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Abstract

Multiphase flow phenomena are ubiquitous. Common examples
include coupled atmosphere and ocean system (air and water), oil
reservoir (water, oil and gas), cloud and fog (water vapor, water and
air). Multiphase flows also play an important role in many engineering
and environmental science applications.

In some applications such as flows in unconfined karst aquifers,
karst oil reservoir, proton membrane exchange fuel cell, multiphase
flows in conduits and in porous media must be considered together.
Geometric configurations that contain both conduit (or vug) and porous
media are termed karstic geometry. Despite the importance of the
subject, little work has been done on multi-phase flows in karstic ge-
ometry.

In this paper we present a family of phase field (diffusive interface)
models for two phase flow in karstic geometry. These models together
with the associated interface boundary conditions are derived utilizing
Onsager’s extremum principle. The models derived enjoy physically
important energy laws. Uniquely solvable first and second order in
time numerical schemes that preserve the associated energy law are
presented as well.

1 Introduction

Multiphase flow phenomena are ubiquitous [1, 2, 3]. Common examples in-
clude coupled atmosphere and ocean system (air and water), oil reservoir
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(water, oil and gas), cloud and fog (water vapor, water and air). Many
multiphase flows are important to us humans and to a lot of engineering pro-
cesses. Therefore, there is a genuine need to understand various multiphase
flow phenomena better.

Karst type geometry is a special type of configuration that consists of
both conduit/channel (or vug or chamber) together with porous media. See
Figure 1 below for an illustration. In many important applications such as
contaminant transport in karst aquifer, oil recovery in karst oil reservoir,
proton exchange membrane fuel cell technology, cardiovascular modeling, we
must deal with karstic geometry. Despite the importance of the subject, little
work has been done on multiphase flows in karstic geometry. Multiphase flows
in karstic geometry pose additional challenges beyond the usual difficulties
associated with multi-phase flows. The main goal of this manuscript is the
derivation, based on Onsager’s extremum principle, of a hierarchical family
of diffuse interface models for two-phase flows in karstic geometry.

One of the most prominent and important example of two-phase flow in
karstic geometry is flow in unconfined natural karst aquifers. A natural karst
is a type of landscape that is formed by the dissolution of a layer or layers of
soluble bedrocks, including carbonate rocks, limestone and dolomite. Karst
regions usually contain aquifers that are capable of providing large supplies of
water. A karst aquifer, in addition to a porous limestone or dolomite matrix,
typically has large cavernous conduits that are known to have a great impact
on groundwater flow and contaminant transport within the aquifer [4, 5].

Karst aquifers supply a significant portion of the drinking water in the
United States (about 40%) and are particularly important in States like
Florida for which karst aquifers provide more than 90% of the fresh water
used [6]. Karst aquifers are susceptible to greater contamination than are
non-karstic aquifers due to rapid transport processes and limited chemical
filtering capacities, both of which quicken the spread of solutes [5, 7, 8].
During a high flow season, the water pressure in the conduits is larger than
that in the ambient matrix so that conduit-borne contaminants can be driven
into the matrix and the water table (the interface between water and air)
rises. During dry seasons, the pressure differential reverses and contaminants
long sequestered in the matrix can be released into the free flow in the con-
duits and exit through, e.g., springs and wells, into surface water systems
[9]. This retention and release phenomenon induces an environmental issue
in that sequestered contaminants may influence the quality of underground
water sources for a long time and thus significantly decrease water availabil-
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Figure 1: Schematic plot of an unconfined karst in flood and draught season
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ity. Therefore the study of flows in karst aquifers is of great importance to
us, especially since the aquifers are now being seriously threatened by over
withdrawals and increasing contamination [5].

The mathematical study of flows in confined saturated karst aquifers is
already a challenge due to the coupling of the flows in the conduits and
the flows in the surrounding matrix which are governed by different physical
processes, the complex geometry of the network of conduits, the vastly dis-
parate spatial and temporal scales, the strong heterogeneity, and the huge
associated uncertainty with the data. Even for a small lab size conceptual
model with only one conduit (pipe) imbedded in a homogenous porous media
(matrix), significant mathematically rigorous progress has been achieved only
recently via the so-called coupled (Navier) Stokes-Darcy model with the clas-
sical Beavers-Joseph interface boundary condition [10] or various simplified
interface conditions [11, 12, 13, 14, 15]. Existing mathematical work on flows
in karst aquifers treats the case of confined saturated aquifer where only one
type of fluid (water) occupies the whole region exclusively. However, many
geologically important karst aquifers are unconfined and unsaturated which
necessitates the study of two-phase flows (air and water in this case) instead
of one single fluid (water in confined karst aquifer).

Multiphase flows in karst type domains are not restricted to flows in
unsaturated karst aquifers. Besides groundwater study in karst regions that
we mentioned above, multiphase flows in karstic geometry are also important
in oil recovery in petroleum engineering in karst regions (two-phase flow of oil
and water, or oil, water and gas, see for instance [16], http://www.in.gov/nrc/2394.htm,
http://www.netl.doe.gov/technologies/oil-gas/petroleum/projects/ep/explor tech/15504.htm,
[17]), Polymer Electrolyte Membrane (or Proton Exchange Membrane) fuel
cell technology (water management in PEM fuel cell [18]), as well as biomedi-
cal sciences (cardiovascular modeling and simulation, see for instance [19]). It
is also relevant in CO2 sequestration, and in assessing environmental impact
on beaches after accidents like the Deepwater Horizon oil spill.

We will focus on essentially immiscible two phase fluids (like air and
water, or oil and water for instance) in this paper for simplicity. There are
two prevalent approaches to the study of two-phase immiscible flows.

The classical approach assumes that the fluids are completely immiscible.
Therefore a sharp interface exists between the two fluids under investigation
(see Fig.2b for an illustration). Sea surface is a well-known example of the
interface between sea water and air, and water table is another example of
the interface between air and water for flow in matrix (porous media).
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The sharp interface model in porous media (matrix) is usually termed
the Muskat problem [20, 21]. The two phase Muskat problem takes the form
[22, 23]

∇·~ui = 0, in Ωi, ~ui = −Π

ηi
∇pi, in Ωi, (~u1−~u2)·~n = 0, on Γ, p2−p1 = τκ on Γ,

(1)
where ~ui denotes the fluid velocity of the ith fluid which occupies the region
Ωi, ηi is the viscosity of the ith fluid, Π is the permeability of the porous media
(matrix), pi is the pressure, ~n is the unit normal to the interface Γ (pointing
from fluid 1 to fluid 2), κ is the (mean) curvature and τ is the dimensionless
surface tension coefficient. The interface Γ moves with the speed Vn = ~u1 ·~n.
In the case of water flow in unsaturated porous media (matrix), approximate
models such as Richards equation may be utilized sometimes [24].

Likewise, the sharp interface model in the conduit or vug takes the form
of the following two-phase Navier-Stokes equations [2, 3, 25, 26, 27, 28]{

ρi(
∂~ui
∂t

+ (~ui · ∇)~ui)−∇ · T(~ui, pi) = 0, in Ωi, ∇ · ~ui = 0 in Ωi,
~u1 = ~u2, on Γ, (T(~u1, p1)− T(~u2, p2))~n = τκ~n on Γ,

(2)

where ρi, ~ui denote the density and velocity of the ith fluid which occupies the
region Ωi, T(~ui, pi) = 2ηiD(~ui)−piI is the tress tensor, D(~ui) = (∇~ui+∇~uTi )/2
is the rate of strain tensor, ηi is the viscosity of the ith fluid, pi is the pressure,
~n is the unit normal to the interface Γ, κ is the (mean) curvature and τ is
the dimensionless surface tension coefficient. The interface Γ moves with the
speed Vn = ~u1 · ~n. When the Reynolds number is small, one can drop the
total (material) derivative term in the momentum equation and arrive at the
two-phase Stokes system.

The sharp interface models have been very successful in explaining many
physically interesting phenomena [2, 3, 29, 30, 31, 32, 33]. However, there
are several known drawbacks associated with this sharp interface approach.
In particular, this approach is not able to handle in an unambiguous fash-
ion topological changes of the sharp interface (pinch-off and reconnection),
singularity formation (breaking wave for instance), or moving contact lines.
Moreover, there is no-known physically sound coupled two-phase models in
karstic geometry in the literature to the best of our knowledge.

An alternative approach, the so-called diffuse-interface method (or phase-
field method), recognizes the micro-scale mixing and hence treats the inter-
face as a transition layer with small but non-zero width (see Fig.3a for an
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Figure 2: Left panel: diffusive interface; right panel: sharp interface

illustration) [34, 35, 36]. In the diffuse-interface approach (or phase-field
method) that we have adopted here, we approximate the separating bound-
ary between two (macroscopically) immiscible fluid phases using an order
parameter φ (phase field variable) that continuously, and usually monotoni-
cally, varies from one value in phase A (water for instance), say φ = +1, to
another value in phase B (oil for instance), say φ = −1, in a transition layer
of small, but finite, thickness (see Fig. 2 for an illustration) [34, 35, 36, 37].
This idea can be traced back to van der Waals and Lord Rayleigh [38, 39].
This is in contrast to the sharp interface formulation that would employ a
characteristic (or indicator) function description. In the diffuse interface ap-
proximation, the ”location” of the interface can be recovered as the level
surface φ = 0.

This order parameter φ can be interpreted as volume fraction of fluids in
the following way:

volume fraction of phase A = (φ+ 1)/2, volume fraction of phase
B = (1− φ)/2.

In the case with matched density or when the Boussinesq approximation is
applicable, the velocity ~u of the mixture can be taken as incompressible [36],
i.e., ∇·~u = 0. For the Boussinesq approximation, the density ρ of the mixture
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is given by

ρ =
(ρ1 − ρ2)φ+ ρ1 + ρ2

2
,

where ρ1, ρ2 are the densities of the two phases. The viscosity η of the mixture
can be modelled as an appropriate smooth positive bounded function of the
order parameter φ that satisfies η(φ) = η1, if φ = 1; η(φ) = η2, if φ = −1,
where η1, η2 are the viscosities of the two fluids [28, 36, 40].

The diffuse-interface approach has the advantage that it can handle topo-
logical changes such as pinch-off and reconnection, moving contact lines seam-
lessly [36, 37, 41, 42]. Another advantage of the diffuse-interface approach is
its relative easiness to handle the interface boundary condition between the
matrix and the conduit as we will demonstrate below.

With the expected complex interfacial dynamics, including topological
changes and interaction between the interface and the solid as well as the
matrix-conduit/vug boundary, we propose to investigate two phase flows in
karstic geometry utilizing a hierarchical family of physically motived diffuse
interface (phase field) models with increasing complexity that we derive in
this manuscript.

The rest of the manuscript is organized as follows. In section 2 we de-
rived the coupled Cahn-Hilliard-Stokes-Darcy model via Onsager’s extremum
principle. This new model enjoys a physically important energy law. Gener-
alization of this model that inherits the energy law will be also presented. In
section 3 we introduce and analyze two uniquely solvable numerical schemes,
one first order and another one second order in time, for the Cahn-Hilliard-
Stokes-Darcy model that preserve the energy law. In section 4 we provide
concluding remarks.

2 The derivation of the models

The purpose of this section if the derivation of the thermal dynamically
consistent Cahn-Hilliard-Stokes-Darcy (CHSD) model, and its generaliza-
tion, based on Onsager’s extremum principle. The family of models that we
present here all enjoy physically important energy law. These energy laws are
crucial to the analysis of, and the design of unconditionally stable numerical
schemes for these models.
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2.1 The conceptual domain

Figure 3: A conceptual karstic domain

Since a complete treatment of two-phase flow in karst region is out of the
scope at this time even with diffuse-interface approach, we consider here a
simple conceptual karstic domain where a horizontal conduit and one vug
are embedded in a rectangular matrix (see Fig. 3). Such a simple geometry
is easy to set-up in laboratory experiment. Here, Ωc denotes the region
occupied by the conduit or vug, Ωm denotes region occupied by the matrix,
Γi represents the interface between the matrix and the conduit or vug, Γc =
∂Ωc \Γi represents the boundary of the conduit/vug minus the conduit/vug-
matrix interface, Γm = ∂Ωm \ Γi represents the boundary of the matrix
minus the conduit/vug-matrix interface, ~n denotes the unit outer normal on
∂Ω = Γc ∪ Γm as well as the unit normal on Γi pointing from Ωc to Ωm, ~τ
denotes a generic unit tangent vector to the conduit/vug-matrix interface Γi.

2.2 Derivation of the Cahn-Hilliard-Stokes-Darcy model
via Onsager’s extremum principle

Since there is no known coupled two-phase model for flows in karstic geometry
in the literature, our first task is the derivation of physical models. We sketch
here the derivation of the relative simple Cahn-Hilliard-Stokes-Darcy model
under the matched density assumption utilizing Onsager’s extremal principle
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[43, 44, 45]. Onsager’s principle itself is a generalization of Helmholtz’s mini-
mal dissipation principle [46]. Applications of Onsager’s extremum principle
to multiphase fluid problems can be found in [41, 47, 48, 49] among others.

2.2.1 Notations

We first introduce the following notations and assumptions in order to pro-
ceed.
ρ0 = ρ1 = ρ2: density of fluids (matched density);
η = η(φ): viscosity of the mixture;
χ: porosity of the matrix;
Π: permeability of the matrix;
K = Π

η
: hydraulic conductivity of the fluid in the matrix;

φm: order parameter (phase field variable) in matrix;
~um: Darcy velocity in the matrix;
pm: (volume averaged) fluid pressure in the matrix;
1+φm

2
: volume fraction of fluid A in the matrix;

1−φm
2

: volume fraction of fluid B in the matrix;
~uc: fluid velocity in the conduit or vug;
pc: fluid pressure in the conduit or vug;
D(~u) = ∇~u+∇~uT

2
: rate of strain tensor;

T(~u, p) = 2ηD(~u)− pI: stress tensor;
φc: order parameter (phase field variable) in the conduit or vug;
β(φc) ≥ 0: slip coefficient of fluid along the interface Γi;
1+φc

2
: volume fraction of fluid A in the conduit or vug;

1−φc
2

: volume fraction of fluid B in the conduit or vug;
~Jm: chemical diffusive flux/current in the matrix;
~Jc: chemical diffusive flux/current in the conduit/vug;
ε: a small parameter proportional to the interface width in diffuse interface
model (assumed to be the same for the matrix and the conduit for simplic-
ity);
f : Ginzburg-Landau type double-well Helmholtz free energy density, f(φ) =
1
ε
f0(φ), f0(φ) = 1

4

(
1− φ2

)2
;

Fi(φi) = γ
∫

Ωi
[ε|∇φi|2 + 1

ε
f0
′(φi)]: total free energy in each domain (i = m

or c);
γ: positive material parameter;
µ = γ(−ε∆φ+ f ′(φ)): chemical potential;
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m(φ) > 0: mobility.
The particular choice of total free energy Fi is crucial in the phase field

model. The second term in the total free-energy is a double-well Ginzburg-
Landau type energy expressing the hydrophobic part of the free-energy. It
is this term, together with the small parameter ε, that models the essential
immiscibility of the two fluids. The first term in the total free energy is a dif-
fusion term that represents the hydrophilic part of the free-energy. This term
penalizes sharp transition and helps to create the transition layer depicted
in figure 2.

2.2.2 Preliminary consideration in terms of boundary and inter-
facial conditions

The following boundary and interfacial conditions follow from simple physi-
cal consideration:
~uc
∣∣
Γc

= ~0: no-slip on Γc;

~um · ~n
∣∣
Γm

= 0: no-penetration on Γm;

~Jc · ~n
∣∣
Γc

= 0: chemical impermeability at the solid wall Γc;

~Jm · ~n
∣∣
Γm

= 0: chemical impermeability at the solid surface Γm;

~Jc · ~n
∣∣
Γi

= ~Jm · ~n
∣∣
Γi

: continuity of normal chemical flux across the interface.

Conservation of mass for each phase across the interface (ρ0
1+φc

2
~uc · ~n =

ρ0
1+φm

2
~um
χ
·~nχ, ρ0

1−φc
2
~uc ·~n = ρ0

1−φm
2

~um
χ
·~nχ, where ~um

χ
is the seepage velocity

in the matrix.) implies the following interfacial boundary conditions

~uc · ~n = ~um · ~n, φc = φm, on Γi.

Notice that these two interfacial boundary conditions on Γi and the continuity
of the normal chemical current are consistent with phase conservation across
the interface and the continuity equation for the order parameter

∂φ

∂t
+ ~u · ∇φ = −∇ · ~J.

2.2.3 Application of Onsager’s extremum principle

In order to apply Onsager’s extremum principle, we need to identify the
total free energy in the matrix and in the conduit, and the total dissipation
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functions for the matrix and the conduit. Here we utilize the free energy
instead of the entropy as in Onsager’s original setting since conditions of
mechanical equilibrium necessarily enter the laws of irreversible processes
[41, 44, 50]. Further explanation is provided below.

Recall that we have adopted the following choice of total free energy in
each domain [28, 34, 35, 40]. For the conduit,

Fc(φc) = γ
∫

Ωc
[ ε
2
|∇φc|2 + f(φc)] = γ

∫
Ωc

[ ε
2
|∇φc|2 + 1

4ε
(φ2

c − 1)2],

where γ is a positive material parameter. Similar formula holds for the matrix
with the subscript c replaced by m.

Therefore, the variation of the total free energy in the conduit/vug is
given by

δFc(φc) =

∫
Ωc

µcδφ+ γ[

∫
Γc

ε
∂φc
∂n

δφ+

∫
Γi

ε
∂φc
∂n

δφ],

where µc = γ[−ε∆φc+f ′(φc)] is the chemical potential in Ωc. Minimizing the
total free energy in Ωc yields the equilibrium conditions µc = constant in Ωc

and ∂φc
∂n

= 0 on ∂Ωc (ignoring the coupling with the matrix for the moment).
This implies that deviations from the equilibrium may be measured by the
”force” ∇µc in the bulk, and γε∂φc

∂n
on the boundary. For small perturba-

tions away from the equilibrium, the additional rate of dissipation arises from
system responses that are linear in ∇µc and γε∂φc

∂n
. Such responses can be

described in terms of the diffusive flux (current) ~Jc in Ωc and the time deriva-
tive of the order parameter φc on the boundary (∂φc

∂t
). The time derivative

on the boundary is needed as a rate because the system is not equilibrium
on the boundary for the order parameter φc since ∂Jn

∂n
6= 0 on the boundary

in general.
We notice that the rate of the change of the free energy in Ωc can be

written as

Ḟc =
∫

Ωc
µc

∂φc
∂t

+ γε[
∫

Γc

∂φc
∂n

∂φc
∂t

+
∫

Γi

∂φc
∂n

∂φc
∂t

]

=
∫

Ωc
µc(−∇ · ~Jc − ~uc · ∇φc) + γε[

∫
Γc

∂φc
∂n

∂φc
∂t

+
∫

Γi

∂φc
∂n

∂φc
∂t

]

=
∫

Ωc
[∇µc · ~Jc − µc~uc · ∇φc] + γε

∫
Γc

∂φc
∂n

∂φc
∂t

+
∫

Γi
[γε∂φc

∂n
∂φc
∂t
− µc ~Jc · ~n],

where we have utilized the continuity equation for the order parameter φc,
performed one integration by parts, and utilized the boundary conditions on
the diffusion (chemical) current (flux). Likewise, the rate of change of the
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free energy in Ωm can be written as Ḟm =
∫

Ωm
[∇µm · ~Jm − µm~um · ∇φm] +∫

Γm
γε∂φm

∂n
∂φm
∂t
−
∫

Γi
[γε∂φm

∂n
∂φm
∂t
− µm ~Jm · ~n].

On the other hand, the dissipation function Φc for immiscible two phase
flows in the conduit/vug can be identified as

Φc =

∫
Ωc

[ηD(~uc)|2 +
| ~Jc|2

2m
] +

∫
Γi

β

2
|~uc,τ |2,

where the first term corresponds to viscous damping, the second term is
the dissipation associated with the diffusive current (chemical flux), and the
last term is related to dissipation due to slip on the matrix-conduit interface
with ~uc,τ denoting the tangential component of ~uc on the conduit-matrix
interface Γi.

η
β

can be interpreted as the slip length. Slip along conduit-
matrix interface is a well-known phenomenon. See for instance Beavers-
Joseph [10]. Here m is a phenomenological parameter and will be identified
as the mobility. We have ignored the potential damping due to the the
time-derivative of the order parameter φc (a term like

∫
∂Ωc

1
2Γ
|∂φc
∂t
|2) since we

assume instantaneous relaxation (Γ =∞). See discussion below for dynamic
boundary conditions.

Likewise, the dissipation function Φm for immiscible two-phase flows in
the matrix can be identified as

Φm =

∫
Ωm

[
1

2K
|~um|2 +

| ~Jm|2

2m
]

where the second term is dissipation associated with the diffusive current in
the bulk while the first term corresponds to Darcy damping. Here we have
assumed the same mobility in the matrix as in the conduit for simplicity. The
specific form of the Darcy damping utilized here can be deduced from the
volume averaged Navier-Stokes equations in porous media, see for instance
Le Bars and Worster [51] (equation 2.13) or Nield and Bejan [52].

Combining everything together, we see that for immiscible two-phase
flows Onsager’s variational principle may be expressed in terms of the func-
tional

Φ + Ḟ

=
∫

Ωc
[ηD(~uc)|2 + | ~Jc|2

2m
] +
∫

Γi

β
2
|~uc,τ |2 +

∫
Ωm

[ 1
2K
|~um|2 + | ~Jm|2

2m
]

+
∫

Ωc
[∇µc · ~Jc − µc~uc · ∇φc] + γε

∫
Γc

∂φc
∂n

∂φc
∂t

+
∫

Ωm
[∇µm · ~Jm − µm~um · ∇φm] +

∫
Γm
γε∂φm

∂n
∂φm
∂t

+
∫

Γi
[γε∂φc

∂n
∂φc
∂t
− µc ~Jc · ~n− γε∂φm∂n

∂φm
∂t

+ µm ~Jm · ~n].
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The two-phase immiscible flow model in karst geometry according to On-
sager’s extremum principle is then derived by minimizing Φ+ Ḟ with respect
to the rates {~u = (~um, ~uc), ~J = ( ~Jm, ~Jc),

∂φ
∂t

∣∣
boundary

= (∂φm
∂t

∣∣
Γm,Γi

, ∂φc
∂t

∣∣
Γc,Γi

)}.
Therefore, we deduce that the two-phase flow model in karstic geometry is the
following coupled Cahn-Hilliard-Stokes-Darcy system which consists of
the Cahn-Hilliard-Darcy system [37, 53, 54, 55, 56, 57, 58]

η
Π
~um +∇pm − µm∇φm = 0, ∇ · ~um = 0, in Ωm,

∂φm
∂t

+ ~um · ∇φm = ∇ · (m∇µm), µm = γ[1
ε
f ′0(φm)− ε∆φm], in Ωm,

∂φm
∂n
|Γm = 0, ∂µm

∂n
|Γm = 0, ~um · ~n|Γm = 0,

(3)

in the matrix, coupled with the Cahn-Hilliard-Stokes system [34, 35, 36, 59]

−∇ · T(~uc, pc)− µc∇φc = 0, ∇ · ~uc = 0, in Ωc,
∂φc
∂t

+ ~uc · ∇φc = ∇ · (m∇µc), µc = γ[1
ε
f ′0(φc)− ε∆φc], in Ωc,

∂φc
∂n
|Γc = 0, ∂µc

∂n
|Γc = 0, ~uc|Γc = 0,

(4)

in the conduit, through the following interface boundary conditions on Γi,

~um · ~n = ~uc · ~n, φm = φc, µm = µc,
∂φm
∂n

= ∂φc
∂n
,∇µm · ~n = ∇µc · ~n,

~n · T(~uc, pc)~n = −pm, ~τ · T(~uc, pc)~n = −β~τ · ~uc.
(5)

Here the pressures pm and pc also serve as the Lagrangian multiplier for the
incompressibility constraint in the matrix and conduit respectively. The last
velocity interface boundary condition is exactly the Beavers-Joseph-Saffman-
Jones interface boundary condition [10, 12, 14, 15, 60, 61, 62, 63, 64, 65] with
the slip coefficient β equal to the Beavers-Joseph-Saffman-Jones coefficient
αBJSJ . The Cahn-Hilliard-Stokes system can be viewed as the low Reynolds
number approximation of the better-known Cahn-Hilliard-Navier-Stokes sys-
tem for two phase flow [28, 35, 34, 36, 40, 66, 67, 68, 69, 70].

The derivation above indicates that the interface boundary conditions
(except for the three obtained via conservation of mass consideration) are in
fact variational interface boundary conditions. In the one phase case, On-
sager’s variation principle reduces to Helmholtz’s minimal dissipation prin-
ciple, and these interface boundary conditions reduce to the well-known
Beavers-Joseph-Saffman-Jones interface boundary conditions that have been
used in groundwater study and blood filtration [11, 13, 14, 15, 19, 62, 64,
65, 71, 72, 73, 74]. The Beavers-Joseph-Saffman-Jones type interface bound-
ary conditions can be also derived via homogenization consideration under
appropriate assumptions [75] in the one phase case.
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2.2.4 Consistency with thermodynamics

We can now observe the consistency of the current formulation with the laws
of thermodynamics as long as we identify entropy and work appropriately
following [41]. The laws of thermodynamics [76] dictate Ḟ = −T Ṡ + Ẇ
where F is the total free energy, T is the temperature, S the entropy and W
the work. Recall that

Ḟ = Ḟc + Ḟm =

∫
Ωc

[∇µc · ~Jc − µc~uc · ∇φc] +

∫
Ωm

[∇µm · ~Jm − µm~um · ∇φm].

Since F is the free energy associated with the order parameter φ, the entropy
part −T Ṡ should be from the chemical diffusion in the bulk and relaxation
on the boundary or interface, and the work rate Ẇ is due to the work done
by the flow to the (diffuse) interface. That is

−T Ṡ =
∫

Ωc
∇µc · ~Jc +

∫
Ωm
∇µm · ~Jm, Ẇ =

∫
Ωc

[−µc∇φc · ~uc] +

∫
Ωm

[−µm∇φm · ~um].

Therefore, −µ∇φ is identified as a force which can be interpreted as the
”elastic” force (or Korteweg force) exerted by the (diffusive) interface on the
flow. This ”elastic” force converges to the surface tension at sharp interface
limit at least heuristically [28, 36, 37]. The total free energy in each domain
also converges to the corresponding interfacial energy for the sharp interface
model [77, 78].

2.2.5 Energy law

An immediate consequence of this variational approach is the following en-
ergy law associated with the Cahn-Hilliard-Stokes-Darcy system with matched
density. The equations (3)-(4) under the interface boundary condition (5)
satisfy the energy law

d
dt

(Fm(φm) + Fc(φc))

= −
∫

Ωm
[ η
Π
|~um|2 +m|∇µm|2]−

∫
Ωc

[2|√ηD(~uc)|2 +m|∇µc|2]−
∫

Γi
|
√
β~uc,τ |2.(6)

We remark that more general systems with dynamic boundary condi-
tions can be derived if we take into consideration within the dissipation
function quadratic forms in the rate ∂φ

∂t
. More specifically, we could in-

clude the following terms in the total dissipation function Φ:
∫

Γc

1
2γc

∣∣∂φc
∂t

∣∣2 +
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∫
Γm

1
2γm

∣∣∂φm
∂t

∣∣2 +
∫

Γi

1
2γic

∣∣∂φc
∂t

∣∣2 +
∫

Γi

1
2γim

∣∣∂φm
∂t

∣∣2. We could also include the

following surface free energy terms in the total free energy
∫

Γc
[σc

2
|∇τφc|2 +

γfsc(φc)]+
∫

Γm
[σm

2
|∇τφm|2+γfsm(φm)]+

∫
Γi

[σic
2
|∇τφc|2+γfsic(φc)]+

∫
Γi

[σim
2
|∇τφm|2+

γfsim(φm)] , where ∇τ represents tangential gradient on the appropriate sur-
face. Such kind of consideration can potentially better represent the inter-
action of the system with the walls and the interface due to the surface
energy terms and surface diffusion terms. This formulation leads to the so-
called dynamic boundary condition since the boundary (and interface) condi-
tions will involve time derivative of the order parameter φ. See for instance
[41, 79, 80, 81]. We focus on the instantaneous relaxation case (formally
γc = γm = γic = γim = ∞) for simplicity. Domain dependent ε, γ,m can be
considered as well.

We would like to emphasize that although the Cahn-Hilliard-Darcy (3)
and Cahn-Hilliard-Stokes (4) models derived above are not new, the coupling
of the two systems with the interface boundary conditions derived from On-
sager’s variational principle is novel. This new system forms the foundation
of our future study of two phase flows in karstic geometry.

Alternative derivations of two phase flows (in conduit) via other varia-
tional principles or rational mechanics considerations are also possible [34,
35, 36, 37, 40, 49]. However, we are not aware of any systematic derivation of
hydrodynamic model with interface boundary conditions for two-phase flows
in karstic geometry. We also remark that the derivation above based on
Onsager’s extremum principle will not lead to Cahn-Hilliard-Navier-Stokes-
Darcy type system directly since Onsager’s principle is applicable to system
near equilibrium only. On the other hand, most processes in karstic region
do evolve near equilibrium and hence the Cahn-Hilliard-Stokes-Darcy model
is expected to be applicable most of the time.

2.3 Generalizations of the Cahn-Hilliard-Stokes-Darcy
system

The basic Cahn-Hilliard-Stokes-Darcy system that we derived above via On-
sager’s extremum principle can be generalized to handle situations that re-
quires other physical factors.

The first important generalization is the following Cahn-Hilliard-Stokes-
Darcy-Boussinesq system that deals with system with mismatched den-
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sity under the Boussinesq assumption.

η
Π
~um +∇pm − µm∇φm = −ρ(φm)g~k, ∇ · ~um = 0, in Ωm,

∂φm
∂t

+ ~um · ∇φm = ∇ · (m∇µm), µm = γ[1
ε
f ′0(φm)− ε∆φm], in Ωm,

−∇ · T(~uc, pc)− µc∇φc = −ρ(φc)g~k, ∇ · ~uc = 0, in Ωc,
∂φc
∂t

+ ~uc · ∇φc = ∇ · (m∇µc), µc = γ[1
ε
f ′0(φc)− ε∆φc], in Ωc

(7)

equipped with the same interface boundary conditions (5) and boundary con-

ditions as for the Cahn-Hilliard-Stokes-Darcy system. Here ~k is the unit vec-
tor pointing upward. This model is consistent with the quasi-incompressible
models in each subdomain under Boussinesq approximation [36, 37].

This Cahn-Hilliard-Stokes-Darcy-Boussinesq system (7) has the advan-
tage that it can handle fluids with close but different densities (oil and water
for instance). It also enjoys the following energy law which will be crucial to
the analysis, design and implementation of effective numerical schemes.

d
dt

(Fm(φm) + Fc(φc))
= −

∫
Ωm

[ η
Π
|~um|2 +m|∇µm|2]−

∫
Ωc

[2|√ηD(~uc)|2 +m|∇µc|2]−
∫

Γi
|
√
β~uc,τ |2

−
∫

Ωc
ρ(φc)g~uc · ~k −

∫
Ωm

ρ(φm)g~um · ~k.

The second is the following Cahn-Hilliard-Stokes-Darcy-Boussinesq
system with velocity time derivative:

ρ0
χ
∂~um
∂t

+ η
Π
~um +∇pm − µm∇φm = −ρ(φm)g~k, ∇ · ~um = 0, in Ωm,

∂φm
∂t

+ ~um · ∇φm = ∇ · (m∇µm), µm = γ[1
ε
f ′0(φm)− ε∆φm], in Ωm,

ρ0
∂~uc
∂t
−∇ · T(~uc, pc)− µc∇φc = −ρ(φc)g~k, ∇ · ~uc = 0, in Ωc,

∂φc
∂t

+ ~uc · ∇φc = ∇ · (m∇µc), µc = γ[1
ε
f ′0(φc)− ε∆φc], in Ωc,

(8)

equipped with the same interface boundary conditions (5) and boundary
conditions as for the Cahn-Hilliard-Stokes-Darcy system. The inclusion of
the time derivative of the velocity heuristically provides better approximation
to the physics when the system is not in equilibrium. This Cahn-Hilliard-
Stokes-Darcy-Boussinesq system with explicit velocity time derivative also
enjoys an energy law in the form of

d
dt

(Fm(φm) + Fc(φc) +
∫

Ωc

ρ0
2
|~uc|2 +

∫
Ωm

ρ0
2χ
|~um|2)

= −
∫

Ωm
[ η
Π
|~um|2 +m|∇µm|2]−

∫
Ωc

[2|√ηD(~uc)|2 +m|∇µc|2]−
∫

Γi
|
√
β~uc,τ |2

−
∫

Ωc
ρ(φc)g~uc · ~k −

∫
Ωm

ρ(φm)g~um · ~k.
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In the case with relatively high velocity in the conduit, one can even
use the Cahn-Hilliard-Navier-Stokes system in the conduit and vug [28, 34,
35, 40, 41], and we arrive at the following Cahn-Hilliard-Navier-Stokes-
Darcy system with Boussinesq approximation:

ρ0
χ
∂~um
∂t

+ η
Π
~um +∇pm − µm∇φm = −ρ(φm)g~k, ∇ · ~um = 0, in Ωm,

∂φm
∂t

+ ~um · ∇φm = ∇ · (m∇µm), µm = γ[1
ε
f ′0(φm)− ε∆φm], in Ωm,

ρ0(∂~uc
∂t

+ (~uc · ∇)~uc)−∇ · T(~uc, pc)− µc∇φc = −ρ(φc)g~k, ∇ · ~uc = 0, in Ωc,
∂φc
∂t

+ ~uc · ∇φc = ∇ · (m∇µc), µc = γ[1
ε
f ′0(φc)− ε∆φc], in Ωc.

(9)
In this case, it may be useful to employ the so-called Lions interface boundary
condition [13, 73, 82, 83, 84]

~n · T(~uc, pc)~n−
ρ0

2
|~uc|2 = −pm

instead of the original balance of normal force

~n · T(~uc, pc)~n = −pm

if we are interested in a relatively simple energy law that has the potential to
lead to a global in time well-posed problem. Indeed, with this new alternative
interface boundary condition, we maintain the same energy law (9) as in the
case of Cahn-Hilliard-Stokes-Darcy-Bounssinesq model with explicit velocity
time derivative. Such a modification of the interface boundary condition is
quite natural since all we did is to have the static pressure pc replaced by the
total pressure (static plus dynamic) as suggested by the Bernoulli equation.
This quadratic correction term ρ0

2
|~uc|2 can be neglected as a higher order

effect if the velocity is small (near equilibrium) and we recover the original
interface force balance condition.

3 Time Discretization of Cahn-Hilliard-Stokes-

Darcy

The purpose of this section is to present two time-discretization of the Cahn-
Hilliard-Stokes-Darcy system, one first order and another second order, that
preserve the energy law. We also prove that the semi-discrete in time schemes
are uniquely solvable. The discrete energy law and unique solvability make
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the schemes desirable in terms of numerical simulation and numerical analy-
sis. The main idea behind is the so-called convex splitting [85]. Applications
to the Cahn-Hilliard-Darcy, Cahn-Hilliard-Stokes, and models of thin film
epitaxial growth can be found at [55, 59, 86] among others.

3.1 Time discretization

For systems like (3)-(5) that contains a small parameter and describes phys-
ical phenomena with very large spatial derivative, it is of great importance
to derive numerical schemes that are unconditionally stable so that the stiff-
ness can be handled with ease without resolving all the small scales. For
system that enjoys variational structure, a key idea in the development of
unconditionally stable schemes is convex splitting (see [55, 85, 86, 87] among
many others). Indeed, the convex splitting idea has already been applied to
the Cahn-Hilliard-Darcy model [55] and Cahn-Hilliard-Stokes model [59] to
generate unconditionally stable (with discrete energy law) schemes. Here we
combine the ideas and propose the following convex splitting scheme for the
coupled Cahn-Hilliard-Stokes-Darcy system (3)-(4) with appropriate inter-
face boundary conditions (5).

More specifically, denoting k = ∆t := T
N

for a large positive integer N , a
time discretization of the Cahn-Hilliard-Darcy system (3) is given by

η(φnm)
Π

~un+1
m +∇pn+1

m − µn+1
m ∇φnm = 0, in Ωm,

∇ · ~un+1
m = 0, in Ωm,

φn+1
m −φnm

k
+ ~un+1

m · ∇φnm = ∇ · (m(φnm)∇µn+1
m ), in Ωm,

µn+1
m = γ

[
1
ε
f ′0(φn+1

m , φnm)− ε∆φn+1
m

]
,

∂φn+1
m

∂n
|Γm = 0,

∂µn+1
m

∂n
|Γm = 0,

~un+1
m · ~n|Γm = 0,

(10)

while a time-discretization of the Cahn-Hilliard-Stokes is formulated as

∇ · T(~un+1
c , pn+1

c ) + µn+1
c ∇φnc = 0, in Ωc,

∇ · ~un+1
c = 0, in Ωc,

φn+1
c −φnc
k

+ ~un+1
c · ∇φnc = ∇ · (m(φnc )∇µn+1

c ), in Ωc,
µn+1
c = γ

[
1
ε
f ′0(φn+1

c , φnc )− ε∆φn+1
c

]
,

∂φn+1
c

∂n
|Γc = 0,

∂µn+1
c

∂n
|Γc = 0,

~un+1
c = 0, on Γc.

(11)
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On Γi,

~un+1
m · ~n = ~un+1

c · ~n,
φn+1
m = φn+1

c ,
µn+1
m = µn+1

c ,
∂φn+1

c

∂n
= ∂φn+1

m

∂n
,

∇µn+1
m · ~n = ∇µn+1

c · ~n,
~n · T(~un+1

c , pn+1
c )~n = −pn+1

m ,
~τ · T(~un+1

c , pn+1
c )~n = −β~τ · ~un+1

c .

(12)

A convex-splitting of F [55, 59, 85, 87] leads to

f ′0(φn+1, φn) = (φn+1)3 − (φn). (13)

It can be verified by Taylor’s expansion that

f0(φn+1)− f0(φn)) ≤ f ′0(φn+1, φn)
(
φn+1 − φn

)
. (14)

3.2 Unique solvability and discrete energy law for the
first order scheme

3.2.1 Weak formulation

The discretization in time above is given in its strong form. It is convenient
to write a weak formulation of (10)-(12), especially when one considers finite
element or spectral discretization in space of the scheme.

Assume Ω = Ωm ∪ Ωc is a bounded connected open set of R3 (R2, resp.)
with Lipschitz boundary ∂Ω. The L2 inner product in Ω (Ωm and Ωc resp.) is
denoted by ( , )Ω ( ( , )m and ( , )c resp.). For a given integer m, Hm(Ω)
denotes the classical Sobolev space. One also recalls

L̇2(Ω) =
{
v ∈ L2(Ω);

∫
Ω

v = 0
}
.

and defines Ḣ1(Ω) := H1(Ω) ∩ L̇2(Ω). Then for our problem with two sub-
domains, we propose

H := {~v ∈ L2(Ω);∇ · ~v = 0;~v · ~n = 0 on ∂Ω}, (15)

Hc,div := {~v ∈ H1(Ωc);∇ · ~v = 0;~v = 0 on Γc}, (16)

X := {~v ∈ H;~vc := ~v|Ωc ∈ Hc,div}. (17)
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The norm on the exotic space X is defined as

‖~v‖X = ‖~vc‖H1(Ωc) + ‖~vm‖L2(Ωm).

For functions in Hc,div, there holds the Korn’s inequality (cf. [88] )

||v||H1(Ωc) ≤ C||D(v)||L2(Ωc),∀~v ∈ Hc,div, (18)

with the constant C depending only on Ωc, provided that Γc has positive
measure within ∂Ωc.

Now we are ready to reformulate our scheme (10)-(12) in the following
weak form: For a given φn ∈ H2(Ω), find φn+1 ∈ H2(Ω), µn+1 ∈ H1(Ω),
~un+1 ∈ X that solve the following nonlinear elliptic system

(
φ− φn, v

)
Ω

= −k
[(
m∇µ,∇v

)
Ω

+
(
~u · ∇φn, v

)
Ω

]
, ∀v ∈ H1(Ω), (19)

(
µ, ϕ

)
Ω

= γ

[(1

ε
f ′o(φ, φ

n), ϕ
)

Ω
+ ε(∇φ,∇ϕ)Ω

]
, ∀ϕ ∈ H1(Ω), (20)(

2ηD(~uc),D(~vc)
)
c

+
( ν

Π
~um, ~vm

)
m

+ (β~uc · ~τ ,~vc · ~τ)Γi
=
(
µ∇φn, ~v

)
Ω
, ∀~v ∈ X.

(21)

where we have omitted the dependence of φ, µ, ~u on n + 1 and of the coeffi-
cients m, η, ν, β on φn for notational simplicity. Here ~um := ~u|Ωm , ~uc := ~u|Ωc

(similarly for ~vm, ~vc).
Notice that the interface boundary conditions

~um · ~n = ~uc · ~n,
φm = φc,

µm = µc,

are enforced strongly by requiring ~u ∈ X and φ ∈ H1(Ω), µ ∈ H1(Ω), whereas
the rest of the interface boundary conditions are satisfied as a result of the
weak formulation (19)-(21).

3.2.2 Unique solvability of the first order scheme

Here we show the unique solvability of the weak form of (10)-(12) as formu-
lated in (19)-(21).
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Theorem 1. Suppose that φn ∈ H2(Ω). The numerical scheme (10)-(12) is
uniquely solvable in the weak sense of (19)-(21).

Proof 1. In order to show that our scheme (19)-(21) is the Euler-Lagrange
equation associated with an appropriate strictly convex variational problem,
we introduce a bilinear form a(µ, χ) on Ḣ1(Ω) as

a(µ, χ) = k
(
m∇µ,∇χ

)
Ω

+ k
(
~uµ · ∇φn, χ

)
Ω
, (22)

where ~uµ is the unique solution of(
2ηD(~uµ,c),D(~vc)

)
c

+
( ν

Π
~uµ,m, ~vm

)
m

+ (β~uµ,c · ~τ ,~vc · ~τ)Γi
=
(
µ∇φn, ~v

)
Ω
, ∀~v ∈ X.

(23)

The left-hand side of the above equation defines a continuous bilinear form
on X that is coercive by Korn’s inequality (18). Thus for given µ ∈ Ḣ1(Ω)
and φn ∈ H2(Ω), the existence and uniqueness of the solution ~uµ follows from
the classical Lax-Milgram theorem. Moreover, one has

‖~uµ‖X := ||~uµ,c||H1 + ||~uµ,m||L2 ≤ C||µ||Ḣ1 . (24)

It follows that a(µ, χ) is a continuous bilinear functional on Ḣ1(Ω), which
gives rise to a continuous linear operator L : Ḣ1(Ω)→ (Ḣ1(Ω))′ defined as

< L(µ), χ >:= a(µ, χ), ∀χ ∈ Ḣ1. (25)

Now consider equation (23) with source χ and take the test function ~v =
~uµ. It is then easy to see that a(µ, χ) can be formulated as

a(µ, χ) = k
(
m∇µ,∇χ

)
Ω

+
(
2ηD(~uµ,c),D(~uχ,c)

)
c

+
( ν

Π
~uµ,m, ~uχ,m

)
m

+ (β~uµ,c · ~τ , ~uχ,c · ~τ)Γ.

(26)

It follows that a(µ, χ) is symmetric and coercive on Ḣ1(Ω), i.e.

a(µ, χ) = a(χ, µ), a(µ, µ) ≥ C||∇µ||2L2(Ω). (27)

Thus the operator L is invertible. One can then define the inner product in(
Ḣ1(Ω)

)′
as: for f, g ∈

(
Ḣ1(Ω)

)′
(f, g)L−1 := a(L−1f,L−1g). (28)
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And the associated norm in
(
Ḣ1(Ω)

)′
is then given as

||f ||L−1 =
√

(f, f)L−1 =
√
a(L−1f,L−1f). (29)

If further f, g ∈ L̇2(Ω), one has

(f, g)L−1 =
(
f,L−1g

)
L2 =

(
L−1f, g

)
L2 . (30)

Consider the functional

G(φ) =
1

2
||φ− φn||2L−1 +

∫
Ω

{ 1

4ε
φ4 +

ε

2
|∇φ|2 − 1

ε
φnφ}dx (31)

It is clear that G is a strictly convex and coercive functional on the admissible
set

A := {φ ∈ H1(Ω); (φ− φn, 1)L2 = 0}. (32)

Thus G has a unique minimizer φ ∈ A (cf. [89, 90]), in particular, φ is the
weak solution of the associated Euler-Lagrange equation

L−1(φ− φn) = −µ+ C, with µ =
1

ε
(φ3 − φn)− ε∆φ, (33)

where C = µ̄ = 1
|Ω|

∫
Ω
µ dx such that −µ+ C ∈ Ḣ1(Ω).

The equivalence of (33) and (19)-(21) can be verified if one takes in (33)
the test function P0v for any v ∈ H1(Ω) with P0 the projection onto L̇2(Ω).

Since the left-hand-side of (33) belongs to H1, this implies that µ ∈ H1,
which further implies that φ ∈ H2 by elliptic regularity result in convex do-
main (cf. [91]). This ends the proof of Theorem 1.

The proof presented here follows closely those in [55, 56]. Alternative
proof that does not rely on the variational structure, but on the monotonic-
ity is also possible. The alternative approach via Browder-Minty monotone
operator approach allows us to treat the case of Cahn-Hilliard-Navier-Stokes-
Darcy system. Details will be reported elsewhere.

3.2.3 Discrete energy law for the first order scheme

We are now ready to verify the discrete associated with the semi-discrete in
time scheme (19)-(21). More specifically, we have
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Theorem 2. The scheme (19)-(21) enjoys the following discrete energy law

F (φn+1)− F (φn) ≤ −k
∫

Ω

m|∇µn+1|2 dx− k
∫

Ωc

2η|D(~un+1
c )|2 dx− k

∫
Ωm

ν

Π
|~un+1
m |2 dx

− k
∫

Γi

β|~un+1
c · ~τ |2 dS − γ ε

2

∫
Ω

|∇φn+1 −∇φn|2 dx. (34)

Proof 2. Taking the test function v = µn+1 in (19), one has(
φn+1 − φn, µn+1

)
Ω

= −k
∫

Ω

m|∇µn+1|2 dx− k
(
~un+1 · ∇φn, µn+1

)
Ω
. (35)

Next, one takes ϕ = −(φn+1 − φn) in (20) to get

−
(
µn+1, φn+1 − φn

)
Ω

+ γ

[(1

ε
f ′o(φ

n+1, φn), φn+1 − φn
)

Ω
+ ε(∇φn+1,∇φn+1 −∇φn)Ω

]
= 0.

(36)

Recall the inequality (14) and the following identity

a(a− b) =
1

2
[a2 − b2 + (a− b)2].

Equation (36) becomes

−
(
µn+1, φn+1 − φn

)
Ω

+ F (φn+1)− F (φn) ≤ −γ ε
2

∫
Ω

|∇φn+1 −∇φn|2 dx.

(37)

where one may recall the defition F (φ) = Fm(φm) + Fc(φc). Last, choosing
~v = k~u in (21), one obtains

k

∫
Ωc

2η|D(~un+1
c )|2 dx+ k

∫
Ωm

ν

Π
|~un+1
m |2 dx+ k

∫
Γi

β|~un+1
c · ~τ |2 dS = k

(
µn+1∇φn, ~un+1

)
Ω
.

(38)

One then adds equations (35)-(38) together and arranges terms appropriately
to conclude the proof.

The discrete energy law plays a central role in the proof of the existence of
solution to the coupled Cahn-Hilliard-Stokes-Darcy system (3)-(5). Details
will be reported elsewhere.
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3.3 A second order scheme

A second order scheme that is unconditionally energy stable (with discrete
energy law), and uniquely solvable for the Cahn-Hilliard-Stokes-Darcy system
can be constructed by combining ideas from previous works, especially those
from [59, 55]. More specifically, we propose the following algorithm

φk+1
c −φkc
δt

= ∇ ·
(
m(φ̃c

k+ 1
2 )∇µk+ 1

2
c − φ̃k+ 1

2
c ~u

k+ 1
2

c

)
,

µ
k+ 1

2
c = γ[ 1

2ε

(
(φk+1

c )2 + (φkc )
2
)
φ
k+ 1

2
c − 1

ε
φ̃
k+ 1

2
c − ε∆φk+ 1

2
c ],

−∇ ·
(
η(φ̃c

k+ 1
2 )D(~u

k+ 1
2

c )
)

= −∇pk+ 1
2

c +∇φ̃k+ 1
2

c µ
k+ 1

2
c , ∇ · ~uk+ 1

2
c = 0,

(39)

coupled with

φk+1
m −φkm
δt

= ∇ ·
(
m(φ̃

k+ 1
2

m )∇µk+ 1
2

m − φ̃k+ 1
2

m ~u
k+ 1

2
m

)
,

µ
k+ 1

2
m = γ[ 1

2ε

(
(φk+1

m )2 + (φkm)2
)
φ
k+ 1

2
m − 1

ε
φ̃
k+ 1

2
m − ε∆φk+ 1

2
m ],

~u
k+ 1

2
m = − Π

η(φ̃
k+1

2
m )

(
∇pk+ 1

2
m −∇φ̃k+ 1

2
m µ

k+ 1
2

m

)
, ∇ · ~uk+ 1

2
m = 0,

(40)

with φk+ 1
2 = φk+1+φk

2
, φ̃k+ 1

2 = 3φk−φk−1

2
, µk+ 1

2 = µk+1+µk

2
and ~uk+ 1

2 = ~uk+1+~uk

2
.

The coupled system is also equipped with the following interface boundary
condition on Γi

~uk+1
m · ~n = ~uk+1

c · ~n, φk+1
m = φk+1

c , µk+1
m = µk+1

c ,∇φk+1
c · ~n = ∇φk+1

m · ~n,∇µk+1
m · ~n = ∇µk+1

c · ~n,
~n · T(~uk+1

c , pk+1
c )~n = −pk+1

m , ~τ · T(~uk+1
c , pk+1

c )~n = −β(φ̃
k+ 1

2
c )~uk+1

c · ~τ .
(41)

It can be shown that this scheme is unconditionally stable in the sense
that the following discrete energy law is satisfied for any time-step δt.

(Fm(φk+1
m ) + Fc(φ

k+1
c )

)
−
(
Fm(φkm) + Fc(φ

k
c )) = −δt

∫
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m |2]

−δt
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2
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c |2]− δt
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Γi
|
√
β(φ̃

k+ 1
2

c )~u
k+ 1

2
c,τ |2.

(42)
This scheme also preserves the total mass in the sense that

∫
Ωc
φkc+

∫
Ωm

φkm
is independent of k.

4 Concluding Remarks

We have derived a thermodynamical consistent phase field model, the Cahn-
Hilliard-Stokes-Darcy (CHSD) system, for two-phase flow in karstic geometry
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utilizing Onsager’s extremum principle. The CHSD system enjoys a physi-
cally important energy law. Generalizations of this model are also introduced.
These generalized models also possess appropriate energy laws.

We have also proposed novel time-discretizations of the CHSD model. It
is shown that the numerical schemes are uniquely solvable and inherit the
energy law. The existence of discrete energy laws implies the unconditional
stability of the schemes which is a highly desirable feature for stiff systems
like this.

There are many additional issues to be investigated. The first is the
well-posedness of this novel system. Although the well-posedness of both
the Cahn-Hilliard-Stokes and the Cahn-Hilliard-Darcy systems are known
[28, 40, 57, 58, 92, 93, 94], the well-posedness of the novel coupled systems
has not been explored so far. The mathematical study of the coupled systems
could be much more difficult than the study of each individual subsystems
(fluid-structure interaction for example). Fortunately, the new models enjoy
corresponding energy laws which can be exploited and further developed to
investigate the mathematical validity of the new systems. These energy laws
themselves are not sufficient to guarantee well-posedness due to the strong
nonlinearity of the ”elastic” force even in the slow flow regime (Stokes-Darcy).
For instance the scaling argument presented in [57] indicates the challenge
with the three-dimensional Cahn-Hilliard-Darcy model. The second theoret-
ical issue is to identify the corresponding sharp interface model and verify the
consistency of the new model with the corresponding sharp interface model
by investigating the sharp interface limit. The sharp interface limit problem
is a challenge due to the singular nature of the limit and the strong nonlin-
earity. The rigorous sharp interface limit within the Cahn-Hilliard-Navier-
Stokes model has been established recently [93]. The rigorous justification
in the case of Cahn-Hilliard-Darcy system is still open although the varifold
approach can be adopted here. The third is more efficient numerical schemes.
Numerical methods are mandatory for complex models like the ones that we
have proposed here in order to make quantitative predictions and to make
comparison to lab experiments. The numerical simulation will not be easy
since the physical problem involves different physical properties (in matrix
and in conduit, fluid A and fluid B), disparate spatial and time scales (slow
motion in matrix versus fast motion in conduit, large spatial structure in
matrix versus small spatial structure in conduit), disparate viscosities, as
well as the stiffness that is associated with the thin diffuse-interface. More-
over, the associated physical processes usually occur on very long time scale.
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Therefore, efficient and long-time stable algorithms are highly desirable. The
semi-discrete in time scheme that we proposed here is the first step in this
direction. Last but not the least, we need to compare our result with exper-
iments to calibrate the parameters and validate the models. This requires
expertise outside mathematical sciences.
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[23] Castro Á, Córdoba D, Fefferman C, Gancedo F, López-Fernández M.
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[75] Jäger W, Mikelić A. On the interface boundary condition of Beavers,
Joseph, and Saffman. SIAM J. Appl. Math. 2000; 60(4):1111–1127 (elec-
tronic).

[76] Landau LD, Lifshitz EM. Course of theoretical physics. Vol. 5: Sta-
tistical physics. Translated from the Russian by J. B. Sykes and M. J.
Kearsley. Second revised and enlarged edition, Pergamon Press: Oxford,
1968.

[77] Modica L. The gradient theory of phase transitions and the minimal
interface criterion. Arch. Rational Mech. Anal. 1987; 98(2):123–142.

[78] Modica L, Mortola S. Un esempio di gamma convergenza. Boll. Un.
Mat. Ital. 1977; 14(1).

[79] Fischer HP, Maass P, Dieterich W. Novel surface modes in spinodal
decomposition. Phys. Rev. Lett. Aug 1997; 79:893–896.

[80] Racke R, Zheng S. The Cahn-Hilliard equation with dynamic boundary
conditions. Adv. Differential Equations 2003; 8(1):83–110.

[81] Wu H, Zheng S. Convergence to equilibrium for the Cahn-Hilliard equa-
tion with dynamic boundary conditions. J. Differential Equations 2004;
204(2):511–531.

[82] Duvaut G, Lions JL. Inequalities in mechanics and physics. Springer-
Verlag: Berlin, 1976. Translated from the French by C. W. John,
Grundlehren der Mathematischen Wissenschaften, 219.

33



[83] Girault V, Rivière B. DG approximation of coupled Navier-Stokes and
Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM
J. Numer. Anal. 2009; 47(3):2052–2089.

[84] Kanschat G, Rivière B. A strongly conservative finite element method
for the coupling of Stokes and Darcy flow. J. Comput. Phys. 2010;
229(17):5933–5943.

[85] Eyre DJ. Unconditionally gradient stable time marching the Cahn-
Hilliard equation. Computational and mathematical models of mi-
crostructural evolution (San Francisco, CA, 1998), Mater. Res. Soc.
Sympos. Proc., vol. 529. MRS: Warrendale, PA, 1998; 39–46.

[86] Wang C, Wang X, Wise SM. Unconditionally stable schemes for equa-
tions of thin film epitaxy. Discrete Contin. Dyn. Syst. 2010; 28(1):405–
423.

[87] Wise SM, Wang C, Lowengrub JS. An energy-stable and convergent
finite-difference scheme for the phase field crystal equation. SIAM J.
Numer. Anal. 2009; 47(3):2269–2288.

[88] Girault V, Raviart P. Finite element methods for Navier-Stokes equa-
tions: theory and algorithms. Springer series in computational mathe-
matics, Springer-Verlag, 1986.

[89] Evans L. Partial Differential Equations. Graduate Studies in Mathemat-
ics, American Mathematical Society, 2010.

[90] Zeidler E. Nonlinear Functional Analysis and its Application III.: Vari-
ational Methods and Optimization. Nonlinear functional analysis and its
applications, Springer-Verlag GmbH, 1985.

[91] Grisvard P. Elliptic problems in nonsmooth domains, Monographs and
Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Pro-
gram): Boston, MA, 1985.

[92] Abels H. On a diffuse interface model for two-phase flows of viscous,
incompressible fluids with matched densities. Arch. Ration. Mech. Anal.
2009; 194(2):463–506.

34
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