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Abstract. We express the Segre class of a monomial scheme—or, more generally, a
scheme monomially supported on a set of divisors cutting out complete intersections—
in terms of an integral computed over an associated body in euclidean space. The formula
is in the spirit of the classical Bernstein-Kouchnirenko theorem computing intersection
numbers of equivariant divisors in a torus in terms of mixed volumes, but deals with the
more refined intersection-theoretic invariants given by Segre classes, and holds in the less
restrictive context of ‘r.c. monomial schemes’.

1. Introduction

1.1. Let V be a variety (or more generally a pure-dimensional scheme of finite type over
an algebraically closed field) and let X1, . . . , Xn be effective Cartier divisors in V . A choice
of nonnegative multiplicities (a1, . . . , an) ∈ Zn determines an effective divisor, obtained by
taking Xi with multiplicity ai. We call such a divisor a monomial in the Xi’s, and we call
monomial scheme (w.r.t. the chosen divisors) an intersection of such monomials. In the
literature (e.g., [Gow05]) this terminology is reserved for the case in which V is nonsingular
and the divisors Xi are nonsingular and meet with normal crossings. We will refer to this
as the ‘standard’ situation. In this paper we consider a substantially more general case,
in which V may be any scheme as above and the divisors X1, . . . , Xn are only required to
intersect ‘completely’, in the sense that their local defining equations form regular sequences.
The resulting monomial scheme is a ‘r.c. monomial scheme’ in the terminology of [Har15].
(We should stress that a r.c. monomial scheme is not necessarily a complete intersection!)

A monomial scheme S is determined by an n-uple of divisors and the choice of finitely
many lattice points in Zn. We call the complement of the convex hull of the positive orthants
translated at these points the ‘Newton region’ corresponding to (this description of) S. In
[Alu13], Conjecture 1, we proposed a formula for the Segre class of a monomial subscheme S
in the standard situation, and proved this formula in several representative cases. The
purpose of this note is to prove a generalization of the full statement of Conjecture 1
in [Alu13].

Theorem 1.1. Let S ⊆ V be a r.c. monomial scheme with respect to a choice of n divisors
X1, . . . , Xn, and let N be the corresponding Newton region. Then

(1) s(S, V ) =

∫
N

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

.

Note that different monomial schemes may have the same Newton region. According
to (1), such schemes have the same Segre class. This phenomenon is due to the fact that
the corresponding ideals have the same integral closure, cf. Remark 2.5 in [Alu13].

1.2. The right-hand side of (1) is interpreted by evaluating the integral formally with
parameters X1, . . . , Xn; the result is a rational function in X1, . . . , Xn, with a well-defined
expansion as a power series in these variables, all of whose terms may be interpreted as
intersection products of the corresponding divisors in V . These products are naturally
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supported on subschemes of S (cf. Lemma 2.10). The statement is that evaluating the
terms of the series as these intersection products gives the Segre class s(S, V ) of S in V as
an element of the Chow group of S.

For a thorough treatment of Segre classes and their role in Fulton-MacPherson intersec-
tion theory, see [Ful84]. Segre classes are one of the basic ingredients in the definition of
the intersection product ([Ful84], Proposition 6.1 (a)). Residual intersection formulas are
naturally written in terms of Segre classes ([Ful84], Chapter 9). Many problems in enu-
merative geometry can be phrased in terms of computations of Segre classes. Interesting
invariants of singularities, such as Milnor classes or Donaldson-Thomas invariants, may also
be expressed in terms of Segre classes. While the schemes considered in Theorem 1.1 may
be too special for direct applications of this type, the approach to the computation of Segre
classes presented in this result appears to be completely novel. We hope of course that it
will be possible to extend the scope of (1) to yet more general schemes.

We refer the reader to [Alu13] for further contextual remarks concerning Segre classes
and for examples illustrating (1) in the standard situation. In [Alu13], the formula is
established in the case n = 2, and for several families of examples for arbitrary n. Also,
the formula is stated in [Alu13] after push-forward to the ambient variety, and limited to
standard monomial schemes. In this paper the formula is proved as an equality of classes
in the Chow group of S, for any n, and for the larger class of r.c. monomial schemes. This
is a substantially more general setting: the ambient scheme V and the divisors Xi need not
be smooth, nor do the Xi need to meet transversally.

1.3. The proof of Theorem 1.1 is given in §2. It is based on the birational invariance of
Segre classes and the fact that r.c. monomial schemes may be principalized by a sequence of
blow-ups at r.c. monomial centers of codimension 2. This is proven by C. Harris ([Har15]),
extending the analogous result for standard monomial schemes due to R. Goward ([Gow05]).
This fact and an explicit computation in the principal case reduce the proof to showing that
the integral appearing in (1) is preserved under blow-ups at codimension 2 (r.c.) monomial
centers. This in turn follows from an analysis of triangulations associated with these blow-
ups.

In [Alu15b] we apply Theorem 1.1 to the computation of multidegrees of r.c. monomial
rational maps. This is one point of contact of the result presented here with the existing
literature: in the case of (standard) monomial rational maps between projective spaces,
the multidegrees may be computed by mixed volumes of Minkowski sums of polytopes as
an application of the classical Bernstein-Kouchnirenko theorem (see e.g., [GSP06], §4, or
[Dol], §3.5). In the application reviewed in [Alu15b], Theorem 1.1 leads to an alternative
expression for the multidegrees, which reproduces the volume computation for the top
multidegree, and generalizes it to the r.c. setting and to rational maps on any projective
variety. Formulas for the other multidegrees lead to integral expressions for the mixed
volumes appearing in Bernstein-Kouchnirenko.

It is natural to ask whether a result such as Theorem 1.1 may hold for non-monomial
schemes. One possibility is that an integral formula analogous to (1.1) may hold with N
replaced by a suitable body; this would be in line with recent results for intersection numbers
of divisors on open varieties, as in [KK12]. (In fact, these results were our first motivation
to look for formulas for Segre classes in terms of ‘volumes’, which led to the formulation
of Theorem 1.1.) For a different viewpoint, in [Alu15a] we propose a formulation of the
result (in the standard monomial setting) in terms of the log canonical thresholds of suitable
extensions of the ideal defining the subscheme. This expression makes sense for more general
schemes, and may offer a candidate for a generalization of Theorem 1.1.
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2. Proof

2.1. We begin by recalling R. Goward’s theorem, and C. Harris’s generalization. First as-
sume that we are in the standard monomial situation: V is a nonsingular variety, X1, . . . , Xn

are nonsingular divisors meeting with normal crossings, and S is the intersection of mono-
mial hypersurfaces, i.e., effective divisors Dj supported on ∪iXi. According to Theorem 2
in [Gow05], there exists a sequence of blow-ups at nonsingular centers producing a proper
birational morphism ρ : V ′ → V such that ρ−1(S) is a divisor with normal crossings. Fur-
ther, as explained in §4 of [Gow05], the centers of the blow-ups may all be chosen to be
codimension-2 intersections of (proper transforms of) the original components Xi and of the
exceptional divisors produced in the process. In [Har15], C. Harris shows that both state-
ments generalize verbatim to the r.c. monomial case. Here no nonsingularity restrictions
are posed on V or on the divisors X1, . . . , Xn. The divisors meet with regular crossings
if for all A ⊆ {1, . . . , n} and all p ∈ ∩i∈AXi, the local equations for Xi, i ∈ A, form a
regular sequence at p ([Har15]). A r.c. monomial scheme is a scheme defined by effec-
tive divisors supported on ∪iXi, where the Xi meet with regular crossings. According to
Theorem 1 in [Har15], every r.c. monomial scheme may be principalized by a sequence of
blow-ups at centers of codimension 2; as in Goward’s result, these centers may be chosen
to be intersections of proper transforms of the Xi’s and of the exceptional divisors.

Remark 2.1. Let X1, . . . , Xn be a set of divisors meeting with regular crossings, and let

π : Ṽ → V be the blow-up along the intersection of two of these hypersurfaces; without
loss of generality this is X1 ∩ X2, and (by definition of regular crossings) it is a regularly
embedded subscheme of codimension 2. Then

• The proper transforms X̃i of the components Xi, together with the exceptional
divisor E, form a divisor with regular crossings ([Har15], Proposition 3);

• X̃i = π−1(Xi) for i ≥ 3;

• If D is a monomial in the Xi’s, then π−1(D) is a monomial in the collection E, X̃i;

• In fact, if D =
∑
aiXi, then π−1(D) = (a1 + a2)E +

∑
i aiX̃i.

In view of the second point, we will write Xi for X̃i = π−1(Xi) for i ≥ 3; this abuse
of notation is good mnemonic help when using the projection formula. For example, the

projection formula gives π∗(X̃1 · X̃3) = π∗(X̃1 · π∗(X3)) = X1 · X3. We find this easier to

parse if we write π∗(X̃1 ·X3) = X1 ·X3, particularly as π∗(X̃1 · X̃2) = 0 since X̃1 ∩ X̃2 = ∅
to begin with. Also note that π∗(E · X̃2) = X1 ·X2 and π∗(E ·Xi) = 0 for i ≥ 3. y

As remarked here, at each step in the sequence considered by Harris the inverse image of S
is a monomial scheme with respect to the collection of proper transforms of the Xi’s and of
the previous exceptional divisors, and the next blow-up is performed along the intersection
of two of these hypersurfaces. In order to prove Theorem 1.1, therefore, it suffices to prove
the following two lemmas.

Lemma 2.2. Let S be a r.c. monomial scheme, and assume S is a divisor. Then (1) holds
for S.

Lemma 2.3. Let S be a r.c. monomial scheme, and let π : Ṽ → V be the blow-up along
X1 ∩X2. Then if (1) holds for π−1(S), then it also holds for S.
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The proofs of these two lemmas are given in the rest of this section, after some needed
preliminaries. As pointed out above, these two lemmas imply Theorem 1.1.

2.2. Integrals and triangulations. The integral appearing in (1) may be computed in
terms of a triangulation of N . An n-dimensional simplex in Rn is the convex hull of a
set of n + 1 points (its vertices) not contained in a hyperplane. Points are denoted by
underlined letters: v = (v1, . . . , vn). The notation v ·X stands for v1X1 + · · ·+ vnXn. We
let e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

We also allow for the possibility that some of the vertices are at infinity, and we denote
by ai the point at infinity in the direction of ei. Thus, the simplex T with ‘finite’ vertices
v0, . . . , vr and ‘infinite’ vertices ai1 , . . . , ain−r

is defined by

T =


r∑

j=0

λjvj +

n−r∑
k=1

µkeik | ∀j, k : λj ≥ 0, µk ≥ 0, and
∑
j

λj = 1

 .

Each simplex T has a normalized volume V̂ol(T ), defined as the normalized volume of the
(finite) simplex obtained by projecting along its infinite directions. (The normalized volume
is the ordinary Euclidean volume times the factorial of the dimension.)

Example 2.4. The simplex T with vertices v0 = (0, 0, 1), v1 = (1, 0, 2), v2 = (0, 2, 3) and a3
(at infinity)

2
a

1

a
3

a

has normalized volume V̂ol(T ) = 2. y

We can associate with every simplex a contribution to the integral in (1):

Lemma 2.5. If T has finite vertices v0, . . . , vr and infinite vertices ai1 , . . . , ain−r
, then∫

T

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

=
V̂ol(T )X1 · · ·Xn∏r

`=0(1 + v` ·X)
∏n−r

j=1 Xij

.

Proof. This is Proposition 3.1 in [Alu13]. �

Note that the numerator simplifies to give a multiple of the product of the parameters
Xi corresponding to the ‘finite’ part of the simplex.

Example 2.6. For the simplex in Example 2.4,∫
T

3!X1X2X3 da1da2da3
(1 + a1X1 + · · ·+ anXn)4

=
V̂ol(T )X1X2X3

(1 +X3)(1 +X1 + 2X3)(1 + 2X2 + 3X3)X3

=
2X1X2

(1 +X3)(1 +X1 + 2X3)(1 + 2X2 + 3X3)
.
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It immediately follows from Lemma 2.5 that the integral over the whole positive orthant
Rn
≥0 equals 1. Also:

Corollary 2.7. For every monomial scheme S, the integral∫
N

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

is a rational function in X1, . . . , Xn. It may be expanded as a power series in X1, . . . , Xn

with integer coefficients.

Proof. Triangulate N , then apply Lemma 2.5. �

2.3. Residual intersection. Let S be a monomial scheme, realized as the intersection of
monomials D1, . . . , Dr. Assume all Di’s contain a fixed monomial divisor D =

∑
i diXi; we

obtain a residual monomial scheme R by intersecting the residuals to D in Di:

R := (D1 −D) ∩ · · · ∩ (Dr −D) .

The residual intersection formula in intersection theory (cf. [Ful84], Proposition 9.2) gives
a relation between the Segre classes of S, D, and R. This formula should be expected to
have a counterpart in terms of integrals.

Lemma 2.8. With S, D, R as above:

• The Newton region NS for S is the intersection of the positive orthant with the
translate by (d1, . . . , dn) of the Newton region NR for R:

NR = {(v1, . . . , vn) ∈ Rn
≥0 | (v1 + d1, . . . , vr + dr) ∈ NS} .

• We have the equality

(2)

∫
NS

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

=

∑
i diXi

(1 +
∑

i diXi)
+

1

(1 +
∑

i diXi)

(∫
NR

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

⊗ O(
∑
i

diXi)

)
.

The notation introduced in [Alu94], §2, is used in this statement (and will be used in the

following): for a line bundle L and a class A =
∑

i a
(i) in the Chow group, where a(i) has

codimension i in the ambient scheme V , A ⊗L denotes the class
∑

i c(L )−i ∩ a(i). This
notation determines an action of Pic on the Chow group, and is compatible with the effect
of ordinary tensors on Chern classes, cf. Propositions 1 and 2 in [Alu94].

Proof. The first assertion is immediate.
For the second, note that the complement N ′S of NS in the positive orthant is precisely

the translate of the complement N ′R by (d1, . . . , dn). Since the integral over the positive
orthant is 1, verifying the stated formula is equivalent to verifying that

(3)

∫
N ′S

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

=
1

(1 +
∑

i diXi)

(∫
N ′R

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

⊗ O(
∑
i

diXi)

)
.

By the formal properties of the ⊗ operation (cf. [Alu94], Proposition 1)

X1 · · ·Xn

(1 + a1X1 + · · ·+ anXn)n+1
⊗ O(

∑
i

diXi) =
(1 +

∑
i diXi)X1 · · ·Xn

(1 + (a1 + d1)X1 + · · ·+ (an + dn)Xn)n+1
,
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showing that the right-hand side of (3) equals∫
N ′R

n!X1 · · ·Xn da1 · · · dan
(1 + (a1 + d1)X1 + · · ·+ (an + dn)Xn)n+1

.

It is now clear that this equals the left-hand side, since N ′S is the translate of N ′R by
(d1, . . . , dn). �

Corollary 2.9. With notation as above, formula (1) is true for S in A∗S if and only if it
is true for R.

Proof. Compare (2) with the formula for residual intersections of Segre classes, in the form
given in [Alu94], Proposition 3. �

2.4. Proof of Lemma 2.2. Let D1, . . . , Dr be monomials, and assume S = D1 ∩ · · · ∩Dr

is a divisor. Note that this may happen even if r > 1: for example, suppose X1, X2, X3

are divisors meeting with normal crossings, and X1 ∩ X2 = ∅. If D1 = X1 + X3 and
D2 = X2 +X3, then S = D1 ∩D2 is a divisor, in fact, X3. However, the Newton region of
this representation of S (depicted to the left) includes an infinite column that is not present
in the representation as X3 (on the right).

We have to verify that if D1 ∩ · · · ∩ Dr = D is a monomial divisor, then these two
representations lead to the same integral. By Corollary 2.9, we may in fact eliminate the
common factor D in the monomials D1, . . . , Dr, and we are reduced to showing that if
D1, . . . , Dr have empty intersection, then∫

N

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

= 0 .

This follows immediately from the following more general statement.

Lemma 2.10. Let D1, . . . , Dr be monomials in X1, . . . , Xn, and let S = D1∩· · ·∩Dr, with
Newton region N . Then the class computed by the integral in (1),∫

N

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

is supported on S.

In particular, the class equals 0 if S = ∅. We will in fact prove that the class computed by
the integral is a sum of classes obtained by applying Chow operators to classes of subschemes
of S. As such, the integral defines an element in the Chow group A∗S.

Proof. The integral may be computed by triangulating N and applying Lemma 2.5. Thus,
it suffices to show that if T is a simplex contained in N with finite vertices v0, . . . , vr and
infinite vertices aj , j ∈ J , then the support of the class

V̂ol(T )X1 · · ·Xn∏r
`=0(1 + v` ·X)

∏
j∈J Xj
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is contained in S. Hence, it suffices to show that the intersection product
∏

j 6∈J Xj is
supported on S, i.e., that ∩j 6∈JXj is contained in S. The coordinates aj , j 6∈ J , span the
subspace containing the (bounded) projection of T along its unbounded directions. Since
T ⊆ N , the simplex spanned by ej , j 6∈ J , and aj , j ∈ J , is contained in N . This is the
Newton region for the ideal generated by Xj , j 6∈ J . It follows that this ideal contains the
ideal of S, concluding the proof. �

2.5. Proof of Lemma 2.3. With notation as in the beginning of this section (see Re-
mark 2.1), we have to prove that the integral appearing in (1) is preserved by the push-

forward by the blow-up morphism π : Ṽ → V :

(4) π∗

(∫
N̂

(n+ 1)!EX̃1 · · · X̃nda0da1 · · · dan
(1 + a0E + a1X̃1 + · · · anX̃n)n+2

)
=

∫
N

n!X1 · · ·Xnda1 · · · dan
(1 + a1X1 + · · · anXn)n+1

,

where N is the Newton region for the intersection of monomials D1, . . . , Dr in the Xi’s,

and N̂ is the Newton region for the intersection of the monomials π−1(D1), . . . , π
−1(Dr) in

E and X̃i. Here we are using coordinates a1, . . . corresponding to X1, . . . , and coordinates

a0, a1, . . . corresponding to E, X̃1, . . . .
Since the integral over the positive orthant is 1, we may equivalently (see Remark 2.11)

show that

(5) π∗

(∫
N̂ ′

(n+ 1)!EX̃1 · · · X̃nda0da1 · · · dan
(1 + a0E + a1X̃1 + · · · anX̃n)n+2

)
=

∫
N ′

n!X1 · · ·Xnda1 · · · dan
(1 + a1X1 + · · · anXn)n+1

,

where N ′, N̂ ′ are the complements of N , N̂ in the corresponding positive orthants. We will

construct compatible triangulations Û and U of N̂ ′, N ′ respectively, and use Lemma 2.5
to analyze the effect of π∗ on the corresponding contributions to the integrals in (5).

Remark 2.11. A subtlety should be mentioned here. On the face of it, (5) is an equality in
the Chow group of V , while our aim is to prove Theorem 1.1 as an equality in A∗S. This
is only an apparent difficulty. The integral

∫
N̂ ′ on the left is shorthand for its expansion as

a power series in the parameters X̃i (cf. Corollary 2.7), and this well-defined series has the
form

1 + p̂(E, X̃1, . . . , X̃n)

where p̂(E, X̃1, . . . , X̃n) is supported on π−1(S) after evaluation as a sum of intersection

products in Ṽ . Indeed, p̂(E, X̃1, . . . , X̃n) is simply the
∫
N̂

appearing in (4). Likewise, the
right-hand side of (5) is a well-defined series 1 + p(X1, . . . , Xn), where p(X1, . . . , Xn) is a
sum of terms supported on S, equaling the

∫
N on the right-hand side of (4). The sense in

which (5) should be interpreted, and in which it will be proven, is that the push-forward
of each term in the series on the left contributes to a summand in the series on the right.
With the exception of π∗(1) = 1, all these these push-forwards map classes in A∗π

−1(S)

to classes in A∗S. In particular, π∗(p̂(E, X̃1, . . . , X̃n)) = p(X1, . . . , Xn) in A∗S, which is
precisely (4). y

With the notation introduced in §2.2, we view N ′ as the convex hull of

v1, · · · , vr ; a1, . . . , an

where vi, i = 1, . . . , r, are the lattice points corresponding to the monomials Di. Likewise,

N̂ ′ is the convex hull of

v̂1, · · · , v̂r ; a0, a1, . . . , an
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where v̂i, i = 1, . . . , r, correspond to π−1(Di). By Remark 2.1, the points v̂i are the
lifts of the points vi to the hyperplane H in Rn+1 with equation a0 = a1 + a2. We let

M = {v1, · · · , vr}, M̂ = {v̂1, · · · , v̂r}. Note that a3, . . . , an belong to H, while a0, a1, a2 do
not. In fact, a0 belongs to one of the two half-spaces determined by H and a1, a2 to the
other.

To obtain the triangulations Û , U , we use the following procedure.

• Let T be any triangulation of the convex hull of M ∪ {a3, . . . , an}.
• Let T̂ be the lift of T to the hyperplane H. This is a triangulation of the convex

hull of M̂ ∪ {a3, . . . , an}.
• Let Û1 be the triangulation of the convex hull of M̂ ∪ {a1, a2, a3, . . . , an} obtained

by first taking pyramids over all simplices in T̂ with apex a1 (cf. [DLRS10], §4.2.1),
then placing a2 on the resulting triangulation (cf. [DLRS10], §4.3.1).

• Complete Û1 to a triangulation Û of N̂ ′, by placing a0.

Lemma 2.12. With notation as above:
(i) Each simplex σ of top dimension (= n) in T̂ determines two simplices σ̂0, resp., σ̂1

of top dimension (= n+ 1) in Û , namely the pyramids over σ with apex a0, resp., a1.

(ii) Every top-dimensional simplex in Û including a2 also includes a0 or a1.

Proof. Both points are direct consequences of the construction.

For (i), observe that all simplices of T̂ (hence contained in H) are visible from both
a0 and a1, since these points are on opposite sides of H, and a2 is placed after a1 in the
construction.

For (ii), note that the top dimensional simplices in T̂ are not visible from a2 in the
construction, since a2 is on the same side of H as a1, and it is placed after a1. �

• By construction, N ′ is the convex hull of the projection in the a0 direction of M̂

and a1, . . . , an; that is, it is the contraction of N̂ ′ in the sense of [DLRS10], Defini-
tion 4.2.19. By Lemma 4.2.20 in [DLRS10], we obtain a triangulation U of N ′ by

taking the links of a0 with respect to Û (cf. Definition 2.1.6 in [DLRS10]).

The simplices in U correspond precisely to the simplices in Û of which a0 is a vertex.

We have constructed related triangulations Û of N̂ ′ and U of N ′, and we have to study

the effect of π∗ on the contributions to
∫
N̂ ′ due to the top-dimensional simplices in Û

according to Lemma 2.5. We let U , resp., Û be the set of top-dimensional simplices in

U , resp., Û . The simplices in U are in one-to-one correspondence with the simplices in Û
containing a0.

Each top dimensional simplex σ̂ in Û is the convex hull of an r-dimensional face in T̂
and n+2− r points at infinity, which may or may not include a0, a1, a2. We split the set Û

into a disjoint union Û0 q Û1 q Û ′ q Û ′′, according to these different possibilities.

• Û0 consists of the simplices σ̂ which include a0 and none of a1, a2.

• Û1 likewise consists of the simplices σ̂ which include a1 and none of a0, a2.

• Û ′ consists of the simplices σ̂ which contain a0 and at least one of a1, a2.

• Û ′′ consists of the simplices σ̂ which do not include a0, and either include both or
none of a1 and a2.
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The remaining possibility, i.e., simplices which contain a2 and none of a0, a1, is excluded by

Lemma 2.12 (ii). The simplices in Û0, resp., Û1 are pyramids over top-dimensional simplices

in T̂ with apex a0, resp., a1 (Lemma 2.12 (i)).

As noted above, by construction there is a one-to-one correspondence between Û ′ ∪ Û0

and U , associating with each σ̂ ∈ Û ′ ∪ Û0 the link of a0 with respect to σ̂. This natural

bijection Û ′∪ Û0 → U is not compatible with push-forward at the level of the contributions �

to the integral
∫
N ′ . However, the decomposition found above allows us to define another

realization of U . Define α : Û ′ q Û1 → U as follows:

• If σ̂ ∈ Û ′, let α(σ̂) be the link of a0 with respect to σ̂.

• If σ̂ ∈ Û1, then σ̂ is the pyramid over an n-dimensional simplex σ in T̂ with apex a1.
Let α(σ̂) be the link of a0 with respect to the pyramid σ̂ over σ with apex a0.

In other words, in the second case α(σ̂) is the simplex in T (and hence in U ) corresponding

to the simplex σ of T̂ . The function α is evidently a bijection.

Lemma 2.13. Let σ̂ ∈ Û .

• If σ̂ ∈ Û0 q Û ′′, then the contribution of σ̂ to the integral over N̂ ′ pushes forward
to 0.
• If σ̂ ∈ Û ′ q Û1, then the contribution of σ̂ to the integral over N̂ ′ pushes forward to

the contribution of α(σ̂) ∈ U to the integral over N ′.

Since Û = Û0q Û1q Û ′q Û ′′ and α is a bijection onto U , this lemma verifies (5), proving
Lemma 2.3 and hence concluding the proof of Theorem 1.1.

By construction, each simplex σ̂ in Û has a set of finite vertices v̂0, . . . , v̂r in the hy-
perplane H, and a set of infinite vertices. According to Lemma 2.5, the corresponding
contribution equals

V̂ol(σ̂)C∏r
`=0(1 + v̂` · X̃)

where v̂ · X̃ = v0E + v1X̃1 + · · · , and C is a product of divisors from E, X̃1, . . . . A
key observation here is that if v̂ = (v0, . . . , vn) is the lift to H of a corresponding vertex
v = (v1, . . . , vn), then v0 = v1 + v2, and it follows that

(1 + v̂ · X̃) = π∗(1 + v ·X) .

Thus, the ‘denominator’ in the contribution of σ̂ is a pull-back. Also, if σ is the contraction
of a simplex σ̂ with respect to a0, then the finite vertices of σ are precisely the projections

v`, and V̂ol(σ) = V̂ol(σ̂). By the projection formula, we see that

π∗

(
V̂ol(σ̂)C∏r

`=0(1 + v̂` · X̃)

)
=

V̂ol(σ)π∗(C)∏r
`=0(1 + v` ·X)

.

This is the contribution of σ to
∫
N ′ , provided that π∗(C) equals the correct product of

divisors corresponding to the infinite vertices of σ. These are the infinite vertices of σ̂, with
a0 removed. In the proof of Lemma 2.13, π∗(C) is either 0 (in the first point listed in the
lemma) or equals the correct product (in the second).

Proof. Assume first σ̂ ∈ Û0 q Û ′′.
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If σ̂ ∈ Û0, then σ̂ includes a0 and neither a1 nor a2. According to Lemma 2.5 and the
discussion preceding this proof, the contribution of σ̂ to

∫
N̂ ′ has the form

V̂ol(σ̂)X̃1 · X̃2 ·Xi1 · · ·
π∗(· · · )

with all the ij ≥ 3. (We are now using our convention of writing Xi for X̃i for i ≥ 3,

cf. Remark 2.1.) This term equals 0, since X̃1 ∩ X̃2 = ∅. If σ̂ ∈ Û ′′, then σ̂ does not
contains a0 and contains either both or neither of a1 and a2. Its contribution has the form

V̂ol(σ̂)E ·Xi1 · · ·
π∗(· · · )

or
V̂ol(σ̂)E · X̃1 · X̃2 ·Xi1 · · ·

π∗(· · · )
with ij ≥ 3. In the first case it pushes forward to 0 by the projection formula, and in the

second case it is 0, again because X̃1 ∩ X̃2 = ∅.
This concludes the proof of the first part of the claim.

For the second part, assume σ̂ ∈ Û ′ q Û1. if σ̂ ∈ Û ′, then σ̂ contains a0 and a1 or a2 or
both. The contribution of σ̂ to

∫
N̂ ′ has the form

V̂ol(σ̂)Xi1 · · ·∏r
`=0(1 + v̂` · X̃)

or
V̂ol(σ̂) X̃` ·Xi1 · · ·∏r

`=0(1 + v̂` · X̃)

with all the ij ≥ 3 and ` = 1 or 2. By the projection formula, these terms push forward to
the corresponding contributions of α(σ̂) to the integral over N ′.

If σ̂ ∈ Û1, then σ̂ = σ̂1 for a top-dimensional simplex σ = α(σ̂) in T̂ ; σ̂ includes a1, and
does not include a0 and a2. The contribution of σ̂ to

∫
N̂ ′ has the form

V̂ol(σ̂)E · X̃2 ·Xi1 · · ·∏r
`=0(1 + v̂` · X̃)

By the projection formula (cf. Remark 2.1), this term pushes forward to a contribution

V̂ol(σ̂)X1 ·X2 ·Xi1 · · ·∏r
`=0(1 + v` ·X)

,

matching the contribution of α(σ), and concluding the proof. �

2.6. An example. A concrete example may clarify the argument presented in the previous
section. Consider the ideal (x3, xy, y3). The shaded area in the following picture depicts N ′

in the plane R2 with coordinates (a1, a2):

1

a
2

a

Lifting to R3, with ‘vertical’ coordinate a0:
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v
1

v
2

2
v

0
v

1
v

v
0

Here we have shaded the triangle determined by the three monomials in the (a1, a2) plane,
as well as its lift to the hyperplane H with equation a0 = a1 + a2.

With notation as in §2.5, T and T̂ consist of the shaded triangles along with their faces.

The one-dimensional faces of Û1 are included in the following picture.

2

0
vv

1
a

1

a
2

v

The top-dimensional simplices in Û1 are

v̂0v̂1v̂2a1 and v̂1v̂2a1a2 :

the triangle v̂0v̂1v̂2 is extended to a 3-simplex in the a1 direction; the triangle v̂1v̂2a1
is visible to a2, so it produces a second 3-simplex. These two simplices and their faces

form Û1. The vertex v0 is not visible to a2, since it is ‘behind’ the plane containing v̂1,
v̂2, a1. As remarked in Lemma 2.12 (ii), a top-dimensional simplex including a2 must also
include a1.

The 2-dimensional faces of Û1 visible to a0 are

v̂0v̂1v̂2 , v̂0v̂2a1 , v̂2a1a2 .

Therefore Û consists of the five 3-simplices

v̂0v̂1v̂2a1 , v̂1v̂2a1a2 , v̂0v̂1v̂2a0 , v̂0v̂2a1a0 , v̂2a1a2a0

and their faces. The corresponding triangulation U is the projection of the faces of Û1

visible by a0:
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0

v
1

v
2

a
2

a
1

a
1

v

The five simplices listed for Û form the set Û used in the proof. The decomposition

Û0 q Û1 q Û ′ q Û ′′ is as follows:

Û0 = {v̂0v̂1v̂2a0}, Û1 = {v̂0v̂1v̂2a1}, Û ′ = {v̂0v̂2a1a0, v̂2a1a2a0}, Û ′′ = {v̂1v̂2a1a2} .

The bijection α : Û ′ q Û1 → U maps
v̂0v̂2a1a0 7→ v0v2a1
v̂2a1a2a0 7→ v2a1a2
v̂0v̂1v̂2a1 7→ v0v1v2

.

Lemma 2.13 now states that the push-forward π∗ will map the contributions from

Û0 q Û ′′ = {v̂0v̂1v̂2a0, v̂1v̂2a1a2}
to 0, and those from

Û ′ q Û1 = {v̂0v̂2a1a1a0, v̂2a1a1a2a0, v̂0v̂1v̂2a1a1}
to the total contributions of the simplices in U . The contributions from the first set are

3X̃1X̃2

(1 + 3X̃1 + 3E)(1 + X̃1 + X̃2 + 2E)(1 + 3X̃2 + 3E)
+

E

(1 + X̃1 + X̃2 + 2E)(1 + 3X̃2 + 3E)

and vanish in the push-forward as prescribed by Lemma 2.13. Those from the second,

3X̃2

(1 + 3X̃1 + 3E)(1 + 3X̃2 + 3E)
+

1

(1 + 3X̃2 + 3E)

+
3X̃2E

(1 + 3X̃1 + 3E)(1 + X̃1 + X̃2 + 2E)(1 + 3X̃2 + 3E)

push-forward to

3X2

(1 + 3X1)(1 + 3X2)
+

1

(1 + 3X2)
+

3X1X2

(1 + 3X1)(1 +X1 +X2)(1 + 3X2)

that is, to the sum of contributions corresponding to the triangulation U of N ′. y
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[DLRS10] Jesús A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations, volume 25 of Algorithms
and Computation in Mathematics. Springer-Verlag, Berlin, 2010. Structures for algorithms and
applications.

[Dol] Igor Dolgachev. Lectures on Cremona transformations.
[Ful84] William Fulton. Intersection theory. Springer-Verlag, Berlin, 1984.
[Gow05] Russell A. Goward, Jr. A simple algorithm for principalization of monomial ideals. Trans. Amer.

Math. Soc., 357(12):4805–4812 (electronic), 2005.
[GSP06] Gerard Gonzalez-Sprinberg and Ivan Pan. On characteristic classes of determinantal Cremona

transformations. Math. Ann., 335(2):479–487, 2006.
[Har15] Corey Harris. Monomial principalization in the singular setting. J. Commut. Algebra, 7(3):353–

362, 2015.
[KK12] Kiumars Kaveh and A. G. Khovanskii. Newton-Okounkov bodies, semigroups of integral points,

graded algebras and intersection theory. Ann. of Math. (2), 176(2):925–978, 2012.

Mathematics Department, Florida State University, Tallahassee FL 32306, U.S.A.
E-mail address: aluffi@math.fsu.edu


	1. Introduction
	1.1. 
	1.2. 
	1.3. 

	2. Proof
	2.1. 
	2.2. Integrals and triangulations
	2.3. Residual intersection
	2.4. Proof of Lemma 2.2
	2.5. Proof of Lemma 2.3
	2.6. An example

	References

