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Abstract

A new upper bound on the rate of vertical heat transport is established
in 3 dimensions for stress-free velocity boundary conditions on horizontally
periodic plates. For large (but finite) Prandtl numbers this bound is an
improvement over the ‘ultimate’ Ra1/2 scaling and in the limit of infinite
Pr, agrees with the bound of Ra5/12 recently derived in that limit.
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1 Introduction

Since Lord Rayleigh’s mathematical description of convection in [27], and com-
putation of the onset of convective instability, scientists have carefully analyzed
this idealized model of such a wide-ranging phenomenom. In his seminal paper,
Lord Rayleigh illustrated that the stability of the inert, conductive solution was
dependent on a single non-dimensional number (since called the Rayleigh num-
ber). Further work considered how the flow developed as the Rayleigh number
Ra was increased past this critical value Rac. Of pertinent interest to the geo-
physical and astrophysical community is how this system behaves in the limit
of very strongly forced convection, i.e. Ra� Rac [2].

Several recent experimental and numerical investigations have focused on
the ‘ultimate’ regime of strongly forced convection, and in particular on the de-
pendence of the rate of vertical heat transport to the Rayleigh number and other
material parameters (the geometry of the system, and the Prandtl number Pr a

∗Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA
†Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545,

USA

1



material property of the fluid). It is acknowledged that the Nusselt number Nu,
a non-dimensional measure of the increase in heat transport due to convection,
is dependent on the Rayleigh number through a power law Nu ∼ Raγ , but the
value of γ for Ra� Rac is a matter of dispute [3, 15, 29, 20]. This paper follows
the work of [12] to derive a rigorous bound on Nu for the case of large Prandtl
number and stress-free vertical velocities.

Following Lord Rayleigh [27], we consider the rate of vertical heat transport
in Rayleigh Bénard convection, as described by the classical (non-dimensional)
Boussinesq equations with stress-free vertical boundaries:

1

Pr

(
∂u

∂t
+ (u · ∇)u

)
+∇p = ∆u +RakT, ∇ · u = 0, (1)

∂T

∂t
+ u · ∇T = ∆T, (2)

∂uj
∂z

∣∣
z=0,1

= u3|z=0,1 = 0, j = 1, 2 (3)

T |z=0 = 1, T |z=1 = 0, (4)

u|t=0 = u0, T |t=0 = T0, (5)

where u = (u1, u2, u3) is the fluid velocity field, p is the kinematic pressure, T is
the (scaled) temperature field, k is the unit upward vector, Ra is the Rayleigh
number measuring the ratio of differential heating to dissipation, Pr is the
Prandtl number which is the ratio of kinematic viscosity to thermal diffusivity,
and the fluid occupies the (non-dimensionalized) region

Ω = [0, Lx]× [0, Ly]× [0, 1] (6)

where periodicity in the horizontal directions is assumed, implying 1∫
Ω

uj dxdydz = 0, j = 1, 2;∀t ≥ 0, (7)

if this is satisfied initially.
At sufficiently large Prandtl number, we can formally consider the infinite

Prandtl number limit as:

∇p0 = ∆u0 +RakT 0, ∇ · u0 = 0, (8)

∂T 0

∂t
+ u0 · ∇T 0 = ∆T 0, (9)

∂u0
j

∂z

∣∣
z=0,1

= u0
3|z=0,1 = 0, j = 1, 2 (10)

T 0|z=0 = 1, T 0|z=1 = 0, (11)

which is relevant for fluids such as silicone oil and the earth’s mantle as well
as many gases under high pressure [6, 16, 5]. This simplification removes the
nonlinear term in the momentum equation, greatly simplifying the dynamics.

1This is consistent with the horizontal momentum equationss, and guarantees the applica-
bility of the Poincaré type inequality. See for instance [10].
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The fact that the velocity field is linearly slaved to the temperature field has
been exploited in several recent rigorous estimates on the rate of heat transport
in the vertical direction in this infinite Prandtl number setting (see [13, 9, 14,
33, 34] and the references therein, as well as the work of [6, 22]). In particular,

a bound on the Nusselt number which scales like Ra
1
3 (modulo logarithmic

corrections) in the no-slip case was obtained in [9] (and improved more recently
in [26]) with the help of a maximum principle in the temperature field, and in [14]
where the maximum principle was not invoked. For horizontal plates with free-
slip (stress-free) boundaries at infinite Prandtl number the best known bound on

the Nusselt number scales like Ra
5
12 [34] (a similar scaling is true for arbitrary

Prandtl number in 2 dimensions, see [33]). On the other hand, the best known

bound on the Nusselt number with arbitrary Prandtl number scales like Ra
1
2 [8]

for the no-slip case (the same argument applies to the free-slip/stress-free case)

while the bound calculated via marginal stability in [21] suggests Ra
1
3 . This

1
3 scaling is in agreement with a heuristic argument set forth in [24], but is in
contrast to the proposed ‘ultimate’ regime first described in [23] and extensively
considered in [17, 18, 19].

For large Prandtl number we will consider the full Boussinesq system as a
perturbation of the infinite Prandtl number model, implying that the velocity
field is only a perturbation from a linear slaving with the temperature field.
This near linear relationship was exploited in the no-slip case in [32] in studying
statistical properties of the Boussinesq system at large Prandtl number, and
in [31] to obtain a bound on the Nusselt number that is in agreement with
the infinite Prandtl number bound (for no-slip velocities). Following [34] and
[32, 31] we will combine these methods to see that there exists a non-dimensional
constant c0 (30) such that if the Grashof number Gr is sufficiently small, i.e,
Pr
Ra ≥ c0 then Nu ≤ 0.3546Ra

5
12 + cGr2Ra

1
4 where Gr = Ra

Pr .
Throughout this manuscript, we assume the physically important case of

high Rayleigh number Ra � 1 so that we may have non-trivial dynamics. We
also follow the mathematical tradition of denoting the small parameter as ε, i.e.

ε =
1

Pr
. (12)

c will denote a generic non-dimensional constant independent of the Rayleigh
number and Prandtl number.

The rest of the manuscript is organized as follows. In section 2 we recall a
few a priori estimates on the solutions to the Boussinesq system at large Prandtl
number. In section 3, we derive the Ra

5
12 upper bound for the Nusselt numbers

at large Prandtl number. In section 4, we offer concluding remarks.

2 A priori estimates

In this section we derive a few a priori estimates on solutions of the Boussinesq
system at large Prandtl number. Some of these estimates (or at least closely
related estimates) are contained in [30] and [8]. For completeness we review
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all the estimates needed for the current result. The mathematical inequalities
referred to are listed (with references) in Appendix B.

Throughout this manuscript, we will assume that the range of initial tem-
perature T0 is contained in the unit interval [0, 1]. Hence we deduce by the
maximum principle that the range of T is contained in [0, 1] for all time, i.e.,

‖T‖L∞ ≤ 1. (13)

Following the background method developed in [12, 8] we will also assume that
the background temperature profile τ(z) under consideration is always contained
in the unit interval [0, 1] (see( 54)). Therefore, the fluctuation temperature field
θ = T − τ satisfies the same estimate

‖θ‖L∞ ≤ 1. (14)

Note that the same argument as applied in [8] implies that the following
estimates hold

〈‖∇u‖2〉 ≤ cRa
3
2 , (15)

〈‖∇T‖2〉 ≤ cRa
1
2 , (16)

for all suitable weak solutions of the Boussinesq system with arbitrary Prandtl
number where < · > represents long time average, i.e.

〈f(·)〉 = lim sup
t→∞

1

t

∫ t

0

f(s) ds

and ‖ · ‖ is the standard L2 norm.
For the first estimate derived in this section, multiply the velocity equation

(1) by u and after integrating over the domain, apply the Cauchy Schwarz and
Poincaré inequalities (and using the maximum principle as discussed above) to
arrive at:

ε

2

d

dt
‖u(t)‖2L2 + ‖∇u(t)‖2 ≤ Ra‖T (t)‖‖u3(t)‖

≤ cRa‖∇u(t)‖. (17)

Applying Young’s inequality to the right hand side, yields

ε

2

d

dt
‖u(t)‖2 + ‖∇u(t)‖2 ≤ cRa2 +

1

2
‖∇u(t)‖2. (18)

Finally we use Poincaré’s inequality in conjunction with the Gronwall inequality
to deduce that

lim sup
t→∞

‖u(t)‖ ≤ cRa. (19)

For the next estimate, multiply the velocity equation (1) by Au(t) (where
A denotes the Stokes operator with viscosity one and the associated boundary
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conditions, see for instance [10]), and integrate over the domain, again applying
Cauchy-Schwarz appropriately

ε

2

d

dt
‖∇u(t)‖2 + ‖Au(t)‖2 ≤ Ra‖T (t)‖‖Au(t)‖+ ε‖∇u(t)‖‖Au(t)‖‖u(t)‖L∞ .

Applying the Agmon inequality and employing the maximum principle on the
temperature field T (t) results in

ε

2

d

dt
‖∇u(t)‖2 + ‖Au(t)‖2 ≤ Ra|Ω| 12 ‖Au(t)‖+ cAε‖∇u(t)‖ 3

2 ‖Au(t)‖ 3
2

≤ 1

2
‖Au(t)‖2 +Ra2|Ω|+ 27

4
c4Aε

4‖∇u(t)‖6(20)

where the generalized Young’s inequality was used twice to obtain the last line.
The Poincaré inequality on ∇u(t) with constant cp is used to arrive at

ε
d

dt
‖∇u(t)‖2 + c2p‖∇u(t)‖2 ≤ 2|Ω|Ra2 +

27

2
c4Aε

4‖∇u(t)‖6. (21)

It follows that the ball of radius 2|Ω| 12Ra/cp is invariant for ‖∇u(t)‖ if the
following large Prandtl number (small Grashof number) condition holds

Gr =
Ra

Pr
≤ c

3
2
p

2 · 3 3
4 cA|Ω|

1
2

. (22)

On the other hand, estimate (15) implies that for Ra sufficiently large, any orbit

will enter this ball of radius 2|Ω| 12Ra/cp. Hence this is an absorbing ball and

lim sup
t→∞

‖∇u(t)‖ ≤ 2Ra|Ω| 12 /cp. (23)

Inserting this into (20) and taking the long time average (relying on (22)), we
have the following estimate

〈‖Au‖2〉 ≤ cRa2|Ω|. (24)

Next, we need an estimate on the time derivative of the velocity. For this
purpose we differentiate the velocity equation (1) in time to reach

ε

(
∂2u

∂t2
+

(
∂u

∂t
· ∇
)
u + (u · ∇)

∂u

∂t

)
+∇∂p

∂t
= ∆

∂u

∂t
+Rak

∂T

∂t
. (25)

Multiplying this equation by ∂u
∂t , integrating over Ω and applying Cauchy-

Schwarz and the generalized Hölder inequalities, we deduce that for large t

ε

2

d

dt

∥∥∥∥∂u(t)

∂t

∥∥∥∥2

+

∥∥∥∥∇∂u(t)

∂t

∥∥∥∥2

≤ Ra

∥∥∥∥∂T (t)

∂t

∥∥∥∥
H−1

∥∥∥∥∇∂u(t)

∂t

∥∥∥∥+ ε ‖u(t)‖L3

∥∥∥∥∇∂u(t)

∂t

∥∥∥∥∥∥∥∥∂u(t)

∂t

∥∥∥∥
L6

.
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Using the Sobolev inequalities (73) we can show that for large t the right hand
side of this is less than or equal to

Ra

∥∥∥∥∂T (t)

∂t

∥∥∥∥
H−1

∥∥∥∥∇∂u(t)

∂t

∥∥∥∥+ cSε ‖∇u(t)‖
∥∥∥∥∇∂u(t)

∂t

∥∥∥∥2

≤ 1

4

∥∥∥∥∇∂u(t)

∂t

∥∥∥∥2

+Ra2

∥∥∥∥∂T (t)

∂t

∥∥∥∥2

H−1

+
2

cp
Ra|Ω| 12 cSε

∥∥∥∥∇∂u(t)

∂t

∥∥∥∥2

(26)

where cS = cS1cS2, and (23) and Young’s inequality were used in the last line.
This implies that 〈∥∥∥∥∇∂u∂t

∥∥∥∥2
〉
≤ 2Ra2

〈∥∥∥∥∂T∂t
∥∥∥∥2

H−1

〉
(27)

provided the following large Prandtl number (small Grashof number) condition
is satisfied

Gr =
Ra

Pr
≤ cp

8cS |Ω|
1
2

. (28)

Setting

c0 =
cp

2|Ω| 12
min

{
c

1
2
p

3
3
4 · cA

,
1

4cS

}
(29)

we combine the two large Prandtl number conditions (22) and (28) into the
following large Prandtl number (small Grasholf number) condition

Gr =
Ra

Pr
≤ c0. (30)

Next, we consider the H−1 norm applied to the temperature equation (2) to
deduce ∥∥∥∥∂T (t)

∂t

∥∥∥∥
H−1

≤ ‖T (t)u(t)‖+ ‖∇T (t)‖

≤ ‖u(t)‖+ ‖∇T (t)‖ (31)

where we have used the maximum principle on the temperature field T . This
further implies, thanks to (15) and (16),〈∥∥∥∥∂T∂t

∥∥∥∥2

H−1

〉
≤ 2〈‖u‖2 + ‖∇T‖2〉 ≤ cRa 3

2 . (32)

Inserting this back into (27) we have〈∥∥∥∥∇∂u∂t
∥∥∥∥2
〉
≤ cRa 7

2 . (33)
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For the final estimate, we need to bound 〈‖∇((u · ∇)u)‖2〉 in terms of the
non-dimensional parameters of the system. With this in mind, note that the
momentum equation can be rewritten as

Au = RaP (kT )− εP
(
∂u

∂t
+ (u · ∇)u

)
(34)

where P denotes the Leray-Hopf projector from the square integrable space onto
the divergence free subspace. Classic elliptic regularity on the Stokes operator
A (see for instance [10]), gives

‖A 3
2u‖2 ≤ C

{
Ra2‖∇T‖2 + ε2

∥∥∥∥∇∂u∂t
∥∥∥∥2

+ ε2‖∇((u · ∇)u)‖2
}
. (35)

Sobolev imbedding and elliptic regularity of the Stokes operator imply that

‖∇((u · ∇)u)‖2 ≤ C(‖u‖2L∞‖∇2u‖2 + ‖∇u‖4L4)

≤ C‖∇u‖‖Au‖3

≤ C‖∇u‖ 5
2 ‖A 3

2u‖ 3
2 (36)

where we have utilized the Sobolev inequality (74), elliptic regularity for the
Stokes operator, the Agmon inequality, and the interpolation inequality.

Hence

〈‖A 3
2u‖2〉 ≤ C

〈
Ra2‖∇T‖2 + ε2

∥∥∥∥∇∂u∂t
∥∥∥∥2

+ ε8‖∇u‖10

〉
≤ C

(
Ra2+ 1

2 + ε2Ra
7
2 + ε8Ra

19
2

)
. (37)

where we have used the following estimates

〈‖∇u‖10〉 ≤ lim sup
t→∞

‖∇u(t)‖8〈‖∇u‖2〉 ≤ C Ra 19
2 .

This also implies that

〈‖∇((u · ∇)u)‖2〉 ≤ C〈‖∇u‖ 5
2 ‖A 3

2u‖ 3
2 〉

≤ C〈‖∇u‖10〉 14 〈‖A 3
2u‖2〉 34

≤ C
(
Ra

19
2

) 1
4
(
Ra

5
2 + ε2Ra

7
2 + ε8Ra

19
2

) 3
4

≤ C
(
Ra

17
4 + ε

3
2Ra5 + ε6Ra

19
2

)
(38)

where we have used Hölder’s inequality on the second line.

3 Bound on the Nusselt number

The primary statistical quantity of interest in Rayleigh-Bénard convection is
the ratio of the convective heat flux to that provided by a purely conductive
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temperature profile. This non-dimensional quantity is referred to as the Nusselt
number and can be equivalently defined as the following (see for instance [25]
for detailed derivations):

Nu = sup
u0,T0

lim sup
t→∞

1

tLxLy

∫ t

0

∫
Ω

|∇T (x, s)|2 dxds,

= 1 + sup
u0,T0

lim sup
t→∞

1

tLxLy

∫ t

0

∫
Ω

u3(x, s)T (x, s) dxds,

= 1 + sup
u0,θ0

lim sup
t→∞

1

tLxLy

∫ t

0

∫
Ω

u3(x, s)θ(x, s) dxds (39)

where T (x, y, z, t) = τ(z) + θ(x, y, z, t) is the temperature field and τ(z) is the
background temperature profile (as proposed in the theory of [8, 12, 9, 14, 33, 34]
as a generalization of E. Hopf’s original calculation [28]) satisfying the same
boundary conditions as T , and (u, θ) are suitable weak solutions to

∇p = ∆u +Rakθ + εf , ∇ · u = 0, (40)

∂θ

∂t
+ u · ∇θ + u3τ

′(z) = ∆θ + τ ′′(z), (41)

∂uj
∂z
|z=0,1 = u3|z=0,1 = 0, j = 1, 2 (42)

θ|z=0,1 = 0, (43)

f = −
(
∂u

∂t
+ (u · ∇)u

)
(44)

with appropriate initial conditions (u0, θ0). The Nusselt number is a statistical
property of the Boussinesq system in the sense that it is the average of 1 +
1
|Ω|
∫

Ω
u3θ over the whole phase space with respect to some appropriate invariant

measure (stationary statistical solution) of the Boussinesq system [32].
Writing the momentum equation as a perturbation of the infinite Prandtl

number (8) (ε = 0) equation illustrates the methodology used in this paper.
Heuristically, the perturbation from the infinite Pr system is small in the limit
of ε→ 0 or Pr →∞. Hence we can combine estimates for the infinite Prandtl
number case derived in [34] with the a priori estimates obtained in the previous
section to deduce an upper bound on the Nusselt number for stress-free velocities
that is asymptotically the same as that obtained in [34, 33].

Multiplying the temperature equation (41) by θ and integrating over Ω we
have

1

2

d

dt
‖θ(t)‖2 + ‖∇θ(t)‖2 +

∫
Ω

τ ′
∂θ(t)

∂z
+

∫
Ω

τ ′u3(t)θ(t) = 0. (45)

From the definition of θ we also have

‖∇T (t)‖2 = ‖∇θ(t)‖2 + 2

∫
Ω

τ ′
∂θ(t)

∂z
+ ‖τ ′‖2. (46)
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Following [9, 14] we combine these two estimates to see that

〈
‖∇T‖2

〉
= ‖τ ′‖2 −

〈∫
Ω

(|∇θ|2 + 2τ ′u3θ)

〉
. (47)

To estimate the indefinite term, we combine the divergence of the momentum
equation with the Laplace operator applied to the evolution equation for u3 to
arrive at:

∆2u3 = −Ra∆Hθ + ε

(
−∆Hf3 +

∂2f1

∂x∂z
+
∂2f2

∂y∂z

)
, (48)

u3|z=0,1 =
∂2u3

∂z2

∣∣∣∣
z=0,1

= 0, ∆H =
∂2

∂x2
+

∂2

∂y2
.

Using the periodic horizontal boundary conditions, we note that this equation
can be rewritten in terms of the horizontal Fourier coefficients of each variable
as

(k2 −D2)2û3k = Rak2θ̂k + ε(k2f̂3k + ik1Df̂1k + ik2Df̂2k) (49)

where k = |k| is the length of the horizontal wave-number k and D = d
dz is

the derivative operator in the vertical direction, and the ·̂ indicates the Fourier
coefficient of the corresponding variable.

Denote the pseudo differential operator |∇H | =
√
−∇H · ∇H =

√
−∆H and

introduce the pseudo-vorticity ω as in [34] as

∆u3 = |∇H |ω, (50)

which in terms of the Fourier coefficients, is expressed as

(−k2 +D2)û3k = kω̂k. (51)

It follows that we can eliminate û3k in (49) to tie the pseudo-vorticity to the
temperature fluctuations

k(−k2 +D2)ω̂k = Rak2θ̂k + ε(k2f̂3k + ik1Df̂1k + ik2Df̂2k). (52)

Hence, for k 6= 0,

k2|θ̂k|2 ≥ 1

Ra2

(
|(−k2 +D2)ω̂k|2 + ε2

∣∣∣∣kf̂3k + i
k1

k
Df̂1k + i

k2

k
Df̂2k

∣∣∣∣2
−2ε

∣∣(−k2 +D2)ω̂k
∣∣ ∣∣∣∣kf̂3k + i

k1

k
Df̂1k + i

k2

k
Df̂2k

∣∣∣∣)
≥ 1

2Ra2

∣∣(−k2 +D2)ω̂k
∣∣2 − ε2

Ra2

∣∣∣∣kf̂3k + i
k1

k
Df̂1k + i

k2

k
Df̂2k

∣∣∣∣2
≥ 1

2Ra2

∣∣(−k2 +D2)ω̂k
∣∣2 − ε2

Ra2

(∣∣∣kf̂3k

∣∣∣+
∣∣∣Df̂1k

∣∣∣+
∣∣∣Df̂2k

∣∣∣)2

.(53)
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We now choose a specific background temperature profile following [34]

τ ′(z) =


1−

(
1+p
2δ − p

)
z, 0 ≤ z ≤ δ

1
2 + p(z − 1

2 ), δ ≤ z ≤ 1− z(
1+p
2δ − p

)
(1− z), 1− δ ≤ z ≤ 1.

(54)

Applying the exact same calculations as in [34] in the absence of the balance
parameter (b = 0 in the notation used in [34]), we can see that

1

2Ra2
‖(k2−D2)ω̂k‖2+‖Dθ̂k‖2+

p

Ra
‖ω̂k‖2−

1 + p

δ

{∫ δ

0

û3k
¯̂
θk +

∫ 1

1−δ
û3k

¯̂
θk

}
≥ 0, ∀k

(55)
is equivalent to

k4

Ra2
+

p

Ra
− 33/2 · (1 + p)2 · k

22 · 52
δ3 ≥ 0

⇒ 33/2 · (1 + p)2

22 · 52
δ3 ≤ k3

Ra2
+

p

kRa

implying that

δ ≤ 24/3 · 52/3 · p1/4

33/4 · (1 + p)2/3

1

Ra5/12
(56)

where

km =
(p

3
Ra
)1/4

(57)

is the horizontal wave-number that saturates the bound on δ. Letting p = 3
29

(optimally chosen to minimize the prefactor in the final bound (see [34] for
details) we choose the optimal size of the boundary layer as

δ =
52/3 · 295/12

22 · 31/2

1

Ra5/12
. (58)

Therefore using (46)

Nu = 〈‖∇T‖2〉

= ‖τ ′‖2 −
〈∫

Ω

(|∇θ|2 + 2τ ′u3θ)

〉
= ‖τ ′‖2 −

〈
‖∇θ‖2 +

2p

Ra

∫
Ω

θu3 −
1 + p

δ

{∫ δ

0

u3θ +

∫ 1

1−δ
u3θ

}〉
.

Using the identity 〈∫
Ω

u3θ

〉
=

1

Ra

〈∫
Ω

|∇u|2
〉

(59)
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and (63) derived in the Appendix we can bound the Nusselt number from above
as

Nu ≤ ‖τ ′‖2 −
∑
k

〈
‖kθ̂k‖2 + ‖Dθ̂k‖2 +

p

Ra
‖ω̂k‖2 −

1 + p

δ

{∫ δ

0

û3k
¯̂
θk +

∫ 1

1−δ
û3k

¯̂
θk

}〉

≤ ‖τ ′‖2 +
ε2

Ra2

〈
‖∇f‖2

〉
−
∑
k

〈
1

2Ra2
‖(k2 −D2)ω̂k‖2 + ‖Dθ̂k‖2 +

p

Ra
‖ω̂k‖2 −

1 + p

δ

{∫ δ

0

û3k
¯̂
θk +

∫ 1

1−δ
û3k

¯̂
θk

}〉

≤ ‖τ ′‖2 +
ε2

Ra2

〈
‖∇f‖2

〉
so long as the size of the boundary layer is chosen according to (58) so that (55)
is satisfied. We can then bound the remainder term using the Poincaré, Hölder
and Agmon inequalities and the estimates (15), (24), (33) and (38) obtained in
the previous section:

ε2

Ra2

〈
‖∇f‖2

〉
≤ 2ε2

Ra2

〈(∥∥∥∥∇∂u∂t
∥∥∥∥2

+ ‖∇((u · ∇)u)‖2
)〉

≤ C
(
ε2Ra

9
4 + ε

7
2Ra3 + ε8Ra

15
2 + ε2Ra

3
2

)
(60)

Inserting this back into the bound on Nu and rewriting the remainder in terms
of the Grasholf number Gr we can see that

Nu ≤ 211 · 3 1
2

5
2
3 · 29

29
12

Ra
5
12 + C

(
Gr2Ra

1
4 + ε

1
2Gr3 + ε

1
2Gr

15
2 + ε

1
2Gr

3
2

)
∼ 0.3546Ra

5
12 + CGr2Ra

1
4 (61)

for Gr ≤ c0 for stress-free (slippery) horizontal plates in three dimensions.

4 Concluding Remarks

The bound (61) at small Gr is consistent with the infinite Prandtl (Gr = 0)

bound obtained in [34] albeit with a less optimal prefactor (Nu . 0.28764Ra
5
12

at Pr =∞, although the current estimate does not consider the impact of the
balance parameter which may subtly improve the prefactor). The improvement
provided by this result is shown in Fig. 1. Specifically this indicates that for
Pr & O

(
104
)

and within a given range of Rayleigh numbers (dictated by (30)),
the current result is an improvement over [12]. The small Grasholf number
assumption can be considered a restriction on the strength of the inertia with
respect to the forcing placed on the system, i.e. the inertial forces in the flow
are restricted to scale sub linearly with Ra. This is not inconsistent with the

11



100 102 104 106 108 101010−1

100

101

102

103

104

105

Rayleigh Number

N
us

se
lt 

N
um

be
r

 

 

Doering & Constantin 1996
Current Estimate

Student Version of MATLAB

Figure 1: Comparison of the asymptotic bound obtained in this paper with that
of [12] for Grasholf number satisfying (30).

theory of the ‘ultimate’ state of turbulent convection where Nu is thought to
scale as Ra

1
2 because these theories rely on the assumption of large Gr (see

[19, 4] for the most recent results, although originally this theory was proposed
in [23]). This result in combination with [33, 34] and citeWa2008a, does indicate
the need for these theories to establish the necessity of either no-slip boundary
conditions or three dimensions at large Gr for the appearance of this ‘ultimate’
regime of convection.

Heuristically [23] argues that at a sufficiently large Rayleigh number (depen-
dent on Gr or Pr) the large scale circulation (or the fluctuations) in the bulk
of the flow will induce a shear velocity forcing the viscous boundary layers to
become turbulent. In [19] this theory is expounded to include the case when
the thermal and/or viscous boundary layers become turbulent as well, resulting
in different scaling laws for the Nusselt number, dependent on which case is
considered. The experimental data described in [20, 4] appears to validate this
theory for Pr ≤ 1. However in each case considered in [19] the Nusselt number
is proposed to increase with Pr, contrary to the results obtained here and in
[34, 26, 31, 32] where the limit Pr →∞ is considered and strict bounds are set
on the heat transport. In concert with these earlier results, the present paper
indicates that the large Prandtl number limit should be considered in greater
detail to understand the true state of the ‘ultimate’ regime of convection in such
a case.

Not only is the large Prandtl number case not explained in the theory of
[23, 19], but the result of [33] is not explainable via the same theory unless
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one can show that the restriction to stress-free boundaries in two dimensions
will force the thermal boundary layer to remain laminar. This highlights a
possibility for theoretical improvement, i.e. if the appearance of a turbulent
thermal boundary layer is indicative of the ‘ultimate’ state of convection one
must question why the thermal boundary layer does not become turbulent for
infinite or large Prandtl number or stress-free boundaries in two dimensions.
Consideration of the effect of the vortex stretching term (which is absent in 2D
and suppressed at large Pr) on the theory of [19] and [23] may yield insight
into how these turbulent boundary layers are formed or suppressed and the
subsequent impact on the heat transport.

The extension of the current result to Gr > c0 is non-trivial and cannot be
accomplished through the current methodology, indicating perhaps that such a
result is not possible and that the ‘ultimate’ state as described in [19] holds for
sufficiently small Pr. We note however that to date the 5

12 scaling has been
demonstrated in the analysis for stress-free velocities, but there is no theory
that predicts such a scaling and numerical simulations and experiments have not
observed such a state so it remains to be seen whether this scaling is a by-product
of the analysis or if some physically relevant information can be gathered from
the current derivation. Either way the similarity between the current result and
that obtained in [34] with the asymptotically motivated numerical results of [22]
are indicative that the current result is sharp with respect to the background
method.

In addition to the derived unique (to stress-free boundaries) scaling law, we
note the appearance of the saturating wave-number (57). Such a dominant hor-
izontal scale distinct from the size of the boundary layer has not been observed
in the simulations to date, and it remains to be seen if such a scale is physically
important or only a mathematical construct of the variational formulation. This
indicates a dominant horizontal scale that can be used to construct asymptotic
solutions (both numeric and rigorous) akin to either [7] or [11] that (according
to the current analysis) should saturate the bound derived in this paper. In
addition, direct numerical simulations in which forcing is added at this scale
and/or careful analysis of the energy at these scales is investigated will provide
additional insight into the nature of convection between slippery plates.

A An estimate on the pseudo-vorticity

As in the main body, denote the pseudo differential operator |∇H | =
√
−∇H · ∇H =√

−∆H and introduce the pseudo-vorticity ω as in [34] as

∆u3 = |∇H |ω, (62)

Our key estimate in this appendix is

‖ω‖2 ≤ 2‖∇u‖2 (63)

We utilize Fourier coefficients in the horizontal directions to deduce this
fact. Indeed, the definition of the pseudo-vorticity implies, with k = (kx, ky)tr
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denoting the horizontal wave number, ûjk representing the horizontal Fourier
coefficients of uj , j = 1, 2, 3, ûHk = (û1k, û2k)tr, D = ∂

∂z ,

|k|2|ω̂k|2 = |D2û3k|2 + |k|2|Dû3k|2 + |k|4|û3k|2

= |kxDû1k + kyDû2k|2 + |k|2|Dû3k|2 + |k|4|û3k|2 (since u is divergence free)

≤ 2|k|2|DûHk|2 + |k|2|Dû3k|2 + |k|4|û3k|2

≤ 2|k|2(|DûHk|2 + |Dû3k|2 + |k|2|û3k|2) (64)

dividing by |k|2 and summing over k we have the desired bound on the pseudo-
vorticity (63).

B List of useful inequalities

In this appendix we provide a list of mathematical inequalities that are used
in the body of the text, in particular in Section 2. The same notation used in
the body of the text is used here, and the constants are denoted with the same
symbol. [1] and [10] are excellent references for the inequalities cited below.

• Cauchy-Schwarz inequality:∫
Ω

|f(x)g(x)| dx ≤ ‖f(x)‖‖g(x)‖. (65)

• Poincaré Inequality:

‖∇u‖ ≥ cp‖u‖ and ‖∆u‖ ≥ cp′‖∇u‖, (66)

if u
∣∣
z=0,1

= 0 or
∫

Ω
udx = 0.

• Young’s inequality:

ab ≤ ap

p
+
bq

q
where

1

p
+

1

q
= 1. (67)

• Gronwall’s inequality:

Let f(t), g(t) and h(t) be sufficiently smooth on the interval [a, b] where

df(t)

dt
≤ g(t)f(t) + h(t) (68)

then

f(t) ≤ f(a)e
∫ t
a
g(s)ds +

∫ t

0

e
∫ t
s
g(τ) dτh(s) ds. (69)

• Agmon’s inequality:

‖u(t)‖L∞ ≤ cA‖∇u(t)‖ 1
2 ‖Au(t)‖ 1

2 . (70)
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• Generalized Hölder inequality:

Assume that r ∈ (0,∞) and pk ∈ (0,∞] such that

n∑
k=1

1

pk
=

1

r
(71)

then for all sufficiently smooth, measurable functions fk then∥∥∥∥∥
n∏
k=1

fk

∥∥∥∥∥
r

≤
n∏
k=1

‖fk‖pk (72)

where ‖ · ‖pk is the Lpk norm and
∏

is the product operator.

• Sobolev inequalities in three dimension

‖u(t)‖L3 ≤ cS1‖∇u(t)‖ and

∥∥∥∥∂u(t)

∂t

∥∥∥∥
L6

≤ cS2

∥∥∥∥∇∂u(t)

∂t

∥∥∥∥(73)

‖∇u(t)‖L4 ≤ C‖∇u(t)‖ 1
2 ‖∇2u‖ 3

2 . (74)

• Elliptic regularity of the Stokes operator

‖∇2u(t)‖ ≤ C‖Au(t)‖. (75)

• Interpolation inequality:

‖Au(t)‖ ≤ ‖∇u(t)‖ 1
2 ‖A 3

2u(t)‖ 1
2 . (76)
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