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Abstract

For a given class G of groups, a closed topological n-manifold Mn is of
G-category ≤ k if it can be covered by k open subsets such that for each
path-component W of the subsets the image of its fundamental group
π1(W ) → π(Mn) belongs to G. The smallest number k such that Mn

admits such a covering is the G-category, catG(Mn). For n = 3, M3 has
G-category ≤ 4. We characterize all closed 3-manifolds of G-category 1,
2, and 3 for various classes G.1 2

1 Introduction

In [3], M. Clapp and D. Puppe proposed the following generalization of the
Lusternik-Schnirelman category cat(M) for a manifold M : Let A be a non-
empty class of spaces. A subset W of M is A-contractible (in M) if the inclusion
ι : W → M factors homotopically through some X ∈ A, i.e. there exist maps
f : W → X, α : X → M , such that ι is homotopic to α · f . (W and X need
not be connected). The A-category catA(M) of M is the smallest number of
open A-contractible subsets of M that cover M . If no such finite cover exists,
catA(M) is infinite. When the family A contains just one space X, we write
X-category instead of A-category. In particular, if X is a single point, then the
X-category of M is its classical Lusternik-Schnirelman category cat(M). An
extensive survey for this category can be found in [4]. For closed n-manifolds,
1 ≤ catA(M) ≤ cat(M) ≤ n+ 1.
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vestigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto. México. fico@math.unam.mx
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For each path-componentW ′ and each basepoint ∗ ∈W ′ of anA-contractible
set W , the image ι∗(π1(W ′, ∗)) ⊂ π1(M, ∗) is a quotient of a subgroup of
π1(X ′, f(∗)) (for some basepoint), where X ′ is a path-component of some X ∈
A. For example, if W is contractible in M , then all these images are trivial and
one is led to consider open overs of M by sets V such that for each component
V ′ of V and basepoint ∗ ∈ V , ι∗(π1(V ′, ∗)) = 1. The smallest number of these
sets that cover M is the π1-category of M , studied in [7]. More generally we
say that for any given class of groups G, a subset W of M is G-contractible (in
M) if, for every basepoint ∗ ∈ W , the image ι∗(π(W, ∗)) ⊂ π(M, ∗) belongs to
G, and define catG(M) to be the smallest number of open G-contractible subsets
of M that cover M .

If G = ame, the class of amenable groups, a G-contractible set is called an
amenable set (in M). Gromov [12] showed that the simplicial volume |Mn| of
a closed n-manifold vanishes if Mn is covered by n amenable open sets. By
Perelman (see e.g. [1]), |M3| = 0 if and only if M3 is a connected sum of graph
manifolds. In [10] we classified all closed 3-manifolds of ame-category ≤ 3.

Little is known for other classes G of groups. In this paper we study catG(M3)
for (among other classes) the classes hunf (groups that do not contain a free
group of rank 2 as a subgroup), vsolv (virtually solvable), solv (solvable), abel
(abelian).

First we obtain in Proposition 1 a relation between the geometric A-cat
and the algebraic G-cat. It turns out (Proposition 2) that the G-categories of
a manifold M agree for the classes hunf , ame, and vsolv. Observing that for
G1 ⊃ G2 we have catG1(M) ≤ catG2(M), we consider (Theorem 1 in section 4)
the smallest class spec for which catspec(M

3) = catvsolv(M
3) = 2. This class

is studied in detail in section 3; building blocks are the fundamental groups
of compact 3-manifolds with solvable fundamental group and with boundary
containing projective planes. Still smaller classes are GT , the set consisting of
the cyclic groups and the torus group Z × Z, and GK , the set consisting of
cyclic groups, the torus and Kleinbottle groups, and Z2 ∗Z2. As an application
we obtain in Corollary 4 another characterization of graph-manifolds in terms
of categories: A closed orientable 3-manifold M is a connected sum of graph
manifolds if and only if catabel(M) ≤ 3 if and only if catsolv(M) ≤ 3. Finally, in
Theorem 4 we obtain a complete classification of closed 3-manifolds for which
catG(M) ≤ 3, where hunf ⊃ G ⊃ GK . In particular we list in Corollary 5 all
closed prime 3-manifolds M for which catsolv(M) = 1, 2, or 3. The only non-
prime closed 3-manifold with catsolv(M) = 1, is M = P 3#P 3; the non-prime
closed 3-manifolds with catsolv(M) = 2 or 3 are described by Lemma 3.

2



2 catA(M) and catG(M)

By a closed manifold we mean a compact manifold without boundary. We also
assume that a closed manifold is connected unless stated otherwise.

Definition 1. (a) Let A be a non-empty class of spaces and let Y be topological
space. A subset W of Y is A-contractible (in Y ) if for some space X ∈ A there
exist maps f : W → X, α : X → Y , such that the inclusion ι : W → Y is
homotopic to α · f .
(b) catA(Y ) is the smallest number of open A-contractible subsets of Y that
cover Y . If no such finite cover exists, we say that catA(Y ) is infinite.

The most interesting case is when Y = M , a manifold. For a A-contractible
subset W (in M) the diagram below commutes up to homotopy and it follows
that the image ι∗(π(W, ∗) ⊂ π(M, ∗)) is isomorphic to a quotient of a subgroup
of π(X, f(∗)), for every basepoint ∗ ∈W .

W M

X

-ι

@
@Rf �

��
α

IfA = {X}, we write catX(M) instead of catA(M). The Lusternik-Schnirelman
category cat(M) is the same as catpoint(M). We have that for any A and any
connected n-manifold M ,

cat(M)
supX∈A{cat(X)} ≤ catA(M) ≤ cat(M) ≤ n+ 1.

The algebraic version is as follows:

Definition 2. Let G be a nonempty class of groups and let M be a manifold.
A subset W of M is G-contractible (in M) if, for every basepoint ∗ ∈ W , the
image ι∗(π(W, ∗) ⊂ π(M, ∗) belongs to G.
(b) catG(M) is the smallest number of open G-contractible subsets of M that
cover M . If no such finite cover exists, catG(M) =∞.

Note that, if G is closed under subgroups, a subset of a G-contractible set is
G-contractible.

There is a correspondence between the geometric A− cat and the algebraic
G − cat as follows. For a given G let AG = {X : π(X, ∗) ∈ G, for all ∗ ∈ X}.

Proposition 1. If G is closed under subgroups and quotients, then catG(M) =
catAG (M).

Proof. Suppose W is G-contractible in M . Attach sufficiently many 2-cells to
W along loops that are null-homotopic in M to obtain a space WX such that
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π(WX , ∗) is isomorphic to the image of ι∗ : π(W, ∗) → π(M, ∗) for any base
point ∗ in W (for details see the proof of Theorem 2 in [8]). ι can be extended
to a map α : WX →M because the loops along which the 2-cells were attached
are null-homotopic in M . Then α induces an isomorphism from π(WX , ∗) onto
im(ι∗) for any base point ∗ in W , hence WX belongs to AG . For the the natural
inclusion f : W → WX we have αf = ι and therefore W is AG-contractible. It
follows that catAG (M) ≤ catG(M). (Note that no closure properties of G were
used here.)

Now suppose that W is AG-contractible so we have a homotopy commutative
diagram as in Definition 1, with π(X, f(∗)) ∈ G. The image ι∗(π(W, ∗)) is a
quotient of a subgroup of π(X, f(∗)) for any ∗ in W , and therefore belongs to G,
since G is closed under subgroups and quotients. Hence catG(M) ≤ catAG (M).

When G consists of the trivial group only, then catG(M) = catπ1
(M), the

π1-category of M . This has been calculated in [7] (Corollary 4.2) for closed
3-manifolds M3. The result is that catπ1

(M3) = 1 (resp. 2, resp. 4), if
π1(M3) = 1 (resp. free non-trivial, resp. non-free). Thus by Perelman,

catπ1
(M3) =


1 if and only if M is the 3-sphere

2 if and only if M is a connected sum of S2-bundles over S1

4 otherwise.

Some well-known classes of groups are the following classes G:

hunf , the class of groups that do not contain the free group F2 of rank 2 as a
subgroup (hunf stands for “hereditarily unfree”)
The classes of of amenable, virtually solvable, virtually solvable 3-manifold
groups, solvable, abelian groups, are denoted respectively by ame, vsolv, vsolv3,
solv, abel.

Here G is amenable if it a has finitely additive, left-invariant probability mea-
sure µ, i.e. µ(gS) = µ(S) for all subsets S ⊂ G, g ∈ G; µ(A∪B) = µ(A)+µ(B)
for all disjoint subsets A,B ⊂ G; µ(G) = 1.
A 3-manifold group is a group that is isomorphic to the fundamental group of
a 3-manifold.

We have the following inclusions

hunf ⊃ ame ⊃ vsolv ⊃ solv ⊃ abel
∪

vsolv3

Note that if G ⊃ B then catG(M) ≤ catB(M).

If G = ame, (resp. solv, . . . ), we say thatW is amenable, (resp. solvable, . . . ),
(in M) instead of W is ame-contractible, (resp. solv-contractible, . . . ).
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Lemma 1. Let G be a nonempty class of groups closed under subgroups and let
Gf be the class consisting of the finitely generated members of G. Then, for any
compact manifold M, catG(M) = catGf (M).

Proof. Clearly catG(M) ≤ catGf (M).
Write k = catG(M) and let {U1, . . . , Uk} be an open cover of M by G - con-
tractible subspaces. Since M is normal there is an open cover {V1, ..., Vk} of
M such that Vi ⊂ Ui (i = 1, . . . , k) (shrinking Lemma) and, using topological
transversality (see [19] and [24]), it follows that there are compact codimension
0 submanifolds Wi such that Vi ⊂ int(Wi) ⊂ Wi ⊂ Ui (here int(Wi) means
the maximal open set contained in Wi). Since G is closed under subgroups
int(Wi) is G - contractible. Compact topological manifolds are ANR’s and are
dominated by finite simplicial complexes (Borsuk [2]), hence they have finitely
generated fundamental groups. It follows that π(int(Wi)) is finitely generated
and therefore int(Wi) is Gf - contractible. Therefore catGf (M) ≤ catG(M).

Proposition 3 in section 3 below, proved in [10] (Proposition 3), lists all
compact 3-manifolds whose fundamental group does not contain F2. It turns
out that all these groups are virtually solvable. From this we obtain the following
relation between the various G-categories for compact 3-manifolds:

Proposition 2. If M3 is a compact 3-manifold, then cathunf (M3) = catame(M
3) =

catvsolv(M
3) = catvsolv3(M3).

Proof. Clearly cathunf (M3) ≤ catame(M3) ≤ catvsolv(M3) ≤ catvsolv3(M3).
We show catsolv3(M3) ≤ cathunf (M3). Note that by lemma 1, cathunf (M3) =
cathunff (M3) := k. Let {W1, . . . ,Wk} be an open cover of M3 by hunff -
contractible subsets . It suffices to show that Wi is vsolv3 - contractible.
The image of π(Wi, ∗) in π(M3, ∗), for any base point ∗ in Wi, is finitely gen-
erated and therefore, by Scott’s theorem [25] it is a compact-three-manifold
group. Since it does not contain F2, it belongs to vsolv3 (Proposition 3 and [10]
Proposition 2). Hence Wi is vsolv3 - contractible.

Corollary 1. If G1 and G2 contain vsolv3 and are contained in hunf , then
catG1(M) = catG2(M) for any compact 3-manifold M .

This follows from Proposition 2, since cathunf (M) ≤ catGi(M) ≤ catsolv3(M) =
cathunf (M), (i = 1, 2).

3 The dipus, quadripus, bipod, tetrapod, octo-
pod and their groups.

We use the following notations:
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The manifold that is obtained from a 3-manifold W by filling in all boundary
spheres with 3-balls is denoted by Ŵ .

T ×̃I, K×̃I, S1×̃D2, S1×̃S2 denote, resp., an I-bundle over the torus, an
I-bundle over the Klein bottle K, a D2-bundle over S1, an S2-bundle over S1.
The bundles may be trivial (i.e. product bundles) or non-trivial. In particular,
by (K×̃I)0 we denote the unique orientable I-bundle over K.

A twisted double of (K×̃I)0 is a closed 3-manifold obtained by gluing two
copies of (K×̃I)0 along their boundary components.

The geminus MG is the disk sum of two copies of (P 2×I):
MG = (P 2×I)#b(P

2×I). The boundary ∂MG consists of 2 projective planes
and a Klein bottle.

The dipus MD is obtained from the geminus MG = (P 2×I)#b(P
2×I) and

the solid Klein bottle m×I (where m is the Moebius band) by gluing a non-
sparating annulus A1 in the Klein bottle boundary of MG to the incompressible
annulus A2 = ∂m× I. The boundary ∂MD consists of 2 projective planes and
an incompressible Klein bottle ∂KMD.

The quadripus MQ is the orbit manifold of M = S1×S1×I under the
orientation-reversing involution τ(z1, z2, t) = (z̄1, z̄2, 1− t) with the interiors of
invariant 3-ball neighborhoods of the four fixed points removed (see [17], [16]).
Its boundary consists of 4 projective planes and one incompressible torus. Any
self-homeomorphism of the torus boundary T0 of the quadripus MQ extends to
a homeomorphism of MQ.

The octopod MO = MQ ∪T0
MQ is the union of two copies of MQ along the

torus boundary. Its boundary consists of 8 projective planes.

The tetrapod MT is the union of two copies of the dipus along the Kleinbottle
boundary. Its boundary consists of 4 projective planes. The tetrapod may also
be viewed as MQ ∪T0

T ×̃I (where T ×̃I is the non-orientable twisted I-bundle)
and as MQ ∪T0

(K×̃I)0.

The bipod MB = MD ∪ (K×̃I) is the union of the dipus MD and the non-
orientable I-bundle over the Kleinbottle K×̃I, along the Kleinbottle boundaries:
MD ∩ (K×̃I) = ∂KMD = ∂(K×̃I). (This construction of MB is independent of
the gluing homeomorphism ∂KMD → ∂(K×̃I)).

We now consider the collection MS of these manifolds, together with torus
and Kleinbottle bundles over S1:

Definition 3. MS denotes the set of 3-manifolds listed in (1)-(6) below:
(1) A torus bundle or Kleinbottle bundle over S1.
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(2) A twisted double of (K×̃I)0.
(3) T ×̃I, K×̃I, S1×̃D2.
(4) P 2×I, (P 2×I)#P 3, (P 2×I)#(P 2×I).
(5) The quadripus MQ, dipus MD, geminus MG.
(6) The octopod MO, tetrapod MT , bipod MB .

M0 denotes the set of closed Seifert manifolds with non-negative orbifold
Euler characteristic.

Here the orbifold Euler characteristic of a Seifert manifold is χ(S)−
∑k
i=1(1−

1/αi), where χ(S) is the usual Euler characteristic of the orbit surface S and
the αi are the multiplicities of the exceptional fibers.

By the Proposition below, proved in [10] (Proposition 3),MS ∪M0 consists
precisely of all the compact (connected) 3-manifolds whose fundamental groups
belong to hunf :

Proposition 3. Let W be a compact connected 3-manifold. Then π1(W ) does
not contain F2 if and only if Ŵ belongs to M0 or MS .

The Kleinbottle bundles in case (1) of MS and the non-orientable twisted
doubles of K×̃I appear also in M0. As pointed out in [10], all fundamental
groups of the manifolds in MS ∪M0 are solvable with the exception of those
Seifert manifolds in M0 that are covered by the dodecahedral manifold, which
are the finite groups SL(2, 5)× Zm, with gcd(m, 30) = 1.

We now consider the structure of the fundamental groups of the manifolds
in MS .

Starting with the natural presentation 〈a1, a2 : a21 = a22 = 1〉 of π(MG), we
see that π(MG) has a unique infinite cyclic subgroup of index 2, namely 〈a1a2〉.

For the fundamental group of the dipus MD = MG ∪ (m× I) we obtain the
presentation presentation π(MD) = 〈a1, a2, b : a21 = a22 = 1, a1a2 = b2〉. With
a = a1 the subgroup corresponding to the Klein bottle boundary is generated
by (ba)2 and b and

π(MD) = 〈a, b : a2 = 1, a−1b2a = b−2〉, with π(∂K(MD)) = 〈(ba)2, b〉.

The fundamental groups of the dipus and the bipod are characterized as
follows:

Proposition 4. (1) The fundamental group of MD is the unique free product
with amalgamation Z ∗Z (Z2 ∗ Z2), where the index of the amalgamating group
Z in both factors is 2.
(2) The fundamental group of MB is the unique free product with amalgama-
tion π(MD) ∗K1

K, where K, K1 are Kleinbottle groups and the index of the
amalgamating group K1 in both factors is 2.

7



Proof. (1) If H is a subgroup of Z2 ∗Z2 = 〈a1, a2 : a21 = a22 = 1〉 not containing
elements of finite order, then a1 and a2 do not belong to H, but if H has index
2, then a1a2 ∈ H, hence (Z2 ∗ Z2)/H ⊂ (Z2 ∗ Z2)/〈a1a2〉 = Z2. So H = 〈a1a2〉
is the unique infinite cyclic subgroup of index 2.

(2) Recalling that MB = MD ∪ (K×̃I), it suffices to show that G := π(MD)
(resp. K) contains a unique (up to equivalence) Kleinbottle group of index
2, i.e. if K1, K2 are Kleinbottle subgroups of G (resp. K), then there is an
automorphism ϕ : G→ G with ϕ(K1) = K2.

(i) First note that G = 〈a, b : a2 = 1, a−1b2a = b−2〉 has exactly three
subgroups of index 2: If H is such a subgroup and a ∈ H, then b /∈ H, but b2 ∈
H. So Z2 = G/H ⊂ G/〈a, b2〉 = Z2, and it follows that H = 〈a, b2〉. Similarly,
if b ∈ H then a /∈ H and it follows that H =< b > (the subgroup normally
generated by b). Finally, if a /∈ H, b /∈ H, then ba ∈ H and H =< ba >.

Note also that the first H is not a Kleinbottle group, (since a has order
2), but K1 :=< ba >= 〈b2, ba〉 is a normal subgroup of index 2 in G that is
isomorphic to the Klein bottle group, where (ba)−1b2(ba) = b−2. We show that
K2 :=< b > is a Kleinbottle group equivalent to K1.

From a−1b2a = b−2 it follows that b2ab2a = 1, hence bab = b−1ab−1, and
abab = ab−1ab−1. Then a−1(ba)2a = ababaa = abab = ab−1ab−1 = (ba)−2.
Hence ϕ : a → a, b → ba defines a homomorphism from G to G and, since
ϕ2 =identity, ϕ is an automorphism.

So φ(〈b2, ba〉) = 〈φ(b2), φ(ba)〉 = 〈(ba)2, b〉 = K2 is also a normal subgroup
of index 2 isomorphic to the Kleinbottle group, where b−1(ba)2b = (ba)−2.

(ii) As above we see that the Kleinbottle group K = 〈x, y : y−1xy = x−1〉 has
exactly three subgroups of index 2. Now, K1 := 〈y, x2〉 is a normal subgroup
of index 2 isomorphic to the Kleinbottle group, where y−1x2y = x−2. Let
ϕ : x → x−1, y → xy. Since (xy)−1x−1(xy) = x = (x−1)−1, ϕ defines a
homomorphism from K to K and, since ϕ2 =identity, ϕ is an automorphism.

So K2 := ϕ(〈y, x2〉) = 〈φ(y), φ(x2)〉 = 〈xy, x−2〉 is also a normal subgroup
of index 2 isomorphic to the Kleinbottle group, where (xy)−1x−2 = x2.

The third subgroup is < x, y2 > which is abelian and therefore not a Klein-
bottle group.

We now characterize the fundamental groups of the manifolds in MS .

Definition 4. GS denotes the set of groups consisting of the trivial group and
the fundamental groups of the manifolds in MS .

Example 1. hunf ⊃ ame ⊃ solv ⊃ GS .

Example 2. If C1, C2 are as in cases (3) or (4) of MS and C = C1 ∪F C2 is
a union along an incompressible torus or Klein bottle boundary component F ,
then C ∈MS , hence π1(C) ∈ GS .

For if Ci = T ×̃I or K×̃I we may assume that these are not product bundles.
Since Ci is irreducible and F is incompressible and π(C) is solvable, Theorem
4.5 of [6] applies to show that C is a torus or Klein bottle bundle over S1 or a
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twisted double of (K×̃I)o. Hence C ∈MS .
The remaining cases are (remembering that ∂Ci is incompressible):
T ×̃I ∪F MQ = K×̃I ∪F MQ = MT , MQ ∪F MQ = MO, K×̃I ∪MD = MB ,
MD ∪F MD = MT . All these manifolds belong to MS .

Definition 5. (a) polyZ(n) consists of all groups G that have a normal series
with infinite cyclic quotients and of length at most n, i.e. 1 = G0/G1/· · ·/Gm =
G where each Gi+1/Gi ∼= Z and m ≤ n.
(b) Denote by N o H a semi-direct product of H acting on N , that is an
extension of the group N with quotient H and let
spolyc = {N oH |N ∈ polyZ(3), H a subgroup of Z2 × Z2} − {Z× Z2}.
(c) spolyc3 = spolyc ∩ {3−manifold groups}.

Note that every group in spolyc is finitely generated and so the groups of
spolyc3 are fundamental groups of compact 3-manifolds.

Lemma 2. spolyc3 is closed under subgroups.

Proof. It is easy to see that extensions of polyZ(3)-groups by a subgroup of
Z2 × Z2 are closed under subgroups. Since the set of 3-manifold groups is
closed under subgroups, it follows that the intersection I of these two classes is
closed under subgroups. By Epstein ([5], Theorem 9.5), any 3-manifold group
containing properly Z×Z2 is a free product (Z×Z2)∗H (for some group H 6= 1).
This group is not solvable and therefore does not belong to I. It follows that
spolyc3 = I − {Z× Z2} is still subgroup closed.

Proposition 5. GS = spolyc3.

Proof. We first show that the groups (1)-(6) of GS belong to spolyc.

(1) Clearly these groups are in polyZ(3).
(2) There is a 2-sheeted covering of a torus bundle over S1 over M=twisted

double of (K×̃I)0. Hence π(M) = N o Z2, for N ∈ polyZ(3).
(3) Clearly these groups are in polyZ(3).
(4) Z2 ∗Z2 = 〈a, b | a2 = b2 = 1〉 = ZoZ2, where Z is the (normal) subgroup

generated by ab.
(5) The 2-sheeted orientable cover of MQ (resp. MD) is a 4-times (resp.

2-times) punctured S1×S1×I (resp. (K×̃I)0).
Hence π(MQ) = (Z× Z) o Z2 and π(MD) = K o Z2 (K=Kleinbottle group).

(6) The 2-sheeted orientable cover of MO and MT is a punctured torus-
bundle over S1, hence π(MO) and π(MT ) ∼= N o Z2, for N ∈ polyZ(3).

The 2-sheeted orientable cover of MB is a punctured twisted double of
(K×̃I)0, which is covered by a punctured torus bundle over S1 as in (2). So MB

is covered by a punctured torus bundle over S1 with group of covering transfor-
mation Z2×Z2 and it follows that π(MB) = No (Z2×Z2), with N ∈ polyZ(3).

We now show that spolyc3 ⊂ GS .
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Since spolyc3 ⊂ hunf , Proposition 3 implies that a group in spolyc3 is the
fundamental group of a manifold inM0 orMS , and it suffices to show that any
member of spolyc3 with fundamental group of a manifold inM0 belongs to GS .
So suppose that G = π1(M) ∈ spolyc3 where M ∈M0.

If M ∈M0 is a fiber bundle over S1 then the fiber is a torus, a Kleinbottle,
P 2, or S2. Since Z× Z2 /∈ spolyc3, G = π1(M3) for M as in (1) or (3) of MS .

By [23] (7.2) or [27], every M ∈ M0 fibers over S1 with fiber a torus, a
Kleinbottle, P 2, or S2, except in the following cases:

(a) π1(M) is finite.

(b)M has orbit surface S2 and non-zero Euler number e = −(b+
∑k
i=1 βi/αi).

(c) M = {b; (n2, 1); (2, 1), (2, 1)}.
We first note (*): Except for the subgroups of Z2 × Z2, every member of

spolyc has a subgroup of index ≤ 4 which is polyZ(3) of positive length and
therefore has infinite abelianization.

Case (a): It follows from (*) that π1(M) is a subgroup of Z2 × Z2. Since
Z2 × Z2 is not a 3-manifold group, G = 1 or G = Z2 ∈ GS .

Case (b): Seifert’s argument in his proof of Theorem 12 in [26] shows that
if the orbit surface of M is S2, then H1(M) is finite if and only if the Euler
number e(M) 6= 0. If e(M) 6= 0, then by Scott ([25], Theorem 3.6), every finite
cover M̃ of M has e(M̃) 6= 0 and hence (since M̃ also has orbit surface S2) finite
homology group. As in cases (a) it follows from (*) that G = 1 or G = Z2.

Case (c) Let M̃ = {2b; (o1, 0); (2, 1), (2, 1), (2, 1), (2, 1)} be the 2-sheeted ori-
entable cover of M . If b 6= −1 then M̃ is as in case (b), so if π1(M) ∈ spolyc
then π1(M̃) = 1 or Z2, which is not true. If b = −1 then M contains a horizon-
tal Klein bottle that splits M into two (K×̃I)0’s (M is the manifold M6 in [13]
p. 30), and so M is as in (2) of MS .

Another description of GS is as the following class spec. (Here K or Ki

denotes the Kleinbottle group).

Definition 6. The special class spec is the class of subgroups of the following:
(a) π1(MB), the fundamental group of the bipod
(b) all semidirect products K o Z and (Z× Z) o Z
(c) all free products with amalgamation K1 ∗Z×Z K2 where [Ki : Z × Z] = 2,
(i = 1, 2).

Proposition 6. GS = spec.

Proof. The first part of the proof of Proposition 5 shows that GS ⊂ spec.

To show that spec ⊂ GS , note that π1(MB) ∈ GS . Every semidirect product
KoZ and (Z× Z)oZ can be realized as the fundamental group of a Kleinbottle
bundle, resp. torus bundle, over S1 and so is as in case (1) of GS . Every free
product with amalgamation K1 ∗Z×Z K2 with [Ki : Z×Z] = 2 can be realized as
the fundamental group of a union of two twisted I-bundles over the Kleinbottle
and is as in case (2) of GS .
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4 CatG(M
3) ≤ 2

The next two lemmas were proved in [10] for the class of amenable groups. A
similar proof applies to more general classes G of groups.

Lemma 3. Let M = M1#M2 be a connected sum of 3-manifolds and k ≥ 2.
(a) If catG(Mi) ≤ k for i = 1, 2 then catG(M) ≤ k.
(b) If G is closed under subgroups and catG(M) ≤ k, then catG(Mi) ≤ k for

i = 1, 2.

Proof. There are 3-balls Bi ⊂Mi so that M = M ′1∪M ′2, where M ′i = Mi−intBi
and M ′1 ∩M ′2 = ∂B1 = ∂B2.

Suppose catG(Mi) ≤ k for i = 1, 2. Deleting a ball from an open G-
contractible subset does not change G-contractibility, so we may assume Mi =
Wi1 ∪ · · · ∪Wik is a G-contractible cover such that Bi ⊂ Wii and Bi ∩Wij = ∅
for j 6= i and B1 ∩ W 12 = ∅. Note that W11 − intB1 is G-contractible in
M1 − intB1 and therefore in M . Let N be an open product neighborhood of
∂B1 in W11 − intB1 with N ∩ W12 = ∅. Then M = W1 ∪ · · · ∪ Wk, where
W1 = (W11 − B1) ∪W21, W2 = W12 ∪ (W22 − B2) ∪ N , Wj = W1j ∪W2j for
3 ≤ j ≤ k are G-contractible in M . (Note that the assumption that G is closed
under subgroups is not used here).

Now suppose that catG(M) ≤ k and let M = W1 ∪ · · · ∪ Wk be a cover
by G-contractible sets. Consider M ′1 and let Vi = Wi ∩M ′1. For a fixed index

i let Vi
ι1→ M ′1

j→ M and Vi
κ→ W1

ι→ M be the inclusions. Then jι̇1 = ικ̇
and (jι̇1)∗π(Vi, ∗) ⊂ ι∗π(Wi, κ(∗)) ∈ G, for any basepoint ∗ ∈ Vi. Since j∗ is
injective and G is closed under subgroups, ι1∗π(Vi) ∼= (jι̇1)∗π(Vi, ∗) ∈ G. Hence
M ′1 = V1 ∪ · · · ∪ Vk is a cover by G-contractible subsets.

For the case that catGM
n = 2 we may choose two compact G-contractible

submanifolds that intersect along their boundaries:

Lemma 4. Let G be closed under subgroups and let M be a closed n-manifold.
Then catG(M) ≤ 2 if and only if there are compact G-contractible n-submanifolds
Wi of M so that M = W1 ∪W2 and W1 ∩W2 = ∂W1 = ∂W2.

Proof. If catG(M) ≤ 2 there are open G-contractible subsets U0 and U1 of M
whose union is M . By Lemma 1 of [8], there exist compact n-submanifolds W0,
W1 such that W0 ∪W1 = Mn, W0 ∩W1 = ∂W0 = ∂W1 and Wi ⊂ Ui (i = 0, 1).
Since G is closed under subgroups, Wi is G-contractible.

For a surface F in a 3-manifold M , we assume that F is properly embedded,
but not necessarily connected, with a regular neighborhood N(F ) ≈ F × I.

For a closed connected surface F define the complexity c(F ) = 2g(F ) − 1,
where g(F ) is its (orientable or non-orientable) genus. If F is not connected,
we define c(F ) to be the sum of the complexities of the components of F .

Lemma 5. Let G be closed under subgroups and let M be a closed 3-manifold
with catGM ≤ 2. Then there is a closed surface F in M such that F and
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M −N(F ) are G-contractible and every component of F is a 2-sphere or in-
compressible.

Proof. We write M = W1 ∪W2 as in Lemma 4, with F = W1 ∩W2. For each
component F ′ of F , im(π(F ′) → π(M)) is contained in im(π(W ′i ) → π(M)),

where W ′i is a component of Wi, and it follows that F and M −N(F ) are G-
contractible. Now assume that F is a closed surface in M of minimal complexity
such that F and M −N(F ) are G-contractible.

If a non-sphere component F ′ of F is not incompressible, letD be a compress-
ing disk for F ′. Let D × I be a regular neighborhood such that (D × I) ∩ F =
∂D × I and ∂D × 0 is an essential curve in F ′. For the component F ′1 of
F1 = (F−∂D×I)∪(D×∂I) that containsD×{0} orD×{1}, im(π(F ′1)→ π(M))
is a subgroup of im(π(F ′)→ π(M)). Since F ′ is G-contractible, so is F1.

Furthermore, if M ′ is the component of M −N(F ) that contains F ′ but not
D and if M ′1 is the component M ′∪D×I of M −N(F1), then π(M ′) and π(M ′1)
have the same image in π(M). Since M ′ is G-contractible, so is M ′1.

Hence F1 and M −N(F1) are G-contractible and c(F1) < c(F ), a contradic-
tion.

Theorem 1. Suppose that G is closed under subgroups and hunf ⊃ G ⊃ spec.
If M is a closed 3-manifold with catG(M) ≤ 2, then there is a disjoint collection
F of 2-spheres and projective planes in M such that every component C of
M −N(F ) has fundamental group in G and Ĉ is either a closed manifold or Ĉ
is a bipod, tetrapod, or octopod.

Proof. By Lemma 5, there is a closed surface F of minimal complexity in M
such that F and M −N(F ) are G-contractible and every component of F is
a 2-sphere or incompressible. It follows that for every component E′ of E =
M − F × [0, 1] the inclusion E′ → M is π1- injective (e.g. [11] Lemma 2.2).
Since E is G-contractible and G ⊂ hunf , it follows that the components of
E have fundamental groups belonging to G and so are as in Proposition 3.
Furthermore, since for each component F ′ of F , the inclusion F ′ → E is π1-
injective, all non-sphere and non-projective plane components of F have non-
negative Euler characteristic.

Now suppose a component F0 of F is a torus or Klein bottle. Let F0× [0, 1]
be the component of F × [0, 1] containing F0. If a component C of E contains
∂(F0 × [0, 1]) then Ĉ is homeomorphic to F0 × I (only case (3) of MS applies)
so C ∪ (F0× [0, 1]) is a punctured F0-bundle over S1 and its fundamental group
belongs to spec ⊂ G; hence F −F0 and its complement in M are G-contractible
and c(F − F0) < c(F ), contradicting the minimality of c(F ).

If no component of E contains ∂(F0×[0, 1]), let C1, C2 be the two components
of E intersecting F0 × [0, 1]. Note that Ci is not a trivial I-bundle because of
the minimal complexity condition. Then C1 ∪ F0 × [0, 1] ∪ C2 is as in Example
1, i.e. G-contractible. So again F − F0 and its complement are G-contractible
with c(F − F0) < c(F ), a contradiction.

Thus the boundary of every component C of M −N(F ) consists of 2-spheres
and projective planes and C has fundamental group belonging to G.
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If ∂(Ĉ) 6= ∅ then Ĉ is as in cases (5) and (6) of MS . If Ĉ = P 2×I,
(P 2×I)#(P 2×I) or (P 2×I)#P 3, let P be a projective plane component of F
parallel to a boundary component of C, and (if C 6= P 2× I) let S be a 2-sphere
in C splitting it into two punctured copies of P 2 × I (resp. into a punctured
P 2 × I and a punctured P 3) (that is, the 2-sphere used for the connected sum
#). Then F1 = (F − P ) ∪ S and M − F1 are G-contractible and c(F1) < c(F ),
a contradiction. Hence Ĉ is a bipod, tetrapod, or octopod.

A compact prime 3-manifold contains a complete system (possibly empty)
P of projective planes of M , unique up to isotopy, such that no two projective
planes of P are parallel in M and every projective plane in M −N(P) is parallel
(in M) to a component of P (see [22]).

Corollary 2. Suppose that G is closed under subgroups and hunf ⊃ G ⊃
spec. Let M be a closed 3-manifold. Then catG(M) ≤ 2 if and only if M =
M1#M2# . . .#Mm, where for each 1 ≤ i ≤ m, either

(a) π1(Mi) ∈ G, or
(b) The complete system Pi of projective planes of Mi is non-empty and

every component of Mi −N(Pi) is a bipod, tetrapod, or octopod.

Proof. If catG(M) ≤ 2 then this follows from Theorem 1. Conversely, if M is as
in the Corollary, let W1 be a regular neighborhood of the union of the connected
sum 2-spheres and the projective planes, and let W2 = M −W1. Then W1 and
W2 are G-contractible.

We note in particular the case when M is prime:

Corollary 3. Suppose that G is closed under subgroups and hunf ⊃ G ⊃ spec.
Let M be a closed prime 3-manifold. Then catG(M) = 2 if and only if M is
non-orientable with non-empty complete system P of projective planes and every
component of M −N(P) is a bipod, tetrapod, or octopod.

Proof. Since catG(M) 6= 1, i.e. π(M) /∈ G, the result follows from Corollary
2.

As an application we obtain the result that there are no closed, orientable, prime
3-manifolds with catsolv(M) = 2.

5 CatG(M
3) ≤ 3

In this section we classify the closed 3-manifolds M with catG(M) ≤ 3, for some
classes of groups G ⊂ hunf . The classes that we conisider are, besides GS , solv,
abel, the following:

GT = {cyclic groups, Z× Z}
GK = {cyclic groups, Z× Z, Z2 ∗ Z2, K}
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A graph manifold is a closed 3-manifold that contains a disjoint collection
(possibly empty) of 2-sided incompressible tori and Klein bottles which splits
M into Seifert fiber spaces.

Example 3. Let M be a Seifert fiber space with non-empty boundary. Then
M = W1 ∪W2, where W1 is a fibered solid torus, each component of W2 is a
fibered solid torus and each component of W1 ∩W2 is a fibered annulus (see
e.g. [10] proof of Lemma 8). If G is a class of groups that contains Z, then
Wi is G-contractible and hence catG(M) ≤ 2; in particular catGT (M) ≤ 2 and
catGK (M) ≤ 2.

Example 4. Let M be a closed Seifert fiber space. Let W3 be a trivially fibered
solid torus in M . Then M − intW3 = W1 ∪W2, as in Example 3. If G is a class
of groups that contains the cyclic groups, then Wi is G-contractible and hence
catG(M) ≤ 3; in particular catGT (M) ≤ 3 and catGK (M) ≤ 3.

Example 5. Let M be a graph manifold that contains a non-empty collection of
2-sided incompressible tori or Kleinbottles that splits M into Seifert fiber spaces,
each with non-empty boundary. Let W3 be a regular neighborhood (in M) of
this collection of tori and Kleinbottles, let M −W3 = M1 ∪ M2 ∪ · · · ∪ Mn,
and let Mi = Wi1 ∪ Wi2, as in Example 3, so that for W1 =

⋃
iWi1, W2 =⋃

iWi2 we have M = W1 ∪W2 ∪W3. If G is a class of groups that contains Z,
Z×Z, and K, then each Wi is G-contractible, hence catG(M) ≤ 3; in particular
catGK (M) ≤ 3. If M is orientable, then there are no incompressible Kleinbottles
and catGT (M) ≤ 3.

For easy reference we state the following theorem, which is a combination of
theorems 4 and 5 of [10].

Theorem 2. Let M be a closed 3-manifold M .
(a) If M is orientable, then catameM ≤ 3 if and only if M is a connected sum
of graph manifolds.
(b) If M is nonorientable and M̃ is its orientable 2-fold cover, then the following
are equivalent :
i) catame(M) ≤ 3
ii) catame(M̃) ≤ 3
iii) M̃ is a connected sum of graph manifolds
iv) M contains a disjoint collection F of 2-spheres, projective planes, tori,
and Kleinbottles (all 2-sided), such that every component of M −N(F ) is a
punctured S1-bundle or geminus.

Theorem 3. Assume that hunf ⊃ G ⊃ GT and let M be a closed orientable
3-manifold. Then catG(M) ≤ 3 if and only if M is a connected sum of graph
manifolds.

Proof. By Poposition 2 we have catame(M) = cathunf (M) ≤ catG(M) ≤ 3 and
it follows from Theorem 2(a) that M is a connected sum of graph manifolds.

Conversely, if M = M1# . . .#Mn, where each Mi is a graph manifold, then
from Example 5, catG(Mi) ≤ catGT (Mi) ≤ 3 and by Lemma 3(a), catG(M) ≤
3.
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Corollary 4. let M be a closed orientable 3-manifold. Then catabel(M) ≤ 3
if and only if catsolv(M) ≤ 3 if and only if M is a connected sum of graph
manifolds.

Proof. This follows since hunf ⊃ solv ⊃ abel ⊃ GT .

We now consider the case that M is non-orientable.

Lemma 6. Assume G is closed under subgroups. Let p : M̃ →M be a covering
map. Then catG(M̃) ≤ catG(M).

Proof. We show that if W is G-contractible in M then W̃ = p−1(W ) is G-
contractible in M̃ . Assume W , W̃ are connected (otherwise we look at compo-
nents). Let ι : W → M and ι̃ : W̃ → M̃ be the inclusions and let p′ : W̃ → W
be the restriction of p to W̃ . Then p∗ι̃∗(π(W̃ )) = ι∗p

′
∗(π(W̃ )) is a subgroup

of ι∗(π(W )), which is G-contractible. Now p∗ : ι̃∗(π(W̃ )) → p∗ι̃∗(π(W̃ )) is an
isomorphism, hence ι̃∗(π(W̃ )) is G-contractible.

Theorem 4. Assume that hunf ⊃ G ⊃ GK , let M be a closed non-orientable 3-
manifold and let M̃ be its orientable 2-fold cover. The following are equivalent:
(i) catG(M) ≤ 3
(ii) catGK (M) ≤ 3
(iii) M contains a disjoint collection F of 2-spheres, projective planes, tori,
and Kleinbottles (all 2-sided), such that every component of M −N(F ) is a
punctured S1-bundle or geminus.
(iv) catG(M̃) ≤ 3
(v) catGT (M̃) ≤ 3
(vi) M̃ is a connected sum of graph manifolds.

Proof. (i) ⇒ (vi): cathunf (M) ≤ catG(M) ≤ 3, since hunf ⊃ G. Since hunf

is closed under subgroups, cathunf (M̃) ≤ cathunf (M) ≤ 3, by Lemma 6. Now
(vi) follows from Theorem 3, since G ⊃ GK ⊃ GT .

(iv)⇔ (v)⇔ (vi), by Theorem 3, since hunf ⊃ G ⊃ GK ⊃ GT .
(iii)⇔ (vi), by Theorem 2(b).
(iii) ⇒ (ii): Let VT (respectively VS) be the union of the components of

M −N(F ) that are (respectively are not) gemini. There is an S1-fibration
p : V̂S → B where B is a compact 2-manifold.

For every component of B with empty boundary take an annulus embedded
in it and let A be the union of these annuli. We may assume that p−1(A) ⊂
int V . Let W1 = N(F ) ∪ p−1(A).

Now, since every component of B −A has nonempty boundary we obtain
a decomposition B −A = D ∪D′ where D and D′ are disjoint unions of disks

and D ∩ D′ = ∂D ∩ ∂D′. We may assume that p(V̂ − V ) ⊂ intD′. Let
W2 = p−1(D) ∪ VT and W3 = p−1(D′) ∪ VS .

Then M = W1∪W2∪W3. The components of W1 are regular neighborhoods
of 2-spheres, projective planes, tori or Klein bottles. The components of W2 are
solid tori, solid Klein bottles or gemini and the components of W3 are punctured
solid tori or solid Kleinbottles.
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Let W be a component of Wi, 1 ≤ i ≤ 3 . Denote by image(W ) the
image(π1(W, ∗)→ π1(M, ∗)), for some basepoint ∗ ∈ W . If W is a solid torus,
solid Kleinbottle, S2×I, or P 2×I, then image(W ) is cyclic. If W is a neighbor-
hood of an incompressible torus or Kleinbottle then the image is Z×Z or K. If
W is a neighborhood of a compressible torus or Kleinbottle F , then for a com-
pressing disk D of F the inclusion F →M factors through F → F ∪D →M . If
F is a torus then π1(F ∪D) ≈ Z, so image(W ) = image(π1(F ∪D)→ π1(M))
is cyclic. All of these belong to GK .

If F is a Kleinbottle, then either π1(F ∪ D) ≈ Z (if ∂D does not separate
F ), in which case image(W ) is cyclic, or π1(F ∪D) ≈ Z2 ∗ Z2 (if ∂D separates
F ). In the latter case, as well as in the remaining case when W is a geminus,
image(W ) is a 3-manifold group that is a quotient of Z2 ∗Z2 and we claim that
it is either Z2 ∗ Z2 or cyclic, hence belongs to GK .

First we show that a proper quotient of Z2 ∗ Z2 is a finite dihedral group
D2m.

Present Z2 ∗ Z2 as the semi-direct product Z o Z2 = 〈r, s : s2 = 1, srs−1 =
r−1〉 and let N be a nontrivial normal subgroup of ZoZ2. If N is not contained
in the infinite cyclic group 〈r〉 generated by r, then there is some integer m such
that 〈rms〉 ⊂ N , and G/N ⊆ G/〈rms〉 = Z2. If N = 〈rm〉 for some integer
m 6= 0 then G/N is the finite dihedral group of order 2m.

Now, if N3 is a 3-manifold with finite fundamental group D2m then N3 can
be taken to be compact ([14], Thm 8.1) and ∂N3 is a union of 2-spheres, so
N3 can be assumed closed. By Milnor [21], every element of order 2 of N3 is
central. However this is not true for D2m, for m > 2. If m = 2, then it is well
known that D2m, the four group, is not a 3-manifold group (see, for example,
[14], Thm 9.13).

(ii)⇒ (i), since G ⊃ GK .

The manifolds in (iii) may described in more detail as follows. Suppose that
M is irreducible.

Let p : M̃ → M be the 2-fold covering, where M̃ is a connected sum of
graph manifolds, and let h : M̃ → M̃ be the covering involution. By [18]
there is a collection S̃ of disjoint h-invariant 2-spheres in M̃ with an h-invariant
neighborhood N(S̃). Since M is irreducible, h(S′) = S′, for every component
S′ of S̃ and p(S′) is a projective plane P in M . If P is one-sided, then M = P3

and π1(M) ∈ G. So assume that each projective plane in M is 2-sided.

Every component M ′ of M̃ −N(S̃) is an h-invariant punctured graph man-
ifold and since M is irreducible, h(M ′) = M ′. Extend h to an involution

ĥ : M̂ ′ → M̂ ′, with fixed points of ĥ the centers of ball components of M̂ ′−M ′.
(a) If M̂ ′ is a torus bundle, then by [17] p(M ′) is the tetrapod or octopod.

(b) If M̂ ′ is not a torus bundle, then by [20] there is an ĥ-invariant disjoint

collection T ′ of tori in M̂ ′, such that the components of M̂ ′ −N(T ′) are Seifert

fibered. If a component of T ′ intersects Fix(ĥ) replace it by the two boundary

components of an ĥ-invariant product neighborhood of this component to get
a collection T that is an h-invariant union of tori in intM ′. Let Ci be a com-
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ponent of M̂ ′ −N(T ). If h(Ci) ∩ Ci = ∅, then p(Ci) is a Seifert fiber space. If
h(Ci) = Ci, then p(Ci) is non-orientable and π1(p(Ci)) contains a non-trivial
cyclic normal subgroup. By Theorem 1 of [15] there is a disjoint collection K of
2-sided Klein bottles in p(Ci) such that every component of p(Ci)−N(K) is a
geminus or a Seifert bundle. (Here a Seifert bundle is a compact manifold that
admits a decomposition into disjoint circle-fibers each having a regular neigh-
borhood that is either a fibered solid torus or a fibered solid Klein bottle).

Thus if M is irreducible, the statement in case (iii) may be replaced by:

(iii∗) There is a disjoint collection of 2-sided projective planes, Kleinbottles
and tori that splits M into tetrapods, octopods, gemini, and Seifert bundles.

In particular, for G = solv, we note

Corollary 5. Let M be a closed prime 3-manifold. Then
(a) catsolv(M) = 1 if and only if M is a torus or Kleinbottle bundle over S1,

or a union of two orientable I-bundles over the Kleinbottle, or a closed Seifert
fiber space with non-negative orbifold Euler characteristic and not covered by the
dodecahedral manifold.

(b) catsolv(M) = 2 if and only if M is a union of bipods, tetrapods, and
octopods along their projective plane boundaries.

(c) catsolv(M) = 3 if and only if M is not as in case (b) and M is a union of
Seifert bundles, gemini, bipods, tetrapods, and octopods along their boundaries.
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