioned that the interior estimates can be improved up to
any order of ν for terms C, D, F . However, the interior estimates (3.10h) and
(3.10i) are optimal because of the appearance of ∆u0

φ and ∆u0
x in terms B and

E.

Remark 3.2. We did not try to optimize the regularity condition we imposed on
the data u0, F and β, because the boundary layer exists even if the data is as-
sumed smooth.

3.2. The L∞(L2) and L2(H1) convergence
We recall that the error solution uerr = uν − ũapp, perr = pν − p0 satisfies the

system (3.1)-(3.2).
It will be convenient here to work in Cartesian rather than cylindrcal coordi-

nated. We observe that equations (3.1b), (3.1c) together with the initial boundary
conditions (3.2) form a closed weakly coupled parabolic system which can be
rewritten in Cartesian coordinates as

∂tv
err
v − ν∆vv

err
v = g2, (3.17a)

∂tv
err
3 + (uνv · ∇v)v

err
3 − ν∆vv

err
3 = g3, (3.17b)

where verr ≡ uerr in Cartesian coordinates, that is,

verr(t, x1, x2) = (verr1 , verr2 , verr3 ) := uerrr er + uerrφ eφ + uerrx ex

with

verr1 (t, x1, x2) = −uerrφ sinφ,

verr2 (t, x1, x2) = uerrφ cosφ,

verr3 (t, x1, x2) = uerrx ,

verrv = verr1 ex1 + verr2 ex2 = uerrr er + uerrφ eφ,

14



together with homogeneous initial and boundary conditions

verr|r=1 = 0,

verr|t=0 = 0.
(3.18)

The forcing terms g2, g3 are given by

g2 = −(B + C)
(
− x2√

x21+x22
, x1√

x21+x22

)
,

g3 = −(D + E + F )− (verrv · ∇v)ũ
app
x .

(3.19)

We notice that the cross-sectional component verrv satisfies a two-component
(scalar) heat equation (3.17a). Therefore standard energy estimates and the maxi-
mum principle together with the estimates (3.10c) and (3.10f) in Lemma 3.3 yields

||verrv ||L∞(0,T ;L2(Ω)) ≤ cν
3
4 ,

||verrv ||L2(0,T ;H1(Ω)) ≤ cν
1
4 ,

||verrv ||L∞(0,T ;H1(Ω)) ≤ cν
1
4 ,

||verrv ||L∞(Ω×[0,T ]) ≤ cν
1
2 .

(3.20)

For later use, we also derive an interior estimate on ||verrv ||L∞(0,T ;L2(Ω′)) for
Ω′ ⊂⊂ Ω. Let η(r) be a smooth function with compact support in Ω. Multiplying
equation (3.17a) by η2verrv , and integrating the resulting equations by parts leads
to

1

2

d

dt
||ηverrv ||2L2(Ω) + ν||η∇vv

err
v ||2L2(Ω)

≤ c||B + C||L2(Ω′)||ηverrv ||L2(Ω) − ν
∫

Ω

∇vv
err
v · (2η∇vη) · verrv dx

≤ cν||ηverrv ||L2(Ω) + cν
7
4 ||η∇vv

err
v ||L2(Ω), (3.21)

where we have employed (3.10h) in Lemma 3.3 and the L∞(L2) estimate in
(3.20). Applying first Cauchy’s inequality, and then Grönwall’s inequality, we
then obtain

||ηverrv ||L∞(0,T ;L2(Ω)) + ν
1
2 ||η∇vv

err
v ||L2(0,T ;L2(Ω)) ≤ cν. (3.22)
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We now notice that the last term in g3 can be rewritten as:

(verrv · ∇v)ũ
app
x =

uerrφ
r
∂φũ

app
x .

We then conclude again from the definition of uapp given in (2.8), the decay prop-
erties of the corrector θ0 found in Appendix Appendix A, and the regularity of
solutions to the Euler system in Lemma Appendix B.2, that

||1
r
∂φũ

app
x ||L∞(Ω×[0,T ]) ≤ c, (3.23)

with a constant c depending on ||u0||H3(Ω), ||F||L∞(0,T ;H3(Ω)), and
||β||L∞(0,T ;H3(Ω)), but independent of ν. Therefore one has the following uniform
estimates by (3.20) and (3.23):

||(verrv · ∇v)ũ
app
x ||L∞(Ω×[0,T ]) ≤ cν

1
2 . (3.24)

Applying the same energy argument to equation (3.17b) gives

||verr3 ||L∞(0,T ;L2(Ω)) ≤ cν
3
4 ,

||verr3 ||L2(0,T ;H1(Ω)) ≤ cν
1
4 ,

||verr3 ||L∞(0,T ;L2(Ω′)) ≤ cν.

(3.25)

by inequalities (3.10d), (3.10i) in Lemma 3.3 and estimates (3.20), (3.22), (3.24).

3.3. Uniform in space and time convergence
We begin by observing that the uniform convergence of the tangential compo-

nent verrv has been already derived in the previous subsection via the maximum
principle. Similar uniform estimates on verr3 can be derived via maximum princi-
ple as well since verr3 satisfies a (scalar) advection-diffusion equation with source
term. For this purpose, we define the differential operator L by

L = ∂t + uνv · ∇v − ν∆.

A simple calculation shows that

L(verr3 ) ≤ L(
∫ t

0
||g3(s)||L∞(Ω) ds), and

16



verr3 ≤
∫ t

0
||g3(s)||L∞(Ω) ds, on PΩ

where PΩ is the parabolic boundary of the domain Ω × [0, T ]. Then the com-
parison principle for linear parabolic equations (see e.g. [14]) implies that verr3 ≤∫ t

0
||g3||L∞(Ω) ds in Ω × [0, T ]. Similarly, we have verr3

≥ −
∫ t

0
||g3||L∞(Ω) ds. One then concludes from estimates (3.10g), (3.20) and

(3.23) that

||verr3 ||L∞(Ω×[0,T ]) ≤
∣∣ ∫ t

0

||g3||L∞(Ω) ds
∣∣ ≤ T ||g3||L∞(Ω×[0,T ]) ≤ cν

1
2 , (3.26)

with a constant c depending on T , ||u0||H7(Ω), ||F||L∞(0,T ;H7(Ω)), and
||β||L∞(0,T ;H7(Ω)).

Remark 3.3. An alternative proof of uniform bounds in L∞(Ω× [0, T ]) is based
on the use of anisotropic Sobolev-type embedding (see for instance [26, 28] for the
case of flat boundary.) In the case, as our setting, of curved boundaries, the main
idea is to perform separate estimates, one valid next the boundarty, the other in the
interior. Near the boundary, curvilinear coordinates allow to generalize the flat
case result (see Lemma 3.4 below, which is a counterpart of Remark 4.2 in [26]).
Away from the boundary, on the other hand, we expect to employ a direct energy
estimate due to the absence of the boundary layer. This alternative approach has
the advantage that it can handle systems where the maximum principle may be
invalid. This dual approach will be utilized to derive L∞(H1) estimates.

Lemma 3.4. Suppose the domain D is an annulus D = {(r, θ)|0 < R1 < r <
R2, θ ∈ (0, 2π)}. Then for any function u ∈ H1(Ω) satisfying either u|r=R1 = 0
or u|r=R2 = 0, there exists a constant C depending only on R1 such that

||u||L∞(D) ≤ c
(
||u||

1
2

L2(D)||
∂u

∂r
||

1
2

L2(D) + ||∂u
∂r
||

1
2

L2(D)||
∂u

∂θ
||

1
2

L2(D)

+ ||u||
1
2

L2(D)||
∂2u

∂r∂θ
||

1
2

L2(D)

)
. (3.27)

The proof is straightforward via Agmon type embedding in the azimuthal di-
rection together with embedding (interpolation) in the radial direction. General-
ization to general curvilinear coordinates as well as high dimension can be con-
sidered as well.
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3.4. Converegence in L∞(H1)

The goal of this section is to derive L∞(H1) estimate for verr3 , given that an
L∞(H1) estimate of verrv was already obtained in (3.20). This estimate is the
most interesting given that it involves normal gradients of the error solution.

We employ again the the two-step approach described above: first, we derive
an estimate near the boundary based on the better control we have on tangential
derivatives even in the presence of a boundary layer; second, we derive a standard
interior energy estimate away from the boundary layer. In order to separate the
boundary layer from the interior, we introduce a further cut-off function ψ(r) with
an appropriately chosen support in Ω (to be specified below).

Let us denote w = ψuerrx = ψverr3 . Then w satisfies the following equation
written in polar coordinates:

∂tw +
uνφ
r
∂φw −

ν

r
∂r(r∂rw)− ν

r2
∂φφw = −

ψuerrφ
r

∂φũ
app
x −

ψ(D + E + F )− νuerrx ∆vψ − 2νψ′(r)∂ru
err
x , (3.28)

with homogeneous initial and boundary conditions

w|r=1 = 0,

w|t=0 = 0.

3.4.1. Estimate near the boundary
To emphasize that this is a construction near the boundary, we will ψb(r) for

ψ(r) and wb for w in (3.28). We take ψb(r) to be a smooth function defined on
[0, 1] such that

ψb(r) =

{
1 r ∈ [1

2
, 1],

0 r ∈ [0, 1
3
].

(3.29)

First, we multiply equation (3.28) by −∂φφwb · r and then integrate in r and φ,
in light of estimate (3.10e) in Lemma 3.3,

1

2

d

dt
||∂φwb||2L2(Ω) + ν||∂φrwb||2L2(Ω) + ν||∂φφwb

r
||2L2(Ω)

≤ c
(
||ψb∂φD||L2(Ω) + ||ψb∂φE||L2(Ω) + ||ψb∂φF ||L2(Ω)+

(||∆u0
x||L∞(Ω) + ||∂φφθ0

x||L∞(Ω∞))||ψuerrφ ||L2(Ω)

)
||∂φwb||L2(Ω)+(

ν||uerrx ∆vψb||L2(Ω) + 2ν||ψ′b(r)∂ruerrx ||L2(Ω)

)
||∂φφwb

r
||L2(Ω)
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≤ cν
3
4 ||∂φwb||L2(Ω) + cν||∂φφwb

r
||L2(Ω). (3.30)

Then it follows from Grönwall’s inequality and estimate (3.25) that

||∂φwb||L∞(0,T ;L2(Ω))+

√
ν
(
||∂φrwb||L2(0,T ;L2(Ω)) + ||∂φφwb

r
||L2(0,T ;L2(Ω))

)
≤ cν

3
4 . (3.31)

In order to obtain an estimate for ∂rwb, we multiply by −1
r
∂r(r∂rwb) · r on

both sides of equation (3.28) and integrate it by parts

1

2

d

dt
||∂rwb||2L2(Ω) + ν||1

r
∂r(r∂rwb)||2L2(Ω) + ν||∂rφwb

r
||2L2(Ω)

≤ c
(

(||uerrφ ||L∞(Ω) + ||ũappφ ||L∞(Ω))||∂φwb||L2(Ω) + ν||uerrx ||L2(Ω)+

ν||ψ′b(r)∂ruerrx ||L2(Ω) + ||ψb(D + E + F )||L2(Ω)+

||∂φũappx ||L∞(Ω)||ψbuerrφ ||L2(Ω)

)
||1
r
∂r(r∂rwb)||L2(Ω)+

cν||∂φwb||L2(Ω)||
∂rφwb
r
||L2(Ω). (3.32)

Young’s inequality and Grönwall’s inequality then yield

||∂rwb||L∞(0,T ;L2(Ω)) +
√
ν||1
r
∂r(r∂rwb)||L2(0,T ;L2(Ω))

+
√
ν||∂rφwb

r
||L2(0,T ;L2(Ω)) ≤ cν

1
4 . (3.33)

where we have used estimates (3.23) and (3.31).

3.4.2. Interior estimate
We now turn to the estimates in the interior of Ω. To this end, we let ψi(r) =

1− ψb(r) so that

ψi(r) =

{
1 r ∈ [0, 1

2
],

0 r ∈ [2
3
, 1].

(3.34)

We rewrite equation (3.28) in Cartesian coordinates as

∂twi + (uνh · ∇v)wi − ν∆vwi = −ψi(D + E + F )− νverr3 ∆vψi

− 2νψ′i(r)∂rv
err
3 −

(
(ψiv

err
v ) · ∇v

)
ũappx , (3.35)
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with homogeneous initial and boundary conditions.
Multiplying (3.35) by wi and integrating the resulting equation over Ω gives

1

2

d

dt
||wi||2L2(Ω) + ν||∇vwi||2L2(Ω)

≤ ||ψi(D + E + F )||L2(Ω)||wi||L2(Ω) + cν||verr3 ||H1(Ω)||wi||L2(Ω)

+ c||∂φũ
app
x

r
||L∞(Ω)||ψiuerrφ ||L2(Ω)||wi||L2(Ω). (3.36)

By utilizing the estimates (3.10i), (3.22), (3.25), and the tangential estimate on the
approximate solution (3.23), we deduce that

||wi||L∞(0,T ;L2(Ω)) + ν
1
2 ||∇vwi||L2(0,T ;L2(Ω)) ≤ cν. (3.37)

In particular,

||∇vwi||L2(0,T ;L2(Ω)) ≤ cν
1
2 . (3.38)

Furthermore, by multiplying equation (3.35) by −∆vwi and integrating over
the domain Ω, one has that

1

2

d

dt
||∇vwi||2L2(Ω) + ν||∆vwi||2L2(Ω)

≤ ||ψi(D + E + F )||L2(Ω)||∆vwi||L2(Ω) + ν||verr3 ||H1(Ω)||∆vwi||L2(Ω)

+ c||∂φũ
app
x

r
||L∞(Ω)||ψiuerrφ ||L2(Ω)||∆vwi||L2(Ω)

+

∫
Ω

(uνv · ∇v)wi∆vwi dx. (3.39)

We now recall that ũappv = ũappφ eφ, that ∇v · uappv = 0, and that uν = verr + ũapp.
Consequently, all terms in the right hand side of equation (3.39) except the last
one can be estimated in the same way as in (3.36)-(3.37). We deal with the last
term as follows:∫

Ω

(uνv · ∇v)wi∆vwi dx

=

∫
Ω

(verrv · ∇v)wi∆vwi dx+

∫
Ω

(ũappv · ∇v)wi∆vwi dx

≤ cν
1
2 ||∇vwi||L2(Ω)||∆vwi||L2(Ω) −

∫
Ω

(∇vũ
app
v · ∇vwi) · ∇vwi dx
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≤ c||∇vwi||2L2(Ω) +
ν

4
||∆vwi||2L2(Ω) + ||∇vũ

app
v ||L∞(Ω′)||∇vwi||2L2(Ω)

≤ c
(
||u0

φeφ||H2+s(Ω) + ||Z∂Zθ0
φ||L∞(0,∞)

)
||∇vwi||2L2(Ω)

+ c||∇vwi||2L2(Ω) +
ν

4
||∆vwi||2L2(Ω), (3.40)

where Ω′ = {r ≤ 2
3
} by the definition of the the cut-off function (3.34). By

introducing (3.40) back into (3.39), applying Young’s inequality, integrating in
time t, we finally obtain, utilizing (3.38),

||∇vw||L∞(0,T ;L2(Ω)) ≤ cν
1
2 . (3.41)

Combining estimates (3.25), (3.31), (3.33) and (3.41) gives the desired estimate

||verr3 ||L∞(0,T ;H1(Ω)) ≤ cν
1
4 . (3.42)

Remark 3.4. An alternative way of deriving the L∞(H1) estimate is to include
higher-order terms in the asymptotic expansion (2.1)-(2.2). We address this point
in Section 4.

3.5. Convergence of the pressure
We first recall the following calculus formula for a vector function u = v(r)eφ

∇uv =

(
−∂rv sinφ er − v

r
cosφ eφ

∂rv cosφ er − v
r

sinφ eφ

)
. (3.43)

Then it follows directly from equation (3.1a) that

||∂rperr||L2(Ω) ≤ ||
(uerrφ )2

r
||L2(Ω) + ||

2uerrφ ũappφ

r
||L2(Ω) + ||A

r
||L2(Ω)

≤ (||uerrφ ||L∞(Ω) + 2||ũappφ ||L∞(Ω))||
uerrφ
r
||L2(Ω) + cν

1
4

≤ c||∇vv
err
h ||L2(Ω) + cν

1
4 ≤ cν

1
4 (3.44)

where we used the estimates (3.10b) and (3.20) as well as the calculus identity
above.

Next, we integrate equation (3.1a) to find that, assuming perr(1) = 0

− perr =

∫ 1

r

(uerrφ )2

s
+

2uerrφ ũappφ

s
− A

s
ds. (3.45)
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Therefore estimates (3.10a) and (3.20) yield

||perr||L∞(Ω)

≤ ||
uerrφ
s
||2L2(Ω) + c(||

u0
φ

r
||L∞(Ω) + ||θ0

φ||L∞(0,+∞))||uerrφ ||+ c||A
s2
||L1(Ω)

≤ ||∇vv
err
h ||2L2(Ω) + c1ν

1
2 + c2ν

1
2 ≤ cν

1
2 . (3.46)

4. Improved convergence rate

We ask whether the rates of converegence in viscosity presented in our main
theorem, Theorem 1.1, are optimal. A heuristic argument using the order of the
expansion in ν indicates that some of the rates are suboptimal. Optimal rate of
convergence can be deduced by formally expanding the Nevier-Stokes solution to
higher orders as it is classically done (see for instance [27, 19, 34] among oth-
ers). However, expanding to higher order requires correspondingly more strin-
gent compatibility conditions between the initial and boundary data, as discussed
in Appendix Appendix B. Below, we present an asymptotic expansion up the first
order (which is the next order) to illustrate the point and for the sake of simplicity.

4.1. Formal asymptotics
Similarly to (2.1) and (2.2), we now assume that the approximate Navier-

Stokes solution has the form:

uapp,1(t, r, φ) := uou(t, r) + uc(t,
1− r√
ν
, φ), (4.1)

papp,1(t, r) := p0(t, r) +
√
νp1(t, r) +

√
νq1(t,

1− r√
ν

). (4.2)

where

• uou(t, r, φ) = u0(t, r) +
√
νu1(t, r) is the outer solution, valid in Ω;

• uc(t, 1−r√
ν
, φ) = θ0(t, 1−r√

ν
, φ)+

√
νθ1(t, 1−r√

ν
, φ) is the corresponding bound-

ary layer solution, which is valid in Ω∞.

In terms of the stretched coordinate Z = 1−r√
ν

the corrector satisfies the following
matching conditions

θi → 0 as Z →∞, (4.3)

where i = 0, 1.
The equations satisfied by the outer solutions and correctors can be easily

derived by keeping only terms with the same order in ν:
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1. The leading order u0(t, r, φ) = (0, u0
φ(t, r), u0

x(t, r, φ)) satisfies reduced
Euler equation (1.6) with initial data (1.7).

2. The first order of outer solution u1(t, r, φ) = (u1
φ(t, r), u1

x(t, r, φ)) satisfies
the following equations

− 2u0
φu

1
φ + r∂rp

1 = 0,

∂tu
1
φ = 0, (4.4)

∂tu
1
x +

u0
φ

r
∂φu

1
x +

u1
φ

r
∂φu

0
x = 0,

(u1
φ, u

1
x)|t=0 = (0, 0).

Since (u1
φ, u

1
x) satisfies transport equations with homogeneous initial data,

it follows that (u1
φ, u

1
x) ≡ 0, and consequently, we can take p1 = 0 for

convenience.
3. The leading order of the boundary layer profile θ0(t, Z, φ) satisfies system

(2.4) in Section 2.
4. The first order of the boundary layer profile θ1(t, Z, φ) = (0, θ1

φ, θ
1
x) satis-

fies the following system:

(θ0
φ)2 + 2u0

φ(t, 1)θ0
φ = −∂Zq1,

∂tθ
1
φ = ∂ZZθ

1
φ − ∂Zθ0

φ,

∂tθ
1
x + u0

φ(t, 1)∂φθ
1
x + θ0

φ∂φθ
1
x − ∂ZZθ1

x = −θ1
φ∂φθ

0
x (4.5)

− θ1
φ∂φu

0
x(t, 1, φ) + Zθ0

φ(∂φ∂ru
0
x(t, 1, φ)− ∂φu0

x(t, 1, φ))

+ Z(∂ru
0
φ(t, 1)− u0

φ(t, 1))∂φθ
0
x − Zθ0

φ∂φθ
0
x − ∂Zθ0

x,

(θ1
φ, θ

1
x)|Z=0 = (0, 0),

(θ1
φ, θ

1
x)|Z=∞ = 0, (θ1

φ, θ
1
x)|t=0 = 0.

The existence, regularity, and decay properties of solutions to system (4.5) can
be derived in a manner similar to that for the system satisfied by the zeroth-order
expansion under higher regularity assumptions and higher compatibility condi-
tions between the initial data and boundary data , as illustrated in Appendix Ap-
pendix A.

4.2. Approximate solution
The formal expansion uapp,1 presented in the previous subsection cannot be

directly used to accommodate for the fact that the decay properties of the corrector
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arise in an infinite domain. As in Section 2, we remedy this point by introducing a
truncation factor in the radial direction. We then define a truncated approximation
ũapp,1(t, r, φ) = (ũapp,1φ (t, r), ũapp,1x (t, r, φ)) with

ũapp,1φ (t, r) := u0
φ(t, r) + ρ(r)(θ0

φ +
√
νθ1

φ)(t,
1− r√
ν

),

ũapp,1x (t, r, φ) := u0
x(t, r, φ) + ρ(r)(θ0

x +
√
νθ1

x)(t,
1− r√
ν
, φ), (4.6)

p̃app(t, r) = p0(t, r) +
√
νq1(t,

1− r√
ν

),

where ρ is defined in Section 2.
Then ũapp,1 satisfies the following system

− (ũapp,1φ )2 + r∂rp̃
app,1 = Â,

∂tũ
app,1
φ − ν

r
∂r(r∂rũ

app,1
φ ) +

ν

r2
ũapp,1φ = f1 + B̂ + Ĉ +G, (4.7)

∂tũ
app,1
x +

ũapp,1φ

r
∂φũ

app,1
x − ν

r
∂r(r∂rũ

app,1
x )− ν

r2
∂φφũ

app,1
x

= f2 + D̂ + Ê + F̂ +H,

where Â, B̂, Ĉ, G, D̂, Ê, F̂ and Hare given by

Â = (r − ρ2)(θ0
φ)2 + 2θ0

φ(ru0
φ(t, 1)− u0

φ)− 2
√
ν(u0

φ + ρθ0
φ)θ1

φ − νρ2(θ1
φ)2,

B̂ = ν

[
−1

r
∂r(r∂ru

0
φ) +

1

r2
u0
φ −

1

r
ρ′(r)θ0

φ +
1

r2
ρθ0

φ − ρ′′(r)θ0
φ

+
ρ

r
∂Zθ

1
φ + 2ρ′(r)∂Zθ

1
φ

]
,

Ĉ =
√
ν

[
ρ(

1

r
− 1)∂Zθ

0
φ + 2ρ′(r)∂Zθ

0
φ

]
,

G = ν
3
2

[
ρ

r2
θ1
φ −

ρ′(r)

r
θ1
φ − ρ′′(r)θ1

φ

]
,

D̂ = ρ

[
∂φu

0
x

r
− ∂φu0

x(t, 1, φ) +
√
νZ
(
∂rφu

0
x(t, 1, φ)− ∂φu0

x(t, 1, φ)
)]
θ0
φ

+ ρ(r)

[
u0
φ

r
− u0

φ(t, 1) +
√
νZ
(
∂ru

0
φ(t, 1)− u0

φ(t, 1)
)]
∂φθ

0
x
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+ ρ(r)
(ρ
r
− 1−

√
νZ
)
θ0
φ∂φθ

0
x,

Ê =
√
ν

[
ρ
(ρ
r
− 1
) (
θ0
φ∂φθ

1
x + θ1

φ∂φθ
0
x

)
+ ρ

(
1

r
− 1

)
∂Zθ

0
x + 2ρ′∂Zθ

0
x (4.8)

+ρ

(
∂φu

0
x

r
− ∂φu0

x(t, 1, φ)

)
θ1
φ + ρ

(
u0
φ

r
− u0

φ(t, 1)

)
∂φθ

1
x

]
,

H = ν

[
−1

r
∂r(r∂ru

0
x)−

(
ρ′

r
+ ρ′′

)
θ0
x +

(ρ
r

+ 2ρ′
)
∂Zθ

1
x

+
ρ2

r
θ1
φ∂φθ

1
x −

1

r2
∂φφu

0
x −

ρ

r2
∂φφθ

0
x

]
,

F̂ = ν
3
2

[
−ρ
′

r
θ1
x − ρ′′θ1

x −
ρ

r2
∂φφθ

1
x

]
.

The corresponding boundary conditions and initial data are imposed as

ũapp,1|t=0 = (0, a(r), b(r, φ)),

ũapp,1|r=1 = (0, βφ(t), βx(t, φ)).

4.3. Convergence
We define again an error solution ûerr(t, r, φ) :=

(ûerrφ (t, r), ûerrx (t, r, φ)) and p̂err, where

ûerrφ (t, r) = uνφ(t, r)− ũapp,1φ (t, r),

ûerrx (t, r, φ) = uνx(t, r, φ)− ũapp,1x (t, r, φ), (4.9)
p̂err = pν(t, r)− p̃app,1(t, r).

Then the error solution satisfies the following system

(ûerrφ )2 + 2ûerrφ ũapp,1φ − r∂rp̂err = Â,

∂tû
err
φ −

ν

r
∂r(r∂rû

err
φ ) +

ν

r2
ûerrφ = −B̂ − Ĉ −G, (4.10)

∂tû
err
x +

uνφ
r
∂φû

err
x +

ûerrφ
r
∂φũ

app,1
x − ν

r
∂r(r∂rû

err
x )− ν

r2
∂φφû

err
x

= −(D̂ + Ê + F̂ +H),

with corresponding boundary and initial conditions

ûerr|r=1 = 0,
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ûerr|t=0 = 0. (4.11)

One can verify that the extra body force terms B̂, · · · , F̂ are small in the fol-
lowing sense:

||B̂ + Ĉ +G||L∞(0,T ;L2(Ω)) ≤ cν,

||D̂ + Ê + F̂ +H||L∞(0,T ;L2(Ω)) ≤ cν,

||B̂ + Ĉ +G||L∞(0,T ;L∞(Ω)) ≤ cν,

||D̂ + Ê + F̂ +H||L∞(0,T ;L∞(Ω)) ≤ cν.

(4.12)

Utilizing the new expansion (4.1) and applying exactly the same technique
as in the proof of Theorem 3.1, we are able to improve the convergence rate of
Theorem 3.1 as follows:

Theorem 4.1. Assume that the initial data a(r), b(r, φ) and the boundary data
(βφ, βx) satisfy appropriate high order compatibility conditions as described
in Appendix Appendix B. In addition, we assume that u0 ∈ Hm(Ω),β ∈
H2(0, T ;Hm(Ω)), m ≥ 9. Then we have that

‖uν − u0 − ρ(r)(θ0 +
√
νθ1)‖L∞(0,T ;H1(Ω)) ≤ O(ν

1
2 ), (4.13)

‖uν − u0 − ρ(r)(θ0 +
√
νθ1)‖L∞((0,T )×Ω) ≤ O(ν), (4.14)

where the cut-off function ρ(r) is defined in Section 2.

Remark 4.1. Estimate (4.14) is sharper than the corresponding result for plane-
parallel flows (inequality (6.13) in theorem 6.1 of [19]), since we employ here the
maximum principle instead of the anisotropic Sobolev embedding, and we impose
more compatibility and regularity conditions on the data. Therefore we can reach
optimal convergence rates in viscosity.

As a corollary, we deduce the following optimal convergence rates for the
zeroth order approximation.

Corollary 4.2. Under the same assumption as Theorem 4.1, we have

c3ν
1
4 ≤ ‖uν − u0 − ρ(r)θ0‖L∞(0,T ;H1) ≤ c4ν

1
4 ,

c5ν
1
2 ≤ ‖uν − u0 − ρ(r)θ0‖L∞(Ω×[0,T ]) ≤ c6ν

1
2 ,

where c3, c4, c5 and c6 are generic constants depending on u0 and β but indepen-
dent of viscosity ν.
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Appendix A. Corrector estimates

In this appendix, we discuss the decay properties and the regularity of the
correctors θ0 and θ1 governed by the Prandtl-type equations (2.4) and (4.5) re-
spectively. For this purpose, we introduce the following general Prandtl-type
boundary-layer problem for a corrector-like function θ over the domain Ω∞:

∂tθ + a(t, Z)∂φθ − ∂ZZθ = h(t, φ, Z) in Ω∞ × [0, T ],

θ
∣∣
Z=0

= 0, θ
∣∣
Z=∞ = 0, (A.1)

θ
∣∣
t=0

= 0,

where a(t, Z) and h(t, φ, Z) are given functions with the following regularity:

∂kt a ∈ L∞(Ω∞ × [0, T ]), 〈Z〉l ∂kt ∂
p
φh ∈ C(0, T ;L2(Ω∞))

for k + p ≤ n, k= 0, 1, (A.2)

where 〈Z〉 =
√

1 + Z2, l n, and m are given positive integers.
Moreover, we impose the following compatibility conditions on the data in

problem (A.1):

∂kt h(0, φ, Z) = 0, k = 0, 1. (A.3)

Then one can modify the approach in Xin and Yanagisawa [34] (Theorem 4.1)
to obtain the following result.

Proposition Appendix A.1. Assume conditions (A.2)-(A.3) hold. Then the Prandtl
type boundary layer equation (A.1) has a unique solution such that

〈Z〉l ∂α1
φ ∂

α2
Z θ ∈ C(0, T ;L2(Ω∞)),

for α1 + [
α2 + 1

2
] ≤ n− 1, α2 ≤ 2, (A.4)

and

〈Z〉l ∂kt ∂
p
φθ ∈ C(0, T ;L2(Ω∞)),

for k + p ≤ n− 1, k = 0, 1. (A.5)

In addition,

∂kt θ(0, φ, Z) = 0, k = 0, 1. (A.6)
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We now apply Proposition Appendix A.1 to equations (2.4). First, we notice
that the m-th order compatibility conditions (B.2) on the data in equations (1.3)-
(1.4) imply the following compatibility conditions on the data in equation (2.4):

∂pt
(
β − u0|r=1

)∣∣
t=0

= 0, p = 0, 1, . . . , [m/2], (A.7)

where [z] denoted the greatest integer in z. Now, define jφ = [β0(t)−u0
φ(t, 1)]e−Z

2 .
Then one finds that θ1 = θ0

φ − jφ, where θ0
φ is defined below equation (2.2), sat-

isfies equation (A.1) with a(t, Z) = 0 and

h(t, Z) = −[β′0(t)− ∂tu0
φ(t, 1)]e−Z

2

+ [β0(t)− u0
φ(t, 1)](4Z2 − 2)e−Z

2

.

It is easy to verify that conditions (A.2)-(A.3) are satisfied with p = 0 if we assume
m ≥ 4. Therefore the conclusion of Proposition Appendix A.1 holds for θ1. Then
it follows that

〈Z〉l ∂αZθ1 ∈ L∞([0, T ]× [0,+∞)), α = 0, 1,

from the interpolation inequality

||θ(t, Z)||L∞t (L∞(0,+∞)) ≤ K||θ||
1
2

L∞t (L2(0,+∞))||θ||
1
2

L∞t (H1(0,+∞)).

The lemma below then follows from the definition of θ1 given above.

Lemma Appendix A.2. Under the same conditions as in Proposition Appendix
B.1 with m ≥ 4, θ0

φ ∈ ∩
[m/2]
j=0 Cj([0, T ];Hm−2j(0,+∞)) and

〈Z〉l ∂αZθ0
φ ∈ C(0, T ;L2(0,+∞)), α ≤ 2, (A.8)

〈Z〉l ∂αZθ0
φ ∈ L∞([0, T ]× [0,+∞)), α = 0, 1, (A.9)

and

∂kt θ
0
φ = 0, k = 0, 1. (A.10)

Remark Appendix A.1. An alternative way of deriving L∞ estimate in time and
space for θ0

φ is to use a comparison principle of parabolic equation (see e.g. [19].)
In fact, one can show that ∂tθ0

φ ∈ L∞([0, T ] × [0,+∞)) by the same method.
Moreover, by integrating equation (A.1) one finds that θ0

φ ∈ L∞(0, T ;L1(Ω∞)).
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We now similarly define jx = [βx(t, φ) − u0
x(t, 1, φ)]e−Z

2 and θ2 = θ0
x − jx,

where θ0
x is also defined below equation (2.2). Then one easily verifies that θ2

satisfies equation (A.1) with

a(t, Z) = θ0
φ + u0

φ(t, 1), (A.11)

h(t, φ, Z) = −θ0
φ∂φu

0
x(t, 1, φ) + [βx(t, φ)− u0

x(t, 1, φ)](4Z2 − 2)e−Z
2

− a[∂φβx(t, φ)− ∂φu0
x(t, 1, φ)]e−Z

2 − [∂tβx(t, φ)− ∂tu0
x(t, 1, φ)]e−Z

2

. (A.12)

It follows that h ∈ C1(0, T ;Hm−2) given the regularity of the data, that of the
Euler solution u0, and the regularity of θ0

φ, we established above. Therefore con-
ditions (A.2)-(A.3) are satisfied with n = m − 2 and p ≤ m − 2 by Lemma
Appendix A.2, Remark Appendix A.1 and compatibility condition (A.7), if we
assume m ≥ 7. We thus have the following lemma.

Lemma Appendix A.3. Under the same condition as Proposition Appendix B.1
with m ≥ 7, one has

〈Z〉l ∂α1
φ ∂

α2
Z θ ∈ C(0, T ;L2(Ω∞)),

for α1 + [
α2 + 1

2
] ≤ 4, 0 ≤α2 ≤ 2, (A.13)

〈Z〉l ∂α1
φ ∂

α2
Z θ

0
x ∈ L∞(Ω∞ × [0, T ]), 0 ≤α1 ≤ 2, 0 ≤α2 ≤ 1, (A.14)

〈Z〉l ∂kt ∂
p
φθ

0
x ∈ C(0, T ;L2(Ω∞)),

for p ≤ m− 3, k = 0, 1, (A.15)

and

∂kt θ
0
x = 0, k = 0, 1. (A.16)

We note that estimate (A.14) follows from (A.13) and the following
anisotropic Sobolev embedding result for the domain Ω∞, which can be derived
in the same way as Lemma 3.4

||θ||L∞(Ω∞) ≤ C
(
||θ||

1
2

L2||∂φθ||
1
2

L2 + ||∂Zθ||
1
2

L2||∂φθ||
1
2

L2

+ ||θ||
1
2

L2||∂φZθ||
1
2

L2

)
. (A.17)

Finally, we notice that conclusions of Lemma Appendix A.2 and Lemma Ap-
pendix A.3 apply to θ1

φ and θ1
x, as long as we impose m ≥ 9.
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Appendix B. Compatibility condition and regularity

To analyze the boundary layer for the pipe flows under consideration, we need
to assume that the initial data, boundary conditions and body forcing term in (1.3)-
(1.4) satisfy appropriate compatibility conditions so that the viscous solution is
sufficiently regular.

Following Xin and Yanagisawa [34] (see also Temam [24]), we define the
p−Cauchy data of (1.3) and (1.4) inductively by

∂0
t u

ν
∣∣
t=0

= u0,

∂pt u
ν
v

∣∣
t=0

=
(
ν∆v∂

p−1
t uνv + ∂p−1

t F1

)∣∣
t=0
,

∂pt u
ν
x

∣∣
t=0

=
(
−

p−1∑
s=0

(
p− 1

s

)
∂stu

ν
v · ∇v∂

p−1−s
t uνx+

ν∆v∂
p−1
t uνx + ∂p−1

t F2

)∣∣∣
t=0
. (B.1)

Then β,u0,F = (F1, F2) are said to satisfy the compatibility condition of order
m for the initial boundary value problem (1.3)-(1.4) for any ν > 0 if

∂pt u
ν
∣∣
t=0,r=1

= ∂ptβ
∣∣
t=0
, p = 0, 1, . . . ,m, for any ν > 0. (B.2)

These compatibility conditions prevent the formation of an initial layer in the
Navier-Stokes equation (1.2)-(1.3) due to the possible mismatch of the boundary
and initial data. The zeroth order compatibility condition simply takes the form:

a(1) = βφ(0), b(1, φ) = βx(0, φ), (B.3)

and the first order compatibility condition are given by:

∂tβφ(0) = ν
(
a′(1) + a′′(1)− a(1)

)
+ f1(0, 1),

∂tβx(0, φ) = ν
(
∂rb(1, φ) + ∂rrb(1, φ) + ∂φφb(1, φ)

)
− a(1)∂φb(1, φ)

+ f2(0, 1, φ). (B.4)

We notice that the first order compatibility condition involves the viscosity ν. This
undesirable dependence, however, can be eliminated if we impose that ∂rb(1, φ)+
∂rrb(1, φ) + ∂φφb(1, φ) = 0 and ∂tβx(0, φ) = −a(1)∂φb(1, φ) + f2(0, 1, φ).

Since we are working in a domain that is periodic in the x direction, we employ
the following Sobolev spaces for m ∈ Z+,:
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Hm(Q) = {f ∈ L2(Q), Dαf ∈ L2(Q), |α| ≤ m,

f periodic in the x direction and the azimuthal direction φ}.

We denote the subspace of functions in Hm(Q) that are constant in x by Hm(Ω).
We also use Hm(Q) to denote (Hm(Q))3 for vector functions. Concerning the
existence and regularity of the solution uν to the initial boundary value problem
(1.3)-(1.4) for fixed ν, the following result is classical (see page 219 of [13] and
[24], for instance.)

Proposition Appendix B.1. Let ν > 0 be a constant. Let m be an integer. Sup-
pose the forces and boundary data are smooth, F, β ∈ C∞(Ω̄ × [0, T ]), and the
initial data u0 ∈ Hm(Ω) satisfies the compatibility condition of order [m/2] for
the initial boundary value problem (1.3)-(1.4). Then there exists a unique solution
uν in the space

⋂[m/2]
j=0 Cj([0, T ];Hm−2j(Ω)).

Remark Appendix B.1. The requirement F,β ∈ C∞(Ω̄ × [0, T ]) is purely for
the ease of simplifying notation. In fact, the same conclusion holds under much
less regularity on F and β. We refer to [24] for details.

The solution of (1.6)-(1.7) can be obtained by solving an ordinary differential
equation and a transport equation. Therefore the well-posedness of u0 is read-
ily established. For example, if u0 ∈ Hm(Q), and F ∈ C(0, T ;Hm(Q)), then
u0 ∈ C(0, T ;Hm(Q)). (See Temam [25] for results concerning the existence of
smooth solution to the full Euler equations. )Since we are also working in cylin-
drical coordiantes, we gather the regularity of solutions to the Euler equation in
cylindrical coordinates in the following lemma.

Lemma Appendix B.2. Suppose u0 ∈ Hm(Q), F ∈ C(0, T ;Hm(Q)) with m ≥
4. Then one has, in polar coordinates’:

u0
φ, ∂ru

0
φ,
u0
φ

r
,

(
−1

r
∂r(r∂ru

0
φ) +

u0
φ

r2

)
∈ L∞([0, T ]× Ω), (B.5)

u0
x, ∂ru

0
x, ∂φu

0
x, ∂rφu

0
x,

(
1

r
∂r(r∂ru

0
x) +

∂φφu
0
x

r2

)
∈ L∞([0, T ]× Ω). (B.6)

PROOF. Recall the ansatz (1.5):

u0 = u0
φ(t, r)eφ + u0

x(t, r, φ)ex =
(
−u0

φ sinφ, u0
φ cosφ, u0

x

)
. (B.7)
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Noticing that u0 is independent of variable x, one concludes by Sobolev imbed-
ding that

u0,∇u0,∆u0 ∈ L∞([0, T ]× Ω) (B.8)

Then (B.6) follows directly, given that

∂

∂r
=
x1

r

∂

∂x1

+
x2

r

∂

∂x2

,

∂

∂φ
= −x2

∂

∂x1

+ x1
∂

∂x2

,

and using the fact Ω is bounded.
Next, the bound

(
−1
r
∂r(r∂ru

0
φ) +

u0φ
r2

)
∈ L∞([0, T ]× Ω) follows, since

∆(u0
φ sinφ) =

(
1

r
∂r(r∂ru

0
φ)−

u0
φ

r2

)
sinφ ∈ L∞([0, T ]× Ω)

In order to deduce ∂ru0
φ,

u0φ
r
∈ L∞([0, T ] × Ω), we differentiate u0

φ sinφ and
u0
φ cosφ with respect to x1 and x2 respectively. One has

∂x1
(
u0
φ sinφ

)
=

(
∂ru

0
φ −

u0
φ

r

)
cosφ sinφ ∈ L∞([0, T ]× Ω), (B.9)

∂x2
(
u0
φ sinφ

)
= ∂ru

0
φ(sinφ)2 +

u0
φ

r
(cosφ)2 ∈ L∞([0, T ]× Ω), (B.10)

∂x1
(
u0
φ cosφ

)
= ∂ru

0
φ(cosφ)2 +

u0
φ

r
(sinφ)2 ∈ L∞([0, T ]× Ω), (B.11)

It follows from (B.9) that
(
∂ru

0
φ −

u0φ
r

)
∈ L∞([0, T ]×Ω). On the other hand, the

addition of (B.10) and (B.11) implies ∂ru0
φ +

u0φ
r
∈ L∞([0, T ] × Ω). Therefore,

one obtains ∂ru0
φ,

u0φ
r
∈ L∞([0, T ]× Ω).
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