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Absract

AD5 elliptic fibration is a fibration whose generic fiber is modeled by the complete intersection
of two quadric surfaces in P3. They provide simple examples of elliptic fibrations admitting a
rich spectrum of singular fibers (not all on the list of Kodaira) without introducing singularities
in the total space of the fibration and therefore avoiding a discussion of their resolutions. We
study systematically the fiber geometry of such fibrations using Segre symbols and compute
several topological invariants.

We present for the first time Sen’s (orientifold) limits for D5 elliptic fibrations. These orien-
tifolds limit describe different weak coupling limits of F-theory to type IIB string theory giving a
system of three brane-image-brane pairs in presence of a Z2 orientifold. The orientifold theory is
mathematically described by the double cover the base of the elliptic fibration. Such orientifold
theories are characterized by a transition from a semi-stable singular fiber to an unstable one.
In this paper, we describe the first example of a weak coupling limit in F-theory characterized
by a transition to a non-Kodaira (and non-ADE) fiber. Inspired by string dualities, we obtain
non-trivial topological relations connecting the elliptic fibration and the different loci that ap-
pear in its weak coupling limit. Mathematically, these are very surprising relations relating the
total Chern class of the D5 elliptic fibration and those of different loci that naturally appear
in the weak coupling limit. We work in arbitrary dimension and are result don’t assume the
Calabi-Yau condition.
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1. Introduction and summary

1.1. F-theory and type IIB string theory. Calabi-Yau varieties were first introduced
in compactification of string theory to geometrically engineer N = 1 supersymmetry in
four spacetime dimension[1, 2]. The best understood configurations are perturbative in
nature and have a constant value of the axio-dilaton field. The axio-dilaton field is a
complex scalar particle τ = C0 + ie−φ (i2 = −1) where the axion C0 is the Ramond-
Ramond zero-form of the D(−1)-brane (the D-instanton) while the dilaton φ determines
the string coupling gs via its exponential gs = eφ. Due to the positivity of the string
coupling, the axio-dilaton resides exclusively in the complex upper half-plane. In type
IIB string theory, the S-duality group is the modular group SL(2,Z) under which the
axio-dilaton field τ transforms as the period modulus of an elliptic curve C/(Z+ τZ).

τ τ + 1
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Figure 1. A torus seen as the quotient C/(Z+ τZ).

F-theory [3, 4, 5, 6] provides a description of compactifications of type IIB string theory
on non-Calabi-Yau varieties B endowed with a varying axio-dilaton field. The power of
F-theory is that it elegantly encapsules non-perturbative aspects of type IIB string theory
compactified on a space B using the mathematics of elliptic fibrations over B to describe
the variation of the axio-dilaton field and the action of S-duality. As such, type IIB string
theory compactified on a space B with a varying axio-dilaton is geometrically engineered
in F-theory by an elliptically fibered space ϕ : Y → B. When the base of the fibration is of
complex dimension d, it corresponds to a compactification to a (10−2d) real dimensional
space-time M10−2d. The most common cases studied in the literature are compactifications
to six and four spacetime dimensions and they are described respectively in F-theory by
elliptic threefolds and fourfolds.

The non-vanishing first Chern class of the compact space B is balanced by the presence
of (p, q) 7-branes1 wrapping non-trivial divisors of B so that supersymmetry is preserved
after the compactification. The presence of (p, q) 7-branes induces non-trivial SL(2,Z)
monodromies of the axio-dilaton field for which 7-branes are magnetic sources. Although
the compactification space B seen by type IIB is not Calabi-Yau, the total space Y of the
elliptic fibration ϕ : Y → B is required to be Calabi-Yau [3]. This is most naturally seen
using the M-theory picture of F-theory2. From the type IIB perspective, we would also

1 A (p, q) 7-brane is a dynamical brane extended in seven space dimensions and characterized by the
fact that (p, q) strings (bounds states of p fundamental strings and q D1 branes with p and q relatively
prime integer numbers) can end on it. A (1, 0) 7-brane is the usual D7-brane of perturbative string
theory while the other (p, q) 7-branes are non-perturbative solitonic branes that can be obtained from a
D7-brane by the action of S-duality, which in type IIB is the modular group SL(2,Z).

2 M-theory compactified on an elliptic fibration ϕ : Y → B to a spacetime M9−2d is dual to type IIB
compactified on the base B of the elliptic fibration to a spacetime S1×M9−2d with non-trivial three-form
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like the fibration to admit a section s : B → Y so that the compactification space B is
unambiguously identified within the elliptic fibration itself:

T 2 // Y

ϕ

��
B

s

II

The existence of a section is not necessary from the point of view of M-theory. For a
review of F-theory, we refer to [10]. The singular fibers of the elliptic fibration play an
essential role in the dictionary between physics and geometry [9]. For example, one can
use elliptic fibrations to geometrically engineer sophisticated gauge theories with matter
representations and Yukawa couplings all specified by the geometry of the elliptic fibration
[3, 4, 6, 8].

F-theory and the mathematics of elliptic fibrations. From a mathematical point of view,
F-theory provides a fresh perspective on the geometry of elliptic fibrations with a rich
inflow of new problems, conjectures and perspective inspired by physics. However, these
questions can be attacked purely mathematically and open new ways to think of el-
liptic fibrations connecting it to representation theory and other area of mathematics.
For example, the duality between F-theory and the Heterotic string has motivated the
study of principle holomorphic G-bundles over elliptic fibrations by Freedmann-Morgan-
Witten [11, 12]. Since the work of Kodaira on elliptic surfaces [13], it is well appreciated
that ADE-like Dynkin diagrams appear as singular fibers of an elliptic fibration over
codimension-one loci in the base. F-theory associates to these ADE diagrams specific
gauge theories living on branes wrapped around the location of the singular fibers in the
base [3, 4, 6]. Non-simply-laced Lie groups also appear naturally once we consider the role
of monodromies and distinguish between split and non-split singular fibers [6]. When the
base of the fibration is higher dimensional, matter representations are naturally associated
with certain loci in codimension-two in the base over which singular fibers enhance [8].
An analysis on the condition for anomaly cancellations of the gauge theories described
in F-theory leads to surprising relations involving representations of the gauge group and
the topology of the Chow ring of the elliptic fibration [8].
The description of phenomenological models in F-theory, like for example the SU(5)

Grand Unified model [9], has motivated the study of elliptic fibrations that admit a dis-
criminant locus with wild singularities and a rich structure of singular fibers that enhance
to each other as we consider higher codimension loci in the discriminant locus [14]. Such
enhancements often violate the conditions that will typically be required by mathemati-
cians studying elliptic fibrations [36, 34, 35]. For example, the discriminant locus of the
elliptic fibration is usually not supposed to be a divisor with normal crossing [14] and
non-flat fibrations can lead to very interesting physics like for example the presence of

field strength on B×S1. The radius of the circle S1 being inversely proportional to the area of the elliptic
fiber. As we take the limit of zero area, we end up with type IIB string theory on B × M10−2d.
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massless stringy objects [28]. With the appearence of non-Kodaira fibers in elliptic fi-
bration over a higher dimensional base [14], the dictionary between singular fibers and
physics have to made more precised [26, 27, 8]. Under the more general conditions consid-
ered in physics, there is not yet a classification of the possible singular fibers of a higher
dimensional elliptic fibration. See [14], for more information.

The connection between F-theory and its type IIB weak coupling limit uncovers inter-
esting geometric relations involving the elliptic fibrations and a double cover of its base.
Sen has shown that the weak coupling limit of F-theory can be an orientifold theory[15].
Sen’s construction is mathematically described by certain degenerations of the elliptic
fibration organized by transitions from semi-stable to unstable singular fibers [19]. The
presence of charged objects in a compact space leads to cancellation relations in physics
known as tadpole conditions. These tadpole conditions are sophisticated version of the
familiar Gauss theorem in electromagnetism that ensures that the total charge in a com-
pact space is zero. Using dualities between F-theory and type IIB string theory, tadpole
relations will induce non-trivial relations between the topological invariants of different
varieties that appear in the description of Sen’s weak coupling limit [17, 18, 19]. This has
motivated the introduction of a new Euler characteristic inspired by string dualities to
deal with some of the singularities[17, 18, 19].

1.2. Synopsys. We would like to explore the physics of the weak coupling limit of F-
theory in presence of non-Kodaira fibers. One easy way to do it without dealing with
resolution of singularities to generate non-Kodaira fibers is to start with certain families
of elliptic fibrations that naturally admit such fibers. In this way we will be able to provide
the first example of a weak coupling limit of F-theory involving non-Kodaira fibers.

D5 elliptic fibrations. In this article, we continue the work started in [19] and explore
different aspects of elliptic fibrations beyond the realm of Weierstrass models. Non-
Weierstrass models provide new ways of describing the strong coupling limit of certain non-
trivial type IIB orientifold compactifications with brane-image-brane pairs by embedding
them in F-theory. We consider elliptic fibrations whose generic fiber is an elliptic curve
modeled by the complete intersection of two quadric surfaces in P

3. Such fibrations are
referred to in the physics literature as D5 elliptic fibrations [20, 21, 22, 23]. An equivalent
description of the generic fiber of a D5 elliptic fibration is to see it as the base locus of
a pencil of quadrics in P3. This little change of perspective provides powerful tools to
describe the singular fibers of D5 elliptic fibrations, since pencils of quadrics are naturally
classified by Segre symbols as we will review in section 3. We therefore classify all the
singular fibers of a smooth D5 elliptic fibration using Segre symbols. Singular fibers of an
elliptic surface were classified by Kodaira and are described by Kodaira symbols. In the
context of D5 elliptic fibrations, Segre symbols provide a finer description of the singular
fibers than symbols of Kodaira since they detect the degree of each of the components of
a given singular fiber. In the study of D5 elliptic fibrations, the geometric objects at play
are very classical: quadric surfaces, conics, twisted cubics and elliptic curves. It follows
that the study of D5 elliptic fibrations is reduced to a promenade in the garden of 19th
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century Italian school of algebraic geometry where we can pick up all the ingredients we
need.
For D5 elliptic fibrations, non-Kodaira singular fibers appear innocently without intro-

ducing singularities in the total space and so avoiding any resolutions of singularities. We
will explore the physical relevance of these non-Kodaira singular fibers from the point of
view of the weak coupling limit of F-theory[15, 19]. We will analyze some degenerations of
these fibrations and deduce non-trivial topological relations. The degeneration we obtain
describes a theory of an orientifold with three brane-image-brane pairs, two of which are
in the same homology class as the orientifold. The cancellation of the D3 tadpole provides
a non-trivial relations between Euler characteristic of the elliptic fibration and the Euler
characteristic of the divisors corresponding to the orientifold and the brane-image-brane
pairs. We will prove that the same relation holds at the level of the total Chern class of
these loci. We will see that the non-Kodaira fibers indicate a certain regime in which the
orientifold and the two brane-image-brane pairs that are in its homology class coincide.
One might think that F-theory leads only to mathematical results for Calabi-Yau elliptic

fourfolds and threefolds since these are the usually varieties in which F-theory is relevant
physically. Strikingly enough, many of the insights gained on the structure of elliptic
fibrations coming from F-theory are true without any assumptions on the dimension of
the base and without assuming the Calabi-Yau condition [11, 18, 19, 14, 8], providing yet
another example of why string theory is a source of inspiration for geometers. Therefore,
although our considerations are inspired by F-theory, we will not restrict ourself to Calabi-
Yau elliptic fourfolds or threefolds but will work with elliptic fibrations over a base of
arbitrary dimension and without assuming the Calabi-Yau condition. We will provide
rigourous mathematical proof to all the geometric and topological statements inspired
from F-theory.

An historical note on pencils of quadrics and Segre symbols. The classification of pen-
cils of quadrics is indeed a classic among the classics with contributions from several
great mathematicians: everything we need was elegantly presented in Segre’s thesis on
quadrics [37], he introduced the modern notation (Segre symbols) in his classification of
collineations and emphasised the geometrical ideas behind the classification; the main
algebraic concepts (elementary divisors,normal forms) were developed in the context of
the theory of determinants by Weierstrass and other members of the Berlin school ( Kro-
necker, Frobenius); several of their results were obtained earlier by Sylvester but in a less
general and systematic way; Sylvester classified nonsingular pencils of conics and quadric
surfaces. The modern reference on the classification of pencils of quadrics is chapter XIII
of the second volume of the book by Hodge and Pedoe [40]. More recently, Dimca has
obtained a geometric interpretation of the classification of quadrics based on the geometry
of determinantal varieties and their singularities [42].

1.3. Weierstrass models in F-theory. Following its early founding papers [3, 4, 6],
in F-theory, elliptic fibrations are traditionally studied using Weierstrass models, i.e., a
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hypersurface in a P2-bundle over the Type-IIB base B which in its reduced form is defined
as the zero-scheme associated with the locus

y2z = x3 + fxz2 + gz3,

where f and g are sections of appropriate tensor powers of a line bundle L on B. A
smooth Weierstrass model admits a unique section and only two types of singular fibers:
nodal curves (Kodaira fiber of type I1) and cuspidal curves (Kodaira fiber of type II).
It follows that in the world of Weierstrass models, singularities in the total space of
the fibration must be introduced to allow more interesting singular fibers to appear.
Such singularities are necessary for example to describe non-Abelian gauge groups. Any
elliptic fibration endowed with a smooth section is birationally equivalent to a (possibly)
singular Weierstrass model [33], which might give the impression that one does not need
to leave the world of Weierstrass models when working on F-theory since the section
identifies the space B as seen by type IIB string theory. However, there is much value in
exploring non-Weierstrass models in F-theory since the physics of F-theory is not invariant
under birational transformations. Not only that, but the M-theory approach to F-theory
doesn’t even require a section, so even elliptic fibrations without a sections are physically
relevant. F-theory with discrete fluxes and/or torsion can be naturally introduced by
considering other models of elliptic curves than Weierstrass models[22, 23]. This usually
requires a non-trivial Mordell-Weil group [?] and can also be analyzed by considering
special Weierstrass models, but their expressions are usually complicated. For Weierstrass
models, singular fibers over codimension-one loci in the base can be described using Tate’s
algorithm without performing a systematic desingularization. The resulting fibers are
those classified by Kodaira for singular fibers of an elliptic surface. Singular fibers above
higher codimension loci are not necessarily on Kodaira’s list [34, 35, 26, 14, 29] and can
even have components that jump in dimension [34, 28]. The resolution of singularities of a
Weierstrass model is not unique and different resolutions of the same singular Weierstrass
model can have different types of singular fibers in higher codimension in the base[34,
35, 14]. Recently, this was shown to occur even for popular physically relevant models
such as the SU(5) GUT [14]. Considering other models of elliptic fibrations other than
Weierstrass models allow the convenience of a rich spectrum of singular fibers without
introducing singularities in the total space of the elliptic fibration [19]. In this way, we
can have F-theory descriptions of certain non-Abelian gauge theories without introducing
any singularities into the total space of the fibration. The spectrum of singular fibers
can be determined without any ambiguity. As explained in [19], elliptic fibrations not
in Weierstrass form naturally admit weak coupling limits as well (analogous to Sen’s
orientifold limit of Weierstrass models), and provide descriptions of systems of seven-
branes admitting a type IIB weakly coupled regime which consisting of super-symmetric
brane-image-brane configurations that would be challenging to describe in the traditional
Weierstrass model approach to F-theory[19].

1.4. Other models of elliptic fibrations. Since the physics of F-theory is not invariant
under birational transformations, we would like to broaden our horizons and explore the
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Type ord(F ) ord(G) ord(∆) j Monodromy Fiber
I0 ≥ 0 ≥ 0 0 R I2 Smooth torus

I1 0 0 1 ∞

(

1 1
0 1

)

(Nodal curve)

In 0 0 n > 1 ∞

(

1 n

0 1

)

✐
❅❅ ✐ ✐ ✐ ✐��

✐
1

1 1 1 1

1 1 1 1✐ ✐ ✐

II ≥ 1 1 2 0

(

1 1
−1 0

)

Cuspidial curve

III 1 ≥ 2 3 1

(

0 1
−1 0

)

IV ≥ 2 2 4 0

(

0 1
−1 −1

)

I∗n 2 ≥ 3 n+ 6 ∞

(

−1 −b

0 −1

)

✐

✐��

❅❅ ✐ ✐ ✐ ✐
❅❅

��
✐

✐

1

1

2 2 2 2

1

1
≥ 2 3 n+ 6

IV ∗ ≥ 3 4 8 0

(

−1 −1
1 0

)

❥ ❥ ❥ ❥ ❥

❥

❥1

131 2 2

2

III∗ 3 ≥ 5 9 1

(

0 −1
1 0

) ❥ ❥ ❥ ❥ ❥ ❥ ❥

❥

331 2 4 2 1

2

II∗ ≥ 4 5 10 0

(

0 −1
1 1

) ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐

✐

531 2 4 6 4 2

3

Table 1. Kodaira Classification of singular fibers of an elliptic fibration.

The fiber of type I∗0 is special among its family I∗n because its j-invariant can take any

value in C. The j-invariant of a fiber of type In or I∗n (n > 0) has a pole of order n.

landscape of F-theory beyond that of Weierstrass models. Our starting point is to consider
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the following families of elliptic curves [47]:

Weierstrass cubic : zy2 = x3 + fxz + gz3 in P2

Legendre cubic: zy2 = x(x− z)(x− fz) in P2

Jacobi quartic: y2 = x4 + fx2z2 + z4 in P2
1,2,1

Hesse cubic: y3 + x3 − z3 − dxyz = 0 in P2

Jacobi intersection: x2 − y2 − z2 = w2 − x2 − dz2 = 0 in P3

where [x : y : z] (resp. [x : y : z : w]) are projective coordinates of a (weighted) P2

(resp. P3). The coefficients (f, g, d) in the equations above are scalars which we can
interpret as sections of a line bundle over a point. We then construct elliptic fibrations
by promoting the coefficients of a particular family of elliptic curves to sections of line
bundles over a base variety B. We then consider the following normal forms of elliptic
fibrations associated with the families of elliptic curves listed above [22, 23, 20, 19]:

E8: y2z = x3 + fxz + gz3 in P[O ⊕ L 2 ⊕ L 3]
E7: y2 = x4 + fx2z2 + gxz3 + ez4 in P1,1,2[O ⊕ L ⊕ L 2]
E6: y3 + x3 = z3 + dxyz + exz2 + fyz2 + gz3 in P[O ⊕ L ⊕ L ]
D5: x2 − y2 − z(az + cw) = w2 − x2 − z(dz + ex+ fy) = 0 in P[O ⊕ L ⊕ L ⊕ L ]

The E8 family is the usual Weierstrass model. A more general form of the Weierstrass
model (the Tate form), will have the fibration obtained from the Legendre family as
a specialization. The E7, E6 and D5 elliptic fibrations are respectively obtained from
generalizations of the Jacobi quartic, the Hesse cubic and the Jacobi intersection form.
By promoting the scalar coefficients to sections of line bundles over a positive dimensional
base variety B, we allow more “room” for singular fibers to appear, and a richer geometry
naturally emerges. The E7, E6, and D5 fibrations are all birationally equivalent to a
singular Weierstrass model and the corresponding birational map is an isomorphism away
from the locus of singular fibers. Each model differs by the number of rational sections
and the type of singular fibers it admits. This En nomenclature follows [24, 20, 19] and
is based on an analogy with del Pezzo surfaces3. All these fibrations have been analyzed
in [19] with the exception of the D5(≃ E5) elliptic fibration. By direct inspection of the
results of [19], we observe the following:

Proposition 1.1 (Fiber geometry of E8, E7 and E6 elliptic fibrations). A general E9−n

(n = 1, 2, 3) elliptic fibration admits n sections and its spectrum of singular fibers con-
tains 2n different singular fibers, which are all the Kodaira fibers composed of at most n
irreducible rational curves.

3A del Pezzo surface of degree d admits (−1)-curves that define a root lattice of type E9−d. A del Pezzo
surface of degree d can be embedding in a projective space Pd as a surface of degree d. An hyperplane
will cut such a del Pezzo surface along an elliptic curve expressed as a degree d curve. A cone over an
elliptic curve of type En will have an elliptic singularity of type Ẽn. A del Pezzo surface of degree 1, 2
and 3 can be expressed as an hypersurface in a weighted projective P3 while a del Pezzo surface of degree
4 can be expressed as a complete intersection of two quadric hypersurfaces in P4. The intersection with
a hyperplane gives the model discussed above. The E8 family is the usual Weierstrass model and the D5

family corresponds to E5 = D5.
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1.5. D5 elliptic fibrations. D5 elliptic fibrations have not received much attention in
the physics literature. This is mostly because the generic fiber of a D5 fibration is a
complete intersection while in the case of E8, E7, E6 , it is simply a hypersurface in a
(weighted) projective plane. In view of the properties of the E9−n elliptic fibrations for
n = 1, 2, 3, one might expect that the D5 = E9−4 elliptic fibration has an even richer
geometry. As we will see in this paper, an D5 elliptic fibration has 4 sections and admits
8 types of singular fibers composed of up to 4 components. However, only 7 appear on
the list of Kodaira. We will see that a general D5 elliptic fibration with 4 sections indeed
admits a non-Kodaira fiber composed of four rational curves meeting at a point. We call
such a fiber a fiber of type I∗−0 since it looks like a Kodaira fiber I∗0 with the central node
contracted to a point. We study the physical significance of their non-Kodaira fibers by
exploring weak coupling limits associated with them.

Type sections Singular fibers
E8 1 I1, II
E7 2 I1, II, I2, III
E6 3 I1, II, I2, III, I3 , IV
E5 = D5 4 I1, II, I2, III, I3, IV , I4, I

∗−
0 (non-Kodaira)

Table 2. Singular fibers of an elliptic fibration of type En with (9 − n)
sections. We denote E5 by D5 as it is familiar with Dynkin diagrams.

1.6. Canonical form for a D5 model with four sections. In this section, we will
introduce our canonical form for an elliptic fibration of type D5 with four sections. We
will ensure that the 4 sections are given by a unique divisor composed of 4 non-intersecting
irreducible components. Each of these components is a Weil divisor and they are two by
two disjoints so that the 4 sections define 4 distinct points on each fiber.

1.6.1. Notation and conventions. We work over the field C of complex numbers but ev-
erything we say is equally valid over an algebraically closed field k of characteristic zero.
We denote by Pn the projective space of dimension n over the field C. Given a line bundle
L , we denote its dual by L −1, its n-th tensorial power by L n and the dual of its n-th
tensorial power by L −n. Given a coherent sheaf E , we denote by Pn[E ] the projective
bundle of lines of E .

1.6.2. Canonical form for a D5 elliptic fibration with four sections. Let B be a non-
singular compact complex algebraic variety endowed with a line bundle L . We consider
the rank 4 vector bundle

E = OB ⊕ L ⊕ L ⊕ L ,

and its associated projectivization4 π : P(E ) → B. We denote the tautological line bundle
of P(E ) by O(−1) and its dual by O(1). The vertical coordinates of P(E ) are denoted by
[x : y : z : w], where x, y, w are all sections of O(1)⊗ π∗L while z is a section of O(1).

4Here we take the projective bundle of lines in E .
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We define a D5 elliptic fibration Y to be a non-singular complete intersection determined
by the vanishing locus of two sections of O(2) ⊗ π∗L 2. Such a complete intersection
determines an elliptic fibration ϕ : Y → B, whose generic fiber is a complete intersection
of two quadrics in P3. We also assume that the elliptic fibration has a (multi) section cut
out by z = 0. It follows that the D5 elliptic fibration Y is given by:

Y :=

{

A1(x, y, w)− zL1(z, x, y, w) = 0

A2(x, y, w)− zL2(z, x, y, w) = 0

where A1(x, y, w) and A2(x, y, w) denote two quadratic polynomials in C[x, y, w], while
L1(z, x, y, w) and L2(z, x, y, w) are linear in x, y, z, w with coefficients that are sections of
appropriate powers of π∗L so that each of Ai−zLi for i = 1, 2 is a section of O(2)⊗π∗L 2.
We exclude the degenerate case where Q1 and Q2 are proportional to each other. It
follows that fiberwise, the multisection cut out by z = 0 defines up to four points on the
elliptic fiber, corresponding to the fact each (distinct) solution the system A1(x, y, w) =
A2(x, y, w) = 0 determines a section of the elliptic fibration. If A1 and A2 intersect
transversally, we have exactly four sections. We can also consider degenerate cases where
the intersection is not transverse and would therefore lead to intersection points with
multiplicities. Using non-transverse quadrics, we can have one, two or three sections5.

For the remainder of this article, unless otherwise mentioned we only consider the case
where the elliptic fibration admits exactly four sections. In that case, without loss of
generality, the D5 elliptic fibration can be expressed as follows:

(1.1) Y :=

{

x2 − y2 − z(az + cw) = 0,

w2 − x2 − z(dz + ex+ fy) = 0.

This is our canonical form for a D5 elliptic fibration with four rational sections. So that
each equation defines a section of O(2)⊗ π∗L 2, we take a and d to be sections of π∗L 2

and c, e and f to be sections of π∗L :

x, y, w z c, e, f a, d
O(1)⊗ π∗L O(1) π∗L π∗L 2

1.7. Pencil of quadrics. To study the complete intersection Y : Q1 = Q2 = 0 of two
quadrics, it is useful to analyze the pencil of quadrics through Y . It is defined as follows

(1.2) Qλ1,λ2
: λ1Q1 + λ2Q2, [λ1 : λ2] ∈ P

1.

The variety Y : Q1 = Q2 = 0 could equivalently be defined as the complete intersection
λ1Q1+λ2Q2 = µ1Q1+µ2Q2 = 0 for any choice of λ1, λ2, µ1, µ2 such that λ1µ2−λ2µ1 6= 0.
The curves Q1 = Q2 = 0 is common to all the quadrics of the pencil. It is called the base
locus of the pencil. We denote the symmetric matrix corresponding to a quadric poly-
nomial Q =

∑

aijx
ixj as Q̂. Singular fibers can be characterized by algebraic properties

5 For example (A1, A2) = (x2, w2) gives a unique solution of multiplicity 4. (x2 − y2, w2) gives two
solutions of multiplicity 2. (x2 − y2, w2 − x2 + xy) gives three solutions, one of multiplicity one and the
other of multiplicity two.
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of the pencil. In particular, the matrix (Q̂1 + rQ̂2) associated with the pencil Q1 + rQ2

has algebraic invariants known as elementary divisors that can be used to characterize
uniquely a certain types of singular fibers. The elementary divisors are obtained from
the roots of the discriminant of the pencil and the common roots of the minors of order
1, 2, · · · , n. We recall that the minors of order s of a matrix M are obtained by taking
the determinant of the matrices cut down from M by removing s rows and s columns.
For a pencil of quadrics in P3, we will consider the first, second and third minors. The
determinant of the matrix M can be seen as the unique minor of order zero.

1.8. Discriminant of the elliptic fibration from the pencil of quadrics. The com-
plete intersection Q1 = Q2 = 0 gives a regular elliptic curve if and only if the determinant
of the quadratic form Q̂1 + rQ̂2 (with r = λ2

λ1

) is non-identically zero and does not have
multiple roots. In other words, we can compute the discriminant of the elliptic fibration
Y as the discriminant of the following quartic in r:

(1.3) 4det(Q̂1 + rQ̂2) = q0 + 4q1r + 6q2r
2 + 4q3r

3 + q4r
4.

One can show that the the D5 elliptic fibration determined by Q1 = Q2 = 0 has Weier-
strass form y2z = x3 + Fxz2 +Gz3 , where

(1.4) F = −(q0q4 − 4q1q3 + 3q22), G = 2(q0q2q4 + 2q1q2q3 − q32 − q0q
2
3 − q21q4).

This Weierstrass model is the Jacobian of the D5 elliptic fibration. We then simply
compute the discriminant and j-invariant as

(1.5) ∆ = 4F 3 + 27G2, j = 1728
4F 3

∆
.

1.9. Birational equivalent E6 model. We now obtain a birationally equivalent formu-
lation of the fibration in which the generic fiber is a plane cubic curve. The plane cubic
curve is obtained by projecting the space curve on a plane from a rational point. In order
to proceed, we need to choose a rational point on every fiber of Y . For example, we
can take the rational point P = [1, 1, 1, 0] which is one of the sections. We perform a
translation y 7→ y + x, w 7→ w + x so that in the new coordinate system, the point P is
[1 : 0 : 0 : 0]. It follows that there should be no terms in x2 in the defining equations.
Indeed, after the substitution (y 7→ y + x, w 7→ w + x) in the defining equations of Y , we
can eliminate x. Geometrically, this is equivalent to projecting Y to the plane x = 0 from
the point P = [1 : 0 : 0 : 0]. The result is the following cubic:

(y2 + az2 + cwz)(2w + ez + fz) + (w2 − dz2 − fzy)(2y + cz) = 0.(1.6)

where [y, w, z] are the projective coordinates of the P2 defined by x = 0. This cubic is a
section of O(3)⊗ L 3 and z = 0 admits a multisection z = 0 of degree 3. Indeed, z = 0
cuts the cubic along the following loci

2yw(y + w) = 0,

of the P1 with projective coordinates [y : w]. This corresponds to the points [y, w, z] =
[0 : 1 : 0], [1 : 0 : 0] and [1 : −1 : 0] on the cubic curve. These points correspond to
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the sections of the original D5 elliptic fibration with the exception of the point P used
to define the projection. As the new elliptic fibration is defined by a divisor of class
O(3)⊗ L 3 in the P2 bundle P[OB ⊕ L ⊕ L ] and admits three sections, we recognize it
as an E6 elliptic fibration.

We still have the same j-invariant and the same discriminant locus. However, the fiber
structure has changed. For example (i)the non-Kodaira fiber I∗−0 located at a = c = d =
e = f = 0 is now a Kodaira fiber of type IV . (ii) The I4 fiber at a = c = e = 4d− f 2 = 0
is now a I2 fiber composed of a conic and a secant.

1.10. Birationally equivalent Jacobi quartic model. An elliptic curve can also be
modeled by the double cover of a P1 branched at four distinct points. For that purpose,
we can use a weighted projective plane P2

2,1,1 and write the equation as

y2 = Q4(u, v),

where [y : u : v] are the projective coordinates of P2
2,1,1 with y of weight 2 and u and v

of weight 1 and P4(u, v) is homogeneous of degree 4 in [u : v]. The quartic Q4 is simply
given by the binary quartic polynomial determined by the polynomial of the pencil of
quadrics defining the D5 elliptic fibration, so the expression is

(1.7) y2 = det(uQ̂1 + vQ̂2),

which gives

(1.8) y2 = q0u
4 + 4q1u

3v + 6q2u
2v2 + 4q3uv

3 + q4v
4.

This elliptic fibration is given by a section of O(4)⊗L 2 written in the projective bundle
P[OB ⊕ OB ⊕ L ]. The projective variable y is a section of O(2)⊗ L while u and v are
sections of O(1). Since the generic fiber is modeled by a quartic in P2

2,1,1, we have a E7

model. However, compare to the E7 fibrations that only had fibers of type I1, II, I2 and
III, this variant of the E7 elliptic fibration also admits a non-Kodaira fiber composed of
a rational curve of multiplicity 2. This fiber is located at q0 = q1 = q2 = q3 = q4 = 0.
in the D5 elliptic fibration, as we will see later, this fiber would be the non-Kodaira fiber
I∗−0 composed of four rational curves meeting at a common point. The singular fibers
can easily be classified by analyzing the factorization of Q4 as reviewed in table 3. For
another application of quartic elliptic curves in F-theory see [30].

Interestingly, if we introduce [X0 : X1 : X2 : X3] as projective coordinates of a P3, the
weighted projective space P2

1,1,2 is isomorphic to the cone X1X2 = X2
0 in P3. The explicit

isomorphism is the following:

(1.9) [u : v : y] 7→ [X0 : X1 : X2 : X3] = [uv : u2 : v2 : y].

If we use this map starting from the projective bundle P1,1,2[OB ⊕ OB ⊕ L 2], we get the
following projective bundle P[OB ⊕OB⊕OB ⊕L 2]. We can write it again as a D5 elliptic
fibration with one constant quadric as a section of O(2) and O(2)⊗ L 4:

(1.10)

{

X1X2 −X2
0 = 0,

X2
3 − q0X

2
1 − 4q1X0X1 − 6q2X

2
0 − 4q3X0X2 − q4X

2
2 = 0.
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Type General condition Description
I1 ∆ = 0 A nodal curve (Q4 has

one double root)
II F = G = 0 A cuspidial curve (Q4

has a triple root)
I2 q4q

2
1 − q23q0 = 2q33 + q24q1 − 3q4q3q2 = 0 A tacnode(Q4 has two

double root)

III rank

(

q0 q1 q2 q3
q1 q2 q3 q4

)

≤ 1 Two conics tangent at
a point (Q4 has a
quadruple root)

2T1 q0 = q1 = q2 = q3 = q4 = 0 A rational curve (in
this case a projective
line) of multiplicity 2

Table 3. Singular fibers of the elliptic fibration y2 = q0u
4 + 4q1u

3v +
6q2u

2v2 + 4q3uv
3 + q4v

4 birationally equivalent to a D5 elliptic fibration

In this expression, we have a Z2 involution σ : Y → Y : X3 7→ −X3.

1.11. Classification of singular fibers by Segre symbols. We classify the singular
fibers of a smooth D5 elliptic fibration by using the classification of pencils of quadrics
by Segre symbols. When the discriminant det(Q̂1 + rQ̂2) is not identically zero, we
have a non-degenerate pencil of quadrics in P3. There are 14 different Segre symbols: one
corresponds to a smooth elliptic curve, nine correspond to seven singular fibers of Kodaira
type and four correspond to non-Kodaira fibers. When the discriminant is identically zero,
we have a pencil of quadrics in P2, which admit six different cases all corresponding to
non-Kodaira fibers given by four lines meeting at a common point. We have described
this case in table 4. When the discriminant is identically zero as well as all the first order
minors, we have a pencil in P1. This gives 3 additional singular fibers in higher dimension.
Once we have a fibration with a certain number of sections, we have more constraints on
the type of singular fibers that can occur. In particular, a smooth D5 elliptic fibration
with four sections admits eight different types of singular fibers, including one which
doesn’t appear on Kodaira’s list and consists of four lines meeting at a common point.
We will denote such a fiber by I∗−0 since it looks like a Kodaira fiber of type I∗0 with the
central node contracted to a point. We will give a detailed classification of all possible
fibers of our canonical D5 model (with four sections) as general conditions on the sections
a, c, d, e, f . The classification by Segre symbols is based on the property of the matrix
associated with the pencil of quadrics, in particular, the multiplicity of the zeros of its
consecutive minors. This will be the subject of section 3. For the case with four sections,
the list of fibers is given by the following:

Proposition 1.2 (Fiber geometry of a D5 elliptic fibration). A general D5 elliptic fi-
bration whose generic fiber is defined by the complete intersection of two quadrics in P3
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admits four sections and 8 singular fibers. Namely the Kodaira fibers I1, I2, III, I3, IV ,
I4 and a non-Kodaira fiber I∗−0 composed of 4 lines meeting at a point.

Segre
symbol

Roots of ∆ and rank of
associated quadric

Geometric description

[1111] 4 simple roots smooth quartic ( I0)
[112] one double root, rank 3 nodal quartic (I1)
[11(11)] one double root, rank 2 two intersecting conics (I2)
[13] triple root, rank 3 cuspidial quartic (II)
[1(21)] triple root, rank 2 two tangent conics (III)
[1(111)] triple root, rank 1 double conic
[4] quadruple root, rank 3 cubic and tangent line (III)
[(31)] quadruple root, rank 2 conic and 2 lines meeting on the conic ( IV )

[(22)] quadruple root, rank 2 two lines and a double line
[(211)] quadruple root, rank 1 two double lines
[(1111)] quadruple root, rank 0 The two quadrics coincide
[22] 2 double roots,both rank 3 cubic and secant line (I2)
[2(11)] 2 double roots, rank 3 and 2 a conic and two lines forming a triangle(I3)

[(11)(11)] 2 double roots, both rank 2 four lines forming a quadrangle(I4)

Table 4. Classification of non-degenerate pencils of quadrics in P
3. In the

second column, ∆ is the discriminant of the pencil of quadrics. In the last
column, when the fiber is in Kodaira list, we mention its Kodaira symbol
in parenthesis.

1.12. Non-Kodaira fibers. An attractive feature of the F-theory picture is that it pro-
poses an elegant dictionary between singular fibers and physical properties of type-IIB
compactifications. The dictionary is well understood in codimension-one in the base where
singular fibers determine the gauge group of the gauge theory living on the seven-branes.
More work needs to be done to understand the meaning of the matter representations
and Yukawa couplings. In the road to a better understanding of the physics of F-theory,
one cannot hide away from non-Kodaira singular fibers. As shown in [14], non-Kodaira
fibers can show up very naturally in important models like for example the SU(5) Grand
Unified Theory. The physical meaning of non-Kodaira fibers can be explored in many dif-
ferent ways. One can ask how they modify the matter content and the Yukawa couplings
of the gauge theory associated with a given elliptic fibration. This is the road explored
recently by Morrison-Taylor [26] in the context of F-theory on Calabi-Yau threefolds and
by Marsano-Schafer-Nameki in the context of the small resolution of the SU(5) model
[27]. It is also worthwhile to investigate weak coupling limits of F-theory in presence of
non-Kodaira fibers. A general D5 elliptic fibration can admit many possible non-Kodaira
fibers. Some are higher dimensional fibers such as two quadric surfaces coinciding. The
non-Kodaira fibers that are one dimensional are presented in figure 3.
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Figure 2. Singular fibers of a D5 elliptic fibration with four sections.
There are a total of 8 singular fibers. This includes all the Kodaira fibers
with at most 4 components and the fiber I∗−0 which is not on Kodaira’s
list. Down arrows represent an increase in the number of components while
up arrows indicate a specialization from a semi-stable to an unstable fiber
while preserving the number of components of the fiber.
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Figure 3. One dimensional non-Kodaira fibers appearing in D5 elliptic fibrations.

1.13. Orientifold limits of D5 elliptic fibrations. The weak coupling limit of F-theory
was first introduced by Sen [15] in the case of a smoothWeierstrass model. Sen’s limit gives
a Z2 type IIB orientifold theory. Weak coupling limits for E6 and E7 elliptic fibrations
were obtained in [19] where a geometric description of the limit was also presented: a
weak coupling limit is simply defined by a transition between a semi-stable fiber and an
unstable fiber (semi-stable fibers admit an infinite j-invariant while the j-invariant of an
unstable fiber is “0

0
” and so is undefined).
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Type General conditions Descriptions

I1 ∆ = 0 Nodal quartic [211]
II F = G = 0 Cuspidial quartic [13]

I2

a = c = 0
or f = 4d− e2 = 0
or e = 4(a+ d) + c2 − f 2 = 0

Two conics intersecting at
two distinct points [11(11)]

q4q
2
1 − q23q0 = 2q33 + q24q1 − 3q4q3q2 = 0 A twisted cubic and a secant [22]

III

a = c = d = 0
or f = 4d− e2 = 4a− e2 = 0
or e = 4a+ 2c2 + f2 = 4d− c2 − 2f2 = 0

Two tangent conics [1(21)]

rank

(

q0 q1 q2 q3
q1 q2 q3 q4

)

≤ 1 A twisted cubic and a tangent [4]

I3

a = c = 2q23 − 3q2q4 = 0
or f = 4d− e2 = 2q21 − 3q0q2 = 0

or

{

e = 4(a+ d) + c2 − f 2 = 0

(f 2 − 4d)2 − 4c2f 2 = 0

A conic and two lines meeting
as a triangle [2(11)]

IV

a = c = d = e2 − f 2 = 0
or f = d− a = 4d− e2 = 4a− c2 = 0

or

{

e = 0

4d = −4a = 3c2 = 3f 2

A conic meeting two lines
at the same point [(31)]

I4
a = c = ef = 4d− e2 − f 2 = 0

or 4a+ c2 = d = e = f = 0
four lines forming a quad-
rangle [(11)(11)]

I∗−0 a = c = d = e = f = 0
four lines meeting at a
point

Table 5. Singular fibers of a D5 elliptic fibration with four sections. We
use the canonical form given in equation (1.1) and q0, q1, q2, q3, q4 are defined
in equation (4.2) and computed in equation (4.3) : q0 = c2, q1 =

1
4
(4a− c2),

q2 =
2
3
(d− a), q3 =

1
4
(−4d− f 2 + e2) and q4 = f 2.

Since D5 elliptic fibrations admit a wide variety of singular fibers, we then have many
possible ways in which to explore weak coupling limits. A simple example of a weak
coupling limit for D5 elliptic fibrations can be obtained by considering the transition
I2 → III. We realize the weak coupling limit associated with I2 → III via the following
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family:

Yǫ(I2 → III) :

{

x2 − y2 − ǫz(χz + ηw) = 0

w2 − x2 − z
[

hz + (φ1 + φ2)x+ (φ1 − φ2)y
]

= 0.
(1.11)

The discriminant and j-invariant then take the following form at leading order in ǫ:

(1.12) ∆ ∼ ǫ2h2(h− φ2
1)(h− φ2

2)(hη
2 − χ2), j ∼

h4

ǫ2(h− φ2
1)(h− φ2

2)(hη
2 − χ2)

It is easy to see that at ǫ = 0, the first quadric splits into two planes. Each of these two
planes will cut the second quadric along a conic. The two conics intersects at two distinct
points defining in this way a Kodaira fiber of type I2. Such a fiber is semi-stable and
admits an infinite value for the j-invariant. At ǫ = h = 0, the two conics are tangent to
each other and therefore define a Kodaira fiber of type III, which is an unstable fiber with
an undefined j-invariant of type “0

0
”. After a glance at the j-invariant and discriminant

it is immediately clear that at h = 0, we have an orientifold [15, 19]. Taking the double
cover ζ2 = h, we see that the other components h − φ2

1, h − φ2
2 and hη2 − χ2 of the

discriminant split into brane-image-brane pairs in the double cover wrapping smooth loci
mapped to each other by the Z2 involution ζ → ζ . All together we have one orientifold
and 3 brane-image-brane pairs wrapping smooth divisors:

Brane spectrum at weak coupling :



















O (orientifold) : ζ = 0

D1± (brane-image-brane) : φ1 ± ζ = 0

D2± (brane-image-brane) : φ2 ± ζ = 0

D3± (brane-image-brane) : χ± ζη = 0

We note that the orientifold O and the brane-image-braneD1± andD2± are all in the same
homology class: [O] = [D1±] = [D2±]. The orientifold limit we present corresponds to
the transition I2 → III when the brane-image-brane do not coincide with the orientifold.
One can think of each φi (i = 1, 2) as a modulus controlling the separation between the
brane Di+ and its image Di−. When φi = 0, Di± coincides with the orientifold. If we
specialize to the case φ1 = φ2 = 0 we obtain the following family:

Yǫ(I2 → I∗−0 ) :

{

x2 − y2 − ǫz(χz + ηw) = 0,

w2 − x2 − hz2 = 0.
(1.13)

The discriminant and j-invariant then take the following form at leading order in ǫ:

(1.14) ∆ ∼ ǫ2h4(hη2 − χ2), j ∼
h2

ǫ2(hη2 − χ2)

Both brane-image-brane pairs Di± coincide with the orientifold. Interestingly, in that
case, the fiber above h = 0 when ǫ = 0 is not of type III (two rational curves meeting at
a double point) but become the non-Kodaira fiber I∗−0 (four lines meeting at a point).
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In both cases I2 → III and I2 → I∗−0 , since [O] = [D1±] = [D2±] = L and [D3+] =
[D3−] = L2 we expect a universal tadpole relation of the form [19]

ϕ∗c(Y ) = ρ∗
[

4c(O) + c(D3+)
]

.

This relation is proven in section 6.4. Taking the integral of both sides of the Chern class
identity above immediately yields the numerical relation predicted by tadpole matching
between type IIB and F-theory:

χ(Y ) = 4χ(O) + χ(D3+).

When Y is a Calabi-Yau fourfold, this relation ensures that the D3 brane tadpole has the
same curvature contribution in F-theory and in the type IIB weak coupling limit.

1.14. Euler characteristic. In F-theory, a Sethi-Vafa-Witten formula is an expression
of the Euler characteristic of an elliptic fibration in terms of the topological numbers of
its base. Such formulas are particularly useful in the context of F-theory compactified
on a Calabi-Yau elliptic fourfolds since the Euler characteristic of the fourfold enters the
formula for the D3 tadpole. The first example of such a formula was actually obtained by
Kodaira for an elliptic surface. Sethi, Vafa and Witten computed the Euler characteristic
of a Calabi-Yau fourfold in the cases of an E8 elliptic fibration over a smooth base[16]:

Sethi-Vafa-Witten : χ(Y ) = 12c1(B)c2(B) + 360c31(B).

Klemm-Lian-Roan-Yau have obtained general results for Calabi-Yau elliptic fibrations of
type En (n = 8, 7, 6) over a base of dimension d [20]. Aluffi and Esole have obtained more
general relations without assuming the Calabi-Yau conditions for En (n = 8, 7, 6) elliptic
fibrations of arbitrary dimension [19]. These relations express the simple geometric fact
that the Euler characteristic of the elliptic fibration is a simple multiple of the Euler
characteristic of a hypersurface in the base. The following theorem is proven in [19]:

Theorem 1.3. Let ϕ : Y → B be an elliptic fibration of type En (n = 8, 7, 6). Such an
elliptic fibration is the zero section of a line bundle O(m)⊗ π∗S where S is line bundle
on the base and φ : P(E ) → B is the (weighted) projective bundle in which the defining
equation is written. Then

ϕ∗c(Y ) = (10− n)ι∗c(Z),

where Z is a smooth hypersurface in the base defined as the zero locus of a section of the
line bundle S and ι : Z → B is the embedding of Z in B.

Sethi-Vafa-Witten formulas are then immediately obtained by computing the push-
forward of the total Chern class of Y . A similar formula can be written in great generality
for a fibration with generic fiber a plane curve of degree d where the total space of the
fibration is a hypersurface in a P2 bundle [25], see also [29]. For D5 elliptic fibrations we
prove the following result:
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Theorem 1.4. Let ϕ : Y → B be a D5 elliptic fibration, then

ϕ∗c(Y ) =
4L(3 + 5L)

(1 + 2L)2
c(B).

χ(Y ) = −
d
∑

k=1

(−2)k(5 + k)Lkcd−k(B), d = dim B

where L = c1(L ) and χ(Y ) denotes the topological Euler characteristic of Y .

In particular, if the D5 elliptic fibration is a Calabi-Yau fourfold, we recover the result of
Klemm-Lian-Roan-Yau [20] for the Euler characteristic of a D5 elliptically fibered Calabi-
Yau fourfold:

χ(Y ) = 12c1(B)c2(B) + 36c31(B).

2. Geometry of quadric surfaces

In this section, we review some basic facts about the geometry of quadric surfaces. We
will also describe the irreducible curves in such surfaces. We will pay a special attention
to the degeneration of an elliptic curve in a quadric surface. Some important transitions
that we want to describe are the degenerations of an elliptic curve into two conics or into
a twisted cubic and a generator. Such transitions provide a good geometric insight to
understand the systematic classification by Segre symbols as presented in table 4.

Definition 2.1. A quadric is a projective variety defined as the vanishing locus in P
n of a

degree two homogeneous polynomial Q (a quadratic form). The polynomial Q is given in

terms of a (n+1)×(n+1) symmetric matrix Q̂ asQ = xT Q̂x, where xT = [x0 : x1 : · · · : xn]
is the transpose of x (the projective coordinates of Pn). In this notation, we consider x
to be a column vector.

Degeneration of conics and quadric surfaces. The quadric hypersurface Q = xT Q̂x is non-
singular iff the matrix Q̂ is non-singular. The determinant and the minors of the defining
matrix Q̂ can be used to describe the degenerations of the quadric Q. For example, a
quadric in P2 is usually referred to as a conic. It degenerates into a pair of lines if the
determinant of its defining matrix is zero. Furthermore, these two lines coincide if all
the first minors6 of the defining matrix vanish. In the same way, a non-singular quadric
surface in P3 is isomorphic to the Hirzebruch surface F0 = P1 × P1. A quadric surface
degenerates into a cone if the determinant of its defining matrix is zero. The quadric
surface degenerates into a pair of planes if all the first minors of its defining matrix are
zero and the two planes coincide if all the second minors vanish as well.

6 The first minors are the determinants of sub-matrices of Q̂ obtained by removing one row and one
column. See definition 3.4 on page 23.
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Segre embedding and double ruling. A smooth quadric surface in P3 is isomorphic to the
Hirzebruch surface F0 = P1 × P1. It can always be expressed as

x1x4 − x2x3 = 0,

where [x1 : x2 : x3 : x4] are projective coordinates of P3. The isomorphism between a
quadric surface and the Hirzebruch surface F0 is given explicitly by the Segre embedding.
Let us denote the projective coordinates of F0 = P1 × P1 as [s : t] × [u : v]. The Segre
embedding is then

F0 → P
3 : [s : t]× [u : v] 7→ [x1 : x2 : x3 : x4] = [su : sv : tu : tv].

A quadric surface admits two different rulings given by each of the two P1 factors in F0.
Generators of one these rulings is called a line of the quadric surface. A generator for
the first (resp. second) ruling is given by a linear equation in [u : v] (resp. [s : t]) and is
parametrized by [s : t] (resp.[u : v]). Two distinct generators in the same ruling do not
intersect while two distinct generators in different rulings intersect at a unique point.

Picard group and bidegree. The Picard group of a nonsingular quadric surface is Z ⊕ Z

and each of its two generators corresponds to a fiber of one of its two rulings. These two
classes intersect at a point and have zero self-intersection. It follows that curves lying on
a nonsingular quadric surface are classified by their bidegree. A curve of bidegree (p, q)
is given by a bi-homogeneous polynomial of degree p in [s : t] and q in [u : v].

Intersection numbers and genus. A curve of bidegree (p, q) meets a generator of the first
(resp. second) ruling at p (resp. q) points. A smooth curve of bidegree (p1, q1) intersects
a smooth curve of bidegree (p2, q2) at p1q2+p2q1 points. A smooth curve of bidegree (p, q)
has genus g = (p − 1)(q − 1). We see immediately, that rational curves (curves of genus
0) are those with p = 1 or q = 1. All the curves of bidegreee (p, q) with p > 2 or q > 2)
are hyperelliptic (genus 2 or higher) while the curves of bidegree (2, 2) are elliptic (genus
1).

Special curves. Certain curves play a central role in our analysis. A line of P3 contained
in the quadric surface is a rational curve of bidegree (1, 0) or (0, 1). It is called a generator
of the quadric surface since it is a fiber of one of the two rulings of the quadric surface.
A rational curve of bidegree (1, 1) is a conic. A rational curve of bidegree (1, 2) or (2, 1)
is a space cubic also called a twisted cubic. A curve of bidegree (2, 2) is an elliptic curve.

An elliptic curve in a quadric surface has bidegree (2, 2). We want to analyze the
possible degeneration of a regular elliptic curve within its homology class.

Degeneration into Kodaira fibers. If the elliptic curve degenerates without splitting into
several components, it can be a quartic nodal curve (Kodaira fiber I1) or a quartic cuspidial
curve (Kodaira type II). When the elliptic curve degenerates by splitting into multiple
curves, we can use the bidegree to explore the different options. We recall that a curve of
bidegree (1, 1) is a conic, a curve of bidegree (2, 1) or (1, 2) is a twisted cubic and a curve
of bidegree (1, 0) or (0, 1) is a generator. We can see from the relations

(2, 2) = (1, 0) + (1, 2), (2, 2) = (1, 1) + (1, 1),
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Irreducible curves in a quadric surface Bidegree Genus Degree

Generator (line) (1, 0) or (1, 0) 0 1
Conic (1, 1) 0 2

Twisted cubic (=space cubic) (1, 2) or (2, 1) 0 3
Elliptic curve (2, 2) 1 4

General rational curve (1, p) or (p, 1) 0 p+ 1
Hyper-elliptic curve p > 2 and q > 2 g > 1 d > 4

Table 6. Curves in a smooth quadric surface.

that an elliptic curve can degenerate into a generator and a twisted cubic or into two
conics. In both cases, the configuration consists of two rational curves meeting at two
points (Kodaira fiber I2) or at a double point when the two rational curves are tangent
to each other (Kodaira fiber III). Since the twisted cubic could split into a conic and a
line and a conic can split into two lines, the previous system can degenerate further into
a triangle composed of a conic and two generators

(2, 2) = (1, 1) + (1, 0) + (0, 1).

This corresponds to a Kodaira fiber of type I3. If the three curves intersect at a common
point we have a Kodaira fiber of type IV . Since a conic can split into two lines, an elliptic
curve can also degenerate into a quadrangle (Kodaira fiber of type I4) composed of four
generators, two of each rulings:

(2, 2) = (1, 0) + (0, 1) + (1, 0) + (0, 1)

.

Non-Kodaira fibers. Using the intersection of two quadrics in P3 to model an elliptic curve,
there are also several non-Kodaira fibers that can naturally occur. When the elliptic
curve degenerates into two conics, the two conic can coincide giving a double conic. Two
generators of the same ruling in the I4 fiber can coincide giving a chain of rational curves
with multiplicity 1 − 2 − 1. Such a configuration can specialize further into a multiple
fiber of type 2 − 2. Finally if both quadric surfaces degenerates into cones sharing the
same vertex, we can have a fiber composed of four lines meeting at a point. For example,
the configuration I4 composed of four lines forming a quadrangle can degenerate into four
lines meeting at a point ( a 4-star), which we denote by I∗−0 . If some of these four lines
coincide we can have a bouquet of rational curves with multiplicity 1− 1− 2, 2− 2, 1− 3
or 4. The bouquet 2 − 2 could also be obtained in a smooth quadric surface, by taking
the intersection with a double plane tangent to the quadric surface.

Non-equidimensional degeneration. When an elliptic curve is modelled by the intersection
of two quadrics in P

3, the two quadrics could coincide given a double quadric surface as
a singular fiber. A further degeneration would give two intersecting double planes. Two
double planes could also coincide to give a quadruple plane. If the two quadrics identically
vanish, the fiber is the full P3.
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3. Segre’s classification of pencil of quadrics

The classification of pencils of quadrics follows the work of Segre [37] and relies on
algebraic methods developed by Weierstrass in his studies of quadratic forms. We refer to
[38] and chapter XI of [39] for a pedagogic and geometric introduction. A purely algebraic
approach is presented in chapter XIII of the second volume of the classical book by Hodge
and Pedoe[40].

Definition 3.1 (Pencil of quadrics). Given two quadrics Q1 and Q2 in Pn, we can consider
the pencil Q := µQ1+λQ2 where [µ : λ] ∈ P1. We will often express it in terms of r = λ/µ
as Q := Q1 + rQ2. In that case, r = ∞ just means that [µ : λ] = [0 : 1].

The vanishing of the minors of the defining matrix of the pencil Q also have a nice
geometric interpretation given by the following lemmas:

Lemma 3.2 (Characterization of singularities of the complete intersection of two quadrics).
If the intersection of two distinct quadrics Q1 and Q2 has a singular point p, then either

• the determinant of their pencil is identically zero and both quadrics are singular
at p

• or the determinant of their pencil is identically zero and there is a unique quadric
of the pencil that is singular at p

• or the determinant of their pencil is not identically zero and there is a unique
quadric (Q1+r0Q2) that is singular at p and r0 is a multiple root of the determinant

det(Q̂1 + rQ̂2).

In order to describe the singularity of a pencil of quadrics, it is useful to introduce the
following definitions.

Definition 3.3 (s-Cones). A variety C in Pn is said to be a cone with vertex O if for any
point o in O and any point x in C, the line ox joining the two is contained in C. When
a cone admits a vertex which is a linear space of dimension s, the cone is said to be an
s-cone. It is common to abuse the expression by simply calling a 0-cone a cone.

Definition 3.4 (s-minors). A s-minor (or a minor of order s) of a matrix M is the
determinant of a matrix obtained by removing s rows and s columns from M .

When the determinant of the pencil is not identically zero, the pencil is said to be non-
degenerate. The singular fibers defined by non-degenerate pencils can be characterized
using the following lemma:

Lemma 3.5 (s-cones in a pencil of quadrics). The discriminant of a non-degenerate pencil
of quadrics in Pn has in general (n + 1) distinct roots, each corresponding to a 0-cone.
Assume that a root ri of the determinant of the pencil is also a root of all its minors up to
order si (where si ≥ 0) but does not vanish for at least one minor of order (si+1). In such
a case, the quadric is a si-cone with vertex a si-dimensional linear space and directrix a
smooth quadric in a linear subspace of dimension (n− 2− si).
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Lemma 3.5 is central to the classification of pencils of non-degenerate quadrics in Pn.
In order to describe the classification of non-degenerate pencils, we first introduce some
notations that organize the essential data contained in the previous lemma. Given a pencil
of quadrics determined by a matrix Q̂1 + rQ̂2, we denote by ℓij the minimal multiplicity
of a common root ri of the determinant and all the minors of

Q̂1 + rQ̂2

up to order j ≤ (n + 1) . We denote by si ≥ 0 the smallest integer such that ℓi,si = 0.
Following Weierstrass, it is more efficient to introduce the differences eij of successive ℓij:

eij = ℓi,j−1 − ℓi,j ≥ 0, j = 1, · · · , sj.

We have mi =
∑j=sj

j=1 eij and

(3.1) ∆r := det(Q̂1 + rQ̂2) =

p
∏

i=1

(r − ri)
mi =

p
∏

i=1

si
∏

j=1

(r − ri)
eij .

In order to classify pencils of quadrics, following Weierstrass, it is useful to introduce
the concept of elementary divisors and characteristic numbers. Segre symbols provide an
organizational tool for characteristic numbers of a pencil:

Definition 3.6 (Elementary divisors, characteristic numbers and Segre symbols). The
factors (r − ri)

eij are called elementary divisors and the exponents eij are called the
characteristic numbers. They are efficiently organized using Segre symbols:

(3.2) σQ̂1+rQ̂2
= [(e11, · · · , e1,s1) · · · (ep,1, · · · , ep,sp)],

where ei,1 ≤ ei,2 · · · ei,sp. All the characteristic numbers associated with the same root are
enclosed in parentheses while the set of all roots is enclosed in square brackets. The sum
of the characteristic number enclosed in the same parentheses gives the multiplicity of the
corresponding root.

The following theorem provides the classification of non-degenerate pencils of quadrics
using Segre symbols. The proof can be found in [40].

Theorem 3.7 (Characterization of pencils of quadrics by Segre symbols). Two non-
degenerate pencils of quadrics in Pn are projectively equivalent if and only if they have the
same Segre symbol and there is an automorphism of P1 identifying their roots of identical
characteristic numbers.

We review in table 4 the classification of non-degenerate pencils of quadrics in P3.
In order to analyze the singular fibers of D5 elliptic fibrations, we need to determine

when the determinant of the pencil of quadrics has multiple roots and we need to know
what the rank of the matrix associated with the pencil. The determinant of the pencil is
quartic. It admits a double root if and only if its discriminant ∆ vanishes. It admits a
triple root if and only if F and G both vanish. Finally, the quartic admits a quadruple
root if and only if (q4, q3, q2, q1) is proportional to (q3, q2, q1, q0). The quartic has two
double roots if and only if it is the square of a quadric, which implies that q4q

2
1 − q23q0 =
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2q33 + q24q1 − 3q4q3q2 = 0. These classical results are proven for example in chapter 1 of
[41], which are summarized in table 7.

Multiple roots General conditions
One double root ∆ = 0
One triple root F = G = 0

Two double roots q4q
2
1 − q23q0 = 2q33 + q24q1 − 3q4q3q2 = 0

One quadruple root rank

(

q4 q3 q2 q1
q3 q2 q1 q0

)

= 1

Table 7. Multiple roots for the quartic q0 + 4q1r + 6q2r
2 + 4q3r

3 + q4r
4.

4. Analysis of the D5 elliptic fibrations with four sections

The matrix of the pencil describing our canonical choice for a D5 elliptic fibration with
four sections is

(4.1) Q̂1 + rQ̂2 =









1− r 0 0 − r
2
e

0 −1 0 − r
2
f

0 0 r −c
− r

2
e − r

2
f −c −a− rd









.

Computing the discriminant, we get

(4.2) 4det(Q̂1 + rQ̂2) = q0 + 4q1r + 6q2r
2 + 4q3r

3 + q4r
4,

where

(4.3) q0 = c2, q1 =
1

4
(4a− c2), q2 =

2

3
(d− a), q3 =

1

4
(−4d− f 2 + e2), q4 = f 2,

The rank of the matrix (Q̂1 + rQ̂2) of the pencil will be useful to determine the singular
fibers. It is given by the following lemma which is also summarized in table 8. The proof
of this lemma is by direct computation of the cofactors of different order.

Lemma 4.1 (Rank of the pencil of quadrics). The rank of the matrix in equation (4.1)
is never less than 2. The matrix has rank 3 for a general point of ∆ = 0. The rank is 2
when e = 4(a + d) + c2 − f 2 = 0 or a = c = 0 or f = 4d− e2 = 0 and the corresponding
roots are respectively r = 1, r = 0 and 1/r = 0.

Remark 4.2 (Absence of fibers with components of higher multiplicity or dimension).
With our choice of canonical model for a D5 elliptic fibration with four sections, we have
seen that the rank is never lower than 2. It follows from a direct inspection of table 4
that no singular fibers of our model have the Segre symbols [1(111)], [(211)] or [(1111)].
They correspond respectively to a double conic, two double lines and a double quadric
and they all have rank 2 or lower. Moreover, we cannot have type [(22)] since it never
happens that all the minors of order 2 have a double root. The symbol [(22)] corresponds
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Rank of Q̂r General conditions
3 ∆ = 0

2
e = 4(a+ d) + c2 − f 2 = 0 (r = 1)

or a = c = 0 (r = 0)
or f = 4d− e2 = 0 (r = ∞)

0 or 1 never
Table 8. Rank of the pencil of quadrics.

to two lines and a double line. All these fibers ([1(111)], [(211)], [(1111)] and [(22)]) are
those that are of higher dimension or that have components with multiplicities. We see
that our choice of fibration has eliminated them from the spectrum of singular fibers.

4.1. Kodaira symbols vs Segre symbols. Following the previous remark, we are then
left with the 9 symbols [112], [11(11)], [13], [1(21)], [22], [(11)(11)] , [4], [(31)] and [(211)].
Some of these symbols lead to the same type of Kodaira fibers. This is because in P3 a
line, a plane conic and a twisted cubic are all rational curves (birationally equivalent to a
P1):

a line ≃ conic ≃ twisted cubic ≃ P
1.

For example type [22] and type [11(11)] both give Kodaira type I2 (two rational curves
intersecting at two distinct points):

[22], [11(11)] ⇒ I2

For [22] the two rational curves consist of a twisted cubic and a line and for [11(11)], the
two rational curves are both conics. In both cases, when the two rational curves become
tangent to each other, we have a fiber of Kodaira type III. In terms of Segre symbols,
it corresponds to type [1(21)] and [4], respectively for two tangent conics and the twisted
cubic and its tangent line.

[1(21)], [4] ⇒ III.

All the remaining fibers can be simply understood by further degenerations of the two
conics. If one of the conic degenerates into two lines crossing away from the other conic,
we have type Kodaira type I3 (three rational curves intersecting as a triangle). If the two
lines intersect on the conic, we have Kodaira type IV (three rational curves meeting at
a point). If both conics degenerate into two lines, we obtain a fiber of Kodaira type I4
(four rational curves intersecting as a quadrangle).

4.2. Pencils of rank 3. There are four types of pencils of rank 3. Two of them cor-
respond to irreducible fibers: the nodal quartic (Segre symbol [112]) and the cuspidial
quartic (Segre symbol [13]). The two others are composed of two irreducible components
(Segre symbol [22] and [4]): a twisted cubic and a projective line. The different between
the two reducible fibers of rank 3 is the way the two components intersect: when they
intersect at two points, we have the Segre symbol [22] and when the line is tangent to the
twisted cubic we have the Segre symbol [4].
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4.3. Pencils of rank 2. When the quadric Q1 + rQ2 has rank 2, it means that all the
first minors are zero but at least one second order minor is non-zero. When the rank is
two for r = r0, it is useful to use Q1+r0Q2 as one generator of the quadric and Q1 or Q2 as
the other. Since for r 6= 0 we have Qr = 1/rQ1 +Q2 = Q1 + rQ2, therefore we define Q∞

as Q2. Using our choice of elliptic fibration, we have seen that rank(Qr) = 2 if and only
if r = 0 or r = ∞ or r = 1. In these three cases, we can take the defining equation of the
elliptic fibration to be Q1 = Q2 = 0 (for r = 0 or r = ∞) and Q1+Q2 = Q1 = 0 for r = 1.
In all these cases, each of the two planes will cut the second quadric along a conic and the
two conics will intersect at two points. That is type I2 on Kodaira’s list while the Segre
symbol is [11(11)]. If the two intersecting points coincide, it means that the line defined
by the intersecting of the two planes intersects the second conic at double points. This
is only possible if it is tangent to the conic. The corresponding Segre symbol is [1(21)].
The two conics are then also tangent to each other and we have Kodaira type III. If
one of the conic splits into two lines, it means that one of the plane is defined by two
directrices passing by the same point of the second quadric. This corresponds to the Segre
symbol [2(11)] and Kodaira type I3 since the second conic and the two directrices form
a triangle. When the second conic and the two directrices intersect at the same point,
we have the Segre symbol [(31)] and Kodaira type IV (a conic and two lines meeting at
a point). When the two quadrics split into planes, we have the Segre symbol [(11)(11)]:
four screw lines forming a quadrangle. This corresponds to Kodaira type I4. We could
consider cases, where some of these lines coincide, but it does not happen in our case.
The ultimate case, is the singular case where all of the lines intersect at the same point.
This is not degenerate pencil and it is not in Kodaira list. We denote it by I∗0 .

5. Sethi-Vafa-Witten formulas

In F-theory, the Euler characteristic of an elliptic fibration ϕ : Y → B plays an im-
portant role in the cancellation of the D3 tadpole in the case of compactification with
Calabi-Yau fourfolds [16]. It also appears in the condition for the cancellation of anomalies
of six dimensional theories resulting from a compactification of F-theory on a Calabi-Yau
threefold [8]. Using the Poincaré-Hopf theorem, the Euler characteristic of a regular va-
riety can be computed as the degree of its total Chern class χ(Y ) =

∫

c(Y ). As such
integrals are invariant under proper pushforward of the integrand, we can compute the
Euler characteristic Y solely in terms of Chern classes on the base B once a proper push-
forward ϕ∗c(Y ) is computed, i.e.,

χ(Y ) =

∫

Y

c(Y ) =

∫

B

ϕ∗c(Y ).

An expression of the Euler characteristic of the fibration in terms of topological numbers of
the base is commomly referred to as a Sethi-Vafa-Witten formula in the F-theory literature
since these three authors produced the first example of such a formula in their analysis
of elliptically fibered Calabi-Yau fourfolds of type E8 [16]. Klemm-Lian-Roan-Yau have
obtained general results for Calabi-Yau elliptic fibrations of type En (n = 8, 7, 6) over a
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base of arbitrary dimension d [20]. In the case of elliptic fourfolds, we have the following
theorem:

Theorem 5.1. [[16, 20]] Let Y → B an elliptically fibered Calabi-Yau fourfold respectively
of type E8, E7, E6 and D5, then



















E8 : χ(Y ) = 12c1(B)c2(B) + 360c31(B),

E7 : χ(Y ) = 12c1(B)c2(B) + 144c31(B),

E6 : χ(Y ) = 12c1(B)c2(B) + 72c31(B),

D5 : χ(Y ) = 12c1(B)c2(B) + 36c31(B).

It was later emphazised by Aluffi-Esole [18, 19] that it is much more efficient to consider
Sethi-Vafa-Witten formulas for the Euler characteristic as numerical avatars of a much
more general relation valid at the level of the total homology Chern classes. In that form,
the Sethi-Vafa-Witten formula for En (n = 6, 7, 8) fibrations takes a particular compact
form valid over a base of arbitrary dimension and void of any Calabi-Yau hypothesis
[19]. From these relations one can easily glean the simple geometric fact that the Euler
characteristic of En (n = 6, 7, 8) elliptic fibrations is but a simple multiple of the Euler
characteristic of a hypersurface in the base:

Theorem 5.2 ([18, 19]). Let ϕ : Y → B be an elliptic fibration of type En (n = 6, 7, 8).
Such an elliptic fibration is the zero locus of a section of the line bundle O(m)⊗π∗L m on
the total space of the (weighted) projective bundle π : P(E ) → B, where m is respectively
(3, 4, 6) for (E6, E7, E8). Then

ϕ∗c(Y ) = (10− n)
mL

1 +mL
c(B) = (10− n)c(Zm),

where Zm is a smooth hypersurface in the base defined as the zero locus of a section
of the line bundle L m. Moreover, the elliptic fibration is Calabi-Yau, if and only if
c1(L ) = c1(B).

We then immediately arrive at the following

Corollary 5.3. Let ϕ : Y → B be an elliptic fibration of type En (n = 6, 7, 8) over a base
of dimension d. Then

χ(Y ) = (10− n)
d
∑

k=1

(−1)k+1(mL)kcd−k(B),

where m = 3, 4, 6 respectively for the E6, E7 and E8 cases.

5.1. Sethi-Vafa-Witten for D5 elliptic fibrations. In this subsection, we obtain a
Sethi-Vafa-Witten formula at the level of the total Chern class for a smooth D5 elliptic
fibration without any Calabi-Yau hypothesis and over a base of arbitrary dimension. We
start by computing the pushforward of the total Chern class of the D5 elliptic fibration:
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Theorem 5.4. Let ϕ : Y → B be a D5 elliptic fibration and L = c1(L ). Then

(5.1) ϕ∗c(Y ) =
4L(3 + 5L)

(1 + 2L)2
c(B) = 6c(Z2)− c(Z2,2),

where Z2 denotes a divisor in the base of class 2L and Z2,2 denotes a codimension 2
subvariety of the base of class (2L)2.

Proof. Let H = c1(O(1)) and let L denote both c1(L ) and π∗c1(L ). Using adjunction
along with the exact sequences

0 → TP(E )/B → TP(E ) → π∗TB → 0

0 → OP(E ) → π∗
E ⊗ O(1) → TP(E )/B → 0

we get that

i∗c(Y ) =
(1 +H)(1 +H + L)3

(1 + 2H + 2L)2
π∗c(TB) ∩ [Y ]

=
(1 +H)(1 +H + L)3(2H + 2L)2

(1 + 2H + 2L)2
π∗c(B),

where i : Y →֒ P(E ) is the inclusion. Thus

(5.2) ϕ∗c(Y ) = π∗

(

(1 +H)(1 +H + L)3(2H + 2L)2

(1 + 2H + 2L)2

)

c(B)

by the projection formula. Then by the pushforward formula of [25] we get that

(5.3) π∗

(

(1 +H)(1 +H + L)3(2H + 2L)2

(1 + 2H + 2L)2

)

=
4L(3 + 5L)

(1 + 2L)2
= 6 ·

2L

1 + 2L
−

4L2

(1 + 2L)2

from which the theorem follows. �

Exploiting the fact that
∫

Y
c(Y ) =

∫

B
ϕ∗c(Y ), we obtain the following

Corollary 5.5. The Euler characteristic of a smooth D5 elliptic fibration over a base of
dimension d is

(5.4) χ(Y ) = 6χ(Z2)− χ(Z2,2) = −
d
∑

k=1

(−2)k(5 + k)Lkcd−k(B).

In particular

(5.5)











dim B = 1, χ(Y ) = 12L,

dim B = 2, χ(Y ) = 12Lc1 − 28L2,

dim B = 3, χ(Y ) = 12Lc2 − 28L2c1 + 64L3.
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To recover the formula for the Euler characteristic of a D5 Calabi-Yau fourfold as given
in Theorem 5.1 and more generally consider the physical relevance of D5 fibrations, we
need the following

Proposition 5.6. Let ϕ : Y → B be a D5 elliptic fibration. Then Y is Calabi-Yau if and
only if c1(L ) = c1(B).

Proof. Again, using adjunction and the exact sequences listed at the outset of the proof
of Proposition 5.4, we get that

(5.6) KY = π∗(L− c1(B)),

where L = c1(L ). Thus KY = 0 if and only if L = c1(B). �

Using the well known fact any Calabi-Yau fourfold Y has arithmetic genus χ0(Y ) =
2 = 1

12
c1(B)c2(B) (as we will see more explicitly in the next subsection), we obtain the

following simplification of the formula for the topological Euler characteristic of a D5

Calabi-Yau fourfold:

(5.7) χ(Y ) = 288 + 36c1(B)3.

Thus χ(Y ) only depends on the first Chern class of the anti-canonical bundle of B.
Moreover, if c31(B) is odd, χ(Y ) is divisible by 12 but not by 24.

5.2. Todd class of a D5 elliptic fibration. In the case Y is a projective variety, the
following proposition provides a simple expression for the Todd class of an elliptic fibration
of type D5:

Proposition 5.7. Let ϕ : Y → B be a D5 elliptic fibration. Then denoting by Z := Z1

an hypersurface of B such that OB(Z) ∼= L , then :

(5.8) ϕ∗Td(Y ) = (1− e−L)Td(B) = χ(Z,OZ).

Proof. As Todd classes are multiplicative with respect to exact sequences just as Chern
classes are, we proceed as in the proof of Proposition 5.4. Similar considerations yield

i∗Td(Y ) =
H(H + L)3(1− e(−2H−2L)2)

(1− e−H)(1− e−H−L)3
π∗Td(B)

where i : Y →֒ P(E ) is the inclusion. So again, computing ϕ∗Td(Y ) amounts to computing

π∗

(

H(H + L)3(1− e(−2H−2L)2)

(1− e−H)(1− e−H−L)3

)

= (1− e−L)

The first equality of the proposition follows by the pushforward formula of [25]. Keeping
in mind that L = [D], the second equality (1 − e−L)Td(B) = χ(Z,OZ) follows from
the Hirzebruch-Riemann-Roch theorem. More precisely, the structure sheaf sequence
0 → OB(−Z) → OB → OZ → 0 gives a locally free resolution of OY . The Hirzebruch-
Riemann-Roch formula then gives

χ(Z,OZ) = χ(B,OB)− χ(B,O(−Z)) = Td(B)− e−[Z]Td(B) = (1− e−L)Td(B).
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�

Remark 5.8. The relation we obtained for the pushforward of the Todd class of a D5

elliptic fibration actually is valid for the En (n = 6, 7, 8) cases as well, which can be used
to check directly that c1(B)c2(B) = 24 for a Calabi-Yau fourfold of type D5, E6, E7 and
E8. In the appendix A, we present a more general derivation valid for any flat genus-g
curve fibration using the Grothendieck-Riemann-Roch theorem, from which the D5, E6,
E7 and E8 cases will be but a corollary.

5.3. Relations for the Hodge numbers. Again, using the pushforward formula of [25]
and the fact that c1(B)c2(B) = 24 for the base of a Calabi-Yau En fourfold, one easily
obtains Sethi-Vafa-Witten formulas for the arithmetic genera χ1 and χ2 of a Calabi-Yau
En fourfolds thus giving us linear relations on the non-trivial Hodge numbers of such a
fourfold Y by Hirzebruch-Riemann-Roch:



















χ1(D5) = −40− 6c1(B)3, χ2(D5) = 204 + 24c1(B)3,

χ1(E6) = −40− 12c1(B)3, χ2(E6) = 204 + 48c1(B)3,

χ1(E7) = −40− 24c1(B)3, χ2(E7) = 204 + 96c1(B)3,

χ1(E8) = −40− 60c1(B)3, χ2(E8) = 204 + 240c1(B)3,

(5.9)

where
χ1(Y ) = h1,2(Y )− h1,1(Y )− h1,3(Y )

and
χ2(Y ) = h2,2(Y )− 2h1,2(Y )

by Hirzebruch-Riemann-Roch. We note that since Y is a Calabi-Yau fourfold, we have
h1,0(Y ) = h2,0 = h3,0 = h4,0(Y ) − 1 = 0 and therefore h1,1(Y ) = b2(Y ) and 2h1,2(Y ) =
b3(Y ) (where bi(Y ) denotes the ith Betti number). As such, all that is needed to compute
the Hodge numbers of such a fibration are its second and third Betti numbers along
with the formulas above. So if the second and third Betti numbers can be computed as
functions of topological numbers of the base B, all non-trivial Hodge numbers would then
be dependent solely on the topology of the base.

6. Weak coupling limits

The weak coupling limit of F-theory was first introduced by Sen[15], establishing a clear
connection between F-theory and type IIB orientifold theories. The procedure involved
smoothly deforming the F-theory elliptic fibration until all the fibers become singular. In
particular, the fibers consisted only of nodal curves over a dense open subset U of the
base B, and cuspidal curves on the (closed) complement B r U which was where the
type IIB orientifold was to be placed. As nodal curves have j-invariant of ∞ (which are
a special case of semi-stable curves in algebro-geometric parlance), and cuspidal curves
have an undefined j-invariant of ”0

0
” (which are said to be unstable curves), in [19] a

purely geometric description of a weak coupling limit for an arbitrary elliptic fibration
was abstracted from the special case of Sen’s limit by choosing a specialization from a
semi-stable fiber to an unstable fiber, and then deforming the elliptic fibration until the
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stable fiber lies over a dense open subset of the base and the unstable fiber lies over
the complement. Thus the more singular fibers an elliptic fibration admits the more
possibilities you have to choose from for semi-stable to unstable specializations, and so
more potential weak coupling limits to explore (for a detailed description of this program,
we again refer the interested reader to[19]). D5 fibrations with their rich structure of
singular fibers admit a total of ten stable to semi-stable transitions, providing potentially
ten avenues in which to pursue weak coupling limits. In particular, in the case of D5 we
obtain for the first time a weak coupling limit involving a non-Kodaira fiber, and show
that it leads to a type IIB orientifold theory with three (distinct) pairs of brane-image-
branes. We also verify the “universal tadpole relation” corresponding to this type IIB
configuration, which is a Chern class identity involving the Chern classes of the elliptic
fibration, and Chern classes of divisors in the base corresponding to the orientifold and
D-branes. As in [18, 19], the identity holds without any Calabi-Yau hypothesis and
over a base of arbitrary dimension. Furthermore, we show that the type IIB orientifold
configuration with three brane-image-brane pairs is the only configuration satisfying the
universal tadpole relation in the D5 case.

6.1. Sen’s limit. In the seminal work of Sen[15], the weak coupling limit of F-theory was
first introduced as an orientifold limit of a smooth elliptic fibration in Weierstrass form
(or an E8 fibration):

Y : y2 = x3 + fxz2 + gz3

Here, Y sits in a P
2-bundle and f and g are appropriate sections of line bundles over

the base. Such a fibration has nodal fibers over a generic point of the discriminant
hypersurface ∆(:= 4f 3 + 27g2) = 0 and the nodal curve specializes to a cusp over f =
g = 0. We note that the defining equation of the discriminant locus has the geometry of a
cusp. To obtain a degenerate fibration in which all fibers are singular (and so realize the
type IIB scenario), we parameterize the discriminant using the traditional normalization
of the cusp:

h 7→ (f, g) = (−3h2,−2h3),

leading us to define the degenerate fibration

Yh : y2 = x3 − 3h2x− 2h3.

The fibers of Yh over points O : (h = 0) are all cuspidal type II fibers (and so unstable),
and the fibers over BrO are all nodal type I1 fibers (and so semi-stable). To obtain Yh as
a smooth deformation of Y , we perturb f and g by adding independent sections multiplied
by a (complex) deformation parameter ǫ to obtain a family of generically smooth fibrations
Yh(ǫ) in such a way that Yh is the flat limit of Yh(ǫ) as ǫ→ 0:

(6.1) Sen’s Weak coupling limit : (I1 → II)











Yh(ǫ) : y
2z = x3 + fxz2 + gz3

f = −3h2 + ǫη

g = −2h3 + ǫhη + ǫ2χ.
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We can associate with this limit a double cover of the base

(6.2) X : ζ2 − h = 0,

which is branched over the hypersurface O : h = 0. The discriminant and j-invariant take
the following form at leading order in ǫ:

(6.3) ∆ ∼ ǫ2h2(η2 + 12hχ), j ∼
h4

ǫ2(η2 + 12hχ)
.

We then pullback the limiting discriminant ∆h : h2(η2 + 12hχ) = 0 via the projection
ρ : X → B of the double cover to obtain divisors in X corresponding to the orientifold
and the D7-brane:

(6.4) ρ∗∆h : ζ4(η2 + 12ζ2χ) = 0.

The orientifold is then located at O : ζ = 0 and the D7-brane wraps the locus D :
η2 + 12ζ2χ = 0. Tadpole matching between F-theory and type IIB predicts that

(6.5) 2χ(Y ) = 4χ(O) + χ(D),

where the LHS of equation (6.5) corresponds to the F-theory tadpole and the RHS of (6.5)
corresponds to the type IIB tadpole. As D has generalized Whitney umbrella singularities
(in [18] it was descriptively referred to as a Whitney D7-brane), its Euler characteristic
must be defined in an appropriate manner, as singular varieties admit several general-
izations of topological Euler characteristic. Let π : D → B be the normalization of D
composed with the projection to B and let S : ζ = η = χ = 0 be the pinch locus of D in
X . Then taking

(6.6) χ(D) := χ(D)− χ(S)

turns out to be a notion of Euler characteristic which satisfies (4.5), as shown in [18].
Furthermore, it was also shown in [18] that the tadpole relation holds at the level of total
homology Chern classes (with pinch locus correction as in 6.6), without any Calabi-Yau
hypothesis on Y and over a base of arbitrary dimension. Indeed, the physical considera-
tions leading to (6.6) provide a powerful ansatz from a purely geometric perspective, as
it is not at all obvious why such a general Chern class identity should hold.

6.2. Geometric generalization. Weak coupling limits were generalized to other fibra-
tions not in Weierstrass form such as E7 and E6 fibrations in [19]. In the weak coupling
limit, the discriminant factorizes as follows

∆ = h2+n∆1∆2 · · ·∆k, J ∼ h4−n/(∆1∆2 · · ·∆k), 0 ≤ n ≤ 4.

and h is a section of L 2. One can also define the double cover the base branched at h = 0.
This is the variety ι : X → B such that X : ζ2 = h. This is known as the orientifold limit
of F-theory. The orientifold is the invariant locus of X under the involution ζmapsto− ζ .
This is the divivor ζ = 0 in the double cover and it projects to h = 0 in the base. If n = 0
the spectrum is composed of an orientifold and D7-branes wrapping the divisors ∆i. If
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n > 0, we have a bound state of an orientifold and n brane-image-brane pairs wrapping
the same divisor ζ = 0 in the double cover and there are also branes wrapping the divisors
∆i. The divisors can take some particular shape:

(1) An invariant brane When ∆i does not depend on h.
(2) A Whitney brane When ∆i : η2 − hχ = 0, it has the structure of a cone.

But in the double cover, its pullback has the structure of a Whitney umbrella
ρ∗∆ : η2 − ζ2χ = 0. Such a divisor has double point singularities along the
codimension one loci η = ζ = 0. The singularity enhances to a cuspidial-like
singularity at the codimension two loci ζ = η = χ = 0. In F-theory, the Euler
characteristic of such a singular divisor is defined in [17, 18]. One first normalize
the divisor and then takes its stringy Euler characteristic.

(3) A brane-image-brane ∆i : η
2−hψ2 = 0. This is a specialization of the Whitney

brane with χ = ψ2. In such a case, wehen we go to the double cover, we have a
brane-image-brane pair ϕ∗∆i = Di+ +Di− with Di± : η ± ζψ = 0. Such a brane-
image-brane pair is not in the same homology class as the orientifold. If ∆i =
h − η2, we obtain in the double cover a brane-image-brane pair ρ∗∆ : Di+ +Di−

with Di± : η ± ξ = 0. Such a brane-image-brane is in the same homology class as
the orientifold and coincide with it when η = 0.

Given a weak coupling limit, the physics of D-branes requires that

8[O] =
∑

k

[Dk].

This condition is naturally satisfied with an elliptic fibration since ∆ is a section of L 12.
Moreover, compairing the contribution of curvature to the D3 tadpole in type IIB and in
F-theory, we have the tadpole relation

2χ(Y ) = 4χ(O) +
∑

k

χ(Dk).

In the case of En (n = 8, 7, 6), this physical requirement was shown in [18, 19] to be
related to a more general relation true at the level of the total Chern class:

2ϕ∗c(Y ) = 4ρ∗c(O) +
∑

k

ρ∗c(Dk).

In the next section, we will present the first example of a weak coupling limit of a D5

elliptic fibration.

6.3. A D5 limit. D5 elliptic fibrations with four sections have a total of 8 types of
singular fibers with a rich structure of enhancement. It is easy to see (e.g. by glancing
at Figure 1) that they naturally lead to 4 + 3 + 2 + 1 = 10 different types transitions of
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stable to semi-stable fibers:

I1 → II, III, IV, I∗−0 ,(6.7)

I2 → III, IV, I∗−0 ,(6.8)

I3 → IV, I∗−0 ,(6.9)

I4 → I∗−0 .(6.10)

As we have expressed the fiber by their Kodaira notation, it is important to keep in
mind that some of these Kodaira fibers (namely, I2 and III) corresponds to several non-
equivalent Segre symbols.

We will present a limit defined by the specializtion I2 → III, which enhances further
to an I∗−0 fiber, i.e., the non-Kodaira fiber consisting of a bouquet of four P1s meeting
at a point. A fiber of type I2 can be realized by two conics intersecting at two distinct
points (Segre symbol [11(11)]) or by a twisted cubic meeting at secant [22]. In the same
way, a fiber of type III can be realized by two conics tangent at a point (Segre symbol
[1(21)]) or by a twisted cubic and a tangent line (Segre symbol [4]). In the case at hand,
the fiber I2 is realized by two conics meeting at two points and the fiber III is realized
when the two conics become tangent to each other. To be specific, the two conics will be
obtained by allowing the quadric Q1 to degenerate into two planes. The intersection of
each of these planes with Q2 will give one of the two conics. The intersection of the two
planes is a line which generally intersects the second quadric at two points, which are the
points of intersection of the two conics. However, when the line becomes tangent to the
second quadric surface, the two conics are tangent to each other and gives a fiber of type
III (Segre symbol [1(21)]). The degeneration can be simply expressed by the following
conditions

a = ǫχ, c = ǫη d = h, e = φ1 + φ2, f = φ1 − φ2,

where ǫ is the deformation parameter. We obtain the following family of fibrations:

Yh(ǫ) :

{

x2 − y2 − zǫ(χz + ηw) = 0

w2 − x2 − z
[

hz + (φ1 + φ2)x+ (φ1 − φ2)y
]

= 0.
(6.11)

In the flat limit of Yh(ǫ) as ǫ → 0, we obtain a degenerate fibration Yh, whose fibers
over B r (h = 0) are of type I2 (realized by the Segre symbol [11(11)]: two conics
meeting transversally at two points), the fibers above O : (h = 0) are generically of
type III (realized by the Segre symbol [1(21)]: two conics tangent at a point), and the
fiber enhances further (inside O) to an I∗−0 fiber (i.e., the non-Kodaira fiber consisting
of a ”bouquet” of four P

1s meeting at a point) when φ1 = φ2 = 0, satisfying necessary
conditions for a weak coupling limit as established in [19]. The discriminant and j-
invariant then take the following form at leading order in ǫ:

(6.12) ∆ ∼ ǫ2h2(h− φ2
1)(h− φ2

2)(hη
2 − χ2), j ∼

h4

ǫ2(h− φ2
1)(h− φ2

2)(hη
2 − χ2)

.
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We see from this expression that as ǫ → 0, the j-invariant will diverge to infinity, which
ensures that the generic fibers will be semi-stable.
This tells us that h is the location of an orientifold in the base and (h− φ2

1), (h− φ2
2)

and (hη2 − χ2) will lead to brane-image-brane pairs in a double cover of the base. We
then consider the double cover of the base ρ : X → B, where X is a hypersurface in the
total space of L given by

X : ζ2 = h,

where ζ is a section of L . The fact that j ∼ h4 tells us we have a pure orientifold residing
at O : (ζ = 0). To locate the varieties upon which the D7-branes wrap, we pullback the
limiting discriminant ∆h : (h2(h−φ2

1)(h−φ2
2)(hη

2−χ2) = 0) via ρ to obtain the location
of the D7-branes:

ρ∗∆h : ζ4(ζ + φ1)(ζ − φ1)(ζ + φ2)(ζ − φ2)(ζη + χ)(ζη − χ) = 0.

We then see that we have three pairs of brane-image-branes intersecting the orientifold
O : (ζ = 0):

D1± : ζ ± φ1 = 0, D2± : ζ ± φ2 = 0, D3± : ζη ± χ = 0.

We note that D1± and D2± are in the same homological class as the orientifold O while
D3± are in the class 2[O]. Tadpole matching between F-theory and type IIB predicts the
following relation

(6.13) 2χ(Y ) = 4χ(O) + 4χ(D) + 2χ(D3) = 8χ(O) + 2χ(D3),

where D and D3 are divisors in X of class [D] = [D1±] = [D2±] = L and [D3] = [D3±] =
2L. Not only does relation (4.12) indeed hold, we show in the next subsection that relation
(4.12) can be obtained by integrating both sides of the following Chern class identity:

(6.14) ϕ∗c(Y ) = ρ∗(4c(O) + c(D3)).

6.4. Universal tadpole relations. As the Chern class identity (4.13) holds without
any Calabi-Yau hypothesis on our D5 elliptic fibration ϕ : Y → B or any restrictions on
the dimension of B, in [19], such an identity was coined a “universal tadpole relation”.
We classify such universal tadpole relations corresponding to configurations of smooth
branes arising from the weak coupling limit of a D5 model and find that there is only one
such relation, namely (4.13), corresponding to an orientifold and three brane-image-brane
pairs. Intersetingly, in [19], it was shown that E7 fibrations admit a unique universal
tadpole relation corresponding to an orientifold and one brane-image-brane pair and E6

fibrations admit a unique universal tadpole relation correponding to an orientifold and two
brane-image-brane pairs. The fact that D5 fibrations seem to stand next in line to the E7

and E6 cases respectively as they admit a unique universal tadpole relation corresponding
to an orientifold and three brane-image-branes is compelling, as E7, E6 and D5 fibrations
admit 2 = 1 + 1, 3 = 2 + 1 and 4 = 3 + 1 sections respectively.
A universal tadpole relation for an elliptic fibration is generically of the form:
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(6.15) 2ϕ∗c(Y ) = ρ∗(
∑

i

c(Di)),

where the Dis are divisors of class aiL in X corresponding to orientifolds and/or D-
branes, and L = ρ∗c1(L ). As the (pullback) of the discriminant locus is of class 12L, we

necessarily have
∑

ai = 12. Now a general divisor D of class aL (a ∈ Z) has Chern class

(6.16) c(D) =
aL

1 + aL
c(X) =

aL

1 + aL

(

1 + L

1 + 2L
ρ∗c(TB) ∩ [X ]

)

,

thus

(6.17) ρ∗c(D) =
aL(1 + L)

(1 + aL)(1 + 2L)
c(TB) ∩ 2[B] =

2aL(1 + L)

(1 + aL)(1 + 2L)
c(B)

by the projection formula. Since we know ϕ∗c(Y ) by Proposition 5.4, a universal tadpole
relation (after canceling factors of c(B)) for a D5 model then takes the following form:

(6.18) 2 ·
4L(3 + 5L)

(1 + 2L)2
=

1 + L

1 + 2L

∑

i

2aiL

1 + aiL
.

To classify all such relations (if they exist), we retrieve the 77 partitions of the number
12 and simply plug them into (4.17) and hope for the best. It turns out that only one
partition does the job, namely 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2, which corresponds
precisely to the universal tadpole relation arising from the weak coupling limit we found
in the previous subsection ([O] = [D] = L and [D3] = 2L):

(6.19) 2ϕ∗c(Y ) = ρ∗(4c(O) + 4c(D) + 2c(D3)).

Integrating both sides of (4.18) yields the numerical relation (4.12) predicted by tadpole
mathcing between F-theory and type IIB. We record our findings in the following

Proposition 6.1. Let ϕ : Y → B be a D5 elliptic fibration. Then Y admits a unique
universal tadpole relation corresponding to the Chern class identity (4.18). Futhermore,
the universal tadpole relation is realized via the specialization I2 → III.

Remark 6.2. With the exception of the four transitions I1 → (II, III, IV, I∗−0 ), all other
transitions are specializations of I2 → III. So we can expect to find other weak coupling
limits satisfying the tadpole condition as well. We present some examples for each case.
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6.5. A Weak coupling limit with a non-Kodaira fiber. By specializing the limit
I2 → III, we can define a configuration corresponding to the transition I2 → I∗−0 . The
specialization is φ1 = φ2 = 0, and gives

I2 → I∗−0 : ∆ ∝ h4ǫ2(hη2 − χ2), j ∼
h2

ǫ2(hη2 − χ2)
.

We see that two of the brane-image-brane pairs that we had in the case I2 → III are now
wrapping the same divisor as the orientifold. For that specialization, in the weak coupling
limit ǫ→ 0, the generic fiber is of type I2 and it specializes to a fiber of type I∗−0 over the
orientifold. All together we have an orientifold and 2 pairs of brane-image-branes on top
of it and an additional pair of brane-image-brane on ξη ± χ = 0.
If we let only one of the two brane-image-brane pairs to coincide with the orientifold

(say we specialize to φ1 = 0), we have a transition I2 → IV .

I2 → IV : ∆ ∝ h3ǫ(h− φ2
1)(hη

2 − χ2), j ∼
h3

ǫ2(hη2 − χ2)
.

At weak coupling we have a brane-image-brane pair on top of the orientifold (D1± =
O : ξ = 0) and two other brane-image-brane pairs, namely D2± : ξ ± φ2 = 0 and
D3± : ξη ± χ = 0

6.6. Other limits.

6.6.1. I2 → III. We will have the same discussion if we consider the following limits
which are also of the type I2 → III, but involve different choices of what the rational
curves that form the fiber I2 are:



















a = 1
4e

2 − h
4 ,

c = 1
2(φ1 + φ2),

d = 1
4e

2 + ǫχ,

e = 1
2(φ1 − φ2), f = 2ǫη,



















a = 1
4(f

2 − c2 − 4d) + ǫ
2χ,

c = 1
2(φ1 + φ2),

d = 1
4(c

2 + 2f2 − h),

e = ǫη, f = 1
2(φ1 − φ2)

(6.20)

Both lead to the same limit as before

∆ ∝ h2ǫ2(h− φ2
1)(h− φ2

2)(hη
2 − χ2), j ∼

h4

ǫ2(h− φ2
1)(h− φ2

2)(hη
2 − χ2)

.

We can then perform specialization to I2 → IV and I2 → I∗−0 .

6.7. Weak coupling limits, an overall look. The brane configurations at weak cou-
pling limit satisfies the condition 8[O] =

∑

[Di] and the tadpole matching conditions
that compare the contribution of curvature in type IIB and in F-theory: 2χ(Y ) =
4χ(0) +

∑

iDi. When this condition hold, the G-flux in F-theory should be accounted
completely by the D7-brane fluxes in the weak coupling limit. Fluxes are present in the
orientifold limit for example in presence of a brane-image-brane away from the orientifold.
A brane-image-brane coincide with the orientifold only if they are in the same homology
class. It is interesting to look at the results of the weak coupling limits of D5 fibrations in
the continuity of the weak coupling limits of En (n = 8, 7, 6) fibrations. One will see that
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pattern. For example, a En (n = 8, 7, 6, 5 and E5 = D5) elliptic fibration can describe up
to (n−8) brane-image-brane pairs, it has (9−n) sections and admits singular fibers with
up to (9− n) components. In particular, one of them is a fiber of type I9−n. Their weak
coupling limits that satisfies the tadpole condition are:

Model Type Whitney brane Brane-Image-brane
E8 I1 → I2 8[O]
E7 I1 → II 6[O] [O]
E7 I2 → III 4[O]
E6 I2 → III [O], 3[O]
E6 I2 → IV [O], 3[O]
D5 I2 → III [O], [O], 2[O]
D5 I2 → IV [O], [O], 2[O]
D5 I2 → I∗−0 [O], [O], 2[O]

Table 9. Geometric weak coupling limit and spectrum. In this table [O]
is the homology class of the orientifold in the double cover of the base of
the elliptic fibration. In the two column, the branes are identified by their
homology class. The Whitney branes are always singular with an equation
of the type η2−ζ2χ = 0. The brane-image-brane are obtained as the factors
of a Whitney brane with χ = ψ2. So they are given by η ± ηψ = 0. When
ψ is just a constant, the brane-image-brane pair is constituted of branes in
the same homology class as the orientifold.

E8 (I1 → II): This is the original example of a weak coupling limit obtained by Sen. The con-
figuration satisfying the tadpole condition corresponds to an orientifold and a
Whitney brane D (in the homology class 8[O]). To satisfy the tadpole condition,
the singularities of the Whitney brane have to be taken into account. The appro-
priate way to do it is to introduce new Euler characteristic χO(D) [17, 18]. The
tadpole condition is 2χ(Y ) = 4χ(O) + χo(D).

E7 (I2 → III): An orientifold and a brane-image-brane pair D± with each branes in the homol-
ogy class 4[O]. Each brane is smooth and the configuration satisfies the tadpole
condition. This is the only configuration that satisfies the tadpole relation with
only smooth branes. The tadpole condition is χ(Y ) = 2χ(O) + χ(D).

E7 (I1 → II): This is the another configuration that satisfies the tadpole condition for a E7

elliptic fibration. It corresponds to the transition of a nodal curve to a cusp,
just like the original Sen’s limit. However, with the E7 fibration, it leads to an
orientifold O, a brane-image-brane pairD1± with each brane in the same homology
class as the orientifold ([D1] = [O]) and a Whitney brane D2 in the homology class
[D2] = 6[O]. The tadpole condition is 2χ(Y ) = 4χ(O) + 2χ(D1) + χo(D2).

E6 (I2 → III): The fiber I2 is constituted by a conic in P2 and a secant line. The fiber III is
the limit in which the secant line becomes tangent to the conic. At the weak
coupling limit, we get an orientifold and two brane-image-branes pairs, one pair is
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constitutes of two branes D1± in the same homology class as the orientifold and
the other pairs involving two branes D2± in the homology class [D2] = 3[O]. The
tadpole condition is χ(Y ) = 3χ(O) + χ(D2).

E6 (I2 → IV ): This is the specialization of the previous configuration when over the orientifold,
the fiber III is replaced by a fiber IV obtained by a degeneration of the conic
into two lines. Physically, this happens when the brane-image-brane pair D1±

composed of two branes in the same homology class as the orientifold coincide
with the orientifold. The tadpole condition is unchanged χ(Y ) = 3χ(O) + χ(D2).

D5 (I2 → III) : This configuration was obtained by using two conics meeting at two points and
becoming tangent to each other in the orientifold limit. In view of the many
ways we can define the two conics there are at least 3 different ways to obtain
this configuration. It leads to an orientifold and three brane-image-branes pairs
D1±, D2± and D3± with D1± and D2± constituted of branes in the same homology
class as the orientifold and the third pair is constituted of branes D3± in the
homology class [D3] = 4[O]. The tadpole relation is χ(Y ) = 4χ(O) + χ(D3).

D5 (I2 → IV ) : This is a specialization of the previous configuration when one of the brane-
image-brane pairs D1± or D2± coincides with the orientifold. The fiber IV is
constituted by a conic and two lines all meeting at a common point. It can be
seen as the limit of the previous case when over the orientifold, one of the conic
splits into two lines. The tadpole condition is unchanged: χ(Y ) = 4χ(O)+χ(D3).

D5 (I2 → I∗−0 ) : This is the first example of a weak coupling limit involving a non-Kodaira fiber. It
is a specialization of the previous configuration when the two brane-image-branes
pairs D1± and D2± which are in the same cohomology class as the orientifold
actually coincide with it. The tadpole condition is unchanged: χ(Y ) = 4χ(O) +
χ(D3).

7. Conclusion

In this paper, we have studied the structure of elliptic fibrations ϕ : Y → B of type
D5 with a view toward F-theory. The generic fiber of a D5 elliptic fibration is a smooth
quartic space curve of genus one modeled by the complete intersection of two quadrics in
P3. In the canonical model we consider, the elliptic fibration is endowed with a divisor
intersecting every fiber at four distinct points. These four points defines naturally four
(non-intersecting) sections of the elliptic fibration.
A generic smooth D5 elliptic fibration admits a rich spectrum of singular fibers com-

posed at most of four intersecting rational curves as summarized in figure 2. The classi-
fication of these singular fibers is a well studied problem of classical algebraic geometry
that is more efficiently reformulated in terms of pencils of quadrics in P3 and their corre-
sponding Segre symbols as reviewed in section 3 and sumarized in table 4. A D5 elliptic
fibration admits fibers that are not in the list of Kodaira. We have reviewed them in
figure 3. These non-Kodaira fibers are always located over loci in codimension two or
higher in the base. In our canonical model, there is only one non-Kodaira fiber, namely
the fiber that we call I∗−0 composed of four lines meeting at a common point. We have
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also computed several topological invariants of D5 elliptic fibrations like the Euler char-
acteristic, their total Chern class and the Todd class over a base of arbitrary dimension
void of any Calabi-Yau hypothesis.

We have also analyzed birational equivalent models of the D5 elliptic fibration leading
to E6 elliptic fibrations and a modified version of the E7 elliptic fibration. While the E6

birational equivalent model has only its usual I1, II, I2, III and IV Kodaira singular fibers
[19], the E7 birational equivalent model admits on top of its usual I1, II, I2, III Kodaira
fiber (see [19]) an additional fiber whih is not in Kodaira list and which is composed of
a double conic. An E7 model can always be expressed as a D5 elliptic fibration with one
of the two quadric surface being rigid. In that framework, the non-Kodaira singular fiber
corresponds to a Segre symbol [1(111)] (see figure 3). The non-Kodaira fiber I∗−0 of our
canonical D5 model is mapped through the birational equivalence to a fiber of type IV of
the E6 model and the double conic of the new E7 model. This illustrates how birational
equivalent models can have different fiber structure.

The classification of the singular fibers of a D5 elliptic model can be used to define
interesting gauge theories. This will require specializing the model in order to have certain
singular fibers with multiple nodes appearing over codimension-two loci in the base. If
the base is at least of dimension two, this will automatically implies the presence of
enhancement of singular fibers in codimension two and three. Such enhancemements do
not necessary increase the rank of the fiber as can be seen by analyzing figure 2. In view of
the singular fibers, the candidate non-Abelian gauge groups are SU(2), SU(3) and SU(4).

The list of singular fibers can also be used to determine different weak coupling limits
for D5 elliptic fibrations. Indeed, weak coupling limits are characterized by a transition
from a semi-stable fiber to an unstable one [19]. In the case of our canonical model, such
transitions can be seen in figure 2. Following the point of view started in [18, 19], we work
over a base of arbitrary dimension and without imposing the Calabi-Yau condition. In
this regard, one can consider the physics of F-theory as an inspiration to study surprising
aspects of the geometry of elliptic fibrations that would be hard to think of otherwise. It
is an impressive fact that conditions that are used to understand the physics of elliptic
fibered Calabi-Yau fourfolds and threefolds and the properties of seven branes end up
being true for arbitrary basis and without actually requiring the Calabi-Yau condition.
The most fascinating example is probably the geometry of the weak coupling limit of D5

elliptic fibrations.
In the D5 case, we have presented explicit weak coupling limits leading to a type IIB

orientifold theory with a Z2 orientifold and three brane-image-brane pairs, two of which
are in the same homological class as the orientifold. We have shown how to construct
cases for which a brane-image-brane pair coincides with the orientifold, and in the extreme
case where both of the brane-image-brane pairs coincide with the orientifold we obtain
a non-Kodaira fiber I∗−0 on top of the orientifold. In every case, we have shown that a
universal tadpole relation holds for the defining elliptic fibration over a base of arbitrary
dimension without imposing the Calabi-Yau condition. Tadpole conditions in F-theory
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come from equating the curvature contribution of the D3 branes in type IIB and in F-
theory. When tadpole relations are satisfied, the G flux in F-theory corresponds to the
flux in the type IIB orientifold theory. In recent works on phenomenological applications
of F-theory, models admitting a non-trivial Abelian sector in their gauge group are the
center of much attention. Such models are expected to be generated by brane-image-brane
configurations leaving in the same homology class as the orientifold.
There are many interesting aspects of the physics of D5 elliptic fibrations that we

have not discussed in this paper and that we hope to address soon. For example, the
specialization to non-trivial Mordell-Weil groups has interesting connections with extra
U(1)s in the gauge group. As D5 elliptic fibrations admit multiple sections, one can easily
model non-Abelian gauge theories with a non-Abelain sector of type SU(4) × SU(2). It
would be interesting to study these gauge theories in detail for theories both in four and
six space-time dimensions. In the case of a compactification to a six dimensional theory,
the cancellation of anomalies in the presence of a non-trivial Mordell-Weil group would be
an interesting case to analyze in detail. D5 elliptic fibrations provide simple yet non-trivial
models to study such gauge theories.
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Appendix A. Pushforward of the Todd class

In this appendix, we compute the pushforward of the Todd class of a fibration

ϕ : Y → B

of genus g curves via Grothendieck-Riemann-Roch. Though we have computed this more
directly in the case of a D5 elliptic fibration, the power of Grothendieck-Riemann-Roch
will enable us to compute the pushforward of the Todd class for any genus-g curve fibration
(modulo assumptions made below) ϕ : Y → B from which the case of a D5 fibration is but
a corollary. A special role will be played by the relative dualizing sheaf of the fibration
ωY/B.
To invoke Grothendieck-Riemann-Roch (as well as Grothendieck duality), we assume

that the fibration ϕ : Y → B is given by a map that is both proper (i.e. closed varieties
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map to closed varieties) and flat (which ensures that all fibers are of constant dimension
and constant arithmetic genus). The varieties Y and B are assumed to be smooth. We
first recall Grothendieck-Riemann-Roch:

Theorem A.1 (Grothendieck-Riemann-Roch). Let ϕ : Y → B be a proper map between
smooth varieties and F be a coherent sheaf on Y . Then

ϕ∗

(

ch(F) Td(Y )
)

= ch
(

ϕ! F
)

Td(B),(A.1)

where Td(X) is Todd class of a variety X and ch(F) is the Chern character of the sheaf
F .

We will prove the following

Theorem A.2 (Todd class of a genus g curve fibration). Let ϕ : Y → B be a proper
and flat morphism between smooth projective varieties such that the generic fiber of ϕ is
a curve of genus g. Then

ϕ∗Td(Y ) =
(

1− ch(ϕ∗ω
∨
Y/B)

)

Td(B),(A.2)

where ωY/B := ωY ⊗ ϕ∗ω∨
B is the relative dualizing sheaf of the fibration.

Proof. As we wish to compute ϕ∗Td(Y ) for Y fibration of genus-g curves, we take F = OY

since ch(OY ) = 1. Then by GRR we get

ϕ∗Td(Y ) = ch(ϕ! OY )Td(B).(A.3)

By definition, ϕ!OY =
∑

i≥0(−1)iRiϕ∗(OY ), where R
iϕ∗ denotes the higher direct image

functors 7. Since fibers of ϕ are curves, by the relative dimensional vanishing theorem we
get that Riϕ∗OY = 0 for i > 1. For a flat fibration of genus g curves, R1ϕOY is a locally
free sheaf (and so coherent) of rank g. Moreover, by definition R0ϕ∗OY := ϕ∗(OY ) ∼=
OB (any function on Y is necessarily constant on the fibers as the fibers are projective
varieties), thus

ϕ∗Td(Y ) = ch(OB −R1ϕ∗OY )Td(B).(A.4)

Since R1ϕ∗OY is a locally free sheaf of finite rank and ϕ is flat, we can use Grothendick
duality to get that

(A.5) R1ϕ∗OY =
[

R0ϕ∗(O
∨
Y ⊗ ωY |B)

]∨

= ϕ∗(O
∨
Y ⊗ ωY/B)

∨ =
[

ϕ∗ωY/B

]∨
,

where ωY/B is the relative dualizing sheaf of the map ϕ : Y → B and the second equality
follows from the definition of R0. The theorem then follows:

ϕ∗Td(Y ) = ch(OB − ϕ∗ω
∨
Y/B)Td(B) = (1− ch(ϕ∗ω

∨
Y/B)Td(B).(A.6)

�

7Riϕ∗F is the right derived functor for ϕ∗. It is defined as the sheaf associated with the presheaf
U 7→ Hi(ϕ−1(U),F|ϕ−1(U)).
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When the total space Y is smooth, the relative dualizing sheaf is given by the formula
ωY/B = ωY ⊗

[

ϕ∗ωB

]∨
. In particular, for D5, E6, E7 and E8 fibrations8 we have ωY =

ϕ∗(L ⊗ ωB) (or equivalently KY = ϕ∗(c1(L ) − c1(B)) so that ωY/B = ϕ∗L , thus the
pushforward of their respective Todd classes will all be equal. More generally, we can
say that for any elliptic fibration Y such that KY = ϕ∗(c1(L ) − c1(B)) we necessarily
then have that ωY/B = ϕ∗L , giving us that R1ϕ∗OY

∼= L ∨ by arguments given above.
Putting things all together we get that

ϕ∗Td(Y ) = ch(OB − L
∨)Td(B) = (1− e−L)Td(B)(A.7)

Remark A.3. It is important to notice that the line bundle L that appears in the
D5, E6, E7 and E8 elliptic fibration is closely related to the structure of the elliptic fi-
bration. If the fibration admits a section, we can consider the birationally equivalent
Weierstrass model zy2 = x3+Fxz2+Gz3 written in the projective bundle P[OB⊕L 2⊕L 3]
and F and G are sections of L 4 and L 6 respectively. The discriminant locus of the fibra-
tion is then a section of L 12. When there is no torsion class in the Picard group Pic(B)
of the base B, this is enough to define L uniquely for a given elliptic fibration ϕ : Y → B
admitting a section. The Picard group is torsion free if and only if H1(B,Z) is trivial.
For example, when B is a Fano threefold, Pic(B) does not admit any torsion.

We can interpret this result geometrically by introducing a divisor Z of B such that
L = OB(Z). Using the exact sequence 0 → OB(−Z) → OB → OZ → 0 along with
additivity of the Chern character on exact sequences, we get that ch(OB−L ∨) = ch(OZ).
Using Hirzebruch-Riemann-Roch, we get ch(OZ)Td(B) = χ(Z,OZ) and therefore

ϕ∗Td(Y ) = χ(Z,OZ).(A.8)
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