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Abstract. This paper considers the long-time stability property of a popular semi-implicit
scheme for the 2D incompressible Navier–Stokes equations in a periodic box that treats the viscous
term implicitly and the nonlinear advection term explicitly. We consider both the semi-discrete
(discrete in time but continuous in space) and fully discrete schemes with either Fourier Galerkin
spectral or Fourier pseudospectral (collocation) methods. We prove that, in all cases, the scheme is
long time stable provided that the timestep is sufficiently small. The long time stability in the L2

and H1 norms further leads to the convergence of the global attractors and invariant measures of
the scheme to those of the Navier–Stokes equations at vanishing timestep.
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1. Introduction. The celebrated two-dimensional Navier–Stokes system for ho-
mogeneous incompressible Newtonian fluids in the vorticity–streamfunction formula-
tion takes the form

∂ω

∂t
+∇⊥ψ · ∇ω − ν∆ω = f,

−∆ψ = ω,
(1.1) NSE

where ω denotes the vorticity, ψ is the streamfunction ∇⊥ = (∂y,−∂x) and f rep-
resents (given) external forcing. For simplicity we will assume periodic boundary
condition, i.e. the domain is a two dimensional torus T2, and that all functions have
mean zero over the torus.

It is well-known that two dimensional incompressible flows can be extremely com-
plicated with possible chaos and turbulent behavior [7,13,15,30,32,41]. Although some
of the features of this turbulent or chaotic behavior may be deduced via analytic
means, it is widely believed that numerical methods are indispensable for obtaining
a better understanding of these complicated phenomena. For analytic forcing, it is
known that the solution is analytic in space (in fact Gevrey class regular [14]), and
hence a spectral approach is the obvious choice for spatial discretization. As for time
discretization, one of the popular schemes [1, 4, 33] is the following semi-implicit al-
gorithm, which treats the viscous term implicitly and the nonlinear advection term
explicitly,

ωn+1 − ωn

k
+∇⊥ψn · ∇ωn − ν∆ωn+1 = fn. (1.2) scheme
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Here k is the timestep, and ωn, ωn+1 are the approximations of the vorticity at the
discrete times nk, (n+ 1)k, respectively. The convergence of this scheme on any fixed
time interval is standard and well-known [18–21, 23, 37]. There are many off-the-
shelf efficient solvers for (1.2), since it essentially reduces to a Poisson solver at each
timestep.

It is also well-known that the NSE (1.1) is long time enstrophy stable in the
sense that the enstrophy

(
1
2‖ω‖

2
L2

)
is bounded uniformly in time, and it possesses

a global attractor A and invariant measures [7, 13, 41]. In fact, it is the long time
dynamics characterized by the global attractor and invariant measure that are central
to the understanding of turbulence. Therefore a natural question is whether numerical
schemes such as (1.2) can capture the long time dynamics of the NSE (1.1) in the
sense of convergence of global attractors and invariant measures. At least, we would
require that the scheme inherit the long time stability of the NSE.

There is a long list of works on time discretization of the NSE and related dissipa-
tive systems that preserve the dissipativity in various forms [11,12,24,25,34–36,42,43].
It has also been discovered recently that if the dissipativity of a dissipative system
is preserved appropriately, then the numerical scheme would be able to capture the
long time statistical property of the underlying dissipative system asymptotically, in
the sense that the invariant measures of the scheme would converge to those of the
continuous-in-time system [47]. The main purpose of this article is to show that the
classical scheme (1.2) is long time stable in L2 and H1, and that the global attractor,
as well as the invariant measures of the scheme, converge to those of the NSE at
vanishing timestep.

2. Long time behavior of the semi-discrete scheme. We first recall the
well-known periodic Sobolev spaces on Ω = (0, 2π)× (0, 2π) with average zero:

Ḣm
per(Ω) :=

{
φ ∈ Hm

loc(R
2)

∣∣∣∣ ∫
Ω

φ = 0 and φ is 2π-periodic in each direction

}
. (2.1)

Ḣ−mper is defined as the dual space of Ḣm
per with the duality induced by the L2 inner

product. The adoption of Ḣm
per is well-known [7,40] since this space is invariant under

the Navier–Stokes dynamics (1.1), provided that the initial data and the forcing term
belong to the same space. We also define ‖ · ‖Hs := ‖ · ‖Hs(Ω) and L̇2 := Ḣ0

per with

the norm ‖ · ‖2 = ‖ · ‖L2 .

2.1. Long time stability of the scheme. We first prove that the scheme (1.2)
is stable for all time.

Lemma 2.1. The scheme (1.2) forms a dynamical system on L̇2.dynsyst

Proof. It is easy to see that for ωn ∈ L̇2, we have ψn ∈ Ḣ2
per. Hence ∇⊥ψn ·

∇ωn ∈ Ḣ−1−α
per for all α ∈ (0, 1). Therefore, the classical scheme (1.2), which can be

viewed as a Poisson type problem ωn+1/k − ν∆ωn+1 = fn −∇⊥ψn · ∇ωn + ωn/k ∈
Ḣ−1−α
per , possesses a unique solution in L̇2 (in fact in Ḣ1−α

per ) and the solution depends

continuously on the data. Therefore it defines a (discrete) semi-group on L̇2.
Using the Wente estimate (A.1), we have ∇⊥ψn ·∇ωn ∈ Ḣ−1, which allows us to

take α = 0 in the above.

Now we derive the long time stability of the scheme (1.2) both in L2 and in H1.
Our proof relies on a Wente type estimate on the nonlinear term (see Appendix A,
which may be of independent interest.
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We first show that the scheme (1.2) is uniformly bounded in L2, provided that
the timestep is sufficiently small. To this end, we take the scalar product of (1.2)
with 2k ωn+1 and, using the relation

2(ϕ− ψ,ϕ)L2 = ‖ϕ‖22 − ‖ψ‖22 + ‖ϕ− ψ‖22 (2.2)

where ‖ · ‖2 denotes the L2 norm, we obtain

‖ωn+1‖22 − ‖ωn‖22 + ‖ωn+1 − ωn‖22 + 2νk‖ωn+1‖2H1 + 2k b(ψn, ωn, ωn+1)

= 2k (fn, ωn+1)L2

(2.3) 1

where

b(ψ, ω, ω̃) := (∇⊥ψ · ∇ω, ω̃)L2 = −b(ψ, ω̃, ω), (2.4)

the last equality obtaining upon integration by parts. Using the Cauchy–Schwarz and
the Poincaré inequalities, we majorize the right-hand side of (2.3) by

2k‖fn‖2‖ωn+1‖2 ≤ 2cpk‖fn‖2‖ωn+1‖H1 ≤ νk‖ωn+1‖2H1 +
c2p
ν
k‖fn‖22. (2.5) 2

Using the Wente type estimate (A.2), we bound the nonlinear term as

2k b(ψn, ωn, ωn+1) = 2k b(ψn, ωn+1, ωn+1 − ωn)

≤ 2cwk‖∇⊥ψn‖H1‖ωn+1‖H1‖ωn − ωn+1‖2
≤ 1

2‖ω
n+1 − ωn‖22 + 2c2wk

2‖∇⊥ψn‖2H1‖ωn+1‖2H1

≤ 1
2‖ω

n+1 − ωn‖22 + 2c2wk
2‖ωn‖22‖ωn+1‖2H1 .

(2.6) 3

Relations (2.3)–(2.6) imply

‖ωn+1‖22 − ‖ωn‖22 + 1
2‖ω

n+1 − ωn‖22 + (ν − 2c2wk‖ωn‖22)k ‖ωn+1‖2H1

≤
c2p
ν
k‖fn‖22.

(2.7) 4

Here and in what follows, C and c denote generic constants whose value may not be
the same each time they appear. Numbered constants, e.g., c42, have fixed values;
cp is the Poincaré constant, ‖w‖2 ≤ cp‖w‖H1 , and cw is the constant from Wente’s
inequalities (A.1)–(A.3).

We are now able to prove the following:

Lemma 2.2. Let ω0 ∈ L̇2 and let ωn be the solution of the numerical schemet:bdh
(1.2). Also, let f ∈ L∞(R+; L̇2) and set ‖f‖∞ := ‖f‖L∞(R+;L2). Then there exists
M0 = M0(‖ω0‖2, ν, ‖f‖∞) such that if

k ≤ ν

4c2wM
2
0

, (2.8) 5a

then

‖ωn‖22 ≤
(

1 +
νk

2c2p

)−n
‖ω0‖22 +

2c4p
ν2
‖f‖2∞

[
1−

(
1 +

νk

2c2p

)−n]
, ∀n ≥ 0 (2.9) q:bdv
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and

ν

2
k

m∑
n=i

‖ωn‖2H1 ≤ ‖ωi−1‖22 +
c2p
ν
‖f‖2∞(m− i+ 1)k, ∀ i = 1, · · · ,m. (2.10) 6

We note that (2.9) implies

‖ωn‖22 ≤M2
0 (‖ω0‖2, ν, ‖f‖∞) := ‖ω0‖22 +

2c4p
ν2
‖f‖2∞ for n = 0, · · · . (2.11) q:bdinh

Proof. We will first prove (2.9) by induction on n. It is clear that (2.9) holds
for n = 0. Assuming that (2.9) holds for n = 0, · · · ,m, we then have (2.11) for
n = 0, · · · ,m. Then (2.7) and (2.8) yield

‖ωn+1‖22 − ‖ωn‖22 +
1

2
‖ωn+1 − ωn‖22 +

ν

2
k‖ωn+1‖2H1 ≤

c2p
ν
k‖fn‖22 (2.12) 7

for all n = 0, · · · ,m. Using again the Poincaré inequality, the above inequality implies

‖ωn+1‖22 ≤
1

α
‖ωn‖22 +

c2p
αν

k‖fn‖22, (2.13) 8

where

α = 1 +
ν

2c2p
k. (2.14) 9

Using recursively (2.13), we find

‖ωm+1‖22 ≤
1

αm+1
‖ω0‖22 +

c2pk

ν

m+1∑
i=1

1

αi
‖fm+1−i‖22

≤
(

1 +
νk

2c2p

)−m−1

‖ω0‖22 +
2c4p
ν2
‖f‖2∞

[
1−

(
1 +

νk

2c2p

)−m−1]
,

(2.15) 10

and thus (2.9) holds for n = m+ 1. We therefore have that (2.9) holds for all n ≥ 0,
as does (2.11).

Now summing inequality (2.12) with n from i to m and dropping some positive
terms, we find

ν

2
k

m∑
n=i

‖ωn+1‖2H1 ≤ ‖ωi‖22 +
c2p
ν
k

m∑
n=i

‖fn‖22

≤ ‖ωi‖22 +
c2p
ν
‖f‖2∞(m− i+ 1)k,

(2.16) 11

which is exactly (2.10). This completes the proof of Lemma 2.2.

Corollary 1. IfC1

0 < k ≤ min

{
ν

4c2wM
2
0

,
2c2p
ν

}
=: k0, (2.17) q:k0
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then

‖ωn‖22 ≤ 2ρ2
0, ∀nk ≥ T0(‖ω0‖2, ‖f‖∞) :=

8c2p
ν

ln

(
‖ω0‖2
ρ0

)
, (2.18) q:tabs

where ρ0 := (
√

2c2p/ν)‖f‖∞.

Proof. From the bound (2.9) on ‖ωn‖22, we infer that

‖ωn‖22 ≤
(

1 +
νk

2c2p

)−n
‖ω0‖22 + ρ2

0,

and using assumption (2.17) on k and the fact that 1 + x ≥ exp(x/2) if x ∈ (0, 1), we
obtain

‖ωn‖22 ≤ exp
(
−nk ν

4c2p

)
‖ω0‖22 + ρ2

0.

For nk ≥ T0, the last inequality implies the conclusion (2.18) of the Corollary.

Now we show that the H1 norm is also bounded uniformly in time under the same
kind of constraint as for the L2 estimate. To this end, we first prove in Lemma 2.3
that with H1 initial data, ωn is bounded for n ≤ N for some N . We then show in
Lemma 2.5, with the aid of a version of the discrete uniform Gronwall lemma, that
with L2 initial data, ωn is bounded for all n ≥ N .

Lemma 2.3. Let ω0 ∈ Ḣ1 and let ωn be the solution of the numerical schemefinite
(1.2). Also, let k ≤ k0, with k0 as in Corollary 1, and let r ≥ 8c2p/ν be arbitrarily
fixed. Then, for n = 1, · · · , N0 +Nr − 1,

‖ωn‖2H1 ≤ 4(2c2w/ν)M2
0 (T0+r)

(
‖ω0‖2H1 +

1

c2wM
2
0

‖f‖2∞
)

(2.19) 12

where N0 = bT0/kc, with Nr = br/kc and T0 that in Corollary 1.

Proof. The proof relies on induction on n.
Taking the scalar product of (1.2) with −2k∆ωn+1, we obtain

‖ωn+1‖2H1 − ‖ωn‖2H1 + ‖ωn+1 − ωn‖2H1 + 2νk‖∆ωn+1‖22
− 2k b(ψn, ωn,∆ωn+1) = −2k(fn,∆ωn+1)L2 .

(2.20) 13

We bound the right-hand side of (2.20) using the Cauchy–Schwarz inequality,

−2k(fn,∆ωn+1)L2 ≤ 2k‖fn‖2‖∆ωn+1‖2 ≤
νk

2
‖∆ωn+1‖22 +

2k

ν
‖fn‖22. (2.21) 14

Using the Wente type estimate (A.2), we bound the nonlinear term as

2k b(ψn, ωn,∆ωn+1) = 2k b(ψn, ωn − ωn+1,∆ωn+1)

+ 2k b(ψn, ωn+1,∆ωn+1)

≤ 2cwk‖∇⊥ψn‖H1‖ωn+1 − ωn‖H1‖∆ωn+1‖2
+ 2cwk‖∇⊥ψn‖H1‖ωn+1‖H1‖∆ωn+1‖2

≤ 1

2
‖ωn+1 − ωn‖2H1 + 2c2wk

2‖∇⊥ψn‖2H1‖∆ωn+1‖22

+
ν

2
k‖∆ωn+1‖22 +

2c2w
ν
k‖∇⊥ψn‖2H1‖ωn+1‖2H1



6 S. GOTTLIEB ET AL.

≤ 1

2
‖ωn+1 − ωn‖2H1 + 2c2wk

2‖ωn‖22‖∆ωn+1‖22

+
ν

2
k‖∆ωn+1‖22 +

2c2w
ν
k‖ωn‖22‖ωn+1‖2H1 . (2.22) 15

Relations (2.20)–(2.22) imply(
1− 2c2w

ν
M2

0 k
)
‖ωn+1‖2H1 − ‖ωn‖2H1 +

1

2
‖ωn+1 − ωn‖2H1

+
(
ν − 2c2wkM

2
0

)
k ‖∆ωn+1‖22 ≤

2k

ν
‖fn‖22,

(2.23) 16

from which we find

‖ωn+1‖2H1 ≤
1

α
‖ωn‖2H1 +

2k

αν
‖f‖2∞, (2.24) 17

where

α = 1− 2c2w
ν
kM2

0 > 0. (2.25) 18

Using recursively (2.24), we find

‖ωn+1‖2H1 ≤
1

αn+1
‖ω0‖2H1 +

2

ν
k‖f‖2∞

n+1∑
i=1

1

αi

≤
(

1− 2c2w
ν
kM2

0

)−1−n [
‖ω0‖2H1 +

1

c2wM
2
0

‖f‖2∞
]
. (2.26)

Since 2c2wM
2
0 k/ν ≤ 1/2 by hypothesis (2.17) and

1− x ≥ 4−x if x ∈ (0, 1/2),

relation (2.26) gives conclusion (2.19) of Lemma 2.3. Thus, the lemma is proved.
In order to obtain a uniform bound valid for n ≥ N0 +Nr, we need the following

discrete uniform Gronwall lemma, which has been proved in [42] and we repeat here
for convenience.

Lemma 2.4. We are given k > 0, positive integers n0, n1, and positive sequencesdugronwall
ξn, ηn, ζn such that

k ηn+1 <
1
2 , ∀n ≥ n0, (2.27) time

(1− k ηn+1) ξn+1 ≤ ξn + k ζn+1, ∀n ≥ n0. (2.28) gronseq2

Assume also that

k

n2+n1+1∑
n=n2

ηn ≤ Aη, k

n2+n1+1∑
n=n2

ζn ≤ Aζ and k

n2+n1+1∑
n=n2

ξn ≤ Aξ, (2.29) groncond

for all n2 ≥ n0. We then have,

ξn+1 ≤
( Aξ
kn1

+Aζ

)
e4Aη , ∀n > n0 + n1. (2.30) ugronest
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Proof. Let m1 and m2 be such that n0 < m1 ≤ m2 ≤ m1 + n1. Using recursively
(2.28), we derive

ξm1+n1+1 ≤
m1+n1+1∏
n=m2

1

1− kηn
ξm2−1 + k

m1+n1+1∑
n=m2

ζn

m1+n1+1∏
j=n

1

1− kηj
. (2.31)

Using the fact that 1− x ≥ e−4x for all x ∈ (0, 1/2), and recalling assumptions (2.27)
and (2.29), we obtain

ξm1+n1+1 ≤ (ξm2−1 +Aζ)e
4Aη .

Multiplying this inequality by k, summing m2 from m1 to m1 +n1 and using the third
assumption (2.29) gives conclusion (2.30) of the lemma.

We are now able to derive a uniform bound for ‖ωn‖H1 valid for sufficiently large
n. More precisely, we have the following:

Lemma 2.5. Let ω0 ∈ L̇2 and let ωn be the solution of the numerical scheme5
(1.2). Also, let k ≤ k0, with k0 that in Corollary 1. Then there exist constants
M1 = M1(ν, ‖f‖∞) and N = N(‖ω0‖2, ν, ‖f‖∞) such that

‖ωn‖H1 ≤M1 for all n ≥ N. (2.32) 20

Proof. Let k be as in the hypothesis, T0 be as in Corollary 1, r as in Lemma 2.3
and set N0 := bT0/kc. We will apply Lemma 2.4 to (2.23), with ξn = ‖ωn‖2H1 ,
ηn = 2c2wM

2
0 /ν, ζn = 2‖f‖2∞/ν, n0 = N0 + 2, n1 = Nr − 2. For n2 ≥ n0, we compute

(taking into account that, by (2.18), ‖ωn‖22 ≤ 2ρ2
0 for n ≥ N0)

k

n2+n1+1∑
n=n2

ηn = k

n2+n1+1∑
n=n2

2c2w
ν
M2

0 ≤
4c2w
ν
ρ2

0r =: Aη, (2.33)

k

n2+n1+1∑
n=n2

ζn = k

n2+n1+1∑
n=n2

2

ν
‖f‖2∞ ≤

2

ν
‖f‖2∞r =: Aζ , (2.34)

k

n2+n1+1∑
n=n2

ξn = k

n2+n1+1∑
n=n2

‖ωn‖2H1 [by (2.10)]

≤ 2

ν

(
‖ωn2−1‖22 +

c2p
ν
‖f‖2∞(n1 + 2)k

)
[by (2.18)]

≤ 2

ν

[
2ρ2

0 +
c2p
ν
‖f‖2∞r

]
=: Aξ. (2.35)

By (2.30), we obtain

‖ωn‖2H1 ≤
[

4

ν

(
2ρ2

0

r
+

1

νλ1
‖f‖2∞

)
+

2

ν
‖f‖2∞r

]
exp

(
16c2w
ν

ρ2
0r

)
(2.36)

=: M2
1 (ν, ‖f‖∞), ∀n ≥ N0 +Nr. (2.37)

Taking N = N0 +Nr, we obtain the conclusion (2.32) of Lemma 2.5.
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We summarize the above results in the following:

Theorem 2.6. The classical scheme (1.2) defines a discrete dynamical systemstability
on L̇2 that is long time stable in both L2 and H1 norms. More precisely, for any
ω0 ∈ L̇2, there exist constants k0 = k0(‖ω0‖2, ν, ‖f‖∞), M0 = M0(‖ω0‖2, ν, ‖f‖∞),
M1 = M1(ν, ‖f‖∞) and N = N(‖ω0‖2, ν, ‖f‖∞) such that

‖ωn‖2 ≤M0, ∀n ≥ 0, ∀k ∈ (0, k0), (2.38)

‖ωn‖H1 ≤M1, ∀n ≥ N, ∀k ∈ (0, k0). (2.39)

2.2. Convergence of long time statistics. In this section, we assume that
the forcing f is time independent. It is easy to see that the scheme (1.2), when
restricted to the invariant ball B(0, ρ0) and with small enough time-step specified in
the previous section, possesses a global attractor Ak. Here we show that the long
time statistical properties as well as Ak of the scheme (1.2) converge to the long time
statistical properties and the attractorA of the Navier–Stokes sytem (1.1) at vanishing
timestep size. This is a straightforward application of the abstract convergence result
(Prop. 2) in Appendix B, which itself is a slight modification of the results presented
in [47].

Theorem 2.7. Let ∂tf = 0. The global attractor and the long time statisticalconv_stat
properties of the classical scheme (1.2), defined as a dynamical system on B(0, ρ0),
converge to those of the Navier–Stokes system (1.1) at vanishing timestep.

Proof. We use the abstract convergence result Prop. 2, taking X = B(0, ρ0),
i.e. a ball in L̇2 centered at the origin with radius ρ0. (The size of the ball needs
to be adjusted depending on the absorbing property of the scheme.) Such a ball is
appropriate for long time behavior since it is absorbing for the 2D NSE [7,41].

The uniform continuity (H5) of the Navier–Stokes system (1.1) is a classical re-
sult [7, 40]. The uniform dissipativity (H3) of the scheme (1.2) for small enough
timestep with the choice of the phase space X follows from Theorem 2.6. The uni-
form convergence on finite time interval (H4) is proved in Lemma 2.8 below.

Lemma 2.8. Let ω be the solution of the continuous system (1.1) with ω(0) =t:error
ω0 ∈ A and ωn that of (1.2) with ω0 = ω0. Assume that f is sufficiently smooth so
that

MV := sup
ω∈A

(
‖∂ttω‖2H−1 + ‖ω‖2L2‖∂tω‖2L2

)
<∞, (2.40)

and that Theorem 2.6 holds. Then for k < k0 one has

‖ωn − ω(nk)‖22 ≤ k C(M0,MV ; ν) (2.41)

for all nk ∈ [0, 1].

Proof. We follow the approach in [31, §17] and take ∂tf = 0. For notational
convenience, we write tn := nk and ωn := ω(nk). Using the identity∫ (n+1)k

nk

(t− nk) ∂ttω(t) dt = k ∂tω
∣∣
(n+1)k

− ωn+1 + ωn , (2.42)
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we have

ωn+1 − ωn
k

+∇⊥ψn · ∇ωn − ν∆ωn+1 = f +Rn+1 . (2.43)

Here −∆ψn := ωn and the local truncation error is

−Rn+1 := ∇⊥δψn+1 ·∇ωn−∇⊥ψn+1 ·∇δωn+1+
1

k

∫ (n+1)k

nk

(t−nk) ∂ttω(t) dt (2.44) q:rndef

with

δωn+1 := ωn+1 − ωn =

∫ (n+1)k

nk

∂tω(t) dt and −∆δψn+1 := δωn+1. (2.45)

We now consider the error en := ωn − ωn, which satisfies

en+1 − en

k
− ν∆en+1 = ∇⊥ψn · ∇ωn −∇⊥ψn · ∇ωn +Rn+1

= −∇⊥ψn · ∇en −∇⊥φn · ∇ωn +Rn+1

(2.46)

with e0 = 0 and −∆φn := en. Multiplying by 2k en+1, we find

‖en+1‖22 − ‖en‖22 + ‖en+1 − en‖22 + 2νk‖en+1‖2H1

+ 2k b(ψn, e
n+1, en+1 − en) + 2k b(φn, ωn, en+1)

= 2k (Rn+1, e
n+1).

(2.47)

Bounding the nonlinear terms as

2k (∇⊥ψn · ∇en+1, en+1 − en) ≤ ‖en+1 − en‖22 + k2‖∇⊥ψn · ∇en+1‖22
≤ ‖en+1 − en‖22 + c2wk

2‖ωn‖22 ‖∇en+1‖22
(2.48)

where (A.2) has been used for the second inequality, and

2k (∇⊥φn · ∇ωn, en+1) ≤ 2k ‖∇⊥φn · ∇en+1‖2‖ωn‖2
≤ 2cwk ‖en‖2‖en+1‖H1‖ωn‖2

≤ νk ‖en+1‖2H1 +
c2wk

ν
‖ωn‖22 ‖en‖22 ,

(2.49)

we obtain,

‖en+1‖22 + k
(
ν − C2

wk ‖ωn‖22
)
‖en+1‖2H1

≤
(

1 +
c2wk

ν
‖ωn‖22

)
‖en‖22 + ck ‖Rn+1‖2H−1 .

(2.50)

For the last step, we have used the readily verified facts that ‖ω(t)‖2 ≤ M0 for all
t ≥ 0, and that k ≤ k0 then implies ν − c2wk ‖ω(t)‖22 ≥ ν/2 > 0.

It remains to bound Rn+1 in H−1, so for the second term in (2.44) we compute,
for any fixed ϕ ∈ Ḣ1,∣∣b(ψn+1, ∂tω, ϕ

)∣∣ =
∣∣(∇⊥ϕ · ∇ψn+1, ∂tω

)
L2

∣∣
≤ cw ‖ϕ‖H1‖ψn+1‖H2‖∂tω‖L2

(2.51)
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where (A.2) and the identity b(p, q, r) = b(q, r, p) = b(r, p, q) have been used. Similarly,
for the first term,∣∣b(ωn, ∂tψ,ϕ)∣∣ =

∣∣(∇⊥ϕ · ∇∂tψ, ωn)L2

∣∣
≤ cw ‖ϕ‖H1‖ωn‖L2‖∂tψ‖H2 .

(2.52)

The last term in (2.44) is readily bounded, and we have by Cauchy–Schwarz,

‖Rn+1‖2H−1 ≤ c k sup
t∈[nk,(n+1)k]

‖ω(t)‖2L2

∫ (n+1)k

nk

‖∂tω(t)‖2L2 dt

+ k

∫ (n+1)k

nk

‖∂ttω(t)‖2H−1 dt.

(2.53)

The following bound then follows easily

‖ωn+1 − ωn+1‖22 = ‖en+1‖22 ≤ c
(

1 +
ck

ν
M2

0

)n+1 n∑
j=0

k ‖Rj+1‖2H−1

≤ c k2 exp
(c (n+ 1)k

ν
M2

0

)
M2((n+ 1)k) (2.54)

where

M2(t) :=

∫ t

0

‖∂ttω(t′)‖2H−1 dt′ + sup
t′∈[0,t]

‖ω(t′)‖2L2

∫ t

0

‖∂tω(t′)‖2L2 dt′, (2.55)

and with it the lemma.

3. Galerkin Fourier spectral approximation. The results of the last sec-
tion carry over essentially word-for-word to the following Galerkin Fourier spectral
approximation of (1.1),

ωn+1
N − ωnN

k
+ PN (∇⊥ψnN · ∇ωnN )− ν∆ωn+1

N = PNf
n. (3.1) q:scheme-fg

where N ∈ N, ωnN , ψnN ∈ PN :=
{

trigonometric polynomials in Ω with frequency in

either direction at most N
}

and PN is the orthogonal projection from L̇2(Ω) onto
PN .

More precisely, we have the following:

Lemma 3.1. Let ωnN be the solution of the numerical scheme (3.1) with ω0
N ∈ L̇2.t:bdh-fg

Also, let f ∈ L∞(R+; L̇2) and set ‖f‖∞ := ‖f‖L∞(R+;L2). Then there exists M0 =

M0(‖ω0‖2, ν, ‖f‖∞) such that if

k ≤ ν

4c2wM
2
0

, (3.2) q:hypk-fg

then

‖ωnN‖22 ≤
(

1 +
νk

2c2p

)−n
‖ω0‖22 +

2c4p
ν2
‖f‖2∞

[
1−

(
1 +

νk

2c2p

)−n]
, ∀n ≥ 0 (3.3) q:bdv-fg
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and

ν

2
k

m∑
n=i

‖ωnN‖2H1 ≤ ‖ωi−1
N ‖22 +

c2p
ν
‖f‖2∞(m− i+ 1)k, ∀ i = 1, · · · ,m. (3.4) q:sumv-fg

Lemma 3.2. Let ωnN be the solution of the numerical scheme (3.1) with ω0
N ∈ L̇2.t:bdv-fg

Also, let k ≤ k0, with k0 that in Corollary 1. Then there exist constants M1 =
M1(ν, ‖f‖∞) and NM = NM (‖ω0‖2, ν, ‖f‖∞) such that

‖ωnN‖H1 ≤M1 for all n ≥ NM . (3.5) q:20-fg

We note that the constants are the same as those in Lemmas 2.3 and 2.5 (i.e.
they can be taken independently of N). The proofs are essentially identical, so we
shall not repeat them here.

4. Collocation Fourier spectral approximation. Here we consider the collo-
cation Fourier spectral spatial approximation of the scheme (1.2). In order to maintain
the long time stability of the fully discretized scheme, a common technique of using
a modified form of the nonlinear term is utilized (see for instance [39]). Moreover,
we will use an alternative approach for the nonlinear analysis: instead of apply-
ing the Wente type estimate, we will use ‖∇ψ‖L∞ , which is in turn bounded by
‖ψ‖εH3‖ψ‖1−εH2 ,∀ε ∈ (0, 1). This alternative approach leads to a slightly more restric-
tive timestep for stability, but has the advantage of being easily adapted to the fully
discrete collocation Fourier approximation.

4.1. Fourier collocation spectral differentiation. Consider a 2-D domain
Ω = (0, Lx)× (0, Ly). For simplicity of presentation we assume that Lx = Ly = 1 and
Lx = Nx · hx, Ly = Ny · hy for some mesh sizes hx = hy = h > 0 and some positive
integers Nx = Ny = 2N + 1. All variables are evaluated at the regular numerical grid
(xi, yj), with xi = ih, yj = jh, 0 ≤ i, j ≤ N .

For a periodic function f over the given 2-D numerical grid, its discrete Fourier
expansion is given by

fi,j =

[N/2]∑
k1,l1=−[N/2]

(f̂Nc )k1,l1e2πi(k1xi+l1yj), (4.1) spectral-coll-1

where the collocation coefficients f̂Nc are computed by the requirement that fi,j are
the interpolation values of a continuous function f at the numerical grid points. Note
that f̂Nc may not be the regular Fourier coefficients of f , due to the aliasing error.
However, the two are equivalent if f ∈ PN . In turn, its collocation interpolation
operator becomes

INf(x) =

N∑
k1,l1=−N

(f̂Nc )k1,l1e2πi(k1x+l1y). (4.2)

As a result, the collocation Fourier spectral approximations to the first and second
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order partial derivatives (in the x direction) of f are given by

(DNxf)i,j =

N∑
k1,l1=−N

(2k1πi) (f̂Nc )k1,l1e2πi(k1xi+l1yj), (4.3)

(
D2
Nxf

)
i,j

=

[N/2]∑
k1,l1=−[N/2]

(
−4π2k2

1

)
(f̂Nc )k1,l1e2πi(k1xi+l1yj). (4.4)

The corresponding collocation spectral differentiations in the y direction can be de-
fined in the same way. In turn, the discrete Laplacian, gradient and divergence can
be denoted as

∆Nf =
(
D2
Nx +D2

Ny

)
f, ∇Nf =

(
DNxf
DNyf

)
,

∇N ·
(
f1

f2

)
= DNxf1 +DNyf2, (4.5)

at the pointwise level.
Moreover, given any periodic grid functions f and g (over the 2-D numerical grid),

the spectral approximations to the L2 inner product and L2 norm are introduced as

‖f‖2 =
√
〈f, f〉, with 〈f, g〉 = h2

2N∑
i,j=0

fi,jgi,j . (4.6)

Meanwhile, such a discrete L2 inner product can also be viewed in Fourier space
instead of physical space, with the help of Parseval equality:

〈f, g〉 =

N∑
k1,l1=−N

(f̂Nc )k1,l1(ĝNc )k1,l1 =

N∑
k1,l1=−N

(ĝNc )k1,l1(f̂Nc )k1,l1 , (4.7) spectral-coll-inner product-2

in which (f̂Nc )k1,l1 , (ĝNc )k1,l1 are the Fourier interpolation coefficients of the grid func-
tions f and g in the expansion as in (4.1). Furthermore, a detailed calculation shows
that the following formulas of summation by parts are also valid at the discrete level:〈

f,∇N ·
(
g1

g2

)〉
= −

〈
∇Nf,

(
g1

g2

)〉
, 〈f,∆Ng〉 = −〈∇Nf,∇Ng〉 . (4.8)

4.1.1. A preliminary estimate in Fourier collocation spectral space. It
is well known that the existence of aliasing error in the nonlinear term poses a serious
challenge in the numerical analysis of Fourier collocation spectral scheme. To over-
come a key difficulty associated with the Hm bound of the nonlinear term obtained
by collocation interpolation, the following lemma is introduced. The result is cited
from a recent work [17], and the detailed proof is skipped.

Lemma 4.1. For any ϕ ∈ P2N in dimension d, we havespectral-coll-projection-4

‖INϕ‖Hk ≤ 2d/2 ‖ϕ‖Hk . (4.9)

In fact, an estimate for the k = 0 case was reported in E’s work [9, 10], with
the constant given by 3d, while this lemma sharpens the constant to 2d/2. The case
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with k > d/2 = 1 was covered in a classical approximation estimate for spectral
expansions and interpolations in Sobolev spaces, reported by Canuto and Quarteroni
[5]. However, due to the additional regularity requirement for interpolation operator
analysis, the case of k = 1 was not covered in any existing literature, which we require
for the H1 bound of the nonlinear expansion in the global in time analysis.

4.2. The first order semi-implicit scheme. The fully discrete pseudo-spectral
scheme follows the semi-implicit idea of (1.2) and (3.1):

ωn+1 − ωn

k
+

1

2
(un ·∇Nωn +∇N · (unωn)) = ν∆Nω

n+1 + fn, (4.10)

−∆Nψ
n+1 = ωn+1, (4.11)

un+1 = ∇⊥Nψn+1 =
(
DNyψn+1,−DNxψn+1

)
. (4.12)

It is observed that the numerical velocity un+1 = ∇⊥Nψn+1 is automatically
divergence-free:

∇N · u = DNxu+DNyv = DNx(DNyψ)−DNy(DNxψ) = 0, (4.13)

at any timestep. Meanwhile, we note that the nonlinear term is a spectral approxi-
mation to 1

2u·∇ω and 1
2∇·(uω) at timestep tn. These two terms are equivalent in the

spatially continuous and Galerkin spectral case because of the divergence-free prop-
erty of the numerical velocity vector. However, such an equivalence is not valid for
pseudo-spectral case, due to the aliasing errors involved in the nonlinear terms. The
reason for this average can be observed from the following fact: a careful application
of summation by parts formula (4.8) gives

〈ω,u·∇Nω +∇N · (uω)〉 = 〈ω,u·∇Nω〉 − 〈∇Nω,uω〉 = 0. (4.14)

In other words, the nonlinear convection term appearing in the numerical scheme
(4.10), so-called skew symmetric form, makes the nonlinear term orthogonal to the
vorticity field in the L2 space, without considering the temporal discretization. This
property is crucial in the stability analysis for the Fourier collocation spectral scheme
(4.10)–(4.12).

Remark 1. The skew symmetric nonlinear convection term is well-known for
its ability to overcome the difficulty associated with the aliasing errors appearing in
pseudo-spectral numerical simulations. The L2 orthogonality property (4.14) has been
observed and widely used in earlier literatures; see the relevant discussions in [3].
However, there has been no theoretical work of a global in time stability analysis for
the fully discrete nonlinear scheme (4.10)–(4.12). We provide such an analysis in this
article; see Lemma 4.2 below.

In addition, we note that the pseudo-spectral numerical solution of (4.10)–(4.12)
are only evaluated at the grid points. To facilitate the nonlinear analysis in Sobolev
space, we denote Un = (Un, V n), ωn and ψn as the continuous versions of un, ωn and
ψn, respectively, with the formula given by (4.2). It is clear that Un,ωn,ψn ∈ PN
and the kinematic equation −∆ψn = ωn, Un = ∇⊥ψn is satisfied at the continuous
level. Because of these kinematic equations, an application of elliptic regularity shows
that

‖ψn‖Hm+2 ≤ C ‖ωn‖Hm , ‖ψn‖Hm+2+α ≤ C ‖ωn‖Hm+α , (4.15)
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in which we used the fact that all profiles have mean zero over the domain:

ψn = 0, Un =
(
∂yψ

n,−∂xψn
)

= 0, ωn = −∆ψn = 0. (4.16)

Moreover, it is clear that the Poincaré inequality and elliptic regularity can be applied
because of this property.

Lemma 4.2. Let ω0 ∈ L̇2 and let ωn be the discrete solution of the fully discretecollocation
numerical scheme (4.10)–(4.12). Denote ωn as the continuous interpolation of ωn

in space, given by (4.2). Also, let f ∈ L∞(R+; L̇2) and set ‖f‖∞ := ‖f‖L∞(R+;L̇2).

Then there exists M0 = M0(‖ω0‖2, ν, ‖f‖∞) such that if

k ≤ ν

4c2wM
2
0

, (4.17) constraint-coll-dt

then

‖ωn‖H1 ≤M0, ∀n ≥ 0, (4.18) coll-est-L2-1

‖ωn‖2H1 ≤
(

1 +
νk

2c2p

)−n
‖ω0‖2H1 +

2c4p
ν2
‖f‖2∞

[
1−

(
1 +

νk

2c2p

)−n]
, ∀n ≥ 0, (4.19) coll-est-L2-2

and

ν

2
k

m∑
n=i

‖ωn‖2H2 ≤ ‖ωi−1‖2H1 +
c2p
ν
‖f‖2∞(m− i+ 1)k, ∀ i = 1, · · · ,m. (4.20)

The proof of this lemma is organized as follows. First, an Hδ a-priori assumption
for the continuous version of the numerical solution ωn is made. In turn, this as-
sumption leads to a global in time L2 bound, with a standard application of Sobolev
embedding and Hölder’s inequality. However, this L2 bound is not sufficient to recover
the a-priori assumption, due to the fact that the Wente type analysis is not available
for the collocation spectral approximation. Instead, a global in time H1 stability can
also be derived with the help of the leading L2 bound. Moreover, both the global in
time L2 and H1 bound constants are independent of the a priori constant C̃1. As a
result, the a priori assumption can be recovered so that an induction can be applied
to establish the above lemma.

4.3. Leading estimate: L∞(0, T ;L2)∩L2(0, T ;H1) estimate for ω. Assume
a-priori that

‖ωn‖Hδ ≤ C̃, ωn is the continuous version of ωn, (4.21) est-coll-a priori

for some δ > 0 at timestep tn. Note that C̃ is a global constant in time. We are going
to prove that such a bound for the numerical solution is also available at timestep
tn+1.

Taking the discrete inner product of (4.10) with 2kωn+1 gives

‖ωn+1‖22 − ‖ωn‖22 + ‖ωn+1 − ωn‖22 + 2νk‖∇Nωn+1‖22
= −k

〈
un ·∇Nωn +∇N · (unωn) , ωn+1

〉
+ 2k

〈
fn, ωn+1

〉
, (4.22)
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in which the summation by parts formula (4.8) was applied to the diffusion term. A
bound for the outer force term is straightforward:

2
〈
fn, ωn+1

〉
≤ 2 ‖fn‖2 ·

∥∥ωn+1
∥∥

2
≤ 2C2 ‖fn‖2 ·

∥∥∇Nωn+1
∥∥

2

≤ ν

2

∥∥∇Nωn+1
∥∥2

2
+

2C2
2

ν
‖fn‖22 ≤

ν

2

∥∥∇Nωn+1
∥∥2

2
+

2c2pM
2

ν
, (4.23)

in which a Poincaré inequality∥∥ωn+1
∥∥

2
≤ cp

∥∥∇Nωn+1
∥∥

2
, (4.24) est-coll-L2-3

was used in the third step. For the nonlinear term, we start with the following
rewritten form:

−k
〈
un ·∇Nωn +∇N · (unωn) , ωn+1

〉
= −k

〈
un ·∇Nωn+1 +∇N ·

(
unωn+1

)
, ωn+1

〉
+k
〈
un ·∇N (ωn+1 − ωn) +∇N ·

(
un(ωn+1 − ωn)

)
, ωn+1

〉
. (4.25)

The first term disappears, using a similar analysis as (4.14):〈
un ·∇Nωn+1 +∇N ·

(
unωn+1

)
, ωn+1

〉
=
〈
ωn+1,un ·∇Nωn+1

〉
−
〈
∇Nωn+1,unωn+1

〉
= 0.

(4.26) est-coll-L2-5

For the second term, the summation by parts formula (4.8) can be applied:〈
un ·∇N (ωn+1 − ωn), ωn+1

〉
= −

〈
ωn+1 − ωn,∇N · (unωn+1)

〉
, (4.27)〈

∇N ·
(
un(ωn+1 − ωn)

〉
, ωn+1

〉
= −

〈
ωn+1 − ωn,un · ∇Nωn+1

〉
. (4.28)

For the term ∇N · (unωn+1), we note that it cannot be expanded as un · ∇Nωn+1,
as in the Fourier-Galerkin approximation, even though un is divergence free at the
discrete level (4.13). In the collocation space, we have to start from

∇N · (unωn+1) = DNx(unωn+1) +DNy(vnωn+1). (4.29) est-coll-L2-6-3

To obtain an estimate of these nonlinear expansions, we recall that Un = (Un, V n),
ωn+1 and ψn+1 are the continuous versions of un, ωn+1 and ψn+1, respectively. Since
Un,ωn+1 ∈ PN , we have Unωn+1 ∈ P2N and an application of Lemma 4.1 indicates
that ∥∥DNx(unωn+1)

∥∥
2

=
∥∥∂xIN (Unωn+1)

∥∥
2
≤ 2

∥∥∂x(Unωn+1)
∥∥

2
,∥∥DNy(vnωn+1)

∥∥
2

=
∥∥∂yIN (V nωn+1)

∥∥
2
≤ 2

∥∥∂y(V nωn+1)
∥∥

2
. (4.30)

Subsequently, a detailed expansion in the continuous space and an application of
Hölder’s inequality show that∥∥∂x(Unωn+1)

∥∥
2

=
∥∥Unxωn+1 + Unωn+1

x

∥∥
2
≤
∥∥Unxωn+1

∥∥
2

+
∥∥Unωn+1

x

∥∥
2

≤ ‖Unx ‖L2/(1−δ) ·
∥∥ωn+1

∥∥
L2/δ + ‖Un‖L∞ ·

∥∥ωn+1
x

∥∥
2
. (4.31)

Furthermore, a 2-D Sobolev embedding gives

‖Unx ‖L2/(1−δ)

∥∥ωn+1
∥∥
L2/δ ≤ C ‖Unx ‖Hδ

∥∥ωn+1
∥∥
H1 ≤ C ‖ωn‖Hδ

∥∥∇ωn+1
∥∥

2
,(4.32)



16 S. GOTTLIEB ET AL.

in which the elliptic regularity (4.15) and the Poincaré inequality were utilized in the
last step. The second part in (4.31) can be handled in a straightforward way:

‖Un‖L∞ ·
∥∥ωn+1

x

∥∥
2
≤ C ‖Un‖H1+δ ·

∥∥∇ωn+1
∥∥

2
≤ C ‖ωn‖Hδ ·

∥∥∇ωn+1
∥∥

2
,(4.33)

with the the elliptic regularity (4.15) applied again in the second step. A combination
of (4.32) and (4.33) yields∥∥∂x(Unωn+1)

∥∥
2
≤ C ‖ωn‖Hδ ·

∥∥∇ωn+1
∥∥

2
. (4.34)

Similar estimates can be derived for
∥∥∂y(V nωn+1)

∥∥
2
. Going back to (4.30), we arrive

at ∥∥∇N · (unωn+1)
∥∥

2
≤ C ‖ωn‖Hδ ·

∥∥∇ωn+1
∥∥

2
= C ‖ωn‖Hδ ·

∥∥∇Nωn+1
∥∥

2
, (4.35)

in which the second step is based on the fact that ωn,ωn+1 ∈ PN , so that the
corresponding L2 and Hδ norms are equivalent between the continuous projection
and the discrete version. In addition, the nonlinear term in (4.28) can be controlled
in a similar way:∥∥un · ∇Nωn+1

∥∥
2
≤ ‖un‖∞ ·

∥∥∇Nωn+1
∥∥

2
= C ‖ωn‖Hδ ·

∥∥∇Nωn+1
∥∥

2
, (4.36)

with a discrete Sobolev embedding inequality applied in the second step. Therefore,
a substitution of (4.35)–(4.36) into (4.25), (4.26), (4.27)–(4.28) results in

−k
〈
un ·∇Nωn +∇N · (unωn) , ωn+1

〉
(4.37)

≤ Ck‖ωn‖Hδ ·
∥∥ωn+1 − ωn

∥∥
2
·
∥∥∇Nωn+1

∥∥
2

≤ CC̃k
∥∥ωn+1 − ωn

∥∥
2
·
∥∥∇Nωn+1

∥∥
2

≤ 1

2
νk
∥∥∇Nωn+1

∥∥2

2
+
CC̃2

ν
k
∥∥ωn+1 − ωn

∥∥2

2
. (4.38) est-coll-L2-7

Its combination with (4.23), (4.25), (4.26) and (4.22) leads to

‖ωn+1‖22−‖ωn‖22+

(
1− CC̃2

ν
k

)
‖ωn+1−ωn‖22+νk‖∇Nωn+1‖22 ≤

2c2pM
2

ν
k. (4.39) est-coll-L2-8

Under a constraint for the timestep

CC̃2

ν
k ≤ 1

2
, i.e., k ≤ ν

2CC̃2
, (4.40) constraint-coll-dt-1

we arrive at

‖ωn+1‖22 − ‖ωn‖22 +
1

2
‖ωn+1 − ωn‖22 + νk‖∇Nωn+1‖22 ≤ αk, (4.41) est-coll-L2-9

with α = (2C2
2M

2)/ν. Furthermore, an application of the Poincaré inequality (4.24)
implies that

‖ωn+1‖22 − ‖ωn‖22 + βνk‖ωn+1‖22 ≤ αk, with β =
1

c2p
. (4.42) est-coll-L2-10
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Applying an induction argument to the above estimate yields

‖ωn+1‖22 ≤ (1 + βνk)−(n+1)‖ω0‖22 +
α

βν

⇒ ‖ωn+1‖2 ≤ (1 + βνk)−(n+1)/2‖ω0‖2 +

√
α

βν
:= C1. (4.43) est-coll-L2-11

Note that C1 is a time dependent value; however, its time dependence decays expo-
nentially so that a global in time bound is available.

In addition, we also have the L2(0, T ;H1) bound for the numerical solution:

νk

Nk∑
k=i+1

∥∥∇Nωk∥∥2

2
≤ ‖ωi‖22 + α

(
T ∗ − ti

)
. (4.44) est-coll-L2-12

However, it is observed that the a-priori estimate (4.43) is not sufficient to bound
the Hδ norm (4.21) of the vorticity field. In turn, we perform a higher order energy
estimate L∞(0, T ;H1)∩L2(0, T ;H2) for the numerical solution of the vorticity field.

4.4. L∞(0, t1;H1) ∩ L2(0, t1;H2) estimate for ω. Taking the inner product of
(4.10) with −2k∆Nω

n+1 gives

‖∇Nωn+1‖22 − ‖∇Nωn‖22 + ‖∇N
(
ωn+1 − ωn

)
‖22 + 2νk‖∆Nω

n+1‖22
= k

〈
un ·∇Nωn +∇N · (unωn) ,∆Nω

n+1
〉
− 2k

〈
fn,∆Nω

n+1
〉
. (4.45)

The Cauchy inequality can be applied to bound the outer force term:

−2
〈
fn,∆Nω

n+1
〉
≤ 1

2
ν
∥∥∆Nω

n+1
∥∥2

2
+

2

ν
‖fn‖22

≤ 1

2
ν
∥∥∆Nω

n+1
∥∥2

2
+

2M2

ν
. (4.46) est-coll-H1-2

For the nonlinear terms, we first make the following decomposition:

un ·∇Nωn = −un ·∇N
(
ωn+1 − ωn

)
−
(
un+1 − un

)
·∇Nωn+1

+ un+1 ·∇Nωn+1, (4.47) est-coll-H1-3-1

∇N ·
(
unωn

)
= ∇N ·

(
−un(ωn+1 − ωn)− (un+1 − un)ωn+1

+ un+1ωn+1
)
. (4.48) est-coll-H1-3-2

For the first term, the a-priori assumption (4.21) gives∥∥−un ·∇N (ωn+1 − ωn
)∥∥

2
≤ ‖un‖∞ ·

∥∥∇N (ωn+1 − ωn
)∥∥

2

≤ CC̃
∥∥∇N (ωn+1 − ωn

)∥∥
2
, (4.49) est-coll-H1-4

in which we applied the discrete Sobolev inequality in 2-D: ‖un‖∞ ≤ C‖un‖H1+δ
h
≤

C‖ωn‖Hδh . This in turn leads to

k
〈
−un ·∇N (ωn+1 − ωn),∆Nω

n+1
〉

≤ CC̃k
∥∥∇N (ωn+1 − ωn

)∥∥
2
·
∥∥∆Nω

n+1
∥∥

2

≤ 1

4
νk
∥∥∆Nω

n+1
∥∥2

2
+
CC̃2

ν
k
∥∥∇N (ωn+1 − ωn

)∥∥2

2
. (4.50) est-coll-H1-5
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The conservative nonlinear term ∇N ·
(
un(ωn+1 − ωn)

)
can be analyzed as in (4.29)–

(4.36):∥∥∇N · (un(ωn+1 − ωn)
)∥∥

2
≤
∥∥DNx (un(ωn+1 − ωn)

)∥∥
2

+
∥∥DNy (vn(ωn+1 − ωn)

)∥∥
2

≤ 2
(∥∥∂x (Un(ωn+1 − ωn)

)∥∥
2

+
∥∥∂y (V n(ωn+1 − ωn)

)∥∥
2

)
, (4.51)∥∥∂x (Un(ωn+1 − ωn)

)∥∥
2

=
∥∥Unx (ωn+1 − ωn) + Un(ωn+1 − ωn)x

∥∥
2

≤ ‖Unx ‖L2/(1−δ) ·
∥∥ωn+1 − ωn

∥∥
L2/δ + ‖Un‖L∞ ·

∥∥(ωn+1 − ωn)x
∥∥

2

≤ C ‖ωn‖Hδ ·
∥∥∇(ωn+1 − ωn)

∥∥
2
≤ CC̃

∥∥∇N (ωn+1 − ωn)
∥∥

2
, (4.52)∥∥∂y (V n(ωn+1 − ωn)

)∥∥
2
≤ CC̃

∥∥∇N (ωn+1 − ωn)
∥∥

2
, (4.53)

with the help of the elliptic regularity (4.15), Poincaré’s inequality and 2-D Sobolev
embedding. Consequently, we see that the first part of the nonlinear term (4.48) has
the same bound as (4.49):∥∥∇N · (un(ωn+1 − ωn)

)∥∥
2
≤ CC̃

∥∥∇N (ωn+1 − ωn
)∥∥

2
, (4.54)

which in turn leads to an estimate similar to (4.50):

k
〈
−∇N ·

(
un(ωn+1 − ωn)

)
,∆Nω

n+1
〉

≤ 1

4
νk
∥∥∆Nω

n+1
∥∥2

2
+
CC̃2

ν
k
∥∥∇N (ωn+1 − ωn

)∥∥2

2
. (4.55)

For the second term in (4.47), we start with the following Sobolev inequality:∥∥∇Nωn+1
∥∥

2
=
∥∥∇ωn+1

∥∥
2
≤
∥∥ωn+1

∥∥
H1 ≤ C

∥∥ωn+1
∥∥1/2

2
·
∥∥ωn+1

∥∥1/2

H2

≤ C
∥∥ωn+1

∥∥1/2

2
·
∥∥∆ωn+1

∥∥1/2

2
≤ CC1/2

1

∥∥∆ωn+1
∥∥1/2

2
, (4.56)

in which an elliptic regularity
∥∥ωn+1

∥∥
H2 ≤ C

∥∥∆ωn+1
∥∥

2
was utilized in the second

step and the leading L2 estimate (4.43) was used in the last step. Similarly, we also
observe that the kinematic relationships

Un+1 −Un = ∇⊥
(
ψn+1 −ψn

)
, −∆

(
ψn+1 −ψn

)
= ωn+1 − ωn, (4.57) est-coll-H1-7

indicate the following Sobolev estimates:∥∥un+1 − un
∥∥
∞ ≤

∥∥Un+1 −Un
∥∥
L∞

≤ C
∥∥Un+1 −Un

∥∥
H1+δ ≤ C

∥∥ψn+1 −ψn
∥∥
H2+δ ≤ C

∥∥ωn+1 − ωn
∥∥
Hδ

≤ C
∥∥ωn+1 − ωn

∥∥1−δ
2

∥∥ωn+1 − ωn
∥∥δ
H1

≤ C
∥∥ωn+1 − ωn

∥∥1−δ
2

∥∥∇ (ωn+1 − ωn
)∥∥δ

2

≤ C (2C1)
1−δ ∥∥∇ (ωn+1 − ωn

)∥∥δ
2
, (4.58)

in which estimate (4.43) was used in the last step. Consequently, a combination of
(4.56) and (4.58) indicates that∥∥(un+1 − un)·∇Nωn+1

∥∥
2
≤
∥∥un+1 − un

∥∥
∞ ·
∥∥∇Nωn+1

∥∥
2

≤ CC1/2
1 (2C1)

1−δ ∥∥∇ (ωn+1 − ωn
)∥∥δ

2
·
∥∥∆ωn+1

∥∥1/2

2

≤ CC1/2
1 (2C1)

1−δ ∥∥∇N (ωn+1 − ωn
)∥∥δ

2
·
∥∥∆Nω

n+1
∥∥1/2

2
, (4.59) est-coll-H1-9
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due to the fact that ω ∈ PN . In turn, the following estimate is obtained

k
〈
−
(
un+1 − un

)
·∇Nωn+1,∆Nω

n+1
〉

≤ CC3/2
1 k

∥∥∇N (ωn+1 − ωn
)∥∥δ

2
·
∥∥∆Nω

n+1
∥∥3/2

2
. (4.60) est-coll-H1-10

Meanwhile, the second conservative nonlinear term in (4.48), ∇N ·
(
(un+1 − un)ωn+1

)
,

can be expanded and analyzed in a similar way:∥∥∇N · ((un+1 − un)ωn+1
)∥∥

2
≤
∥∥DNx ((un+1 − un)ωn+1

)∥∥
2

+
∥∥DNy ((vn+1 − vn)ωn+1

)∥∥
2

≤ 2
(∥∥∂x ((Un+1 − Un)ωn+1

)∥∥
2

+
∥∥∂y ((V n+1 − V n)ωn+1

)∥∥
2

)
, (4.61)∥∥∂x ((Un+1 − Un)ωn+1

)∥∥
2

=
∥∥(Un+1 − Un)xω

n+1 + (Un+1 − Un)ωn+1
x

∥∥
2

≤
∥∥(Un+1 − Un)x

∥∥
L2/(1−δ) ·

∥∥ωn+1
∥∥
L2/δ +

∥∥Un+1 − Un
∥∥
L∞
·
∥∥ωn+1

x

∥∥
2

≤ C
∥∥Un+1 − Un

∥∥
H1+δ ·

∥∥∇ωn+1
∥∥

2

≤ CC3/2
1

∥∥∇N (ωn+1 − ωn
)∥∥δ

2
·
∥∥∆Nω

n+1
∥∥1/2

2
, (4.62)∥∥∂y ((V n+1 − V n)ωn+1

)∥∥
2
≤ CC3/2

1

∥∥∇N (ωn+1 − ωn
)∥∥δ

2
·
∥∥∆Nω

n+1
∥∥1/2

2
. (4.63)

Again, the elliptic regularity (4.15), Poincaré’s inequality and 2-D Sobolev embedding
were repeatedly used in the analysis. As a result, its combination with (4.60) leads to

k
〈
−
(
un+1 − un

)
·∇Nωn+1 −∇N ·

(
(un+1 − un)ωn+1

)
,∆Nω

n+1
〉

≤ CC3/2
1 k

∥∥∇N (ωn+1 − ωn
)∥∥δ

2
·
∥∥∆Nω

n+1
∥∥3/2

2
. (4.64)

We can always choose 0 < δ < 1
2 , so that an application of Young’s inequality (ab ≤

ap

p + bq

q with 1
p + 1

q = 1) gives

∥∥∇N (ωn+1 − ωn
)∥∥δ

2
·
∥∥∆Nω

n+1
∥∥3/2

2
≤ γ

∥∥∇N (ωn+1 − ωn
)∥∥4δ

2
+

ν

2CC
3/2
1

∥∥∆Nω
n+1
∥∥2

2
,

with γ =
1

4

(
3CC

3/2
1

2ν

)3

. (4.65)

Furthermore, since 4δ < 2, we can apply Young’s inequality to
∥∥∇N (ωn+1 − ωn

)∥∥4δ

2
and obtain

γ
∥∥∇N (ωn+1 − ωn

)∥∥4δ

2
≤ 1

CC
3/2
6

∥∥∇N (ωn+1 − ωn
)∥∥2

2
+A, (4.66)

in which A is a generic constant and depends on δ. As a result, substituting (4.65)–
(4.66) into (4.60) gives an estimate for the second nonlinear term:

k
〈
−
(
un+1 − un

)
·∇Nωn+1 −∇N ·

(
(un+1 − un)ωn+1

)
,∆Nω

n+1
〉

≤ k
∥∥∇N (ωn+1 − ωn

)∥∥2

2
+

1

2
νk
∥∥∆ωn+1

∥∥2

2
+Bk, (4.67) est-coll-H1-13

with B = CC
3/2
1 A.

The third nonlinear term in (4.47), (4.48) can be analyzed in a similar way. We
first look at un+1 · ∇Nωn+1. A bound for ‖un+1‖∞ can be obtained in the same
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fashion as (4.58):∥∥un+1
∥∥
∞ ≤ C

∥∥Un+1
∥∥
H1+δ ≤ C

∥∥ψn+1
∥∥
H2+δ ≤ C

∥∥ωn+1
∥∥
Hδ
≤ C

∥∥ωn+1
∥∥1− δ2

2
·
∥∥ωn+1

∥∥ δ2
H2

≤ C
∥∥ωn+1

∥∥1− δ2
2

∥∥∆ωn+1
∥∥ δ2

2
≤ CC1− δ2

1

∥∥∆Nω
n+1
∥∥ δ2

2
. (4.68)

Its combination with (4.56) shows that

k
〈
un+1 ·∇Nωn+1,∆Nω

n+1
〉
≤ k

∥∥un+1
∥∥
∞ ·
∥∥∇Nωn+1

∥∥
2
·
∥∥∆Nω

n+1
∥∥

2

≤ CC3/2
1 k

∥∥∆Nω
n+1
∥∥ 3+δ

2

2
. (4.69)

This analysis can be applied to the term ∇N · (un+1ωn+1) in the same way:∥∥∇N · (un+1ωn+1
)∥∥

2
≤
∥∥DNx (un+1ωn+1

)∥∥
2

+
∥∥DNy (vn+1ωn+1

)∥∥
2

≤ 2
(∥∥∂x (Un+1ωn+1

)∥∥
2

+
∥∥∂y (V n+1ωn+1

)∥∥
2

)
, (4.70)∥∥∂x (Un+1ωn+1

)∥∥
2

=
∥∥Un+1

x ωn+1 + Un+1ωn+1
x

∥∥
2

≤
∥∥Un+1

x

∥∥
L2/(1−δ) ·

∥∥ωn+1
∥∥
L2/δ +

∥∥Un+1
∥∥
L∞
·
∥∥ωn+1

x

∥∥
2

≤ C
∥∥Un+1

∥∥
H1+δ ·

∥∥∇ωn+1
∥∥

2
≤ CC3/2

1

∥∥∆Nω
n+1
∥∥ 1+δ

2

2
, (4.71)∥∥∂y (V n+1ωn+1

)∥∥
2
≤ CC3/2

1

∥∥∆Nω
n+1
∥∥ 1+δ

2

2
. (4.72)

As a result, we arrive at the following estimate:

k
〈
un+1 ·∇Nωn+1 +∇N ·

(
un+1ωn+1

)
,∆Nω

n+1
〉

≤ CC3/2
1 k

∥∥∆Nω
n+1
∥∥ 3+δ

2

2
. (4.73) est-coll-H1-15-5

Again, since 3+δ
2 < 2, we can apply Young’s inequality and obtain∥∥∆Nω
n+1
∥∥ 3+δ

2

2
≤ ν

2CC
3/2
1

∥∥∆Nω
n+1
∥∥2

2
+ C, (4.74) est-coll-H1-16

in which C is also a generic constant and depends on δ. Going back to (4.73), we
have an estimate for the third nonlinear term:

k
〈
un+1 ·∇Nωn+1 +∇N ·

(
un+1ωn+1

)
,∆Nω

n+1
〉

≤ 1

2
νk
∥∥∆Nω

n+1
∥∥2

2
+ Ck. (4.75) est-coll-H1-17

Finally, a combination of (4.45)–(4.48), (4.50), (4.55), (4.67) and (4.75) results in

‖∇Nωn+1‖22 − ‖∇Nωn‖22 +

(
1−

(
1 +

C ′C̃2

ν

)
k

)
‖∇N

(
ωn+1 − ωn

)
‖22

+
1

2
νk‖∆Nω

n+1‖22 ≤
(

2M2

ν
+ C

)
k. (4.76)

Under a constraint similar to (4.40) and a trivial constraint k ≤ 1
4 for the timestep:

C ′C̃2

ν
k ≤ 1

2
, k ≤ 1

4
, i.e., k ≤ min

(
ν

2C ′C̃2
,

1

4

)
, (4.77) constraint-coll-dt-2
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we have

‖∇Nωn+1‖22 − ‖∇Nωn‖22 +
1

4

∥∥∇N (ωn+1 − ωn
)∥∥2

2
+

1

2
νk‖∆Nω

n+1‖22 ≤ α̃k,

with α̃ =
2M2

ν
+ C. (4.78)

Furthermore, an application of elliptic regularity (denoted by another constant c′p

‖∇Nωn+1‖2 ≤ c′p‖∆Nω
n+1‖2, (4.79) ellip regularity-coll

implies that

‖∇Nωn+1‖22 − ‖∇Nωn‖22 + β̃νk‖∇Nωn+1‖22 ≤ α̃k, with α̃ =
1

2(c′p)
2
. (4.80) est-coll-H1-20

Applying an induction argument to the above estimate yields

‖∇Nωn+1‖22 ≤ (1 + β̃νk)−(n+1)‖∇Nω0‖22 +
α̃

β̃ν
, i.e.,

‖∇Nωn+1‖2 ≤ (1 + β̃νk)−
n+1

2 ‖∇Nω0‖2 +

√
α̃

β̃ν
:= C2. (4.81)

Again, C2 is a time dependent value; however, its time dependence decays exponen-
tially so that a global in time bound is available.

In addition, we also have the L2(0, T ;H2) bound for the numerical solution:

1

2
νk

Nk∑
k=i+1

∥∥∆Nω
k
∥∥2

2
≤ ‖∇Nωi‖22 + α̃

(
T ∗ − ti

)
. (4.82) est-coll-H1-22

4.5. Recovery of the a-priori Hδ assumption (4.21). With the L∞(0, T ;L2)
and L∞(0, T ;H1) estimate for the numerical vorticity solution, namely (4.43) and
(4.81), we are able to recover the Hδ assumption (4.21):∥∥ωn+1

∥∥
Hδh

=
∥∥ωn+1

∥∥
Hδ
≤ C

∥∥ωn+1
∥∥1−δ

2
·
∥∥ωn+1

∥∥δ
H1

≤ Cδ
∥∥ωn+1

∥∥1−δ
2

∥∥∇ωn+1
∥∥δ

2
≤ CδC1−δ

1 C2δ. (4.83)

For simplicity, by taking δ = 1
2 , we see that (4.21) is also valid at timestep tn+1 if we

set

C̃ = Cδ
√
C1C2. (4.84) a priori-coll-2

Note that C1 and C2 are independent of C̃ in the derivation. The constant C̃ is only
used in the timestep constraint (4.40). Therefore, induction can be applied so that
the a-priori Hδ assumption (4.21) is valid at any timestep under a global timestep
constraint

k ≤ ν

4C2
δC1C2

. (4.85) a priori-coll-3

Again, note that both C1 and C2 contain an exponential decay in time and therefore
are bounded by a given constant in time.
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In other words, under (4.85), a global in time constant constraint for the timestep,
the proposed semi-implicit scheme (4.10)–(4.12) is unconditionally stable (in terms
of spatial grid size and final time). In addition, an asymptotic decay for the L2 and
H1 norm for the vorticity (equivalent to H1 and H2 norms for the velocity) can be
derived. Lemma 4.2 is proven.

Appendix A. A Wente type estimate. The goal here is to present a Wentes:wente
type estimate that is applicable to our doubly periodic setting. Original estimate
of the Jacobian term (essentially H−1 norm) goes back to [48]. Here we need an
estimate on the L2 norm of the Jacobian. The case with homogeneous Dirichlet
boundary condition can be found in [26,27].

Proposition 1. There exists an absolute constant cw ≥ 1 such thatwente

‖∇⊥ψ · ∇φ‖H−1 ≤ cw ‖ψ‖H1‖φ‖H1 ∀ ψ ∈ Ḣ1
per(Ω), φ ∈ Ḣ1

per(Ω) (A.1) q:wente1

‖∇⊥ψ · ∇φ‖2 ≤ cw ‖ψ‖H2‖φ‖H1 ∀ ψ ∈ Ḣ2
per(Ω), φ ∈ Ḣ1

per(Ω) (A.2) q:wente2

‖∇⊥ψ · ∇φ‖2 ≤ cw ‖ψ‖H1‖φ‖H2 ∀ψ ∈ Ḣ1
per(Ω), φ ∈ Ḣ2

per(Ω). (A.3) q:wente3

Proof. Let Ω = (0, 2π)2 as before and Ω̃ := (−2π, 4π)2. Let ρ ∈ c∞p (R2) be such

that ρ = 1 in Ω, ρ = 0 in R2 − Ω̃ and ρ(x) ∈ [0, 1] for all x ∈ R2. Here ψ and φ are
2π-periodic functions on R2. The proof of (A.2) is based on Lemma 1 in [26], which
states that, in our notation, for ρψ ∈ H2

0 (Ω̃) and ρφ ∈ H1
0 (Ω̃), one has

‖∇⊥(ρψ) · ∇(ρφ)‖
L2(Ω̃)

≤ CK(Ω̃) ‖ρψ‖
H2(Ω̃)

‖ρφ‖
H1(Ω̃)

. (A.4) q:wente4

Noting that

‖∇(ρψ)‖
Ω̃

= ‖∇(ρψ)‖Ω + ‖∇(ρψ)‖
Ω̃−Ω

≤ ‖∇ψ‖Ω + ‖ρ∇ψ‖
Ω̃−Ω

+ ‖ψ∇ρ‖
Ω̃−Ω

≤ ‖∇ψ‖Ω + ‖∇ψ‖
Ω̃−Ω

+ ‖ψ‖
Ω̃−Ω
‖∇ρ‖

L∞(Ω̃−Ω)

≤ ‖∇ψ‖Ω + 8 ‖∇ψ‖Ω + 8 cp‖∇ψ‖Ω̃−Ω
‖∇ρ‖

L∞(Ω̃−Ω)
,

(A.5)

and a similar computation for ‖ρψ‖H2 , the right-hand side of (A.4) is majorised as

‖ρψ‖
H2(Ω̃)

‖ρφ‖
H1(Ω̃)

≤ (9+8cp ‖∇ρ‖L∞(R2))
2 CK(Ω̃)2 ‖ψ‖H2(Ω)‖φ‖H1(Ω) . (A.6)

Since the left-hand side of (A.4) majorises ‖∇⊥ψ ·∇φ‖L2(Ω), we have (A.2). For (A.3),

we use the identity ∇⊥ψ ·∇φ = −∇⊥φ·∇ψ and (A.2) with ψ and φ interchanged.
For (A.1), we take w ∈ H1

0 (Ω̃) and compute

‖∇⊥ψ · ∇φ‖
H−1(Ω̃)

= sup
‖w‖H1(Ω̃)=1

(∇⊥ψ · ∇φ,w)L2(Ω̃)

≤ sup
‖w‖H1(Ω̃)=1

‖∇φ‖L2(Ω̃)‖∇ψ‖L2(Ω̃)‖∇w‖L2(Ω̃)

= ‖∇φ‖L2(Ω̃)‖∇ψ‖L2(Ω̃)

(A.7)

where the inequality follows from (3.8) in [48]. Arguing as above, (A.1) follows.
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Appendix B. A convergence result on long time behaviors. Here wes:conv
present a modified version of the abstract result presented in [47], so that it is appli-
cable to the current situation, where the phase space is only a subset of a Hilbert (or
reflexive Banach) space.

Proposition 2. Let {S(t)}t≥0 be a continuous semi-group on a complete metricabs_conv_stat
space X which is a subset of a separable Hilbert space H with the inherited distance
(norm) ‖·‖. Suppose that the semi-group generates a continuous dissipative dynamical
system (in the sense of possessing a compact global attractor A) on X. Let {Sk}0<k≤k0

be a family of continuous maps on X which generates a family of discrete dissipative
dynamical system (with global attractor Ak) on X. We further assume that the fol-
lowing two conditions are satisfied.

H1: [Uniform boundedness] There exists a k1 ∈ (0, k0] such that {Sk}0<k≤k1
is

uniformly bounded in the sense that

K =
⋃

0<k≤k1

Ak (B.1) u-bdd

is bounded in X.
H2: [Finite time uniform convergence] Sk uniformly converges to S on any finite

time interval (modulo any initial layer) and uniformly for initial data from
the global attractor of the scheme in the sense that there exists t0 > 0 such
that for any T ∗ > t0 > 0

lim
k→0

sup
u∈Ak,nk∈[t0,T∗]

‖Snku− S(nk)u‖ = 0. (B.2) u-conv-long

Then the global attractors converge in the sense of Hausdorff semi-distance, i.e.

lim
k→0

distH(Ak,A) = 0. (B.3)

Moreover, if the following three more stringent conditions are satisfied:

H3: [Uniform dissipativity] There exists a k1 ∈ (0, k0) such that {Sk}0<k≤k1 is
uniformly dissipative in the sense that

K =
⋃

0<k≤k1

Ak (B.4) u-dissip

is pre-compact in X.
H4: [Uniform convergence on the unit time interval ] Sk uniformly converges to S

on the unit time interval (modulo an initial layer) and uniformly for initial
data from the global attractor of Sk in the sense that for any t0 ∈ (0, 1)

lim
k→0

sup
u∈Ak,nk∈[t0,1]

‖Snku− S(nk)u‖ = 0. (B.5) u-conv

H5: [Uniform continuity of the continuous system] {S(t)}t≥0 is uniformly contin-
uous on K on the unit time interval in the sense that for any T ∗ ∈ [0, 1]

lim
t→T∗

sup
u∈K
‖S(t)u− S(T ∗)u‖ = 0, (B.6) u-cont
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then the invariant measures of the discrete dynamical system {Sk}0<k≤k0
converge

to invariant measures of the continuous dynamical system S. More precisely, let
µk ∈ IMk where IMk denotes the set of all invariant measures of Sk. There must
exist a subsequence, still denoted {µk}, and µ ∈ IM (an invariant measure of S(t)),
such that µk weakly converges to µ, i.e.,

µk ⇀ µ, as k → 0. (B.7)

Proof. The proof is exactly the same as those in [46, 47]. We leave the detail to
the interested reader.

Acknowledgement. This work is supported in part by grants from the National
Science Foundation (DMS1008852 for XW, DMS1115420 for CW), AFSOR (FA-9550-
09-0208 for SG), a Modern Applied Mathematics 111 project at Fudan University from
the Chinese MOE (for XW), and a COFRS fund from FSU (for XW). We also thank
the referees for their valuable comments.

REFERENCES

ARW1995 [1] U.M. Ascher, S.J. Ruuth and W.T.R. Wetton (1995); Implicit-explicit methods for time-
dependent partial differential equations. SIAM J. Numer. Anal., vol.32, no.3, pp. 797–823.

BM1992 [2] C. Bernardi and Y. Maday (1992), Approximations spectrales de problèmes aux limites ellip-
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