# Categorical group invariants of 3-manifolds

J. C. Gómez-Larrañaga<sup>\*</sup> F. González-Acuña<sup>†</sup>

Wolfgang Heil<sup>‡</sup>

November 2, 2012

#### Abstract

For a given class  $\mathcal{G}$  of groups, a closed topological *n*-manifold  $M^n$  is of  $\mathcal{G}$ -category  $\leq k$  if it can be covered by k open subsets such that for each path-component W of the subsets the image of its fundamental group  $\pi_1(W) \to \pi(M^n)$  belongs to  $\mathcal{G}$ . The smallest number k such that  $M^n$  admits such a covering is the  $\mathcal{G}$ -category,  $cat_{\mathcal{G}}(M^n)$ . For n = 3,  $M^3$  has  $\mathcal{G}$ -category  $\leq 4$ . We characterize all closed 3-manifolds of  $\mathcal{G}$ -category 1, 2, and 3 for various classes  $\mathcal{G}$ .<sup>1</sup><sup>2</sup>

### 1 Introduction

In [3], M. Clapp and D. Puppe proposed the following generalization of the Lusternik-Schnirelman category cat(M) for a manifold M: Let  $\mathcal{A}$  be a nonempty class of spaces. A subset W of M is  $\mathcal{A}$ -contractible (in M) if the inclusion  $\iota: W \to M$  factors homotopically through some  $X \in \mathcal{A}$ , i.e. there exist maps  $f: W \to X, \alpha: X \to M$ , such that  $\iota$  is homotopic to  $\alpha \cdot f$ . (W and X need not be connected). The  $\mathcal{A}$ -category  $cat_{\mathcal{A}}(M)$  of M is the smallest number of open  $\mathcal{A}$ -contractible subsets of M that cover M. If no such finite cover exists,  $cat_{\mathcal{A}}(M)$  is infinite. When the family  $\mathcal{A}$  contains just one space X, we write X-category of M is its classical Lusternik-Schnirelman category cat(M). An extensive survey for this category can be found in [4]. For closed n-manifolds,  $1 \leq cat_{\mathcal{A}}(M) \leq cat(M) \leq n+1$ .

<sup>\*</sup>Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, G<br/>to. México. jcarlos@cimat.mx

<sup>&</sup>lt;sup>†</sup>Instituto de Matemáticas, UNAM, 62210 Cuernavaca, Morelos, México and Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto. México. fico@math.unam.mx

 $<sup>^{\</sup>ddagger} \mathrm{Department}$  of Mathematics, Florida State University, Tallahasee, FL 32306, USA. heil@math.fsu.edu

 $<sup>^1\</sup>mathrm{AMS}$  classification numbers: 57N10, 57N13, 57N15, 57M30

 $<sup>^2{\</sup>rm Key}$  words and phrases: Lusternik-Schnirelmann category, coverings of n manifolds with amenable subsets

For each path-component W' and each basepoint  $* \in W'$  of an  $\mathcal{A}$ -contractible set W, the image  $\iota_*(\pi_1(W',*)) \subset \pi_1(M,*)$  is a quotient of a subgroup of  $\pi_1(X', f(*))$  (for some basepoint), where X' is a path-component of some  $X \in \mathcal{A}$ . For example, if W is contractible in M, then all these images are trivial and one is led to consider open overs of M by sets V such that for each component V' of V and basepoint  $* \in V$ ,  $\iota_*(\pi_1(V',*)) = 1$ . The smallest number of these sets that cover M is the  $\pi_1$ -category of M, studied in [7]. More generally we say that for any given class of groups  $\mathcal{G}$ , a subset W of M is  $\mathcal{G}$ -contractible (in M) if, for every basepoint  $* \in W$ , the image  $\iota_*(\pi(W,*)) \subset \pi(M,*)$  belongs to  $\mathcal{G}$ , and define  $cat_{\mathcal{G}}(M)$  to be the smallest number of open  $\mathcal{G}$ -contractible subsets of M that cover M.

If  $\mathcal{G} = ame$ , the class of amenable groups, a  $\mathcal{G}$ -contractible set is called an *amenable* set (in M). Gromov [12] showed that the simplicial volume  $|M^n|$  of a closed *n*-manifold vanishes if  $M^n$  is covered by *n* amenable open sets. By Perelman (see e.g. [1]),  $|M^3| = 0$  if and only if  $M^3$  is a connected sum of graph manifolds. In [10] we classified all closed 3-manifolds of *ame*-category  $\leq 3$ .

Little is known for other classes  $\mathcal{G}$  of groups. In this paper we study  $cat_{\mathcal{G}}(M^3)$  for (among other classes) the classes hunf (groups that do not contain a free group of rank 2 as a subgroup), vsolv (virtually solvable), solv (solvable), abel (abelian).

First we obtain in Proposition 1 a relation between the geometric  $\mathcal{A}$ -cat and the algebraic  $\mathcal{G}$ -cat. It turns out (Proposition 2) that the  $\mathcal{G}$ -categories of a manifold M agree for the classes hunf, ame, and vsolv. Observing that for  $\mathcal{G}_1 \supset \mathcal{G}_2$  we have  $cat_{\mathcal{G}_1}(M) \leq cat_{\mathcal{G}_2}(M)$ , we consider (Theorem 1 in section 4) the smallest class spec for which  $cat_{spec}(M^3) = cat_{vsolv}(M^3) = 2$ . This class is studied in detail in section 3; building blocks are the fundamental groups of compact 3-manifolds with solvable fundamental group and with boundary containing projective planes. Still smaller classes are  $\mathcal{G}_T$ , the set consisting of the cyclic groups and the torus group  $\mathbb{Z} \times \mathbb{Z}$ , and  $\mathcal{G}_K$ , the set consisting of cyclic groups, the torus and Kleinbottle groups, and  $\mathbb{Z}_2 * \mathbb{Z}_2$ . As an application we obtain in Corollary 4 another characterization of graph-manifolds in terms of categories: A closed orientable 3-manifold M is a connected sum of graph manifolds if and only if  $cat_{abel}(M) \leq 3$  if and only if  $cat_{solv}(M) \leq 3$ . Finally, in Theorem 4 we obtain a complete classification of closed 3-manifolds for which  $cat_{\mathcal{G}}(M) \leq 3$ , where  $hunf \supset \mathcal{G} \supset \mathcal{G}_K$ . In particular we list in Corollary 5 all closed prime 3-manifolds M for which  $cat_{solv}(M) = 1, 2, \text{ or } 3$ . The only nonprime closed 3-manifold with  $cat_{solv}(M) = 1$ , is  $M = P^3 \# P^3$ ; the non-prime closed 3-manifolds with  $cat_{solv}(M) = 2$  or 3 are described by Lemma 3.

### 2 $cat_{\mathcal{A}}(M)$ and $cat_{\mathcal{G}}(M)$

By a *closed* manifold we mean a compact manifold without boundary. We also assume that a closed manifold is connected unless stated otherwise.

**Definition 1.** (a) Let  $\mathcal{A}$  be a non-empty class of spaces and let Y be topological space. A subset W of Y is  $\mathcal{A}$ -contractible (in Y) if for some space  $X \in \mathcal{A}$  there exist maps  $f : W \to X$ ,  $\alpha : X \to Y$ , such that the inclusion  $\iota : W \to Y$  is homotopic to  $\alpha \cdot f$ .

(b)  $cat_{\mathcal{A}}(Y)$  is the smallest number of open  $\mathcal{A}$ -contractible subsets of Y that cover Y. If no such finite cover exists, we say that  $cat_{\mathcal{A}}(Y)$  is infinite.

The most interesting case is when Y = M, a manifold. For a  $\mathcal{A}$ -contractible subset W (in M) the diagram below commutes up to homotopy and it follows that the image  $\iota_*(\pi(W, *) \subset \pi(M, *))$  is isomorphic to a quotient of a subgroup of  $\pi(X, f(*))$ , for every basepoint  $* \in W$ .



If  $\mathcal{A} = \{X\}$ , we write  $cat_X(M)$  instead of  $cat_{\mathcal{A}}(M)$ . The Lusternik-Schnirelman category cat(M) is the same as  $cat_{point}(M)$ . We have that for any  $\mathcal{A}$  and any connected *n*-manifold M,

$$\frac{cat(M)}{sup_{X \in \mathcal{A}}\{cat(X)\}} \le cat_{\mathcal{A}}(M) \le cat(M) \le n+1.$$

The algebraic version is as follows:

**Definition 2.** Let  $\mathcal{G}$  be a nonempty class of groups and let M be a manifold. A subset W of M is  $\mathcal{G}$ -contractible (in M) if, for every basepoint  $* \in W$ , the image  $\iota_*(\pi(W,*) \subset \pi(M,*)$  belongs to  $\mathcal{G}$ .

(b)  $cat_{\mathcal{G}}(M)$  is the smallest number of open  $\mathcal{G}$ -contractible subsets of M that cover M. If no such finite cover exists,  $cat_{\mathcal{G}}(M) = \infty$ .

Note that, if  $\mathcal{G}$  is closed under subgroups, a subset of a  $\mathcal{G}$ -contractible set is  $\mathcal{G}$ -contractible.

There is a correspondence between the geometric  $\mathcal{A} - cat$  and the algebraic  $\mathcal{G} - cat$  as follows. For a given  $\mathcal{G}$  let  $\mathcal{A}_{\mathcal{G}} = \{X : \pi(X, *) \in \mathcal{G}, \text{ for all } * \in X\}.$ 

**Proposition 1.** If  $\mathcal{G}$  is closed under subgroups and quotients, then  $cat_{\mathcal{G}}(M) = cat_{\mathcal{A}_{\mathcal{G}}}(M)$ .

*Proof.* Suppose W is  $\mathcal{G}$ -contractible in M. Attach sufficiently many 2-cells to W along loops that are null-homotopic in M to obtain a space  $W_X$  such that

 $\pi(W_X, *)$  is isomorphic to the image of  $\iota_* : \pi(W, *) \to \pi(M, *)$  for any base point \* in W (for details see the proof of Theorem 2 in [8]).  $\iota$  can be extended to a map  $\alpha : W_X \to M$  because the loops along which the 2-cells were attached are null-homotopic in M. Then  $\alpha$  induces an isomorphism from  $\pi(W_X, *)$  onto  $im(\iota_*)$  for any base point \* in W, hence  $W_X$  belongs to  $\mathcal{A}_{\mathcal{G}}$ . For the the natural inclusion  $f : W \to W_X$  we have  $\alpha f = \iota$  and therefore W is  $\mathcal{A}_{\mathcal{G}}$ -contractible. It follows that  $cat_{\mathcal{A}_{\mathcal{G}}}(M) \leq cat_{\mathcal{G}}(M)$ . (Note that no closure properties of  $\mathcal{G}$  were used here.)

Now suppose that W is  $\mathcal{A}_{\mathcal{G}}$ -contractible so we have a homotopy commutative diagram as in Definition 1, with  $\pi(X, f(*)) \in \mathcal{G}$ . The image  $\iota_*(\pi(W, *))$  is a quotient of a subgroup of  $\pi(X, f(*))$  for any \* in W, and therefore belongs to  $\mathcal{G}$ , since  $\mathcal{G}$  is closed under subgroups and quotients. Hence  $cat_{\mathcal{G}}(M) \leq cat_{\mathcal{A}_{\mathcal{G}}}(M)$ .

When  $\mathcal{G}$  consists of the trivial group only, then  $cat_{\mathcal{G}}(M) = cat_{\pi_1}(M)$ , the  $\pi_1$ -category of M. This has been calculated in [7] (Corollary 4.2) for closed 3-manifolds  $M^3$ . The result is that  $cat_{\pi_1}(M^3) = 1$  (resp. 2, resp. 4), if  $\pi_1(M^3) = 1$  (resp. free non-trivial, resp. non-free). Thus by Perelman,

 $cat_{\pi_1}(M^3) = \begin{cases} 1 & \text{if and only if } M \text{ is the 3-sphere} \\ 2 & \text{if and only if } M \text{ is a connected sum of } S^2\text{-bundles over } S^1 \\ 4 & \text{otherwise.} \end{cases}$ 

Some well-known classes of groups are the following classes  $\mathcal{G}$ :

hunf, the class of groups that do not contain the free group  $F_2$  of rank 2 as a subgroup (hunf stands for "hereditarily unfree")

The classes of of amenable, virtually solvable, virtually solvable 3-manifold groups, solvable, abelian groups, are denoted respectively by ame, vsolv,  $vsolv_3$ , solv, abel.

Here G is amenable if it a has finitely additive, left-invariant probability measure  $\mu$ , i.e.  $\mu(gS) = \mu(S)$  for all subsets  $S \subset G$ ,  $g \in G$ ;  $\mu(A \cup B) = \mu(A) + \mu(B)$  for all disjoint subsets  $A, B \subset G$ ;  $\mu(G) = 1$ .

A 3-manifold group is a group that is isomorphic to the fundamental group of a 3-manifold.

We have the following inclusions

$$hunf \supset ame \supset vsolv \supset solv \supset abel$$
  
 $\cup$   
 $vsolv_3$ 

Note that if  $\mathcal{G} \supset \mathcal{B}$  then  $cat_{\mathcal{G}}(M) \leq cat_{\mathcal{B}}(M)$ .

If  $\mathcal{G} = ame$ , (resp.  $solv, \ldots$ ), we say that W is *amenable*, (resp.  $solvable, \ldots$ ), (in M) instead of W is *ame-contractible*, (resp.  $solv-contractible, \ldots$ ).

**Lemma 1.** Let  $\mathcal{G}$  be a nonempty class of groups closed under subgroups and let  $\mathcal{G}^f$  be the class consisting of the finitely generated members of  $\mathcal{G}$ . Then, for any compact manifold M,  $cat_{\mathcal{G}}(M) = cat_{\mathcal{G}^f}(M)$ .

#### Proof. Clearly $cat_{\mathcal{G}}(M) \leq cat_{\mathcal{G}^f}(M)$ .

Write  $k = cat_{\mathcal{G}}(M)$  and let  $\{U_1, \ldots, U_k\}$  be an open cover of M by  $\mathcal{G}$  - contractible subspaces. Since M is normal there is an open cover  $\{V_1, \ldots, V_k\}$  of M such that  $\overline{V_i} \subset U_i$   $(i = 1, \ldots, k)$  (shrinking Lemma) and, using topological transversality (see [19] and [24]), it follows that there are compact codimension 0 submanifolds  $W_i$  such that  $\overline{V_i} \subset int(W_i) \subset W_i \subset U_i$  (here  $int(W_i)$  means the maximal open set contained in  $W_i$ ). Since  $\mathcal{G}$  is closed under subgroups  $int(W_i)$  is  $\mathcal{G}$  - contractible. Compact topological manifolds are ANR's and are dominated by finite simplicial complexes (Borsuk [2]), hence they have finitely generated fundamental groups. It follows that  $\pi(int(W_i))$  is finitely generated and therefore  $int(W_i)$  is  $\mathcal{G}^f$  - contractible. Therefore  $cat_{\mathcal{G}^f}(M) \leq cat_{\mathcal{G}}(M)$ .  $\Box$ 

Proposition 3 in section 3 below, proved in [10] (Proposition 3), lists all compact 3-manifolds whose fundamental group does not contain  $F_2$ . It turns out that all these groups are virtually solvable. From this we obtain the following relation between the various  $\mathcal{G}$ -categories for compact 3-manifolds:

**Proposition 2.** If  $M^3$  is a compact 3-manifold, then  $cat_{hunf}(M^3) = cat_{ame}(M^3) = cat_{vsolv}(M^3) = cat_{vsolv_3}(M^3)$ .

Proof. Clearly  $cat_{hunf}(M^3) \leq cat_{ame}(M^3) \leq cat_{vsolv}(M^3) \leq cat_{vsolv_3}(M^3)$ . We show  $cat_{solv_3}(M^3) \leq cat_{hunf}(M^3)$ . Note that by lemma 1,  $cat_{hunf}(M^3) = cat_{hunff}(M^3) := k$ . Let  $\{W_1, \ldots, W_k\}$  be an open cover of  $M^3$  by  $hunf^f$  - contractible subsets. It suffices to show that  $W_i$  is  $vsolv_3$  - contractible. The image of  $\pi(W_i, *)$  in  $\pi(M^3, *)$ , for any base point \* in  $W_i$ , is finitely generated and therefore, by Scott's theorem [25] it is a compact-three-manifold group. Since it does not contain  $F_2$ , it belongs to  $vsolv_3$  (Proposition 3 and [10] Proposition 2). Hence  $W_i$  is  $vsolv_3$  - contractible.

**Corollary 1.** If  $\mathcal{G}_1$  and  $\mathcal{G}_2$  contain  $vsolv_3$  and are contained in hunf, then  $cat_{\mathcal{G}_1}(M) = cat_{\mathcal{G}_2}(M)$  for any compact 3-manifold M.

This follows from Proposition 2, since  $cat_{hunf}(M) \leq cat_{\mathcal{G}_i}(M) \leq cat_{solv_3}(M) = cat_{hunf}(M), (i = 1, 2).$ 

## 3 The dipus, quadripus, bipod, tetrapod, octopod and their groups.

We use the following notations:

The manifold that is obtained from a 3-manifold W by filling in all boundary spheres with 3-balls is denoted by  $\hat{W}$ .

 $T \times I$ ,  $K \times I$ ,  $S^1 \times D^2$ ,  $S^1 \times S^2$  denote, resp., an *I*-bundle over the torus, an *I*-bundle over the Klein bottle *K*, a  $D^2$ -bundle over  $S^1$ , an  $S^2$ -bundle over  $S^1$ . The bundles may be trivial (i.e. product bundles) or non-trivial. In particular, by  $(K \times I)_0$  we denote the unique orientable *I*-bundle over *K*.

A twisted double of  $(K \times I)_0$  is a closed 3-manifold obtained by gluing two copies of  $(K \times I)_0$  along their boundary components.

The geminus  $M_G$  is the disk sum of two copies of  $(P^2 \times I)$ :  $M_G = (P^2 \times I) \#_b(P^2 \times I)$ . The boundary  $\partial M_G$  consists of 2 projective planes and a Klein bottle.

The dipus  $M_D$  is obtained from the geminus  $M_G = (P^2 \times I) \#_b(P^2 \times I)$  and the solid Klein bottle  $m \times I$  (where *m* is the Moebius band) by gluing a nonsparating annulus  $A_1$  in the Klein bottle boundary of  $M_G$  to the incompressible annulus  $A_2 = \partial m \times I$ . The boundary  $\partial M_D$  consists of 2 projective planes and an incompressible Klein bottle  $\partial_K M_D$ .

The quadripus  $M_Q$  is the orbit manifold of  $M = S^1 \times S^1 \times I$  under the orientation-reversing involution  $\tau(z_1, z_2, t) = (\bar{z}_1, \bar{z}_2, 1-t)$  with the interiors of invariant 3-ball neighborhoods of the four fixed points removed (see [17], [16]). Its boundary consists of 4 projective planes and one incompressible torus. Any self-homeomorphism of the torus boundary  $T_0$  of the quadripus  $M_Q$  extends to a homeomorphism of  $M_Q$ .

The octopod  $M_O = M_Q \cup_{T_0} M_Q$  is the union of two copies of  $M_Q$  along the torus boundary. Its boundary consists of 8 projective planes.

The tetrapod  $M_T$  is the union of two copies of the dipus along the Kleinbottle boundary. Its boundary consists of 4 projective planes. The tetrapod may also be viewed as  $M_Q \cup_{T_0} T \times I$  (where  $T \times I$  is the non-orientable twisted *I*-bundle) and as  $M_Q \cup_{T_0} (K \times I)_0$ .

The bipod  $M_B = M_D \cup (K \times I)$  is the union of the dipus  $M_D$  and the nonorientable *I*-bundle over the Kleinbottle  $K \times I$ , along the Kleinbottle boundaries:  $M_D \cap (K \times I) = \partial_K M_D = \partial(K \times I)$ . (This construction of  $M_B$  is independent of the gluing homeomorphism  $\partial_K M_D \to \partial(K \times I)$ ).

We now consider the collection  $\mathcal{M}_{\mathcal{S}}$  of these manifolds, together with torus and Kleinbottle bundles over  $S^1$ :

**Definition 3.**  $\mathcal{M}_{\mathcal{S}}$  denotes the set of 3-manifolds listed in (1)-(6) below: (1) A torus bundle or Kleinbottle bundle over  $S^1$ . (2) A twisted double of  $(K \times I)_0$ .

(3)  $T \tilde{\times} I$ ,  $K \tilde{\times} I$ ,  $S^1 \tilde{\times} D^2$ .

(4)  $P^2 \times I$ ,  $(P^2 \times I) \# P^3$ ,  $(P^2 \times I) \# (P^2 \times I)$ .

(5) The quadripus  $M_Q$ , dipus  $M_D$ , geminus  $M_G$ .

(6) The octopod  $M_O$ , tetrapod  $M_T$ , bipod  $M_B$ .

 $\mathcal{M}_0$  denotes the set of closed Seifert manifolds with non-negative orbifold Euler characteristic.

Here the orbifold Euler characteristic of a Seifert manifold is  $\chi(S) - \sum_{i=1}^{k} (1 - 1/\alpha_i)$ , where  $\chi(S)$  is the usual Euler characteristic of the orbit surface S and the  $\alpha_i$  are the multiplicities of the exceptional fibers.

By the Proposition below, proved in [10] (Proposition 3),  $\mathcal{M}_{\mathcal{S}} \cup \mathcal{M}_0$  consists precisely of all the compact (connected) 3-manifolds whose fundamental groups belong to *hunf*:

**Proposition 3.** Let W be a compact connected 3-manifold. Then  $\pi_1(W)$  does not contain  $F_2$  if and only if  $\hat{W}$  belongs to  $\mathcal{M}_0$  or  $\mathcal{M}_S$ .

The Kleinbottle bundles in case (1) of  $\mathcal{M}_S$  and the non-orientable twisted doubles of  $K \times I$  appear also in  $\mathcal{M}_0$ . As pointed out in [10], all fundamental groups of the manifolds in  $\mathcal{M}_S \cup \mathcal{M}_0$  are solvable with the exception of those Seifert manifolds in  $\mathcal{M}_0$  that are covered by the dodecahedral manifold, which are the finite groups  $SL(2,5) \times Z_m$ , with gcd(m, 30) = 1.

We now consider the structure of the fundamental groups of the manifolds in  $\mathcal{M}_{\mathcal{S}}$ .

Starting with the natural presentation  $\langle a_1, a_2 : a_1^2 = a_2^2 = 1 \rangle$  of  $\pi(M_G)$ , we see that  $\pi(M_G)$  has a unique infinite cyclic subgroup of index 2, namely  $\langle a_1 a_2 \rangle$ .

For the fundamental group of the dipus  $M_D = M_G \cup (m \times I)$  we obtain the presentation presentation  $\pi(M_D) = \langle a_1, a_2, b : a_1^2 = a_2^2 = 1, a_1a_2 = b^2 \rangle$ . With  $a = a_1$  the subgroup corresponding to the Klein bottle boundary is generated by  $(ba)^2$  and b and

 $\pi(M_D) = \langle a, b : a^2 = 1, a^{-1}b^2a = b^{-2} \rangle$ , with  $\pi(\partial_K(M_D)) = \langle (ba)^2, b \rangle$ .

The fundamental groups of the dipus and the bipod are characterized as follows:

**Proposition 4.** (1) The fundamental group of  $M_D$  is the unique free product with amalgamation  $\mathbb{Z} *_{\mathbb{Z}} (\mathbb{Z}_2 * \mathbb{Z}_2)$ , where the index of the amalgamating group  $\mathbb{Z}$  in both factors is 2.

(2) The fundamental group of  $M_B$  is the unique free product with amalgamation  $\pi(M_D) *_{K_1} K$ , where K,  $K_1$  are Kleinbottle groups and the index of the amalgamating group  $K_1$  in both factors is 2. *Proof.* (1) If H is a subgroup of  $\mathbb{Z}_2 * \mathbb{Z}_2 = \langle a_1, a_2 : a_1^2 = a_2^2 = 1 \rangle$  not containing elements of finite order, then  $a_1$  and  $a_2$  do not belong to H, but if H has index 2, then  $a_1a_2 \in H$ , hence  $(\mathbb{Z}_2 * \mathbb{Z}_2)/H \subset (\mathbb{Z}_2 * \mathbb{Z}_2)/\langle a_1a_2 \rangle = \mathbb{Z}_2$ . So  $H = \langle a_1a_2 \rangle$  is the unique infinite cyclic subgroup of index 2.

(2) Recalling that  $M_B = M_D \cup (K \times I)$ , it suffices to show that  $G := \pi(M_D)$ (resp. K) contains a unique (up to equivalence) Kleinbottle group of index 2, i.e. if  $K_1, K_2$  are Kleinbottle subgroups of G (resp. K), then there is an automorphism  $\varphi : G \to G$  with  $\varphi(K_1) = K_2$ .

(i) First note that  $G = \langle a, b \rangle$ :  $a^2 = 1, a^{-1}b^2a = b^{-2} \rangle$  has exactly three subgroups of index 2: If H is such a subgroup and  $a \in H$ , then  $b \notin H$ , but  $b^2 \in H$ . So  $\mathbb{Z}_2 = G/H \subset G/\langle a, b^2 \rangle = \mathbb{Z}_2$ , and it follows that  $H = \langle a, b^2 \rangle$ . Similarly, if  $b \in H$  then  $a \notin H$  and it follows that  $H = \langle b \rangle$  (the subgroup normally generated by b). Finally, if  $a \notin H$ ,  $b \notin H$ , then  $ba \in H$  and  $H = \langle ba \rangle$ .

Note also that the first H is not a Kleinbottle group, (since a has order 2), but  $K_1 := \langle ba \rangle = \langle b^2, ba \rangle$  is a normal subgroup of index 2 in G that is isomorphic to the Klein bottle group, where  $(ba)^{-1}b^2(ba) = b^{-2}$ . We show that  $K_2 := \langle b \rangle$  is a Kleinbottle group equivalent to  $K_1$ .

From  $a^{-1}b^2a = b^{-2}$  it follows that  $b^2ab^2a = 1$ , hence  $bab = b^{-1}ab^{-1}$ , and  $abab = ab^{-1}ab^{-1}$ . Then  $a^{-1}(ba)^2a = ababaa = abab = ab^{-1}ab^{-1} = (ba)^{-2}$ . Hence  $\varphi : a \to a, b \to ba$  defines a homomorphism from G to G and, since  $\varphi^2$  =identity,  $\varphi$  is an automorphism.

So  $\phi(\langle b^2, ba \rangle) = \langle \phi(b^2), \phi(ba) \rangle = \langle (ba)^2, b \rangle = K_2$  is also a normal subgroup of index 2 isomorphic to the Kleinbottle group, where  $b^{-1}(ba)^2b = (ba)^{-2}$ .

(ii) As above we see that the Kleinbottle group  $K = \langle x, y : y^{-1}xy = x^{-1} \rangle$  has exactly three subgroups of index 2. Now,  $K_1 := \langle y, x^2 \rangle$  is a normal subgroup of index 2 isomorphic to the Kleinbottle group, where  $y^{-1}x^2y = x^{-2}$ . Let  $\varphi : x \to x^{-1}, y \to xy$ . Since  $(xy)^{-1}x^{-1}(xy) = x = (x^{-1})^{-1}, \varphi$  defines a homomorphism from K to K and, since  $\varphi^2$  =identity,  $\varphi$  is an automorphism. So  $K_2 := \varphi(\langle y, x^2 \rangle) = \langle \phi(y), \phi(x^2) \rangle = \langle xy, x^{-2} \rangle$  is also a normal subgroup

of index 2 isomorphic to the Kleinbottle group, where  $(xy)^{-1}x^{-2} = x^2$ .

The third subgroup is  $\langle x, y^2 \rangle$  which is abelian and therefore not a Kleinbottle group.

We now characterize the fundamental groups of the manifolds in  $\mathcal{M}_{\mathcal{S}}$ .

**Definition 4.**  $\mathcal{G}_S$  denotes the set of groups consisting of the trivial group and the fundamental groups of the manifolds in  $\mathcal{M}_S$ .

**Example 1.**  $hunf \supset ame \supset solv \supset \mathcal{G}_S$ .

**Example 2.** If  $C_1$ ,  $C_2$  are as in cases (3) or (4) of  $\mathcal{M}_S$  and  $C = C_1 \cup_F C_2$  is a union along an incompressible torus or Klein bottle boundary component F, then  $C \in \mathcal{M}_S$ , hence  $\pi_1(C) \in \mathcal{G}_S$ .

For if  $C_i = T \times I$  or  $K \times I$  we may assume that these are not product bundles. Since  $C_i$  is irreducible and F is incompressible and  $\pi(C)$  is solvable, Theorem 4.5 of [6] applies to show that C is a torus or Klein bottle bundle over  $S^1$  or a twisted double of  $(K \times I)_o$ . Hence  $C \in \mathcal{M}_S$ . The remaining cases are (remembering that  $\partial C_i$  is incompressible):  $T \times I \cup_F M_Q = K \times I \cup_F M_Q = M_T, M_Q \cup_F M_Q = M_O, K \times I \cup M_D = M_B,$  $M_D \cup_F M_D = M_T$ . All these manifolds belong to  $\mathcal{M}_S$ .

**Definition 5.** (a) polyZ(n) consists of all groups G that have a normal series with infinite cyclic quotients and of length at most n, i.e.  $1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_m = G$  where each  $G_{i+1}/G_i \cong \mathbb{Z}$  and  $m \leq n$ .

(b) Denote by  $N \rtimes H$  a semi-direct product of H acting on N, that is an extension of the group N with quotient H and let  $spolyc = \{N \rtimes H \mid N \in polyZ(3), H$  a subgroup of  $\mathbb{Z}_2 \times \mathbb{Z}_2\} - \{\mathbb{Z} \times \mathbb{Z}_2\}.$ 

(c)  $spolyc_3 = spolyc \cap \{3-\text{manifold groups}\}.$ 

Note that every group in *spolyc* is finitely generated and so the groups of  $spolyc_3$  are fundamental groups of *compact* 3-manifolds.

#### **Lemma 2.** $spolyc_3$ is closed under subgroups.

*Proof.* It is easy to see that extensions of polyZ(3)-groups by a subgroup of  $\mathbb{Z}_2 \times \mathbb{Z}_2$  are closed under subgroups. Since the set of 3-manifold groups is closed under subgroups, it follows that the intersection  $\mathcal{I}$  of these two classes is closed under subgroups. By Epstein ([5], Theorem 9.5), any 3-manifold group containing properly  $\mathbb{Z} \times \mathbb{Z}_2$  is a free product  $(Z \times Z_2) * H$  (for some group  $H \neq 1$ ). This group is not solvable and therefore does not belong to  $\mathcal{I}$ . It follows that spolyc<sub>3</sub> =  $\mathcal{I} - \{\mathbb{Z} \times \mathbb{Z}_2\}$  is still subgroup closed.

#### **Proposition 5.** $\mathcal{G}_S = spolyc_3$ .

*Proof.* We first show that the groups (1)-(6) of  $\mathcal{G}_S$  belong to spolyc.

(1) Clearly these groups are in polyZ(3).

(2) There is a 2-sheeted covering of a torus bundle over  $S^1$  over M=twisted double of  $(K \times I)_0$ . Hence  $\pi(M) = N \rtimes \mathbb{Z}_2$ , for  $N \in polyZ(3)$ .

(3) Clearly these groups are in polyZ(3).

(4)  $\mathbb{Z}_2 * \mathbb{Z}_2 = \langle a, b | a^2 = b^2 = 1 \rangle = \mathbb{Z} \rtimes \mathbb{Z}_2$ , where  $\mathbb{Z}$  is the (normal) subgroup generated by ab.

(5) The 2-sheeted orientable cover of  $M_Q$  (resp.  $M_D$ ) is a 4-times (resp. 2-times) punctured  $S^1 \times S^1 \times I$  (resp.  $(K \times I)_0$ ).

Hence  $\pi(M_Q) = (\mathbb{Z} \times \mathbb{Z}) \rtimes \mathbb{Z}_2$  and  $\pi(M_D) = \mathbb{K} \rtimes \mathbb{Z}_2$  (K=Kleinbottle group).

(6) The 2-sheeted orientable cover of  $M_O$  and  $M_T$  is a punctured torusbundle over  $S^1$ , hence  $\pi(M_O)$  and  $\pi(M_T) \cong N \rtimes \mathbb{Z}_2$ , for  $N \in polyZ(3)$ .

The 2-sheeted orientable cover of  $M_B$  is a punctured twisted double of  $(K \times I)_0$ , which is covered by a punctured torus bundle over  $S^1$  as in (2). So  $M_B$  is covered by a punctured torus bundle over  $S^1$  with group of covering transformation  $\mathbb{Z}_2 \times \mathbb{Z}_2$  and it follows that  $\pi(M_B) = N \rtimes (\mathbb{Z}_2 \times \mathbb{Z}_2)$ , with  $N \in polyZ(3)$ .

We now show that  $spolyc_3 \subset \mathcal{G}_S$ .

Since  $spolyc_3 \subset hunf$ , Proposition 3 implies that a group in  $spolyc_3$  is the fundamental group of a manifold in  $\mathcal{M}_0$  or  $\mathcal{M}_S$ , and it suffices to show that any member of  $spolyc_3$  with fundamental group of a manifold in  $\mathcal{M}_0$  belongs to  $\mathcal{G}_S$ . So suppose that  $G = \pi_1(M) \in spolyc_3$  where  $M \in \mathcal{M}_0$ .

If  $M \in \mathcal{M}_0$  is a fiber bundle over  $S^1$  then the fiber is a torus, a Kleinbottle,  $P^2$ , or  $S^2$ . Since  $\mathbb{Z} \times \mathbb{Z}_2 \notin spolyc_3$ ,  $G = \pi_1(M^3)$  for M as in (1) or (3) of  $\mathcal{M}_S$ .

By [23] (7.2) or [27], every  $M \in \mathcal{M}_0$  fibers over  $S^1$  with fiber a torus, a Kleinbottle,  $P^2$ , or  $S^2$ , except in the following cases:

(a)  $\pi_1(M)$  is finite.

(b) *M* has orbit surface  $S^2$  and non-zero Euler number  $e = -(b + \sum_{i=1}^k \beta_i / \alpha_i)$ .

(c)  $M = \{b; (n_2, 1); (2, 1), (2, 1)\}.$ 

We first note (\*): Except for the subgroups of  $\mathbb{Z}_2 \times \mathbb{Z}_2$ , every member of *spolyc* has a subgroup of index  $\leq 4$  which is polyZ(3) of positive length and therefore has infinite abelianization.

Case (a): It follows from (\*) that  $\pi_1(M)$  is a subgroup of  $\mathbb{Z}_2 \times \mathbb{Z}_2$ . Since  $\mathbb{Z}_2 \times \mathbb{Z}_2$  is not a 3-manifold group, G = 1 or  $G = \mathbb{Z}_2 \in \mathcal{G}_S$ .

Case (b): Seifert's argument in his proof of Theorem 12 in [26] shows that if the orbit surface of M is  $S^2$ , then  $H_1(M)$  is finite if and only if the Euler number  $e(M) \neq 0$ . If  $e(M) \neq 0$ , then by Scott ([25], Theorem 3.6), every finite cover  $\tilde{M}$  of M has  $e(\tilde{M}) \neq 0$  and hence (since  $\tilde{M}$  also has orbit surface  $S^2$ ) finite homology group. As in cases (a) it follows from (\*) that G = 1 or  $G = \mathbb{Z}_2$ .

Case (c) Let  $\tilde{M} = \{2b; (o_1, 0); (2, 1), (2, 1), (2, 1), (2, 1)\}$  be the 2-sheeted orientable cover of M. If  $b \neq -1$  then  $\tilde{M}$  is as in case (b), so if  $\pi_1(M) \in spolyc$  then  $\pi_1(\tilde{M}) = 1$  or  $\mathbb{Z}_2$ , which is not true. If b = -1 then M contains a horizontal Klein bottle that splits M into two  $(K \times I)_0$ 's (M is the manifold  $M_6$  in [13] p. 30), and so M is as in (2) of  $\mathcal{M}_S$ .

Another description of  $\mathcal{G}_{\mathcal{S}}$  is as the following class *spec*. (Here K or  $K_i$  denotes the Kleinbottle group).

**Definition 6.** The special class *spec* is the class of subgroups of the following: (a)  $\pi_1(M_B)$ , the fundamental group of the bipod

(b) all semidirect products  $K \rtimes \mathbb{Z}$  and  $(\mathbb{Z} \times \mathbb{Z}) \rtimes \mathbb{Z}$ 

(c) all free products with amalgamation  $K_1 *_{\mathbb{Z} \times \mathbb{Z}} K_2$  where  $[K_i : \mathbb{Z} \times \mathbb{Z}] = 2$ , (i = 1, 2).

#### **Proposition 6.** $\mathcal{G}_S = spec.$

*Proof.* The first part of the proof of Proposition 5 shows that  $\mathcal{G}_S \subset spec$ .

To show that  $spec \subset \mathcal{G}_S$ , note that  $\pi_1(M_B) \in \mathcal{G}_S$ . Every semidirect product  $K \rtimes \mathbb{Z}$  and  $(\mathbb{Z} \times \mathbb{Z}) \rtimes \mathbb{Z}$  can be realized as the fundamental group of a Kleinbottle bundle, resp. torus bundle, over  $S^1$  and so is as in case (1) of  $\mathcal{G}_S$ . Every free product with amalgamation  $K_1 *_{\mathbb{Z} \times \mathbb{Z}} K_2$  with  $[K_i : \mathbb{Z} \times \mathbb{Z}] = 2$  can be realized as the fundamental group of a union of two twisted *I*-bundles over the Kleinbottle and is as in case (2) of  $\mathcal{G}_S$ .

## 4 $Cat_{\mathcal{G}}(M^3) \le 2$

The next two lemmas were proved in [10] for the class of amenable groups. A similar proof applies to more general classes  $\mathcal{G}$  of groups.

**Lemma 3.** Let  $M = M_1 \# M_2$  be a connected sum of 3-manifolds and  $k \ge 2$ . (a) If  $cat_{\mathcal{G}}(M_i) \le k$  for i = 1, 2 then  $cat_{\mathcal{G}}(M) \le k$ .

(b) If  $\mathcal{G}$  is closed under subgroups and  $\operatorname{cat}_{\mathcal{G}}(M) \leq k$ , then  $\operatorname{cat}_{\mathcal{G}}(M_i) \leq k$  for i = 1, 2.

*Proof.* There are 3-balls  $B_i \subset M_i$  so that  $M = M'_1 \cup M'_2$ , where  $M'_i = M_i - intB_i$ and  $M'_1 \cap M'_2 = \partial B_1 = \partial B_2$ .

Suppose  $cat_{\mathcal{G}}(M_i) \leq k$  for i = 1, 2. Deleting a ball from an open  $\mathcal{G}$ contractible subset does not change  $\mathcal{G}$ -contractibility, so we may assume  $M_i = W_{i1} \cup \cdots \cup W_{ik}$  is a  $\mathcal{G}$ -contractible cover such that  $B_i \subset W_{ii}$  and  $B_i \cap W_{ij} = \emptyset$ for  $j \neq i$  and  $B_1 \cap \overline{W}_{12} = \emptyset$ . Note that  $W_{11} - intB_1$  is  $\mathcal{G}$ -contractible in  $M_1 - intB_1$  and therefore in M. Let N be an open product neighborhood of  $\partial B_1$  in  $W_{11} - intB_1$  with  $N \cap W_{12} = \emptyset$ . Then  $M = W_1 \cup \cdots \cup W_k$ , where  $W_1 = (W_{11} - B_1) \cup W_{21}, W_2 = W_{12} \cup (W_{22} - B_2) \cup N, W_j = W_{1j} \cup W_{2j}$  for  $3 \leq j \leq k$  are  $\mathcal{G}$ -contractible in M. (Note that the assumption that  $\mathcal{G}$  is closed under subgroups is not used here).

Now suppose that  $cat_{\mathcal{G}}(M) \leq k$  and let  $M = W_1 \cup \cdots \cup W_k$  be a cover by  $\mathcal{G}$ -contractible sets. Consider  $M'_1$  and let  $V_i = W_i \cap M'_1$ . For a fixed index i let  $V_i \stackrel{\iota_1}{\to} M'_1 \stackrel{j}{\to} M$  and  $V_i \stackrel{\kappa}{\to} W_1 \stackrel{\iota}{\to} M$  be the inclusions. Then  $ji_1 = \iota k$ and  $(ji_1)_* \pi(V_i, *) \subset \iota_* \pi(W_i, \kappa(*)) \in \mathcal{G}$ , for any basepoint  $* \in V_i$ . Since  $j_*$  is injective and  $\mathcal{G}$  is closed under subgroups,  $\iota_{1*} \pi(V_i) \cong (ji_1)_* \pi(V_i, *) \in \mathcal{G}$ . Hence  $M'_1 = V_1 \cup \cdots \cup V_k$  is a cover by  $\mathcal{G}$ -contractible subsets.  $\Box$ 

For the case that  $\operatorname{cat}_{\mathcal{G}} M^n = 2$  we may choose two compact  $\mathcal{G}$ -contractible submanifolds that intersect along their boundaries:

**Lemma 4.** Let  $\mathcal{G}$  be closed under subgroups and let M be a closed n-manifold. Then  $\operatorname{cat}_{\mathcal{G}}(M) \leq 2$  if and only if there are compact  $\mathcal{G}$ -contractible n-submanifolds  $W_i$  of M so that  $M = W_1 \cup W_2$  and  $W_1 \cap W_2 = \partial W_1 = \partial W_2$ .

*Proof.* If  $cat_{\mathcal{G}}(M) \leq 2$  there are open  $\mathcal{G}$ -contractible subsets  $U_0$  and  $U_1$  of M whose union is M. By Lemma 1 of [8], there exist compact n-submanifolds  $W_0$ ,  $W_1$  such that  $W_0 \cup W_1 = M^n$ ,  $W_0 \cap W_1 = \partial W_0 = \partial W_1$  and  $W_i \subset U_i$  (i = 0, 1). Since  $\mathcal{G}$  is closed under subgroups,  $W_i$  is  $\mathcal{G}$ -contractible.

For a surface F in a 3-manifold M, we assume that F is properly embedded, but not necessarily connected, with a regular neighborhood  $N(F) \approx F \times I$ .

For a closed connected surface F define the complexity c(F) = 2g(F) - 1, where g(F) is its (orientable or non-orientable) genus. If F is not connected, we define c(F) to be the sum of the complexities of the components of F.

**Lemma 5.** Let  $\mathcal{G}$  be closed under subgroups and let M be a closed 3-manifold with  $\operatorname{cat}_{\mathcal{G}} M \leq 2$ . Then there is a closed surface F in M such that F and

 $\overline{M-N(F)}$  are  $\mathcal{G}$ -contractible and every component of F is a 2-sphere or incompressible.

Proof. We write  $M = W_1 \cup W_2$  as in Lemma 4, with  $F = W_1 \cap W_2$ . For each component F' of F,  $im(\pi(F') \to \pi(M))$  is contained in  $im(\pi(W'_i) \to \pi(M))$ , where  $W'_i$  is a component of  $W_i$ , and it follows that F and  $\overline{M - N(F)}$  are  $\mathcal{G}$ -contractible. Now assume that F is a closed surface in M of minimal complexity such that F and  $\overline{M - N(F)}$  are  $\mathcal{G}$ -contractible.

If a non-sphere component F' of F is not incompressible, let D be a compressing disk for F'. Let  $D \times I$  be a regular neighborhood such that  $(D \times I) \cap F =$  $\partial D \times I$  and  $\partial D \times 0$  is an essential curve in F'. For the component  $F'_1$  of  $F_1 = (F - \partial D \times I) \cup (D \times \partial I)$  that contains  $D \times \{0\}$  or  $D \times \{1\}$ ,  $\operatorname{im}(\pi(F'_1) \to \pi(M))$ is a subgroup of  $\operatorname{im}(\pi(F') \to \pi(M))$ . Since F' is  $\mathcal{G}$ -contractible, so is  $F_1$ .

Furthermore, if M' is the component of M - N(F) that contains F' but not D and if  $M'_1$  is the component  $M' \cup D \times I$  of  $M - N(F_1)$ , then  $\pi(M')$  and  $\pi(M'_1)$  have the same image in  $\pi(M)$ . Since M' is  $\mathcal{G}$ -contractible, so is  $M'_1$ .

Hence  $F_1$  and  $M - N(F_1)$  are  $\mathcal{G}$ -contractible and  $c(F_1) < c(F)$ , a contradiction.

**Theorem 1.** Suppose that  $\mathcal{G}$  is closed under subgroups and hunf  $\supset \mathcal{G} \supset$  spec. If M is a closed 3-manifold with  $\operatorname{cat}_{\mathcal{G}}(M) \leq 2$ , then there is a disjoint collection F of 2-spheres and projective planes in M such that every component C of  $\overline{M-N(F)}$  has fundamental group in  $\mathcal{G}$  and  $\hat{C}$  is either a closed manifold or  $\hat{C}$  is a bipod, tetrapod, or octopod.

Proof. By Lemma 5, there is a closed surface F of minimal complexity in M such that F and  $\overline{M-N(F)}$  are  $\mathcal{G}$ -contractible and every component of F is a 2-sphere or incompressible. It follows that for every component E' of  $E = \overline{M-F \times [0,1]}$  the inclusion  $E' \to M$  is  $\pi_1$ - injective (e.g. [11] Lemma 2.2). Since E is  $\mathcal{G}$ -contractible and  $\mathcal{G} \subset hunf$ , it follows that the components of E have fundamental groups belonging to  $\mathcal{G}$  and so are as in Proposition 3. Furthermore, since for each component F' of F, the inclusion  $F' \to E$  is  $\pi_1$ -injective, all non-sphere and non-projective plane components of F have non-negative Euler characteristic.

Now suppose a component  $F_0$  of F is a torus or Klein bottle. Let  $F_0 \times [0, 1]$ be the component of  $F \times [0, 1]$  containing  $F_0$ . If a component C of E contains  $\partial(F_0 \times [0, 1])$  then  $\hat{C}$  is homeomorphic to  $F_0 \times I$  (only case (3) of  $\mathcal{M}_S$  applies) so  $C \cup (F_0 \times [0, 1])$  is a punctured  $F_0$ -bundle over  $S^1$  and its fundamental group belongs to  $spec \subset \mathcal{G}$ ; hence  $F - F_0$  and its complement in  $\mathcal{M}$  are  $\mathcal{G}$ -contractible and  $c(F - F_0) < c(F)$ , contradicting the minimality of c(F).

If no component of E contains  $\partial(F_0 \times [0, 1])$ , let  $C_1, C_2$  be the two components of E intersecting  $F_0 \times [0, 1]$ . Note that  $C_i$  is not a trivial I-bundle because of the minimal complexity condition. Then  $C_1 \cup F_0 \times [0, 1] \cup C_2$  is as in Example 1, i.e.  $\mathcal{G}$ -contractible. So again  $F - F_0$  and its complement are  $\mathcal{G}$ -contractible with  $c(F - F_0) < c(F)$ , a contradiction.

Thus the boundary of every component C of M - N(F) consists of 2-spheres and projective planes and C has fundamental group belonging to  $\mathcal{G}$ . If  $\partial(\hat{C}) \neq \emptyset$  then  $\hat{C}$  is as in cases (5) and (6) of  $\mathcal{M}_S$ . If  $\hat{C} = P^2 \times I$ ,  $(P^2 \times I) \# (P^2 \times I)$  or  $(P^2 \times I) \# P^3$ , let P be a projective plane component of Fparallel to a boundary component of C, and (if  $C \neq P^2 \times I$ ) let S be a 2-sphere in C splitting it into two punctured copies of  $P^2 \times I$  (resp. into a punctured  $P^2 \times I$  and a punctured  $P^3$ ) (that is, the 2-sphere used for the connected sum #). Then  $F_1 = (F - P) \cup S$  and  $M - F_1$  are  $\mathcal{G}$ -contractible and  $c(F_1) < c(F)$ , a contradiction. Hence  $\hat{C}$  is a bipod, tetrapod, or octopod.

A compact prime 3-manifold contains a *complete* system (possibly empty)  $\mathcal{P}$  of projective planes of M, unique up to isotopy, such that no two projective planes of  $\mathcal{P}$  are parallel in M and every projective plane in  $\overline{M - N(\mathcal{P})}$  is parallel (in M) to a component of  $\mathcal{P}$  (see [22]).

**Corollary 2.** Suppose that  $\mathcal{G}$  is closed under subgroups and hunf  $\supset \mathcal{G} \supset$  spec. Let M be a closed 3-manifold. Then  $\operatorname{cat}_{\mathcal{G}}(M) \leq 2$  if and only if  $M = M_1 \# M_2 \# \ldots \# M_m$ , where for each  $1 \leq i \leq m$ , either

(a)  $\pi_1(M_i) \in \mathcal{G}$ , or

(b) The complete system  $\mathcal{P}_i$  of projective planes of  $M_i$  is non-empty and every component of  $\overline{M_i - N(\mathcal{P}_i)}$  is a bipod, tetrapod, or octopod.

*Proof.* If  $cat_{\mathcal{G}}(M) \leq 2$  then this follows from Theorem 1. Conversely, if M is as in the Corollary, let  $W_1$  be a regular neighborhood of the union of the connected sum 2-spheres and the projective planes, and let  $W_2 = \overline{M - W_1}$ . Then  $W_1$  and  $W_2$  are  $\mathcal{G}$ -contractible.

We note in particular the case when M is prime:

**Corollary 3.** Suppose that  $\mathcal{G}$  is closed under subgroups and hunf  $\supset \mathcal{G} \supset$  spec. Let M be a closed prime 3-manifold. Then  $\operatorname{cat}_{\mathcal{G}}(M) = 2$  if and only if M is non-orientable with non-empty complete system  $\mathcal{P}$  of projective planes and every component of  $\overline{M - N(\mathcal{P})}$  is a bipod, tetrapod, or octopod.

*Proof.* Since  $cat_{\mathcal{G}}(M) \neq 1$ , i.e.  $\pi(M) \notin \mathcal{G}$ , the result follows from Corollary 2.

As an application we obtain the result that there are no closed, orientable, prime 3-manifolds with  $cat_{solv}(M) = 2$ .

## 5 $Cat_{\mathcal{G}}(M^3) \leq 3$

In this section we classify the closed 3-manifolds M with  $cat_{\mathcal{G}}(M) \leq 3$ , for some classes of groups  $\mathcal{G} \subset hunf$ . The classes that we consider are, besides  $\mathcal{G}_S$ , solv, *abel*, the following:

 $\mathcal{G}_T = \{ cyclic groups, \mathbb{Z} \times \mathbb{Z} \} \\ \mathcal{G}_K = \{ cyclic groups, \mathbb{Z} \times \mathbb{Z}, \mathbb{Z}_2 * \mathbb{Z}_2, \mathrm{K} \}$ 

A graph manifold is a closed 3-manifold that contains a disjoint collection (possibly empty) of 2-sided incompressible tori and Klein bottles which splits M into Seifert fiber spaces.

**Example 3.** Let M be a Seifert fiber space with non-empty boundary. Then  $M = W_1 \cup W_2$ , where  $W_1$  is a fibered solid torus, each component of  $W_2$  is a fibered solid torus and each component of  $W_1 \cap W_2$  is a fibered annulus (see e.g. [10] proof of Lemma 8). If  $\mathcal{G}$  is a class of groups that contains  $\mathbb{Z}$ , then  $W_i$  is  $\mathcal{G}$ -contractible and hence  $cat_{\mathcal{G}}(M) \leq 2$ ; in particular  $cat_{\mathcal{G}_T}(M) \leq 2$  and  $cat_{\mathcal{G}_K}(M) \leq 2$ .

**Example 4.** Let M be a closed Seifert fiber space. Let  $W_3$  be a trivially fibered solid torus in M. Then  $\overline{M - intW_3} = W_1 \cup W_2$ , as in Example 3. If  $\mathcal{G}$  is a class of groups that contains the cyclic groups, then  $W_i$  is  $\mathcal{G}$ -contractible and hence  $cat_{\mathcal{G}}(M) \leq 3$ ; in particular  $cat_{\mathcal{G}_T}(M) \leq 3$  and  $cat_{\mathcal{G}_K}(M) \leq 3$ .

**Example 5.** Let M be a graph manifold that contains a non-empty collection of 2-sided incompressible tori or Kleinbottles that splits M into Seifert fiber spaces, each with non-empty boundary. Let  $W_3$  be a regular neighborhood (in M) of this collection of tori and Kleinbottles, let  $\overline{M} - W_3 = M_1 \cup M_2 \cup \cdots \cup M_n$ , and let  $M_i = W_{i1} \cup W_{i2}$ , as in Example 3, so that for  $W_1 = \bigcup_i W_{i1}, W_2 = \bigcup_i W_{i2}$  we have  $M = W_1 \cup W_2 \cup W_3$ . If  $\mathcal{G}$  is a class of groups that contains  $\mathbb{Z}$ ,  $\mathbb{Z} \times \mathbb{Z}$ , and K, then each  $W_i$  is  $\mathcal{G}$ -contractible, hence  $cat_{\mathcal{G}}(M) \leq 3$ ; in particular  $cat_{\mathcal{G}_K}(M) \leq 3$ . If M is orientable, then there are no incompressible Kleinbottles and  $cat_{\mathcal{G}_T}(M) \leq 3$ .

For easy reference we state the following theorem, which is a combination of theorems 4 and 5 of [10].

#### **Theorem 2.** Let M be a closed 3-manifold M.

(a) If M is orientable, then  $cat_{ame}M \leq 3$  if and only if M is a connected sum of graph manifolds.

(b) If M is nonorientable and  $\tilde{M}$  is its orientable 2-fold cover, then the following are equivalent :

i)  $cat_{ame}(M) \leq 3$ 

ii)  $cat_{ame}(\tilde{M}) \leq 3$ 

iii) M is a connected sum of graph manifolds

iv) M contains a disjoint collection F of 2-spheres, projective planes, tori, and Kleinbottles (all 2-sided), such that every component of  $\overline{M-N(F)}$  is a punctured  $S^1$ -bundle or geminus.

**Theorem 3.** Assume that  $hunf \supset \mathcal{G} \supset \mathcal{G}_T$  and let M be a closed orientable 3-manifold. Then  $cat_{\mathcal{G}}(M) \leq 3$  if and only if M is a connected sum of graph manifolds.

*Proof.* By Poposition 2 we have  $cat_{ame}(M) = cat_{hunf}(M) \le cat_{\mathcal{G}}(M) \le 3$  and it follows from Theorem 2(a) that M is a connected sum of graph manifolds.

Conversely, if  $M = M_1 \# \dots \# M_n$ , where each  $M_i$  is a graph manifold, then from Example 5,  $cat_{\mathcal{G}}(M_i) \leq cat_{\mathcal{G}_T}(M_i) \leq 3$  and by Lemma 3(a),  $cat_{\mathcal{G}}(M) \leq 3$ . **Corollary 4.** let M be a closed orientable 3-manifold. Then  $cat_{abel}(M) \leq 3$  if and only if  $cat_{solv}(M) \leq 3$  if and only if M is a connected sum of graph manifolds.

*Proof.* This follows since  $hunf \supset solv \supset abel \supset \mathcal{G}_T$ .

We now consider the case that M is non-orientable.

**Lemma 6.** Assume  $\mathcal{G}$  is closed under subgroups. Let  $p: \tilde{M} \to M$  be a covering map. Then  $cat_{\mathcal{G}}(\tilde{M}) \leq cat_{\mathcal{G}}(M)$ .

Proof. We show that if W is  $\mathcal{G}$ -contractible in M then  $\tilde{W} = p^{-1}(W)$  is  $\mathcal{G}$ contractible in  $\tilde{M}$ . Assume W,  $\tilde{W}$  are connected (otherwise we look at components). Let  $\iota: W \to M$  and  $\tilde{\iota}: \tilde{W} \to \tilde{M}$  be the inclusions and let  $p': \tilde{W} \to W$ be the restriction of p to  $\tilde{W}$ . Then  $p_*\tilde{\iota}_*(\pi(\tilde{W})) = \iota_*p'_*(\pi(\tilde{W}))$  is a subgroup of  $\iota_*(\pi(W))$ , which is  $\mathcal{G}$ -contractible. Now  $p_*: \tilde{\iota}_*(\pi(\tilde{W})) \to p_*\tilde{\iota}_*(\pi(\tilde{W}))$  is an isomorphism, hence  $\tilde{\iota}_*(\pi(\tilde{W}))$  is  $\mathcal{G}$ -contractible.

**Theorem 4.** Assume that  $hunf \supset \mathcal{G} \supset \mathcal{G}_K$ , let M be a closed non-orientable 3manifold and let  $\tilde{M}$  be its orientable 2-fold cover. The following are equivalent: (i)  $\operatorname{cat}_{\mathcal{G}}(M) \leq 3$ 

(ii)  $cat_{\mathcal{G}_K}(M) \leq 3$ 

(iii) M contains a disjoint collection F of 2-spheres, projective planes, tori, and Kleinbottles (all 2-sided), such that every component of  $\overline{M-N(F)}$  is a punctured  $S^1$ -bundle or geminus.

(iv)  $cat_{\mathcal{G}}(\tilde{M}) \leq 3$ 

 $(v) \operatorname{cat}_{\mathcal{G}_T}(M) \leq 3$ 

(vi) M is a connected sum of graph manifolds.

Proof. (i)  $\Rightarrow$  (vi):  $cat_{hunf}(M) \leq cat_{\mathcal{G}}(M) \leq 3$ , since  $hunf \supset \mathcal{G}$ . Since hunfis closed under subgroups,  $cat_{hunf}(\tilde{M}) \leq cat_{hunf}(M) \leq 3$ , by Lemma 6. Now (vi) follows from Theorem 3, since  $\mathcal{G} \supset \mathcal{G}_K \supset \mathcal{G}_T$ .

 $(iv) \Leftrightarrow (v) \Leftrightarrow (vi)$ , by Theorem 3, since  $hunf \supset \mathcal{G} \supset \mathcal{G}_K \supset \mathcal{G}_T$ .

 $(iii) \Leftrightarrow (vi)$ , by Theorem 2(b).

 $(iii) \Rightarrow (ii)$ : Let  $V_T$  (respectively  $V_S$ ) be the union of the components of  $\overline{M - N(F)}$  that are (respectively are not) gemini. There is an  $S^1$ -fibration  $p: \hat{V}_S \to B$  where B is a compact 2-manifold.

For every component of B with empty boundary take an annulus embedded in it and let A be the union of these annuli. We may assume that  $p^{-1}(A) \subset$ int V. Let  $W_1 = N(F) \cup p^{-1}(A)$ .

Now, since every component of  $\overline{B-A}$  has nonempty boundary we obtain a decomposition  $\overline{B-A} = D \cup D'$  where D and D' are disjoint unions of disks and  $D \cap D' = \partial D \cap \partial D'$ . We may assume that  $p(\overline{\hat{V}-V}) \subset int D'$ . Let  $W_2 = p^{-1}(D) \cup V_T$  and  $W_3 = p^{-1}(D') \cup V_S$ .

Then  $M = W_1 \cup W_2 \cup W_3$ . The components of  $W_1$  are regular neighborhoods of 2-spheres, projective planes, tori or Klein bottles. The components of  $W_2$  are solid tori, solid Klein bottles or gemini and the components of  $W_3$  are punctured solid tori or solid Kleinbottles. Let W be a component of  $W_i$ ,  $1 \leq i \leq 3$ . Denote by image(W) the  $image(\pi_1(W, *) \to \pi_1(M, *))$ , for some basepoint  $* \in W$ . If W is a solid torus, solid Kleinbottle,  $S^2 \times I$ , or  $P^2 \times I$ , then image(W) is cyclic. If W is a neighborhood of an incompressible torus or Kleinbottle then the image is  $\mathbb{Z} \times \mathbb{Z}$  or K. If W is a neighborhood of a compressible torus or Kleinbottle F, then for a compressing disk D of F the inclusion  $F \to M$  factors through  $F \to F \cup D \to M$ . If F is a torus then  $\pi_1(F \cup D) \approx \mathbb{Z}$ , so  $image(W) = image(\pi_1(F \cup D) \to \pi_1(M))$  is cyclic. All of these belong to  $\mathcal{G}_K$ .

If F is a Kleinbottle, then either  $\pi_1(F \cup D) \approx \mathbb{Z}$  (if  $\partial D$  does not separate F), in which case image(W) is cyclic, or  $\pi_1(F \cup D) \approx \mathbb{Z}_2 * \mathbb{Z}_2$  (if  $\partial D$  separates F). In the latter case, as well as in the remaining case when W is a geminus, image(W) is a 3-manifold group that is a quotient of  $\mathbb{Z}_2 * \mathbb{Z}_2$  and we claim that it is either  $\mathbb{Z}_2 * \mathbb{Z}_2$  or cyclic, hence belongs to  $\mathcal{G}_K$ .

First we show that a proper quotient of  $\mathbb{Z}_2 * \mathbb{Z}_2$  is a finite dihedral group  $D_{2m}$ .

Present  $\mathbb{Z}_2 * \mathbb{Z}_2$  as the semi-direct product  $\mathbb{Z} \rtimes \mathbb{Z}_2 = \langle r, s : s^2 = 1, srs^{-1} = r^{-1} \rangle$  and let N be a nontrivial normal subgroup of  $\mathbb{Z} \rtimes \mathbb{Z}_2$ . If N is not contained in the infinite cyclic group  $\langle r \rangle$  generated by r, then there is some integer m such that  $\langle r^m s \rangle \subset N$ , and  $G/N \subseteq G/\langle r^m s \rangle = \mathbb{Z}_2$ . If  $N = \langle r^m \rangle$  for some integer  $m \neq 0$  then G/N is the finite dihedral group of order 2m.

Now, if  $N^3$  is a 3-manifold with finite fundamental group  $D_{2m}$  then  $N^3$  can be taken to be compact ([14], Thm 8.1) and  $\partial N^3$  is a union of 2-spheres, so  $N^3$  can be assumed closed. By Milnor [21], every element of order 2 of  $N^3$  is central. However this is not true for  $D_{2m}$ , for m > 2. If m = 2, then it is well known that  $D_{2m}$ , the four group, is not a 3-manifold group (see, for example, [14], Thm 9.13).

$$(ii) \Rightarrow (i), \text{ since } \mathcal{G} \supset \mathcal{G}_K.$$

The manifolds in (iii) may described in more detail as follows. Suppose that M is irreducible.

Let  $p: \tilde{M} \to M$  be the 2-fold covering, where  $\tilde{M}$  is a connected sum of graph manifolds, and let  $h: \tilde{M} \to \tilde{M}$  be the covering involution. By [18] there is a collection  $\tilde{S}$  of disjoint *h*-invariant 2-spheres in  $\tilde{M}$  with an *h*-invariant neighborhood  $N(\tilde{S})$ . Since M is irreducible, h(S') = S', for every component S' of  $\tilde{S}$  and p(S') is a projective plane P in M. If P is one-sided, then  $M = \mathbb{P}^3$ and  $\pi_1(M) \in \mathcal{G}$ . So assume that each projective plane in M is 2-sided.

Every component M' of  $\tilde{M} - N(\tilde{S})$  is an *h*-invariant punctured graph manifold and since M is irreducible, h(M') = M'. Extend h to an involution  $\hat{h}: \hat{M}' \to \hat{M}'$ , with fixed points of  $\hat{h}$  the centers of ball components of  $\hat{M}' - M'$ .

(a) If  $\hat{M}'$  is a torus bundle, then by [17] p(M') is the tetrapod or octopod.

(b) If  $\hat{M}'$  is not a torus bundle, then by [20] there is an  $\hat{h}$ -invariant disjoint collection T' of tori in  $\hat{M}'$ , such that the components of  $\overline{\hat{M}' - N(T')}$  are Seifert fibered. If a component of T' intersects  $Fix(\hat{h})$  replace it by the two boundary components of an  $\hat{h}$ -invariant product neighborhood of this component to get a collection T that is an h-invariant union of tori in intM'. Let  $C_i$  be a com-

ponent of  $\hat{M}' - N(T)$ . If  $h(C_i) \cap C_i = \emptyset$ , then  $p(C_i)$  is a Seifert fiber space. If  $h(C_i) = C_i$ , then  $p(C_i)$  is non-orientable and  $\pi_1(p(C_i))$  contains a non-trivial cyclic normal subgroup. By Theorem 1 of [15] there is a disjoint collection K of 2-sided Klein bottles in  $p(C_i)$  such that every component of  $\overline{p(C_i)} - N(K)$  is a geminus or a Seifert bundle. (Here a Seifert bundle is a compact manifold that admits a decomposition into disjoint circle-fibers each having a regular neighborhood that is either a fibered solid torus or a fibered solid Klein bottle).

Thus if M is irreducible, the statement in case (*iii*) may be replaced by:

 $(iii_*)$  There is a disjoint collection of 2-sided projective planes, Kleinbottles and tori that splits M into tetrapods, octopods, gemini, and Seifert bundles.

In particular, for  $\mathcal{G} = solv$ , we note

Corollary 5. Let M be a closed prime 3-manifold. Then

(a)  $\operatorname{cat}_{solv}(M) = 1$  if and only if M is a torus or Kleinbottle bundle over  $S^1$ , or a union of two orientable I-bundles over the Kleinbottle, or a closed Seifert fiber space with non-negative orbifold Euler characteristic and not covered by the dodecahedral manifold.

(b)  $cat_{solv}(M) = 2$  if and only if M is a union of bipods, tetrapods, and octopods along their projective plane boundaries.

(c)  $cat_{solv}(M) = 3$  if and only if M is not as in case (b) and M is a union of Seifert bundles, gemini, bipods, tetrapods, and octopods along their boundaries.

### References

- L. Bessières, G. Besson, S. Maillot, M. Boileau, J. Porti, Geometrisation of 3-Manifolds, EMS Tracts in Mathematics 13, European Mathematical Society (2010).
- [2] K. Borsuk, Zur kombinatorischen Eigenschaften der Retrakte, Fund. Math. 21 (1933), 91-98.
- [3] M. Clapp and D.Puppe, Invariants of the Lusternik-Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986), 603–620.
- [4] O. Cornea, G. Lupton, J. Oprea, D. Tanrè, Lusternik-Schnirelmann Category, Math. Surveys Monographs 103, Amer. Math. Soc. (2003).
- [5] D.B.A.Epstein, Projective Planes in 3-manifolds, Proc. London Math. Soc.
  (3) 11 (1961), 469-484.
- [6] B. Evans and L. Moser, Solvable Fundamental Groups of compact 3manifolds, Trans. Amer. Math. Soc. 168 (1972), 189-210.
- [7] J.C.Gómez-Larrañaga and F.González-Acuña, Lusternik-Schnirelmann category of 3-manifolds, Topology 31 (1992), 791–800.

- [8] J. C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil, Fundamental groups of manifolds with S<sup>1</sup>-category 2, Math. Z. 259 (2008), 419–432.
- [9] J. C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil, Manifolds with S<sup>1</sup>-category 2 have cyclic fundamental groups, Math. Z. 266 (2010), 783–788.
- [10] J. C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil, Amenable Category of 3-manifolds, submitted. Available at www.math.fsu.edu/~aluffi/archive/paper409.pdf
- [11] F. González-Acuña and W. Whitten, Imbedding of Three-manifold groups, Memoirs Amer. Math. Soc., 474 (1992).
- [12] M. Gromov, Volume and Bounded Cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1983), 5-99.
- [13] A. Hatcher, Notes on Basic 3-Manifold Topology. www. math. cornell. edu/~hatcher
- [14] J. Hempel, 3-manifolds, Annals Math. Studies 86, Princeton Univ. Press (1976).
- [15] W. Heil and W. Whitten, The Seifert Fiber Space Conjecture and Torus Theorem for nonorientable 3-manifolds, Canad. Math. Bull. 37 (1994), 482-489.
- [16] E. Luft and D. Sjerve, Involutions with isolated fixed points on orientable 3-dimensional flat space forms, Trans. Amer. Math. Soc. 285 (1984), 305– 336.
- [17] P. K. Kim and D. Sanderson, Orientation reversing PL involutions on orientable torus bundles over S<sup>1</sup>, Michigan Math. J. 29 (1982), 101–110.
- [18] P. K. Kim and J. L. Tollefson, Splitting the PL involutions of nonprime 3-manifolds, Michigan Math. J. 27 (1980), 259-274.
- [19] R. Kirby and L. Siebenmann, Some basic theorems about topological manifolds, Foundational Essays on Topological Manifolds, Smoothings and Triangulations, Ann. Math. Studies 88, Princeton Univ. Press, Princeton, N.J., (1977), iii 79-152.
- [20] W. H. Meeks III and P. Scott, Finite group actions on 3-manifolds, Inventiones math. 86 (1986), 287-346.
- [21] J. Milnor Groups which act without fixed points on  $S^n$ , Amer. J. Math. 79 (1957), 623-630.
- [22] S. Negami, Irreducible 3-manifolds with non-trivial  $\pi_2$ , Yokohama Math. J. 29 (1981), 134-144.

- [23] P. Orlik, Seifert Manifolds, Lecture Notes Math. 291 (Springer 1992).
- [24] F. Quinn, Ends of maps. III. Dimensions 4 and 5, J. Differential Geom. 17 No. 3 (1982), 503-521.
- [25] G. P. Scott, Compact submanifolds of 3-manifolds, J. London Math. Soc.
  (2) 7 (1973), 246–250.
- [26] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-288.
- [27] http://en.wikipedia.org, Seifert Fiber Space.