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Abstract

We examine the semi-Riemannian manifold R1,1, which is realized as the split complex
plane, and its conformal compactifcation as an analogue of the complex plane and the Riemann
sphere. We also consider conformal maps on the compactifcation and study some of their basic
properties.

1 Introduction

There are many advantages of using the Riemann sphere instead of the complex plane as a domain
for functions of a complex variable. As a compact space, it possesses some desirable topological
properties. In terms of the analysis, one finds that many nice results are true on the sphere which
are not true in the plane. For example the class of meromorphoric functions on the sphere are
merely the rational functions, while in the plane the meormorphic functions are a larger class of
functions. Also, the sphere has a rich conformal geometry.

In this work, we consider the split complex numbers R1,1, which is just the semi-Riemannian
manifold R2 with the semi-Riemannian (or indefinite) metric

g (X,Y ) = X1Y1 −X2Y2.

We put an algebraic structure on R1,1 by identifying it with the Clifford algebra C`1,0. With this
additional structure, we are able to define differential operators and develop a holomorphic function
theory parallel to that of the complex plane. A natural question rises: Can we find a better domain
for functions of a split complex variable, like we do in complex analysis?

This is a question which has been addressed over many years and in many places in the literature,
although not always directly, but always in the affirmative [1–3]. M. Schottenloher linked the
previous question with questions of conformality [4]. In particular, Schottenloher describes a model
for compactifying Rp,q with an induced conformal structure, building on the work of Dirac, who
used an analogous model for the compactification of four-dimensional spacetime several decades
earlier.
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Schottenloher also discusses the notion of conformal group on R1,1 and identifies it as a product
of circle diffeomorphisms. It is not clear if the work extends these to the compactification. The
authors have been unable to find a work which clearly identifies the collection of linear fractional
transformations as a subgroup of the conformal group, even though this is the case. This work does
make this clear and develops a Möbius transformation theory for R1,1.

Yaglom also defined a cross ratio on R1,1 in [2], which seems to have been largely overlooked or
forgotten until [5]. This cross ratio has been previously shown to be well behaved with respect to
the Möbius transformations, but this also seems to have been lost.

The purpose of this work is threefold. First, we wish to carefully construct the compactification
of R1,1 in a conformal setting. Second, we use holomorphic and conformal conditions in R1,1 to
extend these notions to the compactification in a simple way. Last, we use algebraic properties of
the split complex numbers to show that the Möbius transformations are a direct product of real
Möbius transformations and to discuss their conformality, transitivity, and fixed points carefully
(something which has not been found in a rather thorough review of the literature).

Our paper is organized as follows. In Section 2, we give a quick overview of the split complex
numbers and the analysis of functions of a split complex variable. We also introduce a notion of
conformal mappings over R1,1 and briefly describe some involutions of the torus in R4. Throughout
Section 3, we examine the compactification in some detail, which we denote Q1,1, and its geometric
properties. We also extend the definition of differentiablity to Q1,1, and provide simple criteria for
determining conformality. Last, Section 4 serves as an examination of Möbius transformations and
their fixed points and transitivity. We also study the cross ratio and show that hyperbolae play a
similar role here that circles do in complex analysis.

2 Preliminaries

2.1 Split Complex Numbers R1,1

The algebra of split complex numbers, or double numbers (as in [6]),

R1,1 =
{
ζ = x+ yj | x, y ∈ R, j2 = 1

}
,

is the Clifford algebra C`1,0 generated as an algebra over R by 1 and j. Even though R1,1 resembles
C, it has a different algebraic structure. In particular, R1,1 has zero divisors:

(1 + j)(1− j) = 1− j2 = 0.

However, if we define

j+ =
(1 + j)

2
and j− =

(1− j)
2

,

we get a useful basis for R1,1:
ζ = uj+ + vj−,
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where u = x+ y, v = x− y. Notice that j+ and j− square to themselves and annihilate each other.
Thus, multiplication simplifies in these new coordinates:

(u1j+ + v1j−)(u2j+ + v2j−) = u1u2(j+)2 + u1v2j+j− + v1u2j−j+ + v1v2(j−)2

= u1u2j+ + v1v2j−.

This means R1,1 is isomorphic as an algebra to R⊕ R, which is also is the space of 2× 2 diagonal
matrices with real entries [7].

It is now clear that the zero divisors in C`1,0 are precisely those elements which can be written

ζ = αj+ or ζ = αj−,

for α ∈ R. These elements are called the light cone and we denote it by L. Clearly, L is the union
of two one-dimensional subspaces,

L+ = {αj+ : α ∈ R} and L− = {αj− : α ∈ R} .

When defined, the inverse is given by

ζ−1 = u−1j+ + v−1j−.

It is also be useful to invert only one of the components:

ζ−1
+ = u−1j+ + vj− and

ζ−1
− = uj+ + v−1j−.

We define a conjugation operation for the split complex numbers which resembles what we have
in C:

C(ζ) = ζ̄ = x− jy = vj+ + uj−.

Unlike in C, however, the map

N(ζ) = ζζ̄

= x2 − y2

= uv.

does not induce a norm in C`1,0, since the positivity condition fails. However, N(ζ) is a pseudo-
norm.

Remark 2.1. The element ζ ∈ C`1,0 is also in L if and only if N(ζ) = 0.

2.2 Analysis of Functions of a Split-Complex Variable

Now, we consider functions of a split complex variable:

f : U ⊆ R1,1 → R1,1.
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Such functions have been examined in numerous places [6, 8, 9]. Here U is an open subset of R1,1.

These functions may be written f(z) = f1(x, y) + jf2(x, y). Throughout this work, we shall
assume that f1, f2 ∈ C1 (U). Now just as in complex analysis, we must understand what it means
for the limit of the difference quotient

lim
h→0
h/∈L

f(z0 + h)− f(z0)
h

to exist.

Now suppose this limit exists and assume that h = hx is real. Then

lim
hx→0

f(z0 + hx)− f(z0)
hx

= lim
hx→0

f1(x0 + hx, y0)− f1(x0, y0)
hx

+ j
f2(x0 + hx, y0)− f2(x0, y0)

hx

=
∂f1
∂x

(x0, y0) + j
∂f2
∂x

(x0, y0).

Similarly, if we assume h = jhy is purely imaginary then

lim
jhy→0

f(z0 + jhy)− f(z0)
jhy

= j
∂f1
∂y

(x0, y0) +
∂f2
∂x

(x0, y0).

Remark 2.2. This gives the Cauchy-Riemann equations in the split complex plane [8]:

∂f1
∂x

=
∂f2
∂y

and
∂f1
∂y

=
∂f2
∂x

.

Conversely, if these equations are satisfied and the partial derivatives are continuous, then the
limit of the difference quotient exists (just as in complex analysis). If either of these conditions are
satisfied, then we say that f is C`0,1-differentiable at z0. If this is the case for all z0 ∈ U we say f
is C`0,1-differentiable on U .

Now consider the differential operator

∇ =
1
2

(
∂

∂x
− j ∂

∂y

)
and its conjugate

∇ =
1
2

(
∂

∂x
+ j

∂

∂y

)
which clearly satisfies

∇∇ = ∇∇ =
1
4

(
∂2

∂x2
− ∂2

∂y2

)
,

which is the wave operator in the plane. Functions which are annihilated by the wave operator are
called hyperharmonic.
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Remark 2.3. This means that the components of a C`0,1-differentiable function satisfy the wave
equation in the plane [9]. Complex holomorphic functions have components which satisfy Laplace’s
equation [10].

Theorem 2.4. Let f be a split complex valued function of a split complex variable.

∇f(z0) = 0 ⇐⇒ f is C`0,1-differentiable at z0.

Proof. Notice that

∇(f1 + jf2) =
1
2

[
∂f1
∂x

+ j
∂f2
∂x
− j ∂f1

∂y
− ∂f2

∂y

]
=

1
2

[(
∂f1
∂x
− ∂f2

∂y

)
+ j

(
∂f2
∂x
− ∂f1

∂y

)]
.

Thus ∇(f1 + jf2) = 0 if and only if f is C`0,1-differentiable. �

Definition 2.5. We say a split complex valued function of a split complex variable f is C`0,1-
antidifferentiable at z0 if

∇f(z0) = 0

Corollary 2.6. Given a hyperharmonic function g : U ⊆ R2 → R, the function f = ∇g is C`0,1-
differentiable and h = ∇g is C`0,1-antidifferentiable.

If we use our alternative basis for split complex plane, we may rewrite

∇ =
1
2

(
∂

∂x
− j ∂

∂y

)
=

1
2

[(
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v

)
− j

(
∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v

)]
=

1
2

[
∂

∂u
+

∂

∂v
− j ∂

∂u
+ j

∂

∂v

]
=

∂

∂v
j+ +

∂

∂u
j−.

It is easy to see that

∇ =
∂

∂u
j+ +

∂

∂v
j−,

so that

∇∇ = ∇∇ =
∂2

∂u∂v
,

for reasonably behaved f(u, v).

This gives us the following corollary [9].
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Corollary 2.7. The split complex valued function f is C`0,1-differentiable if and only if

f = f1(u)j+ + f2(v)j−.

Also, f is C`0,1-antidifferentiable if and only if

f = f1(v)j+ + f2(u)j−.

With this new method for checking differentiability, we are able to check that analogues of some
holomorphic functions in C are C`0,1-differentiable in R1,1.

Example 2.8. Let f(ζ) = ζm for a positive integer m. Then f is C`0,1-differentiable, and hence
so are split-complex polynomials.

Proof. With the simplified multiplication in the coordinates ζ = uj+ + vj−, we have that

ζm = umj+ + vmj−.

�

It will be useful to have a notion of meromorphic functions.

Definition 2.9. Let f be a split complex valued function of a split complex variable. We say f is
C`0,1-meromorphic if

f = f1(u)j+ + f2(v)j−,

and f1, f2 are real meromorphic functions. We say f is C`0,1-antimeromorphic if

f = f1(v)j+ + f2(u)j−,

and f1, f2 are real meromorphic functions.

2.3 Analogues of Complex Analysis

The notion of C`0,1-differentiablity yields some analogues of theorems from complex analysis. In
particular, we have an analogue of Cauchy’s Theorem.

Proposition 2.10. Let U ⊆ C`1,0 be open (in the Euclidean topology of R2). Suppose S ⊆ U is
bounded, orientable subdomain with a piecewise differentiable boundary. If f is C`1,0-differentiable
on U , then ∫

∂S

fdz = 0,

where dz = dx+ jdy

The proof, which can be found in [9], uses Stoke’s Theorem.

There is also an analogue of the Cauchy Integral formula, which is presented in [9]. However,
we find that because C`1,0 is not a field, we do not use a C`1,0-valued kernel. Rather, we will use
a kernel which takes values in C`1,0 ⊗ C.
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Lemma 2.11. Define K : (C`1,0)× → (C`1,0)× by

K(z) = z−1 =
z̄

N(z)
.

Then ∇K(z) = 0 for every z ∈ (C`1,0)×.

To obtain the kernel we seek, we simply “complexify” K. Define

Kε(x+ jy) =
1 + j

2
· 1
x+ y + iε · sign(x− y)

+
1− j

2
· 1
x− y + iε · sign(x+ y)

.

Proposition 2.12 (Libine’s Integral Formula). Let R > 0 and define S = {z ∈ C`1,0 : |N(z)| < R}.
Let U be an open neighborhood of S. Suppose f : U → C`1,0 is smooth and ∇f = 0. Then for any
ζ ∈ S,

f(ζ) =
1

2πi
lim
ε→0

∫
{|N(z)|=R}

Kε(z − ζ)f(z)dz.

The proof is found in [9].

2.4 Conformal Mappings of R1,1

Recall that R1,1 is a semi-Riemannian manifold with indefinite metric g1,1 of signature (1, 1):

g1,1(X,Y ) = X1Y1 −X2Y2.

In the literature, a smooth map f : U ⊂ X → X on a semi-Riemannian manifold (X, g) of
maximal rank (that is, f is a local diffeomorphism) is called (locally) conformal on U if there is a
smooth map Ω : U → R>0 such that

f∗g = Ωg,

where f∗g(X,Y ) = g(df(X), df(Y ), and df is the tangent map of f [4].

However, we will opt for a global definition of conformal mappings on R1,1. Indeed, we shall
require such maps to be globally one-to-one. Also, we will not require C∞ smoothness; rather, C1

smooth will be enough. Given that we are using an indefinite metric, we find the condition that Ω
be positive to be too restrictive. Moreover, we will only require Ω to be non-zero.

For R1,1, Schottenloher shows that the conformal factor has a simple form [4]:

Ω =
(
∂f1
∂x

)2

−
(
∂f2
∂x

)2

=
(
∂f2
∂y

)2

−
(
∂f1
∂y

)2

.

Moreover, we get a simple condition to check for conformality.

Theorem 2.13. A one-to-one C1 map f : R1,1 → R1,1, where f = f1(x, y) + jf2(x, y), is (locally)
conformal when either
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1. ∇f = 0 and
(
∂f1
∂x

)2

−
(
∂f2
∂x

)2

6= 0, or

2. ∇f = 0 and
(
∂f1
∂x

)2

−
(
∂f2
∂x

)2

6= 0,

everywhere on R1,1.

If we use the alternative basis, these conditions are

1. ∇f = 0 and
(
∂g1
∂u

)(
∂g2
∂v

)
6= 0, or

2. ∇f = 0 and
(
∂g1
∂v

)(
∂g2
∂u

)
6= 0,

where f = g1(u, v)j+ + g2(u, v)j−.

Proof. The proof in the original basis for positive conformal factor can be found in [4]. Requiring
a non-vanishing conformal factor does not change the proof. Thus, it only remains to show that
the first set of conditions (that is those in the original basis) are equivalent to the second set of
conditions.

Suppose ∇f = 0. Thus,

f(ζ) = f1(x, y) + f2(x, y)j = g1(u)j+ + g2(v)j−,

so that

f1 =
g1(u) + g2(v)

2
and f2 =

g1(u)− g2(v)
2

.

Recall,
∂

∂x
=

∂

∂u
+

∂

∂v
.

Then,

∂f1
∂x

=
1
2

[
∂

∂u
(g1(u) + g2(v)) +

∂

∂v
(g1(u)− g2(v))

]
=

1
2

[
∂g1
∂u

+
∂g2
∂v

]
.

Similarly,
∂f2
∂x

=
1
2

[
∂g1
∂u
− ∂g2

∂v

]
.

Thus, (
∂f1
∂x

)2

−
(
∂f2
∂x

)2

=
(
∂g1
∂u

)(
∂g2
∂v

)
.
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That is, the first conditions in each set are equivalent. A similar argument shows the equivalence
of the second ones. �

Soon, we will see that Möbius transformations of R1,1 are a large, but not exhaustive class of
conformal mappings.

2.5 The Torus in R4

Our study of the torus is motivated by our desire to find a compactification of R1,1. That is, we are
looking for a space where we can embed R1,1 and the analysis, topology, and geometry are analogous
to the Riemann sphere. The torus does not provide the model we need for the compactifcation, but
it is close to what we need.

We denote the torus S1 × S1 embedded in R4 as follows:

T 1,1 = {(x0, x1, x2, x3)|x2
0 + x2

1 = 1, x2
2 + x2

3 = 1}.

The torus T 1,1 is the union of two disjoint open sets along with their common boundary:

T 1,1 = T 1,1
+ ∪ T 1,1

− ∪ T
1,1
0

where T 1,1
+ = {x ∈ T 1,1|x0 +x3 > 0}, T 1,1

− = {x ∈ T 1,1|x0 +x3 < 0} and T 1,1
0 = {x ∈ T 1,1|x0 +x3 =

0}.

We define some involutions of T 1,1 which are also bijective diffeomorphisms. They will also play
an important role in developing the compactification of R1,1.

Definition 2.14. a. We define some involutions of T 1,1 :

i. Left Inversion: J+(x) = (x2, x3, x0, x1);

ii. Right Inversion: J−(x) = (−x2, x3,−x0, x1);

iii. Inversion: J(x) = (−x0, x1,−x2, x3) = J+(x) ◦ J−(x).

b. The following involutions preserve T 1,1
0 :

iv. Left Negation: N+(x) = (x3,−x2,−x1, x0);

v. Right Negation: N−(x) = (x3, x2, x1, x0);

vi. Negation: N(x) = (x0,−x1,−x2, x3) = N+(x) ◦N−(x);

vii. Conjugation: C(x) = (x0, x1,−x2, x3);

viii. Reflection: R(x) = (−x0,−x1,−x2,−x3) = J+ ◦N ◦ J+ ◦N(x).
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3 The Conformal Compactification of R1,1

The notion of compactifying R1,1 is well known (see [3,11]) and is of some interest to physicists [4,
12,13]. One finds that this problem has been explained in numerous places in the literature, though
there are some differences in the models used. For example, Kisil and others use a hyperboloid
model in extended 3-space [6, 14], and in others as a quadric in projective space [4]. In this work,
we utilize the quadric model, which we denote Q1,1. However, we follow the largely forgotten
method presented in Segal’s book (see [3]): we construct the compactification by way of torus on
which we embed R1,1 and then quotient by a projection.

We shall define the conformal compactification of R1,1 as follows.

Definition 3.1. A conformal compactification, up to isomorphism, of R1,1 is a compact semi-
Riemannian manifold M with a conformal embedding ι such that ι(R1,1) is dense in M .

Remark 3.2. In this context, the sphere S2 is the conformal compactification of C with the stere-
ographic projection as a conformal embedding.

3.1 Embedding of R1,1 onto Q1,1

A preliminary step to constructing the conformal compactification is to find a way to embed R1,1

in the torus. This embedding τ : R1,1 → T 1,1
+ is given by

τ(ζ) = τ(u, v) =
(1− uv, u+ v, u− v, 1 + uv)√

(1 + u2)(1 + v2)
,

and is a bijective diffeomorphism of R1,1 onto T 1,1
+ . Later, we shall see that τ is a conformal mapping

with respect to the semi-Riemannian metric on R1,1 and Q1,1. We remark the R(τ(ζ)) is a bijective
diffeomorphism of R1,1 onto T 1,1

− .

Notice that for ζ ∈ R1,1, when the inverses exist,

τ(ζ̄) = C(τ(ζ)),

τ(ζ−1) = ±J(τ(ζ)),

τ(ζ−1
+ ) = ±J+(τ(ζ)),

τ(ζ−1
− ) = ±J−(τ(ζ)).

Similar formulas hold for N,N+, N−:

τ(−ζ) = N(τ(ζ)),
τ(−uj+ + vj−) = N+(τ(ζ)),
τ(uj+ − vj−) = N−(τ(ζ)).

Also notice that J+ and N do not commute on T 1,1 :

N ◦ J+(x) = (x2,−x3,−x0, x1) 6= J+ ◦N(x) = (−x2, x3, x0,−x1),
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even though the corresponding involutions on R1,1 commute. As such we descend to the projective
space of the torus, which turns out to be the conformal compactification we seek (and we shall see
why this is true in the subsequent subsections).

Definition 3.3. We define a quadric surface Q1,1 in the projective space P3 by

Q1,1 = T 1,1/ ∼

under the equivalence

x ∼ y if and only if x = ±y.

Remark 3.4. We denote this identification by π.

Notice that this equivalence identifies x and R(x) and hence points in T 1,1
+ with points in T 1,1

−
and points in T 1,1

0 with points in T 1,1
0 . These identified points are pairs of antipodal points on the

3-sphere containing T 1,1.

We denote points in Q1,1 by (x0 : x1 : x2 : x3). As a matter of notation, if (x0 : x1 : x2 : x3) ∈
Q1,1, then we assume that (λx0 : λx1 : λx2 : λx3) represents this point for all non-zero λ ∈ R.

The inverse mapping τ−1 : T 1,1
+ → R1,1 is given by

u =
x1 + x2

x0 + x3
,

v =
x1 − x2

x0 + x3
.

Notice that τ−1 extends to T 1,1
+ ∪ T 1,1

− as a two to one cover of R1,1.

For notational convenience, we shall denote the composition π ◦ τ by

η : R1,1 → Q1,1.

We shall also extend our definition of inversion to Q1,1:

(x0 : x1 : x2 : x3) 7→ (−x0 : x1 : −x2 : x3).

For simplicity we shall also denote this J (there should be no ambiguity since
π ◦ J ◦ τ = J ◦ η.)

3.2 Added Points

The conformal compactification of C has one more point than the plane, namely the point at infinity.
For R1,1, we must add an additional point for every point in the light cone plus two additional points
which compactify the light cone. We calculate the coordinates of these additional points.
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Suppose v = 0. Then
η(ζ) = (1 : u : u : 1),

which goes to (0 : 1 : 1 : 0) as u→∞, and

Jη(ζ) = (−1 : u : −u : 1),

goes to (0 : 1 : −1 : 0) as u→∞. When u = 0,

η(ζ) = (1 : v : −v : 1),

goes to (0 : 1 : −1 : 0) as v →∞, and

Jη(ζ) = (−1 : v : v : 1),

tends to (0 : 1 : 1 : 0) as v →∞.

Throughout −∞ < α <∞, define

L+ = η(L+) = {(1 : α : α : 1)} and L− = η(L−) = {(1 : α : −α : 1)}.

The above observations give us the following.

Remark 3.5. If we define

L−1
+ := Jη(L+) = {(−1 : α : −α : 1) : α ∈ R} ∪ (0 : 1 : −1 : 0) and

L−1
− := Jη(L−) = {(−1 : α : α : 1) : α ∈ R} ∪ (0 : 1 : 1 : 0).

Then these intersect at πJ(τ(0)) = (−1 : 0 : 0 : 1) and we shall define Q1,1
0 := L−1

+ ∪ L−1
− .

Remark 3.6. To avoid an unnecessarily cumbersome notation, we shall adopt the following:

1. 1
αj+ +∞j− shall denote (−1 : α : −α : 1).

2. ∞j+ + 1
αj− shall denote (−1 : α : α : 1).

3. ∞j+ shall denote (0 : 1 : 1 : 0).

4. ∞j− shall denote (0 : 1 : −1 : 0).

5. ∞ shall denote ∞j+ +∞j− = 1
0 , the inversion of zero.

In this manner, it is clear that elements of Q1,1 can be regarded as elements R̂ × R̂, where R̂ :=
R ∪ {∞}. In fact, Q1,1 is locally isomorphic to R̂ × R̂ (in the sense of conformal geometry) [4].
These are sometimes referred to as the “extended double numbers” [6].

Other rays through the origin embed as follows. If u = βv, β 6= 0, then

η(ζ) = (1− βu2 : (1 + β)u : (1− β)u : 1 + βu2),
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Figure 1: We parametrize T 1,1 = {(θ, φ)|x0 = cos θ, x1 = sin θ, x2 = sinφ, x3 = cosφ,−π ≤ θ, φ ≤
π}. This give a parametrization of Q1,1. The plus and minus signs indicate the signs of the cosines
and sines in the parametrization.

which goes to (−1 : 0 : 0 : 1) as u→∞.

Hyperbolas, uv = R, R ∈ R, 6= 0 have the following embeddings :

(1−R : u+R/u : u−R/u : 1 +R).

Notice that as u→ ±∞, this curve goes to (0 : 1 : 1 : 0). Alternatively, we can write

(1−R : R/v + v : R/v − v : 1 +R),

which goes to (0 : 1 : −1 : 0) as v → ±∞.

The figures below give a nice picture of Q1,1 and show what the above curves look like in R1,1

and what there embeddings look like in Q1,1.
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Figure 2: The R1,1 plane and some curves.

3.3 Q1,1 as a Conformal Compactification

We claim that Q1,1 is the conformal compactifcation we seek [4]. This means we have two things
to check:

1. η
(
R1,1

)
is dense;

2. η is a conformal map.

The first is true by construction and the second is rather simple:

Lemma 3.7. The quotient map π : T 1,1 → Q1,1 is conformal.

Proof. Since T 1,1 ⊆ R2,2, it inherits the semi-Riemannian metric g2,2 of signature (2, 2). We also
pass this indefinite metric to Q1,1.

It is clear that since π is surjective and a local diffeomorphism, it is also a local isometry, and
hence conformal. �

We also have the following [4].

Proposition 3.8. The map η = π ◦ τ : R1,1 → Q1,1 is conformal.

14



Figure 3: The embedded curves. Points with the same numeric label are identified.

Remark 3.9. Under certain conditions we can take a conformal map

f : R1,1 → R1,1

and extend it to a conformal map
f̂ : Q1,1 → Q1,1.

In particular, when ζ, f̂(ζ) ∈ η
(
R1,1

)
, f̂(ζ) = η ◦ f ◦ η−1. In such a case we continue to write

f(ζ) for f̂(1− uv : u+ v : u− v : 1 + uv).

At Q1,1
0 , f̂ is continuous, and this means that the values of such points can be defined as limits.

For example,
f̂(0 : 1 : 1 : 0) = lim

u→∞
f̂(1 : u : u : 1).

3.4 Differentiable Functions and Conformal Mappings on Q1,1

We want to define a notion of differentiability on Q1,1 which is consistent the notion of differentia-
bility on R1,1 defined in Section 2.2. This has been explored on the equivalent space of extended
double numbers in [6]. We shall proceed in a similar fashion and borrow some ideas from complex
analysis (as in [10]). In complex analysis one adds a point at infinity to invert the origin and
discusses the behavior of functions at this added point using the inversion. In a similar way, we
invert the added points to investigate functions at these added points. We define the following sets
and maps for this purpose. They do not serve as an atlas.
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A1 = η
(
R1,1

)
, φ1 = η−1

A2 = {∞} , φ2 = η−1 ◦ J
A3 = L−1

+ \ {∞} , φ3 = η−1 ◦ J+

A4 = L−1
− \ {∞} , φ4 = η−1 ◦ J−

Definition 3.10. Consider the function

f : Q1,1 → Q1,1,

and ζ0 ∈ Q1,1. Suppose ζ0 ∈ Ai and f(ζ0) ∈ Aj. We say f is Q1,1-differentiable at ζ0 if

φj ◦ f ◦ φ−1
i

is C`1,0-differentiable at η−1(ζ0). If f is Q1,1-differentiable everywhere, we will say f is Q1,1-
differentiable.

We also define Q1,1-meromorphic (and Q1,1-antimeromorphic) as functions of the form f1(u)j++
f2(v)j− (resp. f1(v)j+ + f2(u)j−), where f1 and f2 are meromorphic functions on R̂.

We recall that Q1,1 inherits the semi-Riemannian metric g2,2. Hence, a notion of conformal map
is defined. By using the conformality of η, J , and J± on their respective domains to get a shortcut
definition for conformality of maps f : Q1,1 → Q1,1, :

Theorem 3.11. A function
f : Q1,1 → Q1,1

is (globally) conformal iff the maps
φj ◦ f ◦ φ−1

i

are conformal (in the sense of Theorem 2.13 ) everywhere they are defined.

First we need some lemmas:

Lemma 3.12. The maps J, J+, J− : Q1,1 → Q1,1 are conformal.

Proof. Write p = (x0 : x1 : x2 : x3). Then J(p) = (−x0 : x1 : −x2 : x3), and

dJ =


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 .

Let Xi = ∂
∂xi

. Then

dJ(Xi) =

{
−Xi if i = 0, 2
Xi if i = 1, 3.

16



Thus,
J∗g(Xi, Xj) = g(Xi, Xj).

This means J is conformal.

Similar calculations show
(J+)∗g(Xi, Xj) = −g(Xi, Xj)

and
(J−)∗g(Xi, Xj) = −g(Xi, Xj),

i, j = 0, ..., 3. So, J+ and J− are also conformal. �

The next lemma is trivial.

Lemma 3.13. Let (M, g) be a semi-Riemannian manifold. Let f : M → M and h : M → M be
smooth maps of maximal rank.

(i) Suppose f and h ◦ f are conformal maps with non-vanishing factors Ω1 and Ω2, respectfully.
Then h is conformal.

(ii) Suppose h and h ◦ f are conformal maps with non-vanishing factors Ω1 and Ω2, respectfully.
Then f is conformal.

Proof of Theorem 3.11. Let f : Q1,1 → Q1,1 be a smooth map of maximal rank.

Suppose f is conformal. Then by lemma 3.12, we conclude that

φj ◦ f ◦ φ−1
i ,

is conformal for every i, j.

Conversely, suppose the φj ◦ f ◦ φ−1
i are conformal. Then φj ◦ f and f ◦ φ−1

i are conformal. By
Lemma 3.13, this means f is conformal.

�

In the next section, we shall see that the Möbius transformations form a large class of (globally)
conformal mappings. However, these are not the only such mappings.

Example 3.14. Consider
f(u, v) = (arctan (u) + u) j+ + vj−.

It is easy to check that f is conformal everywhere. Yet, it is not a Möbius transformation.
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4 Möbius Transformations

With A,B,C,D ∈ R1,1, we consider the actions of Möbius transformations expressed as

M(ζ) =
(Aζ +B)
(Cζ +D)

.

Also referred to as linear fractional transformations, these have been the subject of recent works
on analogues of theorems in complex analysis [6, 15].

As is done in the complex plane, we can represent such functions via a matrix

A =
(
A B
C D

)
∈ PGL (2, C`1,0) .

Notice that if we write A = a1j+ + a2j−, B = b1j+ + b2j−, C = c1j+ + c2j−, D = d1j+ + d2j−, then

A =
(
a1 b1
c1 d1

)
j+ +

(
a2 b2
c2 d2

)
j− = A1j+ +A2j−,

It is easy to check that

detA = detA1j+ + detA2j− and N(detA) = detA1 detA2.

Interestingly, the literature does not contain such a decomposition for Möbius transformations. We
feel that this makes proving interesting facts about these functions much easier.

Notice that N(detA) 6= 0 if and only if detA1 6= 0 and detA2 6= 0. Thus, A is invertible if and
only if A1 and A2 are invertible so that

A−1 = A−1
1 j+ +A−1

2 j−.

That is,
PGL(2, C`1,0) ∼= PGL(2,R)× PGL(2,R).

We also have the decomposition

M(ζ) =
Aζ +B

Cζ +D
=M1(u)j+ +M2(v)j−.

We call a Möbius transformation real when A,B,C,D ∈ R. In this case we have a1 = a2, b1 =
b2, c1 = c2, d1 = d2.

We also consider conjugate Möbius transformations of the form

(Aζ +B)(Cζ +D)−1 =
a1v + b1
c1v + d1

j+ +
a2u+ b2
c2u+ d2

j−.
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Proposition 4.1. Möbius Transformations of the form

M(ζ) =
Aζ +B

Cζ +D
or M(ζ) =

Aζ +B

Cζ +D

such that N(AD −BC) 6= 0 are conformal on Q1,1.

Proof. LetM(ζ) =
Aζ +B

Cζ +D
=
A1u+B1

C1u+D1
j+ +

A2v +B2

C2v +D2
j−. It is clear thatM is Q1,1-differentiable

since combinations of compositions of J and J± on either side ofM are differentiable at appropriate
places.

Notice that N(AD −BC) = (A1D1 −B1C1) (A2D2 −B2C2) 6= 0. Also notice that the compo-
sitions of J and J± on either side of M correspond to a possible swapping of rows and or columns
of the corresponding matrices ofM1 andM2, and hence change at most the sign of N(AD−BC).
Thus, the corresponding partial derivatives at appropriate points are still non-zero. Hence, we have
conformality everywhere.

A similar argument works for M(ζ) =
Aζ +B

Cζ +D
, using ∇. �

4.1 Fixed Points and Transitivity

The notion of a fixed point under M now makes sense everywhere, since we understand what it
means for a real Möbius transformation to have a fixed point in R ∪ {∞}. As in complex analysis
(see [10]), we find an association between conjugacy classes of Möbius transformations and their
fixed points. However, the situation is a little more complicated.

Theorem 4.2. LetM be a Möbius transformation on Q1,1 where neither component is the identity.
Then M has either zero fixed points, one fixed point, two fixed points or four fixed points. When
the Möbius transformation is real, there cannot be two fixed points.

Proof. The fixed points of the Möbius transformationM are determined by those of the component
transformationsM1 andM2. If one component has zero fixed points, thenM has zero fixed points.
If both have one fixed point, theM has one fixed point. If one component has one fixed point and
the other two, then M has two fixed points. Finally, if both components have two fixed points,
then M has four.

IfM is a real Möbius transformation, then both components are the same and so have the same
number of fixed points. Hence in this case two fixed points cannot occur. �

Remark 4.3. Fixed points at an infinity occur when one or both components have infinity as a
fixed point.

Remark 4.4. Consider the first component of a Möbius transformation:

au+ b

cu+ d

where a, b, c, d ∈ R.
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Case 1. Infinity is a fixed point if and only if c = 0. In this case, when a = d, infinity is the only
fixed point.

Case 2. If c = 0 and a 6= d, there is a second fixed point namely b/(d− a).

Case 3. When c 6= 0 solutions to
au+ b

cu+ d
= u

have the form

u =
(a− d)±

√
∆

2c
.

where ∆ = (a− d)2 + 4bc. If ∆ < 0, then there are no fixed points. When ∆ = 0, there is
one fixed point. If ∆ > 0, then there are two fixed points.

Similar calculations hold for M2.

Remark 4.5. We can actually rewrite ∆ in terms of Tr and det:

∆ = ∆ + 4ad− 4ad

= a2 − 2ad+ d2 + 4ad− 4ad+ 4bc

= (a+ d)2 − 4(ad− bc)
= Tr2(M1)− 4 det(M1).

Given the above discussion and the fact that Tr and det completely determine eigenvalues
(see [16]), we get a link between the number of eigenvalues of the component matrices and the
number of fixed points a Möbius transformation has.

Proposition 4.6. Let M =
(
a b
c d

)
∈ PGL(2,R) be a non-identity element.

a. If M has one (real) eigenvalue, then M(u) has one fixed point.

b. If M has two real eigenvalues, then M(u) has two fixed points.

c. If M has two complex eigenvalues, then M(u) has no fixed points.

Proof. The ∆ defined above is precisely the discriminant of the characteristic polynomial ofM. �

Example 4.7. a. The mapping 1/ζ has four fixed points, ±1,±j,.

b. The mapping −1/ζ has zero fixed points,

c. The mapping ζ + 1 has one fixed point, ∞.

d. The mapping 2ζ + 1 has four fixed points, ∞, −1, −j+ +∞j− and ∞j+ − j−.

e. The mapping
1
u
j+ + (v + 1)j− has two fixed points, j+ +∞j− and −j+ +∞j−.
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We can also have attracting and repelling fixed points.

Example 4.8. Consider M(ζ) = αuj+ + βvj− with α, β 6= 0. Of course, then M is conformal.

Notice that M fixes 0,∞,∞j+,∞j−. Now, Mn(ζ) = αnuj+ + βnvj− and we have four cases:

Case 1 Let |α| , |β| > 1. Then for all u 6= 0,∞,

αnu→∞ as n→∞,

and v 6= 0,∞,
βnv →∞ as n→∞.

Thus ∞ is an attracting fixed point and 0,∞j+,∞j− are repelling.

Case 2 Let |α| > 1, |β| < 1. Then for all u 6= 0,∞

αnu→∞ as n→∞,

and v 6= 0,∞,
βnv → 0 as n→ 0.

Thus ∞j+ is an attracting fixed point and 0,∞,∞j− are repelling.

Case 3 Let |α| < 1, |β| > 1. Then for all u 6= 0,∞,

αnu→∞ as n→ 0,

and v 6= 0,∞,
βnv →∞ as n→∞.

Thus ∞j− is an attracting fixed point and 0,∞,∞j+ are repelling.

Case 4 Let |α| < 1, |β| < 1. Then for all u 6= 0,∞,

αnu→∞ as n→ 0,

and v 6= 0,∞,
βnv →∞ as n→ 0.

Thus 0 is an attracting fixed point and ∞,∞j+,∞j− are repelling.

Now we see that the transitivity of the Möbius transformations of Q1,1 are only one transitive,
a property which is quite different from what we find on the Riemann sphere, where the Möbius
transformations are three transitive [10].

Theorem 4.9. The Möbius group acts transitively on Q1,1. It is not two transitive in general.

Proof. Given ζ1 = u1j+ + v1j− and ζ2 = u2j+ + v2j−, we know that by transitivity of Möbius
transformations of R̂ that there is N ∈ PGL (2,R) such that N (u1) = u2 and P ∈ PSL (2,R) such
that P(v1) = v2. Therefore, M(ζ) = N (u)j+ + P(v)j− maps ζ1 to ζ2.
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To see that Möbius group is not two-transitive, we give a proof by counterexample. Consider
{j+, 2j+} and {j−, 2j−}. Notice that in order for M(j+) = j− and M(2j+) = 2j−, we would need
a real Möbius transformation which maps 0 to 1 and 0 to 2, an obvious contradiction.

�

Definition 4.10. For our purposes, we shall define a hyperbola to be a subset H of Q1,1 which is
Möbius equivalent to the closure of the set

{uj+ + vj− : uv = 1} .

That is there exists real Möbius transformations M1, M2 such that

M1(u)M2(v) = 1,

for every u, v ∈ H ∩ R1,1.

In a similar fashion, we define a degenerate hyperbola to be a subset D of Q1,1 that is Möbius
equivalent to the closure of the light cone

L = {uj+ + vj− : uv = 0} .

Remark 4.11. By definition, the closure of the light cone L := {uv = 0} is a degenerate hyperbola.
It contains two branches, namely

{
vj− : v ∈ R̂

}
and

{
uj+ : u ∈ R̂

}
. It is clear that the same is

true for any degenerate hyperbola.

Notice that conjugation ζ 7→ vj+ + uj− maps a degenerate hyperbola to itself, interchanging
branches.

In a similar way,
{
u
v = 0

}
consists of two branches:

{
vj− : v ∈ R̂

}
and

{
uj+ +∞j− : u ∈ R̂

}
.

Again, conjugation interchanges these branches.

Remark 4.12. Let α, β, µ,R ∈ R with µ,R 6= 0. The closure of curves of the form (u−α)(v−β) =
R, u = µv + β, v = µu+ β are hyperbolae. They are also the only hyperbolae.

Let γ, δ ∈ R̂. Then it is clear that the degenerate hyperbolae are of the form {u = γ}∪{v = δ} .

The following is clearly true.

Proposition 4.13. The Möbius groups act transitively on hyperbolae. That is, a Möbius transfor-
mation will map any hyperbola to another. The Möbius groups also acts transitively on degenerate
hyperbolae.

4.2 Cross Ratio

Yaglom defines a cross ratio on R1,1, and shows that it can be used to define hyperbola and
lines [2]. Recent works have brought further analogues of the cross ratio in the complex plane to
new spaces [5, 17].
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We shall extend Yaglom’s ratio to Q1,1 and use the j+, j− basis to understand it as a direct
product of real cross ratios. This gives more natural proofs of geometric ideas brought forth in [2].

Four points in R1,1, ζi = uij+ + vij−, i = 1, 2, 3, 4, with distinct uis and distinct vis, are called
completely distinct.

The following lemmas, though rather trivial, are useful.

Lemma 4.14. The image of a set of completely distinct points under a Möbius transformation is
a set of completely distinct points.

Lemma 4.15. Hyperbolae contain infinite sets of completely distinct points. In particular, they
contain sets of four completely distinct points.

Remark 4.16. Because of their form, degenerate hyperbolae cannot contain three completely dis-
tinct points; they may have at most two and they must lie on separate branches.

This implies that hyperbolae and degenerate hyperbolae are not Möbius equivalent, since Möbius
transformations are one-to-one maps.

Given a 4-tuple of completely distinct points, we define the cross ratio as follows :

λ = [ζ1, ζ2; ζ3, ζ4] =
(ζ1 − ζ3) (ζ2 − ζ4)
(ζ2 − ζ3) (ζ1 − ζ4)

.

We then have

[ζ1, ζ2; ζ3, ζ4] =
(u1 − u3) (u2 − u4)
(u2 − u3) (u1 − u4)

j+ +
(v1 − v3) (v2 − v4)
(v2 − v3) (v1 − v4)

j−

= [u1, u2;u3, u4] j+ + [v1, v2; v3, v4] j−
= λ1j+ + λ2j−.

By taking limits, this is defined when one of the uis or vis is infinite.

The following two theorems and proposition are mentioned in Yaglom’s book without proof [2].

Theorem 4.17. Let ζ1, ζ2, ζ3, ζ4 and ξ1, ξ2, ξ3, ξ4 be 4-tuples of completely distinct points. There
is a Möbius transformation sending ζ1, ζ2, ζ3, ζ4 to ξ1, ξ2, ξ3, ξ4 if and only if their cross ratios are
equal. As such, the cross ratio is a bijection on orbits of 4-tuples of completely distinct points.

Proof. The above lemma implies that for any Möbius transformationM, [M(ζ1),M(ζ2);M(ζ3),M(ζ4)]
is defined if and only if [ζ1, ζ2; ζ3, ζ4] is defined.

Suppose there exists such a Möbius transformation M =M1j+ +M2j−. By a simple calcula-
tion, we have

M1(ui)−M1(uj) =
(ui − uj)(a1d1 − b1c1)
(c1ui + d1)(c1uj + d1)

.
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Then,

[M1(u1),M1(u2);M1(u3),M1(u4)] =
(u1−u3)(a1d1−b1c1)
(c1u1+d1)(c1u3+d1)

(u2−u4)(a1d1−b1c1)
(c1u2+d1)(c1u4+d1)

(u2−u3)(a1d1−b1c1)
(c1u2+d1)(c1u3+d1)

(u1−u4)(a1d1−b1c1)
(c1u1+d1)(c1u4+d1)

=
(u1 − u3) (u2 − u4)
(u2 − u3) (u1 − u4)

.

Similar calculations work for M2.

Thus, Möbius transformations preserve cross ratios.

Conversely, assume that the points are finite and suppose the cross ratios are equal. Then,

S(ζ) =
(ζ − ζ3) (ζ2 − ζ4)
(ζ2 − ζ3) (ζ − ζ4)

maps ζ1, ζ2, ζ3, ζ4 to [ζ1, ζ2; ζ3, ζ4] , 0, 1,∞ and

T (ξ) =
(ξ − ξ3) (ξ2 − ξ4)
(ξ2 − ξ3) (ξ − ξ4)

maps ξ1, ξ2, ξ3, ξ4 to [ξ1, ξ2; ξ3, ξ4] , 0, 1,∞.

Hence T−1 ◦ S is a Möbius transformation sending ζ1, ζ2, ζ3, ζ4 to ξ1, ξ2, ξ3, ξ4. A similar calcu-
lation holds when points are an infinity.

�

Proposition 4.18. If ζ1, ζ2, ζ3, are completely distinct points on some hyperbola H, then the cross
ratio [ζ1, ζ2; ζ3, ζ4] is in R̂ if and only if ζ4 is another point on H.

Proof. Suppose that ζ4 also lies on H, then by definition of hyperbola and Möbius invariance of
cross ratios, we may assume that H is the hyperbola uv = 1.

Hence,

[ζ1, ζ2; ζ3, ζ4] =
(u1 − u3) (u2 − u4)
(u2 − u3) (u1 − u4)

j+ +
(v1 − v3) (v2 − v4)
(v2 − v3) (v1 − v4)

j−

=

(
1
v1
− 1

v3

)(
1
v2
− 1

v4

)
(

1
v2
− 1

v3

)(
1
v1
− 1

v4

)j+ +
(v1 − v3) (v2 − v4)
(v2 − v3) (v1 − v4)

j−

=

(
1

v1v2v3v4
1

v1v2v3v4

)
(v3 − v1) (v4 − v2)
(v3 − v2) (v4 − v1)

j+ +
(v1 − v3) (v2 − v4)
(v2 − v3) (v1 − v4)

j−

=
(v1 − v3) (v2 − v4)
(v2 − v3) (v1 − v4)

∈ R̂.

For the converse, it suffices to show that if uivi = 1 for i = 1, 2, 3 and [ζ1, ζ2; ζ3, ζ4] ∈ R̂, then
u4v4 = 1.
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Then by hypothesis, (
1
v1
− 1

v3

)(
1
v2
− u4

)
(

1
v2
− 1

v3

)(
1
v1
− u4

) =
(v1 − v3) (v2 − v4)
(v2 − v3) (v1 − v4)

.

After some algebra and using the fact that none of the factors vanish, we see that

(1− u4v2)
(1− u4v1)

=
(v2 − v4)
(v1 − v4)

,

which immediately implies that

v1 (1− u4v4) = v2 (1− u4v4) .

But since v1 6= v2, this must mean that

1− u4v4 = 0.

�

Theorem 4.19. If the cross ratio [ζ1, ζ2; ζ3, ζ4] ∈ R̂, then there exists a Möbius transformation
sending ζ1, ζ2, ζ3, ζ4 to any hyperbola.

Proof. By assumption we have

[u1, u2;u3, u4] = [v1, v2; v3, v4] = λ ∈ R̂.

Define

U(u) :=
(u− u3) (u2 − u4)
(u2 − u3) (u− u4)

and V (v) =
(v − v3) (v2 − v4)
(v2 − v3) (v − v4)

,

which are Möbius transformations. Then

U(u1) = V (v1) = λ

U(u2) = V (v2) = 1
U(u3) = V (v3) = 0
U(u4) = V (v4) =∞.

Thus,M(ζ) = U(u)j+ + V (v)j− maps ζ1, ζ2, ζ3, ζ4 to a line {u = v}, which can be mapped by way
of a Möbius transformation (namely J+ or J−) to a hyperbola.

�
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