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Abstract We examine market dynamics in a discrete-
time, Lucas-style asset-pricing model with heteroge-
neous, utility-optimizing agents. Finitely many agents
trade a single asset paying a stochastic dividend. All
agents know the probability distribution of the dividend
but not the private information such as wealth and asset
holdings of other agents. The market clearing price is
determined endogenously in each period such that sup-
ply always equals demand.
Our aim is to determine whether and how the pricing

function evolves toward equilibrium. In the special
case where all agents have logarithmic utility, but
possibly di↵erent holdings and discount factors, we
completely describe the market dynamics, including
the evolution of the pricing and demand functions, and
asset holdings of the agents. The market converges to
a stable equilibrium state where only the most patient
agents remain, and the equilibrium pricing function is
the same as the one arising in the simple homogeneous
setting.

Keywords Market dynamics, Market disequilib-
rium, Correct expectations equilibrium

1 Introduction

In a general equilibrium asset pricing model, the exis-
tence of a rational expectations equilibrium (REE) im-
plies that each trader solves a utility-optimization prob-
lem that incorporates all current information about the
market. In particular, traders implicitly must: (i) have
full knowledge of the problem including knowing the
preferences and holdings of all the other agents, (ii) be
able to deduce their optimal behavior no matter how
complex, and (iii) share common expectations includ-
ing that all the other agents are themselves rational and
know all these things. In a sense, these agents must be
“super-rational”: they are “experienced masters” in a
stable world where the past is a good indicator of the fu-

ture, and full rationality of all agents is common knowl-
edge [1, ch. 1].
Access to full information has the advantage of mak-

ing the REE, in many cases, unique and computation-
ally feasible [2]. However, real traders seldom know this
much, because real markets are always changing unpre-
dictably. Since super-rational agents cannot evolve, we
also cannot use the REE concept to study market states
away from equilibrium, or the dynamics of convergence
toward equilibrium. Important prior work on REE-style
equilibrium models, including [3, 4, 5], has naturally fo-
cused solely on the equilibrium states themselves and do
not illuminate the nearby disequilibrium states and their
evolution, which are typical initial states for boundedly-
rational agents.
The agent-based computational economic (ACE)

modeling literature, where agents follow formal, often
myopic, rules, which can evolve by natural selection
takes a more general, econophysical view of market dy-
namics [6, 7, 8]. This literature examines the result-
ing emergent properties of the market, including the dy-
namics of prices and holdings as the market evolves and
agents with poor rules die and those with good rules
prosper. These systems are typically studied by simula-
tion. An excellent and recent review of this literature is
provided in [9].
In this paper we study a discrete-time, general equi-

librium Lucas tree economy with one asset and N > 1
infinitely lived agents who act to optimize an infinite-
horizon utility. The asset (stock) is in fixed supply and
pays a random dividend in each period. The asset price
is determined endogenously in each period such that to-
tal (price-dependent) demand is equal to total supply.
The dividend is assumed to follow a Markov process
whose distribution is known to the agents, but we need
make no further assumptions about it – it’s distribution
may be discrete or continuous.
Each agent’s income (available for consumption or in-

vestment) in each period is just the stock dividend mul-
tiplied by the number of shares held that period. In this
sense we have a pure Lucas-style economy with no ex-
ogenous income stream. The stock price, and therefore
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wealth of agents, is an “emergent” property coming from
the joint behavior of all the agents.
Agents determine how much to consume and how

much to invest in the stock each period by optimizing a
time-separable constant relative risk aversion (CRRA)
utility function. As in the standard Lucas model, at
any time, agent i, 1  i  N , holds a certain num-
ber of shares of stock s

i

� 0, which can vary over time
if the agent trades. (Short positions are not allowed.)
Agents also have discount factors �

i

and risk-aversion
parameter �

i

. All of which are allowed to vary across
the population of agents.
Our agents are “boundedly rational” in the specific

sense that they do not know the holdings or parameters
of the other agents. Therefore they cannot incorporate
that information into the solution of their personal op-
timization problems. As we will see, this allows us to
model the economy both at and away from equilibrium.
To compute their optimal asset demand and con-

sumption functions each agent must solve an expecta-
tion involving future market-clearing prices. Tomor-
row’s market clearing price P

0 depends on tomorrow’s
unknown dividend D

0 (the only source of randomness in
our model). While agents know the probability distri-
bution of D0, they do not know how the market clearing
price P (D0) depends on D

0 since this depends in part on
the behavior of other agents.
Therefore, solving for the demand equations requires

agents, individually, to hypothesize “best guess” market-
clearing pricing functions p

i

(D0). This allows them to
compute optimal demands, conditional on p

i

(·), and to
trade if indicated. The market will actually clear to-
day at a price P

m

(D), such that supply equals demand.
(Here we make explicit the dependence of P

m

(·) on the
dividend D, but in general, in disequilibrium, this func-
tion also depends on all the agents’ holdings, parame-
ters, and pricing functions p

i

[2].)
Using the terminology from [1], we will say that the

market is at a “correct expectations equilibrium” (CEE),
if all agents are using the same pricing function P

m

(·)
to solve for optimal demand, and this pricing function
is correct in the sense that the actual resulting market
clearing price is P

m

(D) in every period. This framework
has the advantage that agent behavior is well-defined
whether or not the market is at equilibrium.
We may now ask whether CEE exist in our framework

and, if so, whether they are unique and how we can
characterize market dynamics. Specifically, how do the
asset holdings and market clearing pricing function P

m

evolve over time, both at and away from equilibrium?
In general, we do not expect to find closed formulas

describing the dynamics of such markets and so would
investigate these questions via numerical simulation, as
is common in the ACE literature. However, we can give
rigorous and complete answers to these questions in the
special (but reasonable) case where all agents have log
utility (�

i

= 1).
In summary, we will find that there is a unique CEE

pricing function given by

P

⇤(D) =
�

1� �

D, (1)

where � is the discount factor of the most patient agent.

CEE stock holdings are zero for agents with discount fac-
tor less than �, and can be distributed arbitrarily among
agents with discount factor equal to �. This result is
consistent with the long-known principle (e.g. [3]) for
REE equilibria that the most patient agent eventually
holds all the wealth. Our work confirms this principle
in the CEE boundedly rational context typical of ACE
and furthermore we provide a formal proof of conver-
gence to the familiar pricing function well-known in the
homogeneous case.
Finally, we formally prove that asset holdings and

market pricing functions evolve according to explicit for-
mulas given below (equations (11), (12)). The market
dynamics do not depend on the individual pricing func-
tions p

i

, on the learning mechanism used, if any, or on
the probability distribution of dividends. Each CEE is
a fixed point of the dynamics. From any disequilibrium
initial condition, markets will converge deterministically
and exponentially fast to a CEE given by equations (1)
and (15). Therefore we are able to use methods of deter-
ministic dynamics to analyze the evolution in this paper,
rather than the statistical methods used in many ACE
models with stochastic inputs.
Since [3] there has been a renewed interest in the role

of heterogeneous discount rates in determining market
dynamics. In his 2011 Presidential address to the Amer-
ican Finance Association, Cochrane [10] emphasizes the
importance of discount rates in discussing many of the
“puzzles” in asset pricing. The role of discount rate het-
erogeneity in explaining wealth inequality is discussed
by [11], [12, 13] focus specifically on heterogeneity of
time preferences and asset prices, and [14] considers the
e↵ects of heterogeneous patience on the terms structure
of interest rates. An interesting example of how hetero-
geneous rates of time preference can help describe per-
sonal behaviors such as the decision to smoke is given in
[15]. Our work contributes to this literature by adding
a formal mathematical analysis of the dynamical behav-
ior of asset markets in a general equilibrium model with
heterogeneous agents.

2 Model framework

Consider the standard Lucas asset pricing model
[16, 17] with N possibly heterogeneous agents and a sin-
gle risky asset with period t market clearing spot price
denoted P

t

. The number of shares of the asset is nor-
malized to be N and the asset pays a random dividend
D

t

per share, described by some Markov process and so
determined solely by the observed state of the world at
the beginning of each period t. All agents are assumed
to know the distribution of dividend payments across
states, which can be arbitrary, discrete or continuous,
stationary or not.
There is no production in this economy so in time

period t agent i will choose optimal consumption c

i,t

� 0
and investment in the asset s

i,t+1 � 0 based upon the
agent’s preferences and period budget constraint

c

i,t

+ P

t

s

i,t+1  w

i,t

= (P
t

+D

t

) s
i,t

, for all t, (2)

where w

i,t

is the agent’s period t wealth.
The order of events is as follows. Agent i begins period

t knowing her asset holdings s

i,t

. Next, today’s stock
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dividendD

t

is announced to all agents. At this point the
agent does not yet know her current wealth because the
market price P

t

has yet to be determined through market
clearing. Each agent must first compute her optimal
demand as a function of price, s

i

(P ), representing the
optimal number of shares demanded at any given price
P . These demand functions then collectively determine
the unique price P

t

that clears the market according to

NX

i=1

s

i

(P
t

) = N. (3)

The actual mechanism of market clearing is not impor-
tant; we can imagine that there is some market maker
who collects the demand functions from each agent and
publicly declares the market price satisfying (3). (This
price will be unique if, for example, demands are all
monotone in P .) This declared market price is the only
source of information about the other agents.
Each agent is assumed to be an expected utility max-

imizer with constant relative risk aversion preferences
and risk aversion �

i

> 0. The one-period utility of con-
sumption is

u

i

(c) =
c

1��i � 1

1� �

i

, �

i

6= 1,

or
u

i

(c) = log c, �

i

= 1,

and consumption and investment polices must be found
that optimize the time-separable expected utility

max
{ci,⌧ , si,⌧+1}1

⌧=t

E

t

1X

⌧=t

�

⌧�t

i

u

i

(c
i,⌧

) (4)

subject to the budget constraint (2). The agents’ dis-
count factors, �

i

2 (0, 1), may di↵er and the expectation
in (4) is over the distribution of dividends and is con-
ditional upon the information available to the agent at
the beginning of period t.
Denote by s

t

2 RN the vector of all agents’ time-t
asset holdings. We explicitly include the time subscript
to emphasize that these holdings may change over time.
We describe two di↵erent equilibrium concepts which we
label REE and CEE.

Definition 1 A rational expectations equilibrium
(REE) for this economy consists of an aggregate pricing

function P

⇤(D
t

, s
t

) for the risky asset and a set of

agent consumption demand functions c

i,t

= c

i

(D
t

, s
t

)
and asset demand functions s

i,t+1 = s

i

(D
t

, s
t

) such

that, for all future times t, the asset market clears at

P

t

= P

⇤(D
t

, s
t

), the budget constraint is satisfied for

each agent, and the demand functions solve the agents’

optimization problems (incorporating full knowledge of

the market).

Our boundedly rational agents, however, do not know
s
t

, and must optimize based upon more limited knowl-
edge. Therefore we use instead the notion of a CEE:

Definition 2 A correct expectations equilibrium
(CEE) for this economy consists of an aggregate pric-

ing function P

⇤(D
t

) for the risky asset and a set of

agent consumption demand functions c

i,t

= c

i

(D
t

, s

i,t

)
and asset demand functions s

i,t+1 = s

i

(D
t

, s

i,t

) such

that, for all future times t, the asset market clears

at P

t

= P

⇤(D
t

), the budget constraint is satisfied

for each agent, and the demand functions solve the

agents’ optimization problems (incorporating available

knowledge).

To clarify the di↵erence between “available knowl-
edge” and “full knowledge”, we need to look at the op-
timization problem more carefully.

Solving the Bellman equation from the usual recur-
sive dynamic programing approach leads to the following
standard Euler equation as viewed from time t, which
must be satisfied by the optimal consumption demand
function c

i,t+1:

P

t

= E

t

"
�

i

✓
c

i,t+1

c

i,t

◆��i

(P
t+1 +D

t+1)

#
. (5)

Using the budget constraint (2) to eliminate c, and
using the notation s

0
i,t

= s

i,t+1 = s

i

(D
t

, s

i,t

), and
s

00
i,t

= s

i

(D
t+1, si,t+1) = s

i

(D
t+1, si(Dt

, s

i,t

)), we may
rewrite (5) as

P

t

= �E

t

" 
s

i,t

(P
t

+D

t

)� s

0
i,t

P

t

s

0
i,t

(P
t+1 +D

t+1)� s

00
i,t

P

t+1

!
�i

(P
t+1 +D

t+1)

#
. (6)

Each agent, at equilibrium, must solve for the asset de-
mand function s

i

(D, s) that satisfies this optimality con-
dition.
Now our boundedly rational agents will have a prob-

lem computing the conditional expectation in the Eu-
ler equation because they need to know the equilibrium
pricing function P

⇤ in order to know the probability
distribution of tomorrow’s prices which depends on the
holdings and preferences of the other agents. Worse, it
depends on knowing that the other agents also know the
equilibrium pricing function, which will not be true in
disequilibrium.
For illustration, consider a simple case where agents

are super-rational and the REE is computable. Suppose
all agents are identical with log utility (�

i

= �, �
i

= 1,
s

i,t

= 1, for all i and t) and all agents are aware of this.
Knowing they are identical, agents can deduce that there
will never be any trading and so the budget constraint
will thus imply that c

i,t

= D

t

and s

i,t+1 = s

i,t

= 1 for
each agent. The Euler equation (5) simplifies to

P

t

= E

t


�

i

✓
D

t

D

t+1

◆
(P

t+1 +D

t+1)

�
(7)

which is now easy to solve. The REE aggregate pricing
function satisfying this equation is

P

⇤(D
t

) =
�

1� �

D

t

.

and holdings s = (s1, . . . , sN ) remain fixed over time.
Note that the demand function s

0 has vanished from
the Euler equation, since demand s

0 is fixed at s. Fur-
thermore, agents know a priori that the market is in
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equilibrium so the REE pricing function, and hence the
market clearing price, is known by all agents as soon as
the dividend is announced so there is no need to compute
demand functions for a range of prices. This is a signif-
icant simplification of the problem, but its operational
validity is questionable: only if the agents know that all
other traders are identical to themselves can they justify
setting c

i,t

= D

t

in their Euler equation [18].
In our boundedly rational world, agents do not know

holdings or preferences of the other agents, nor what
pricing functions the other agents are using. Therefore
they cannot know whether the market is at equilibrium.
They can only know whether their own pricing function
is correctly predicting market clearing prices.
Our way forward is to allow agents to use private es-

timates p

i

(D
t+1) of the period t + 1 aggregate pricing

function in their Euler equations (5). We assume that
these functions depend upon D alone. Although agents
are aware that there are unobserved variables s

t

and
functions {p

j

}
j 6=i

influencing market prices away from
equilibrium, we can imagine they implicitly operate un-
der the hypothesis that the market will converge to a
CEE, so that the dependence on these variables will van-
ish with time. Thus, it is pragmatic for the agents to
use p

i

(D
t+1) in the Euler equation.

At a CEE, the demand functions s

i

depend only on
current holdings s

i,t

and the current dividend D

t

, be-
cause the asset price P

t

is implicitly determined by D

t

.
Away from equilibrium this is no longer the case. In
order for a market clearing price to be determined ac-
cording to equation (3), each agent’s demand function
must include price P

t

as an explicit independent vari-
able. In other words, agents must determine how much

to demand at any potential price. These demand equa-
tions will then determine the current period’s market
clearing price, and, in turn, each agent’s actual realized
investment.
This framework now provides agents with enough in-

formation to derive optimal consumption and asset de-
mand functions c

i,t

= c

i

(D
t

, s

i,t

, P | p
i

) and s

i,t+1 =
s

i

(s
i,t

, D

t

, P | p
i

), where we indicate explicitly the de-
pendence on the choice of pricing function p

i

, which
is allowed to change over time, e.g. via some learning
mechanism.
Now we can make precise the spaces and dynamics we

are studying.

• Let D be the set of possible dividends and P the
set of possible asset prices; in this case both can be
taken to be the set R+ of nonnegative real numbers.

• P will denote the set of all possible pricing functions
p : D ! P. This can be thought of as a space
of random processes depending on the underlying
dividend process D

t

.

• S ⇢ RN is the set of all possible holdings vectors
s = (s1, . . . , sN )

• A = PN is the set of possible vectors of agents’
individual pricing functions (p1, . . . , pN ).

The market clearing function M : S ⇥ A ! P, given
the agents’ holdings and pricing functions, returns the

resulting market clearing pricing function implied via (3)
by the resulting agents’ optimal demand functions.
The market dynamical state space is

X = {(s, p,a) 2 S ⇥ P ⇥A : M(s,a) = p}.

An element of X specifies asset holdings s, individual
pricing functions a, and the resulting market pricing
function p. (Note we suppress the space D, since the
underlying dividend process is exogenous; e↵ectively we
are studying the dynamics of random processes measur-
able with respect to the filtration generated by {D

t

}.)
The market dynamical system is the mapping f : X !

X corresponding to updating the state variables by one
time step. The holdings vector s will change due to
trading and the vector a of agent pricing functions will
change due to the particular learning mechanism chosen,
if any. The passage of time is tracked by the trajectory
of an f -orbit {fn(x) : n = 0, 1, 2, 3, . . . } of an initial
state x 2 X, where f

n denotes the n-fold composition
of f with itself.
In this framework, a CEE corresponds to a state

(s, p⇤,a) where a = (p⇤, p⇤, . . . , p⇤) and f(s, p⇤,a) =
(s0, p⇤,a) for some s0. If there is no trading, then (s, p,a)
will be a fixed point of f .1

We will now focus on a special case where it is possible
to derive tractable analytical results.

3 The log utility case

Suppose all N > 1 agents have CRRA utility with a
common risk aversion, �

i

= � > 0 for all i, but possibly
di↵ering discount factors �

i

and initial holdings s
i,0.

We assume the aggregate supply of stock is N shares,
and that agents have limited information in the sense
that they may not make any assumptions about the pref-
erences or holdings of the other agents when solving for
their optimal consumption in each time period. Agents
are presumed to have private estimates p

i

(·) of the pric-
ing function, but we impose no assumptions yet on what
these are or how they evolve.
Using the budget constraint to substitute for c, the

i

th agent’s Euler equation (5) is given by the following
equation, where for convenience we use the notationD =
D

t

and D

0 = D

t+1:

P

(s
i,t

(P +D)� P s

i

(D, s

i,t

, P ))�i

= �

i

E

t

"⇣
p

i

(D0) +D

0
⌘
/

⇣
s

i

(D, s

i,t

, P )
�
p

i

(D0) +D

0�

� p

i

(D0) s
i

(D0
, s

i

(D, s

i,t

, P ), p
i

(D0))
⌘
�i

#
. (8)

Here, P represents any current market price, s
i,t

is the
time-t number of shares of stock of agent i, p

i

is the
ith agent’s current pricing function, and s

i

(D, s, P ) is
the ith agent’s optimal demand function, which is the
unknown here. The agent’s optimization problem is to
find a function s

i

satisfying (8) for all possible values of

1If there is perpetual trading at equilibrium, none of these
points will be fixed, but we could view a CEE as the smallest
f -invariant set containing such a point.
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P ; the actual market price will be determined after all
agents have done this.
Notice that the unknown demand function s

i

appears
in (8) in a highly nonlinear way. Nonetheless, agents
must solve this equation for s

i

in order to be able to
participate in the implicit price-calling auction used to
arrive at the market clearing price. (Though this poses
a computational problem in simulations, we assume our
agents can solve this mathematical problem at no cost.)
In the log-utility case (�

i

= 1), it is easy to verify that
(8) has the simple explicit solution

s

i

(D, s, P ) = �

i

�
1 + (D/P )

�
s. (9)

Unlike the general case �
i

6= 1, this solution has the spe-
cial property that it does not depend upon the agent’s
pricing function p

i

. This is a very important feature of
log utility and is what makes this special case analyti-
cally tractable.
Because the pricing functions p

i

do not influence agent
behavior, the specific learning mechanism used by the
agent to update her pricing function guess is rendered
irrelevant, and the dynamical system f projects down
to a mapping

g : Y ! Y

on the reduced dynamical state space

Y = {(s, p) 2 S ⇥ P : (s, p,a) 2 X for some a 2 A},

consisting of just asset holdings and market clearing
price functions.
The market clearing price, which we now denote P

m

=
P

m

(D
t

), is determined from the market clearing condi-
tion

NX

i=1

s

i

(s
i,t

, D

t

, P

m

) = N. (10)

Substituting the demand function (9) for s
i

and solving
for the market clearing price, gives

P

m

=

P
N

1 �

j

s

j

N �
P

N

1 �

j

s

j

D. (11)

Substituting (11) into the demand function (9) gives the
agent’s next period holdings at market clearing prices as

s

i,t+1 = s

i

(s
i,t

, D, P

m

) = �

i

 
N

P
N

1 �

j

s

j,t

!
s

i,t

. (12)

The evolution of holdings has now become a deter-
ministic dynamical system h : S ! S given by h =
(h1, . . . , hN

) where

h

i

(s1,t, . . . , sN,t

) = �

i

 
N

P
N

1 �

j

s

j,t

!
s

i,t

. (13)

At any time, the market pricing function P

m

is deter-
mined by the asset holdings according to (11), so the
market dynamical system is completely described by h.
We now need only determine the behavior of h-orbits on
S in order to completely understand the time evolution
of our market.
The following theorem establishes that this dynamical

system converges and reports the limiting asset holdings
and pricing function.

Theorem 1 Consider a pure exchange economy of N

infinitely-lived agents and N shares of a single risky as-

set paying stochastic dividend D at the beginning of each

period. Each agent maximizes her discounted, expected

life-time utility subject to the period budget constraint

c

i

+ P s

0
i

 (P + D) s
i

. All agents have log utility and

have discount factors �

i

and initial asset holdings s

�
i

,

where

P
N

i=1 s
�
i

= N . Agents know the probability distri-

bution of dividends but not the asset holdings, discount

factors, or utility functions of other agents.

For convenience, order the agents by decreasing dis-

count factor and let k be the number of agents who share

the maximum discount factor �, so that

1 > � = �1 = · · · = �

k

> �

k+1 � · · · � �

N

> 0.

Then the dynamic behavior of holdings and market

clearing prices is given by the deterministic equations

(11) and (12). This system converges exponentially fast

to

P

⇤(D) =
�

1� �

D (14)

and

s

⇤
i

=
Ns

�
i

s

�
1 + · · ·+ s

�
k

, i  k, (15a)

= 0, i > k. (15b)

The theorem states that the asset holdings of all
agents with less than the maximum subjective discount
factor converge to zero at an exponential rate. The as-
set holdings of the remaining most patient agents, with
the highest discount factor, converge to a limit propor-
tional to the initial holdings of this subset of agents.
The patience of these agents is eventually rewarded by
accumulating all of the wealth in the economy while the
impatient agents are driven out of the market as their
wealth is asymptotically driven to zero. Furthermore,
the economy eventually collapses to a set of agents with
di↵ering holdings but a common discount factor. The
market clearing price globally converges to the pricing
function obtained in the classical and more restricted
case of homogeneous, super-rational agents.
In the special case where agents (unknowingly) have

identical discount factors but possibly di↵erent initial
holdings, there is never any trading and the market
clears immediately in the first time step at the famil-
iar rational expectations equilibrium price

P

m

=
�

1� �

D. (16)

3.1 Proof of Theorem 1

Proof: It is easy to verify algebraically that the de-
mand function (9) solves the Euler equation (8), and
therefore (11) and (12) describe the market clearing
price and new stock holdings in each time step.
Also, it is easy to see that the market clearing price

P

m

is given by the P

⇤ in (14) if the stock holdings are
such that the only non-zero holdings are for agents with
�

i

= �. Therefore it remains to prove that holdings
globally converge to the values described by (15).
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It is convenient to rewrite the dynamical system (13)
in terms of the relative holdings x

i

= s

i

/N :

x

0
i

=
�

i

x

iP
N

1 �

j

x

j

. (17)

Here x

j

2 [0, 1] for all j and
P

j

x

j

= 1, so the state
(x1, . . . , xN

) lies on the (N�1)-dimensional unit simplex

�N = {(x1, . . . , xN

) � 0 :
X

i

x

i

= 1} (18)

in the positive orthant of RN . Since
P

j

x

0
j

= 1, we can
describe the dynamics as an iteration of the mapping
T : �N ! �N where the ith coordinate of T (x) is
defined to be x

0
i

given by (17).
If � ⇢ �N denotes the k-dimensional simplicial face

� = {(x1, . . . , xk

, 0, . . . , 0) :
kX

j=1

x

j

= 1}, (19)

then it is easy to see that every point of � is fixed by T .
From (17), if x

j

6= 0 and �

i

= �

j

, then T (x
i

)/T (x
j

) =
x

i

/x

j

. Hence T always preserves the relative sizes of the
coordinates

x

1, . . . , x
k

. Therefore the limiting holdings
must be given by (15) if we can show that every forward
T -orbit {Tn(x)} converges to �.
Define ⇡� : �N ! � to be the projection fixing the

first k coordinates and setting the remaining N � k co-
ordinates to zero. Let �N+ = {x 2 �N : ⇡�(x) 6= 0}.

Lemma 2 Define F : �N ! R by F (x) =
P

i

�

i

x

i

,

where � = �1 and the �

i

are ordered as in Theorem 1.

Then for any x 2 �N+
, F (Tn(x)) increases monotoni-

cally with limit � as n ! 1.

Proof: Let ⌥ denote the (N � k)-dimensional sub-
simplicial face

⌥ = {(0, . . . , 0, x
k+1, . . . , xN

) :
NX

j=k+1

x

j

= 1}, (20)

and ⇡⌥ : �N ! ⌥ the projection fixing the last N � k

coordinates and setting the first k to zero.
F (x) is is simply a weighted average of the �’s,

weighted by the x’s.
Using the definition of T , we have, for any x,

F (T (x)) =

P
i

�

2
i

x

i

F (x)
(21)

and so F (x)F (T (x)) =
P

i

�

2
i

x

i

. Also, F

2(x) =
(
P

i

�

i

x

i

)2.
Now F (T (x)) � F (x) follows from Jensen’s inequality

�(
X

i

�

i

x

i

) 
X

i

�(�
i

)x
i

(22)

for the convex function �(x) = x

2. The inequality is
strict if both ⇡�(x) and ⇡⌥(x) are nonzero.
Fix x 2 �N+. If ⇡⌥(x) = 0 then x 2 �, T (x) =

x, and F (x) = �, so there is nothing further to prove.
Hence suppose ⇡⌥(x) is nonzero. This means ⇡�(T (x))
and ⇡⌥(T (x)) are also nonzero, so F (Tn(x)) is a strictly

monotone sequence bounded by �. It must therefore
converge to it’s supremum, call it �⇤.
Suppose �⇤

< �. By compactness of�N , the sequence
{Tn(x)} has a convergent subsequence y

k

= T

nk(x) !
x

⇤ 2 �N , and by continuity of F , F (x⇤) = �

⇤. By
the definition of T , (Tn(x))

i

is monotone increasing for
i = 1, . . . , k. Therefore x⇤ 2 �N+. Since F (x⇤) < �,
⇡⌥(x⇤) 6= 0, and so

F (T (x⇤)) > F (x⇤) = �

⇤
. (23)

However, we also have F (T (y
k

))  �

⇤, and since y

k

!
x

⇤ this contradicts the continuity of F and T . Therefore
we must have �

⇤ = �. This completes the proof of the
lemma.
⇤
From the lemma above, the limit of F (Tn(x)) is � for

all x 2 �N+. Since F is continuous and F

�1(�) = �,
every forward T -orbit starting in �N+ must converge
to �. From equation (12), we see that if holdings are
close to zero for agents j = k + 1, . . . , N , then we have,
approximately,

s

0
j

=
�

j

�1
s

j

, (24)

which gives us, asymptotically, an exponential rate of
convergence to zero all j > k. This completes the proof
of Theorem 1.
⇤

3.2 An Illustration with Two Agents

For the special case of two agents with di↵erent dis-
count factors �1 > �2 it is possible to describe the mar-
ket dynamics with a simple diagram. The asset demand
functions are

s

i

(s1,t, s2,t) = �

i

2s
i,t

�1s1,t + �2s2,t
, i = 1, 2. (25)

Using the market clearing constraint s1,t+s2,t = 2 gives

s1(s1,t) =
�1s1,t

�2 + (�1 � �2)(s1,t/2)
(26a)

and

s2(s2,t) =
�2s2,t

�1 + (�2 � �1)(s2,t/2)
. (26b)

These two functions are plotted in Figure 1 for the
discount factors �1 = 0.95 and �2 = 0.7. A discount
factor of � implies that an agent could only be induced to
save rather than consume if the return on savings were at
least 1��

�

. Thus, a � = 0.95 implies a very patient agent

who would accept a return of 5.26% on savings to forgo
consumption whereas an agent with � = 0.7 would be
very impatient and could not be induced to save unless
returns were about 43%. Of course, we are not interested
in calibrating our simple model to actual investors and
we select these discount factors merely as illustrations
for a numerical example. Theorem 1 proves that our
example holds for any �1 > �2 no matter how close the
values are although the e↵ect is easier to illustrate for
fairly small �2.
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Iteration of the upper function for agent 1, the most
patient agent with the higher discount factor, is illus-
trated with the arrows showing that asset holdings will
converge to s = 2. Similarly, the asset holdings of the
less patient agent 2 will decrease monotonically to zero
along the lower function. This behavior is common to
any choice of discount factors as long as �1 > �2. When
�1 = �2 both graphs are along the diagonal and the as-
set holdings of both agents remain fixed and there is no
trading.

4 Conclusions

Theorem 1 and the surrounding discussion provide the
details of the answers summarized in the Introduction.
Since, in our log-utility case, the decisions of the agents
turn out to be uninfluenced by the chosen pricing func-
tions a 2 A, the full dynamical system f : X ! X

conveniently reduces to a mapping g : Y ! Y on the re-
duced state space. This allows us to completely specify
the market dynamics both at and away from equilib-
rium.
Our model is fully consistent with a rational expecta-

tions general equilibrium framework and does not rely
upon agents who ignore market fundamentals or behave
irrationally such as in [20, 19]. At each period in our
model markets clear according to (10) which sets the
aggregate demand for assets equal to the aggregate sup-
ply. The market price is then determined endogenously
according to (11) which depends upon the individual as-
set demand equations of each agent.
We are able to completely specify the asset market

dynamics of this system as the economy moves toward
equilibrium. We show that the most patient agents will
asymptotically accumulate all wealth with a convergence
rate that depends upon the ratio of the discount factor of
the less patient agent to the most patient agent. In an
environment without idiosyncratic wealth shocks, this
convergence will be monotonic. Although our conclu-
sions are consistent with the existing literature we have
provided a rigorous proof of these results.
It’s natural to ask about what happens when agents

are allowed to have other risk aversion parameters �
i

>

0. In general, optimal demands will then depend on the
individual pricing functions a as well as the wealth and
asset holdings distributions [2]. Therefore, the mapping
f : X ! X will not be fully specified until the pricing
function updating (learning) mechanism is specified.
Simulation studies are reported in [21] for this gen-

eral case where the learning mechanism is a simple least
squares updating of the pricing function based on the
observed history of market prices. In all cases studied,
market prices are observed to converge to a no trad-
ing equilibrium which, in our language, is a fixed point
(s, P ⇤

,a) of f : X ! X, where a = (P ⇤
, . . . , P

⇤). These
simulation studies are numerically challenging because
each agent’s optimal demand must be solved numeri-
cally in every time step.
The log utility case makes for an interesting compar-

ison between our two equilibrium concepts, CEE and
REE. Assuming that agents know all the pricing func-
tions, holdings, and preferences of the other agents will

not change their behavior in each time step. Equations
(11) and (12) describe the market price P

m

(D, s) and
demands as a function of D and s, so the market is at
an REE all all times, even as holdings evolve. When
agents do not observe holdings s, the pricing function
P

m

(D) evolves over time and reaches the equilibrium
P

⇤(D) only in the limit.
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