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Abstract

For a complex K, a closed 3-manifold M is of K–category ≤ m, if it
can be covered by m open subsets W1, . . . ,Wm such that the inclusions

Wi → Mn factor homotopically through maps Wi
fi→ K

αi→ M . We
compute the K-category of closed 3-manifolds M when K is a wedge
of 2-spheres and obtain some results for the K-category of M when
K is a wedge of two projective planes. 1 2

1 Introduction

The classical Lusternik-Schnirelman category cat(X) of a space X is the
smallest number k such that there is an open cover W1, . . . ,Wk of X with
each Wi contractible in X. (If no such finite cover exists, cat(X) =∞). We
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are interested in the case when X = M , a manifold. We assume that man-
ifolds are connected, but the Wi’s need not be connected. For M3 a closed
3-manifold, 2 ≤ cat(M3) ≤ 4, and it has been shown in [4] that cat(M3) = 2,
resp. 3, if and only if π1(M

3) = 1, resp. free non-trivial. If the condition
that Wi is contractible is replaced by the weaker condition that for every
basepoint ∗ ∈ Wi the inclusion ι : Wi → X induces the trivial homomor-
phism ι∗ : π1(Wi, ∗)→ π1(X, ∗), then Wi is said to be π1-contractible (in X)
and catπ1(X) is the smallest number k such that there is an open cover of
X by k π1- contractible subsets. This invariant was defined by Fox [3] and
it is also shown in [4] that catπ1(M

3) = 1 (resp. 2, resp. 4), if and only if
π1(M

3) = 1 (resp. free non-trivial, resp. non-free). Thus by Perelman,

catπ1(M
3) =


1 if and only if M is the 3-sphere

2 if and only if M is a connected sum of S2-bundles over S1

4 otherwise.

M. Clapp and D. Puppe ([2]) generalized the notion of cat(X) as follows:
Let K be a non-empty class of spaces. A subset W of X is K-contractible
(in X) if the inclusion ι : W → X factors homotopically through some
K ∈ K, i.e. there exist maps f : W → K, α : K → X, such that ι is
homotopic to α · f . The K-category catK(X) of X is the smallest number
of open K-contractible subsets of X that cover X. For closed n-manifolds,
1 ≤ catK(M) ≤ cat(M) ≤ n+ 1. When the family K contains just one space
K, one writes catK(M) instead of catK(M). In particular, if K is a single
point, then catK(M) = cat(M). The cases for K = S1, K = S2 and K = P 2

(the projective plane) have been considered in [5] and [6].

There is also a generalization of the notion of catπ1(M): For a nonempty
class of groups G we say that a subset W of M is G-contractible if, for every
basepoint ∗ ∈ W , the image ι∗(π(W, ∗) ⊂ π(M, ∗) belongs to G and we let
catG(M) be the smallest number of open G-contractible subsets of M that
cover M . It turns out that, if G is closed under subgroups and quotients,
then catG(M) = catAG(M), where AG = {X : π(X, ∗) ∈ G, for all ∗ ∈ X}
(Proposition 1 of [8]). For closed 3-manifolds, the cases for G = ame (the
class of amenable groups) and G = solv (the class of solvable groups), have
been considered in [7] and [8].

There do not seem to be any known results for catK(M3) when K is a
compact 2-complex that is not homotopy equivalent to a closed 2-manifold.
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In view of the results for K = point, S2, P 2, one may consider for example
complexes K that are wedges of these 2-manifolds. As a first result in this
direction we obtain in Theorem 1 a complete classification of catK(M3) for
K =

∨
n S

2, the wedge of n copies of S2 (for n > 0).

The case when K =
∨
n P

2, the wedge of n copies of P 2, seems to be
difficult, especially for n ≥ 3, since then π1(K) is not a solvable group.
The closed 3-manifolds M for which catP 2(M) = 2 are S3, P 3, P 3#P 3, and
P 2× S1 ([6]), and it is easy to see that if M1, M2 is any manifold in this list
and M = M1#M2, then catP 2∨P 2(M) = 2. We conjecture that these are the
only closed 3-manifolds M for which catP 2∨P 2(M) = 2.

2 K-contractible subsets.

Let M = Mn be a closed connected n-manifold and let K be a finite CW-
complex.

Recall that a subset W of M is K-contractible (in M) if there are maps
f : W → K and α : K →M such that the inclusion ι : W →M is homotopic
to α · f . The K-category catK(M) is the smallest number m such that M
can be covered by m open K-contractible subsets.

W is π1-contractible (in M) if for every basepoint ∗ ∈ W the inclusion
ι : W →M induces the trivial homomorphism ι∗ : π1(W, ∗)→ π1(M, ∗). The
π1-category catπ1(M) is the smallest number k such that M can be covered
by k open π1- contractible subsets.

More generally, for a nonempty class of groups G, a subset W of M is
G-contractible if, for every basepoint ∗ ∈ W , the image ι∗(π(W, ∗) ⊂ π(M, ∗)
belongs to G and catG(M) is the smallest number of open G-contractible
subsets of M that cover M .

It is easy to see that catK is a homotopy type invariant.
Note that a subset of a K-contractible set is K-contractible.
If G is closed under subgroups, then a subset of a G-contractible set is

G-contractible.

Lemma 1. (a) Let M be a closed 3-manifold. If a 2-complex L is a retract
of a 2-complex K then

2 ≤ catK(M) ≤ catL(M) ≤ cat(M) ≤ 4
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(b) If furthermore K is simply connected then

1 ≤ catπ1(M) ≤ catK(M) ≤ catL(M) ≤ cat(M) ≤ 4

Proof. (a) Clearly a (in M) contractible set is L-contractible. For an L-
contractible set there are maps f : W → L and α : L → M such that
α · f ' ι. Let j : L → K be inclusion and r : K → L be retraction.
Then (αr) · (jf) ' ι. Thus an L-contractible set is K-contractible. Since
id : H3(M)→ H3(M) does not factor through H3(K) = 0, 2 ≤ catK(M).

(b) If π1(K) = 1, a K-contractible set is π1-contractible.

For the case when catK(M) = 2 and K = S1 it was shown in [7] that
the two open K- contractible sets can be replaced by compact submanifolds
that meet only along their boundaries. The same proof applies for any finite
complex K to yield

Proposition 1. Suppose catKM = 2 (resp. catG(M) = 2). Then M can
be expressed as a union of two compact K-contractible (resp. G-contractible)
n-submanifolds W0, W1 such that W0 ∩W1 = ∂W0 = ∂W1.

In particular, if catKM = 2, there are maps fi and αi (for i = 0, 1) such
that the diagram below is homotopy commutative:

(∗)
Wi M

K

-ι

@
@Rfi �

���
αi

We now assume that M is a closed 3-manifold with catKM = 2 as in
Proposition 1.

Let R = Z or Z2 if M is orientable and Z2 if M is non-orientable. From
the exact homology and cohomology sequences of (M,Wj), Lefschetz-Duality,
and (∗) we obtain a commutative diagram (for 0 ≤ j ≤ 3):
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H3−j(K;R)

H3−j(M,W1−i;R) H3−j(M ;R) H3−j(W1−i;R)

Hj(Wi;R) Hj(M ;R) Hj(M,Wi;R)

Hj(K;R)

Q
Q
Q
Q
Q
Qs

f∗1−i

?

∼=

-

?

∼=

-ι∗
�
�
�
�
�
�3

α∗1−i

?

∼=

-ι∗

Q
Q
Q
Q
Q
QQs

fi∗

-

�
�
�
�
�
��3

αi∗

In particular we have an exact sequence

(∗∗) 0→ im ι∗ → H1(M ;R)→ im ι∗ → 0

and obtain the following

Lemma 2. Suppose catK(M) = 2 and K is a 2-dimensional complex such
that the Z2-rank rk(H1(K;Z2) ≤ m and rk(H2(K;Z2)) ≤ n (m,n ≥ 0).
Then rk(H1(M ;Z2) ≤ m+ n.

Lemma 3. Suppose M is orientable with catK(M) = 2 and K is a 2-
dimensional complex such that the rank rk(H1(K)) ≤ m and rk(H2(K)) ≤ n
(m,n ≥ 0). Then rk(H2(M)) ≤ m+ n.

3 catK(M
3) for K a wedge of S2’s.

We use the following notation:∨
m S

2 denotes the wedge of m copies of S2 (for m > 0).
S2×̃S1 denotes the trivial or non-trivial S2-bundle over S1.
#mS

2×̃S1 denotes the connected sum of m S2-bundles over S1 (for m > 0).
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Example 1. If catK(M) = 2, where K =
∨
n S

2, then rk(H1(M ;Z2) ≤ n.

This follows from the Lemma since rk(H1(K;Z2) = 0 and rk(H2(K;Z2)) =
n.

Example 2. For K =
∨
m S

2 and M = #mS
2×̃S1 we have catK(M) = 2.

For simplicity we only describe the case m = 2. Then M = M̂1#M̂2,
where each M̂i has a decomposition S2

i × [−1, 0] ∪ S2
i × [0, 1]. Let Mi be

obtained from M̂i by deleting the interior of a small ball Bi such that ∂Bi is
the union of two disks Di,0, Di,1 with Di,0 ⊂ S2

i × [−1, 0], Di,1 ⊂ S2
i × [0, 1].

Then M = M1 ∪M2 = W1 ∪W2, where W1 = (S2
1 × [−1, 0] ∪D1,0=D2,0 S

2
2 ×

[−1, 0]), W2 = ∪(S2
1 × [0, 1] ∪D1,1=D2,1 S

2
2 × [0, 1]). Each Wi deformation

retracts to S2 ∨ S2 and so is S2 ∨ S2-contractible.

Lemma 4. If Kn =
∨
n S

2, Mm = #mS
2×̃S1, and 1 ≤ m ≤ n, then

catKn(Mm) = 2.

Proof. Clearly catK1(M1) = catS2(S2×̃S1) = 2. Since Kn−1 is a retract of
Kn, catKn(Mm) ≤ catKn−1(Mm), so if m ≤ n − 1 then catKn(Mm) ≤ 2 by
induction on n. If m = n then catKm(Mm) = 2 by Example 2.

Corollary 1. catKn(Mm) =

{
2 for 1 ≤ m ≤ n
3 for m > n

Proof. If catKn(Mm) = 2, then from Example 1 it follows thatm = rk(H1(Mm;Z2)) ≤
n. On the other hand, catKn(Mm) ≤ cat(Mm) ≤ 3 for all n,m, since Mm can
be covered by three balls. Now the Corollary follows from Lemma 4.

Theorem 1. Let K =
∨
n S

2 and let M be a closed 3-manifold. Then

catK(M) =


2 if M = S3 or M = #mS

2×̃S1 with m ≤ n
3 if M = #mS

2×̃S1 with m > n
4 otherwise

Proof. If π1(M) is not free then 4 = catπ1(M) ≤ catK(M) ≤ 4 by [4] and
Lemma 1. If π1(M) is free, then (by Perelman) M is S3 or M = Mm. Now
Corollary 1 applies.

In particular if n = 1, we obtain as a special case:

Corollary 2. catS2(M) =


2 if M = S3 or M = S2×̃S1

3 if M = #mS
2×̃S1 with m > 1

4 otherwise
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Note that the proof shows that in Theorem 1 the condition that K =∨
n S

2 can be replaced by “K is a simply connected 2-complex with rk(H2(K;Z2)) =
n ≥ 1 and K retracts onto Kn”.

4 CatP 2∨P 2(M) = 2.

In this section let K = P 2 ∨ P 2.

By #mN
3 we denote a connected sum of m copies of the 3-manifold N3.

If W is K-contractible, then for every basepoint ∗ ∈ W , the image
ι∗π1(W, ∗) is conjugate to a subgroup of α∗π1(K, , f(∗)), which is 3-manifold
group and a quotient of π1(K, f(∗)). Suppose Q is a quotient group of
a group G. We say that Q is a 3-manifold quotient of G if Q is the
fundamental group of a 3-manifold. With this notation, a K-contractible
set is GK-contractible, where GK denotes the set of finitely generated sub-
groups of 3-manifold quotients Q of π1(K, ∗) (for any basepoint ∗ ∈ K), and
1 ≤ catGK (M) ≤ catK(M).

Lemma 5. The set of finitely generated subgroups of 3-manifold quotients
of Z2 ∗ Z2 is GK = {1,Z,Z2,Z2 ∗ Z2}.

Proof. Present Z2 ∗Z2 as the semi-direct product G = ZoZ2 = 〈r, s : s2 =
1, srs−1 = r−1〉. Then every element of G can be uniquely written as rm or
rms, for some m ∈ Z.

Let H be a finitely generated subgroup of G. If H ⊂ 〈r〉, then H = 1 or
∼= Z; if H ∩ 〈r〉 = 1, then H = 1 or ∼= Z2; in any other case H ∼= Z2 ∗ Z2.

Now let H be a subgroup of a proper quotient Q ∼= G/N of G. If N 6⊂ 〈r〉,
then Q ∼= Z2, hence H = 1 or Z2. This is the only case that can happen:
if N = 〈rm〉 for some integer m 6= 0 then G/N is the finite dihedral group
D2m of order 2m. In this case, if M3 is a 3-manifold with finite fundamental
group D2m then M3 can be taken to be compact ([9], Thm 8.1) and ∂M3 is
a union of 2-spheres, so M3 can be assumed closed. Then by Milnor [10],
every element of order 2 of π1(M

3) is central. However, for m > 2, this is
not true for D2m. If m = 2, then it is well known that D2m, the four group,
is not a 3-manifold group (see, for example, [9], Thm 9.13).

The compact, connected 3-manifolds whose fundamental groups belong
to GK are well-known and are listed in the following
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Proposition 2. LetM be a compact, connected 3-manifold. Then catGK (M) =
1 if and only if
M ∈ {S3, S2×̃S1, D2×̃S1, P 3, P 2×I, P 3#P 3, P 2×I#P 2×I, P 3#P 2×I}.

The following lemma was proved in [7] for a more general class G of
groups.

Lemma 6. Let M be a closed 3-manifold with catGK (M) ≤ 2. Then there

is a closed surface F in M such that F and M −N(F ) are GK-contractible
and every component of F is a 2-sphere or incompressible.

Proof. We write M = W0 ∪W1 as in Proposition 1. For each component F ′

of F , im(π(F ′)→ π(M)) is contained in im(π(W ′
i )→ π(M)), where W ′

i is a
component of Wi, and it follows that F and M −N(F ) are GK-contractible.
Now assume that F is a closed surface in M of minimal complexity such that
F and M −N(F ) are GK-contractible.

If a non-sphere component F ′ of F is not incompressible , let D be a
compressing disk for F ′. Let D × I be a regular neighborhood such that
(D × I) ∩ F = ∂D × I and ∂D × 0 is an essential curve in F ′. For the
component F ′1 of F1 = (F − ∂D × I) ∪ (D × ∂I) that contains D × {0} or
D × {1}, im(π(F ′1)→ π(M)) is a subgroup of im(π(F ′)→ π(M)). Since F ′

is GK-contractible, so is F1.
Furthermore, if M ′ is the component of M −N(F ) that contains F ′ but

not D and if M ′
1 is the component M ′ ∪ D × I of M −N(F1), then π(M ′)

and π(M ′
1) have the same image in π(M). Since M ′ is GK-contractible, so is

M ′
1.
Hence F1 and M −N(F1) are GK-contractible and c(F1) < c(F ), a con-

tradiction.

For a 3-manifold C we denote by Ĉ the manifold obtained by capping off
al 2-sphere boundaries with 3-balls.

Theorem 2. Let M be a closed 3-manifold. Then catGK (M) ≤ 2 if and only
if M = S3#mP

3#n(P 2×S1)#k(S
2×̃S1), for some k,m, n ≥ 0.

Proof. By Lemma 6, there is a closed surface F of minimal complexity in M
such that F and M −N(F ) are GK-contractible and every component F ′ of
F is a 2-sphere or incompressible. It follows that F ′ and every component C
of M − F × [0, 1] is π1- injective (i.e. the inclusions into M induce injections
of fundamental groups). Since F ′ and C are GK-contractible, F ′ and C have
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fundamental groups belonging to GK . In particular, by Lemma 5, F ′ is a
2-sphere or projective plane, and Ĉ is as in Proposition 2, except for D2×̃S1,
since ∂C is incompressible.

If Ĉ is is one of P 3#P 2×I, P 2×I#P 2×I or P 3#P 3, let SC be a 2-sphere
splitting C into two manifolds homeomorphic to a punctured P 3 or a punc-
tured P 2×I. Now let Σ be the union of the 2-manifolds of the form SC and
the 2-sphere components of F , then split M along Σ and cap off the the 2-
sphere boundary components with 3-balls. Every component of the resulting
3-manifold is homeomorphic to S2×̃S1, P 3 or to P 2×S1. This shows that M
is as in the Theorem.

Conversely, if M is of this type, let W0 be a regular neighborhood of a
disjoint collection of 2-spheres and projective planes such that every compo-
nent of W1 := M −W0 is a punctured S2×̃S1, P 3, or P 2×I. Then W0, W1

are GK-contractible (in fact {1, Z, Z2}-contractible), and M = W0 ∪W1.

Corollary 3. Let M be a closed 3-manifold. If catP 2∨P 2(M) = 2, then
M = S3#mP

3#n(P 2×S1)#k(S
2×̃S1) , with 0 ≤ k +m+ 2n ≤ 4.

Proof. Since 1 ≤ catGK (M) ≤ catK(M), this follows from Theorem 2 and
Lemma 2.

If Mi is a closed 3-manifold (i = 1, 2) with catP 2(Mi) = 2, then (by
Corollary 2 of [6], Mi ∈ {S3, P 3, P 3#P 3, P 2×S1}.

Thus Corollary 3 implies that if catP 2∨P 2(M) = 2 and M has no S2×̃S2-
factors, then M = M1#M2, where catP 2(Mi) = 2. The converse is given by
the following

Proposition 3. If Mi is a closed 3-manifold with catP 2(Mi) = 2 for i = 1, 2,
then catP 2∨P 2(M1#M2) = 2.

Proof. There is a decomposition Mi = Wi0 ∪Wi1, with Wi0 ∩Wi1 = ∂Wi0 =
∂Wi1, and where each Wij ∈ {B3, P 3

0 , P
2×I} (here P 3

0 denotes the once-
punctured P 3). For the connected sum M = M1#M2 choose 3-balls Bi ⊂Mi,
so that ∂Bi ∩Wij = Dij , a disk. Then M = W0 ∪W1, with Wj = W1j ∪W2j

(j = 0, 1), where in the union the disks D1j and D2j are identified. Now
Wj ' W1j ∨ W2j is homotopy equivalent to B3, P 2, or P 2 ∨ P 2, hence
P 2 ∨ P 2-contractible.

If M is orientable with catP 2∨P 2(M) = 2, then by Lemma 3, rk(H2(M)) =
0, and therefore M does not contain non-separating 2-spheres. So we obtain
the following
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Corollary 4. Let M be a closed orientable 3-manifold. Then catP 2∨P 2(M) =
2, if and only if M = S3#mP

3, with 0 ≤ m ≤ 4.

Finally we show that there can be at most one S2×S1-factor if M is
non-orientable.

Lemma 7. Let K = P 2∨P 2 and let M3 = N3#(S2×S1)#(S2×S1), where
N3 is a closed non-orientable 3-manifold. Then catK(M3) > 2.

Proof. Suppose catK(M) ≤ 2 and let Wi be as in Proposition 1. Let p : M̃ →
M be the orientable 2-fold covering and W̃i = p−1(Wi). Then, by Lemma 1

of [6], W̃i is K̃i-contractible where K̃i is the pullback of K
αi→ M . Now K̃i

is a (possibly disconnected) 2-fold covering of K and is homotopy equivalent
to S2∨S2∨S1, P 2∨S2∨P 2 or two copies of P 2∨P 2, so rk(H1(K̃i)) ≤ 1 and
rk(H2(K̃i)) ≤ 2. In the exact sequence (∗∗) (before Lemma 2) ι∗ : H1(W̃0)→
H1(M̃) factors through H1(K̃0) and ι∗ : H2(M̃) → H2(W̃1) factors through
H2(K̃1), hence rk(H1(M̃)) ≤ 1+2 = 3. However M̃ = Ñ3#4(S

1×S2), where
Ñ3 is the orientable 2-fold cover of N3, so rk(H1(M̃)) ≥ 4, a contradiction.

Now let S2 ˜̃×S1 denote the nontrivial S2-bundle over S1. Since N3#(S2 ˜̃×
S1) = N3#(S2×S1) for a non-orientable 3-manifold N3, we obtain

Corollary 5. LetM be a closed non-orientable 3-manifold. If catP 2∨P 2(M) =
2, then

M =


(P 2×S1)#(P 2×S1) or

#mP
3#(P 2×S1)#k(S

2×S1) with 0 ≤ m+ k ≤ 3, 0 ≤ k ≤ 1, or

#mP
3#(S2 ˜̃×S1)#k(S

2×S1) with 0 ≤ m+ k ≤ 3, 0 ≤ k ≤ 1.

We conjecture that k = 0; in fact that there are no (S2×̃S1)-factors (and
the last case does not occur).
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