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Abstract. This note is a survey of recent results surrounding the minimum dilatation
problem for pseudo-Anosov mapping classes. In particular, we give evidence for the
conjecture that the minimum accumulation point of the genus normalized dilatations
of pseudo-Anosov mapping classes on closed surfaces equals the square of the golden
ratio. We also find explicit fat train track maps determining a sequence of pseudo-Anosov
mapping classes whose normalized dilatations converge to this limit.

1. Introduction

Let S be a compact surface of genus g with b boundary components. A mapping class
φ on S is a self-homeomorphism of S considered up to isotopy. The map φ : S → S is
pseudo-Anosov if S admits a pair of φ-invariant transverse measured singular foliations,
called the unstable foliation (Fu, νu) and stable foliation (Fs, νs), so that the action of φ
stretches νu by a constant λ > 1, and contracts νs by 1

λ . The constant λ has the property
that log(λ) is the minimal topological entropy of elements in the isotopy class of φ and is
called the dilatation of φ. The theory of pseudo-Anosov mapping classes is developed in
detail in [FLP], [CB] and [Thu2].

In a 1991 paper, Penner [Pen] proved that as a function of genus g ≥ 2, the minimum
dilatation δg for pseudo-Anosov mapping classes on closed genus g surfaces satisfies

log δg �
1

g
.(1)

Penner’s paper has brought recent interest to the minimum dilatation problem, which asks
what are the values of δg for g ≥ 2, and what are the mapping classes that realize these
values. So far the exact value of the minimum dilatation δg is known only for g = 2 [CH].
In this paper we give a brief survey of the minimum dilatation problem and its relations
to the study of train track maps, digraphs, polynomials and algebraic integers, and give
an illustrative example.

1.1. Lehmer’s problem and dilatations. Questions surrounding the values of δg are
closely analogous to Lehmer’s problem on Mahler measures. Dilatations of pseudo-Anosov
mapping classes are special algebraic integers called Perron numbers. These are real alge-
braic integers λ > 1 all of whose algebraic conjugates are strictly smaller in complex norm.
Furthermore, dilatations have the property that λ−1 is also an algebraic integer, and hence
λ is an algebraic unit. The Mahler measure m(λ) of an algebraic integer λ is the absolute
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value of the product of its conjugates outside the unit circle. In [Leh] Lehmer asks: is there
is a positive gap between 1 and the next largest Mahler measure? A negative answer would
mean that the set of Mahler measures is dense in the interval [1,∞). Lehmer’s question
leads immediately to several others.

For each fixed degree n, any bound on Mahler measure bounds the size of the coefficients
of the minimal polynomial, and hence the Mahler measures greater than one for algebraic
integers of fixed degree n achieve a minimum mn > 1. It is not known how mn behaves as n
goes to infinity, nor about properties of the algebraic integers achieving mn. For example:
is there a bound on the number of algebraic conjugates outside the unit circle?

The complex norm h(λ) of the largest conjugate of an algebraic integer λ is called the
house of λ. The normalized house

h(λ)dalg

is the house raised to the degree of the minimal polynomial. It is not known whether
this coarse upper bound for Mahler measure is bounded away from one for non-cyclotomic
algebraic integers (cf. [Dob]).

1.2. Perron numbers. For Perron numbers, there is an alternative way to normalize
house, other than algebraic degree. Each Perron number is the spectral radius of a Perron-
Frobenius matrix: a d × d matrix M with non-negative integer entries such that for some
power k ≥ 1, Mk has strictly positive entries. The minimum such d, which is an upper
bound for dalg, is the degree of the characteristic polynomial of M , called the Perron-
Frobenius degree of the Perron number. McMullen recently showed in [McM2] that for
Perron units λ with Perron-Frobenius degree dPF, we have

λdPF ≥ γ4
0 ,(2)

where γ0 is the golden ratio.

1.3. Normalized dilatations. It is an open question whether all Perron units are di-
latations of pseudo-Anosov mapping classes (partial results in this direction were found by
Thurston in [Thu3]). Define the genus-normalized dilatation to be λ(φ)g and let `g = (δg)

g,
the minimum genus-normalized dilatation for fixed genus g. Penner’s result (1) is equivalent
to the statement that there are constants c and C so that

1 < c ≤ `g ≤ C.
It is an open problem to determine sharp bounds for c and C, or to find the limit of `g as
g goes to infinity.

McMullen’s result (2) on normalized Perron units is evidence for the following conjecture.

Conjecture 1.1. The smallest accumulation point for the sequence `g is γ2
0 .

For the pseudo-Anosov mapping classes (Sg, φg) that we later describe in this paper, the
surfaces Sg have genus g, the normalized dilatations λ(φg)

g converge to γ2
0 , hence γ2

0 is an
upper bound for the smallest accumulation point. This together with McMullen’s result
(2) is not enough to prove the conjecture, however, since in general both dalg and 2g can
be strictly smaller than dPF, and the latter can be as large as 6g − 6 [Pen].
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Conjecture 1.1 was originally inspired by a question of Lanneau and Thiffeault posed
in [LT]. An orientable pseudo-Anosov mapping class is one where the stable and unstable
foliations are orientable. Lanneau and Thiffeault ask whether for orientable pseudo-Anosov
mapping classes on surfaces of even genus, the minimum dilatation is the largest real root
of the polynomial

LTn(x) = x2n − xn+1 − xn − xn−1 + 1.

If λn is the largest root of LTn(x), then it is not hard to show that (λn)n is a monotone
decreasing sequence converging to γ2

0 .

1.4. Main example. In this paper, we explicitly define a sequence of pseudo-Anosov
mapping classes whose genus normalized dilatations define a strictly monotone decreasing
sequence converging to γ2

0 . The existence of such sequences was already proved in [Hir]
[AD] and [KT2], but the description we give here, using the language of fat train track
maps and digraphs, is the first constructive one, and serves to give a glimpse of what small
dilatation mapping classes look like in general.

We show the following.

Theorem 1.2. There is a sequence of pseudo-Anosov mapping classes (Sn, φn) described
by fat train track maps fn : τn → τn, n ≥ 2 with the following properties:

(1) Sn is a closed orientable surface of genus g = n if 3 doesn’t divide n and genus
g = n− 1 if 3 divides n,

(2) λ(φn) is the largest real root of LTn(x),
(3) the genus-normalized dilatations of (Sn, φn) converge to γ2

0 .
(4) (Sn, φn) is an orientable mapping class if and only if n is even,
(5) (Sn, φn) have the smallest dilatation among orientable pseudo-Anosov mapping

classes of genus g = n when n = 2, 4, 8, and of genus g = 5 when n = 6.
(6) the train track maps fn have folding decompositions corresponding to length 3 cir-

cuits on fat train track automata, and
(7) the topological type of the digraph associated to the train track map fn is fixed for

n ≥ 2.

Corollary 1.3. The square of the golden mean γ2
0 is an accumulation point for normalized

dilatations of orientable pseudo-Anosov mapping classes.

Sequences satisfying properties (1)–(5) were also found in [Hir] as mapping classes associ-
ated to a convergent sequence on a fibered face. The difference in this paper is that our
description is constructive.

1.5. Organization. Thurston’s fibered face theory [Thu1], Fried’s results about cross-
sections of pseudo-Anosov flows [Fri], McMullen’s theory of Teichmüller polynomials [McM1]
and the universal finiteness theorem of Farb, Leininger and Margalit [FLM] together im-
ply that the problem of finding minimum dilatations reduces to understanding the roots of
families of polynomials arising as specializations of a finite list of multivariable polynomials.
We recall these results in Section 2. In Section 3 we describe the restriction of Lehmer’s
problem to Perron units, and its recent partial solution by McMullen [McM2]. The special
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case of orientable pseudo-Anosov mapping classes, and the Lanneau-Thiffeault question is
discussed in Section 4. In Section 5 we define fat train track maps, and their automata.
We also explain how to compute Both the Teichmüller and Alexander polynomials in this
context. In Section 6, we describe a sequence of fat train track maps whose Teichmüller
polynomial specializes to the LT polynomials, and prove Theorem 1.2.

2. Fibered faces, dilatations and polynomials

Fibered face theory gives a natural way to partition the set of pseudo-Anosov mapping
classes into families that are in one-to-one correspondence with rational points on convex
Euclidean polyhedra (possibly single points). Each family contains mapping classes defined
on different surfaces, but having related dynamics. In particular, the normalized dilatation
varies continuously with respect to the induced Euclidean metric. Furthermore, each set
has an associated Teichmüller polynomial, whose specialization at each point in the set
determines the dilatation of the associated mapping class.

2.1. Fibered face theory. In [Thu1], Thurston defines a norm || || on H1(M ;R) as
follows. Given a surface (S, ∂S) ⊂ (M,∂M), let

χ−(S) =
∑
S′⊂S

max{−χ(S′), 0},

where the sum is taken over connected components S′ of S. Given α ∈ H1(M ;Z), let

||α|| = min{χ−(S) : (S, ∂S) ⊂ (M,∂M) is Poincaré dual to α}.

Then || || extends to a unique norm on H1(M ;R). Furthemore, the unit norm ball is a
convex polyhedron, and the convex hull of rational vertices. The norm || || is called the
Thurston norm, and the unit ball is called the Thurston norm ball.

An element of H1(M ;Z) is called fibered if it is dual to the fiber of a fibration ψα : M →
S1 over the circle.

Theorem 2.1 (Thurston [Thu1]). For every open top-dimensional face F of the unit
Thurston norm ball, either every integral point in the cone F · R+ over F is fibered, or
none of them are.

If the integral points on F · R+ are fibered, we say F is a fibered face and F · R+ is a
fibered cone.

Circle fibrations of M are in one-to-one correspondence with mapping classes (S, φ) with
the property that M is the mapping torus of (S, φ):

M ' S × [0, 1]/(x, 1) ∼ (φ(x), 0),

where S is homeomorphic to the fiber of the fibration. The mapping class (S, φ) is called
the monodromy of the fibration.

A primitive integral element in H1(M ;Z) is a point with relatively prime integral coef-
ficients. Given a fibered element α ∈ H1(M ;Z), any positive integer multiple mα has the
property that ψmα is the composition of ψα with the m-fold cyclic covering of the circle to
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itself. If follows that primitive integral elements on fibered cones correspond to fibrations
of M over the circle with connected fibers.

A key theorem of Thurston that connects the classification of mapping classes and that
of fibered 3-manifolds is the following.

Theorem 2.2 (Thurston [Thu2]). A mapping class is pseudo-Anosov if and only if its
mapping torus is a hyperbolic 3-manifold.

It follows that there is a one-to-one correspondence between pseudo-Anosov mapping
classes (S, φ) on surfaces S and rational points on fibered faces of hyperbolic 3-manifolds
whose denominator equals |χ(S)|.

2.2. Removing singularities. To study the dynamical properties of a pseudo-Anosov
mapping class it is natural to remove the singularities of the invariant stable and unstable
foliations. This process preserves essential information about the surface (e.g., genus) and
the dynamics of the mapping class (e.g., dilatation). In many cases, this process increases
the first Betti number of the mapping torus, and hence the dimension of the associated
fibered face.

Lemma 2.3. Let S be a compact surface with boundary, and φ a pseudo-Anosov map on
S. The first Betti number of the mapping torus of (S, φ) is r + 1, where r is the rank of
the φ-invariant homology H1(S, ∂S;Z).

Proof. See, for example, [McM1].

Define the singularities of a pseudo-Anosov mapping class (S, φ) to be the set of singu-
larities of the stable and unstable φ-invariant foliations. The union of singularities on S
is a finite set of points closed under the action of φ. Let S0 be the complement of small
neighborhoods of the singular points. There is a unique pseudo-Anosov mapping class
φ0 defined on S0 determined up to isotopies that fix the boundary component pointwise.
Correspondingly, there is a well-defined way to define invariant foliations for φ0 whose
extensions to S are the original invariant foliations of φ, so that certain leaves terminate
at the boundary. The leaves terminating at a boundary component are called prongs, and
the degree of the singularity equals the number of prongs minus 2.

By this construction, the dilatations λ(φ) and λ(φ0) are stretching factors of the same
maps on the same foliations, and hence are equal. Furthermore, (S, φ) can be recovered
from (S0, φ0) by closing off the boundary components with disks.

Corollary 2.4. Suppose (S, φ) is a pseudo-Anosov mapping class such that the number of
orbits of boundary components and the number of orbits of singularities add up to at least
2. Then the first Betti number of the mapping torus of (S0, φ0) is greater than or equal to

2, and hence (S0, φ) corresponds to a point on a fibered face of positive dimension.

Proof. For any mapping class φ on a surface with boundary S, the sum γ of loops around the
orbits of a boundary component determines a φ0-invariant element [γ] in H1(S0, ∂S0;Z).
If there is more than one orbit, then [γ] is non-trivial. The rest follows from Lemma 2.3.
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2.3. Normalized dilatations. The normalized dilatation of a pseudo-Anosov mapping
class (S, φ) is defined by

L(S, φ) = λ(φ)|χ(S)|.

Given a fibered element α ∈ H1(M ;Z) with monodromy (Sα, φα) define

H(α) = log(λ(φα)).

When α is an integral element, H(α) is the topological entropy of φα.

Theorem 2.5 (Fried [Fri], McMullen [McM1]). The function H(α) extends to a real an-
alytic, convex function that is homogeneous of degree −1 on each fibered cone F · R+ and
goes to infinity toward the boundary of the fibered face F .

Given a primitive integral point α ∈ F · R+, let α = α/q be its projection onto F .

Corollary 2.6. The function on the rational points of a fibered face F that sends α to
L(Sα, φα) extends to a real analytic, strictly convex function on F that goes to infinity
toward the boundary of F .

Proof. By homogeneity, we have

log(L(Sα, φα)) = ||α|| log(λ(φα)) = H(α).

Remark 2.7. Strict convexity of H and its behavior toward the boundary of F imply that
this function has a unique minimum on F . The minimum, however, does not necessarily
occur at a rational point, and hence it may not be realized by the monodromy of a circle
fibration [Sun].

Corollary 2.8. Any convergent sequence on the interior of a fibered face that is not even-
tually constant corresponds to a family of pseudo-Anosov mapping classes with unbounded
Euler characteristic and bounded normalized dilatation.

Farb, Leininger and Margalit prove the following partial converse.

Theorem 2.9 (Universal Finiteness Theorem [FLM]). Let Φ be a family of pseudo-Anosov
mapping classes with the property that for some constant C > 1, we have

L(S, φ) < C

for all (S, φ) in F . Then there is a finite set of manifolds M = {M1, . . . ,Mk} so that the
mapping torus (S0, φ0) corresponding to each element of Φ is an element of M.

It follows that to study the dynamics of a family of mapping classes with bounded nor-
malized dilatation, it suffices to look at a finite collection of fibered faces of hyperbolic
3-manifolds.
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2.4. Teichmüller polynomials. In [McM1], McMullen defined, for each fibered hyper-
bolic 3-manifold M , and fibered face F ⊂ H1(M ;R), an element ΘF ∈ ZG, called the
Teichmüller polynomial where ZG is the group ring over G = H1(M ;Z)/torsion. Since G
is a free abelian group, we can identify elements with monomials in the generators of G,
and think of elements of ZG as polynomials in several variables with integer coefficients.
Given an element θ ∈ ZG, written

θ =
∑
g∈G

agg,

and α ∈ H1(M ;Z), the specialization of θ at α is defined by

θ(α)(t) =
∑
g∈G

agt
α(g).

Theorem 2.10 (McMullen [McM1]). Let F be the fibered face of a hyperbolic 3-manifold.
Then for each integral α ∈ F · R+, the dilatation of (Sα, φα) equals the house of the
specialization

λ(φα) = |Θ(α)
F |.

Combining the Universal Finiteness Theorem (Theorem 2.9) with Penner’s result on
the asymptotic behavior of minimum dilatations given in Equation (1), it follows that
there are a finite number of fibered faces that contain points corresponding to mapping
classes whose closures (obtained by filling in punctures) give rise to mapping classes (Sg, φg)
realizing λ(φg) = δg. Theorem 2.10 shows further that there is a finite set of group ring
elements Θi ∈ ZGi, i = 1, . . . , k, so that the dilatations of these maps equal the house of
specializations of these elements.

We now change notation, and think of group rings ZG as Laurent polynomial rings. That
is, if G has generators t1, . . . , tk, then there is a natural isomorphism of ZG with the Laurent
polynomial ring Λ(t1, . . . , tk) = Z[t±1

1 , . . . , t±1
k ], where each element of G is considered as

a monomial in t1, . . . , tk. Similarly, there is an isomorphism of Zk with Hom(G;Z) where
m = (m1, . . . ,mk) corresponds to the map that sends ti to tmi , where we think of t as the
generator of Z. By these identifications, the specialization of p(t1, . . . , tk) ∈ Λ(t1, . . . , tk),
at m is defined by

p(m)(t) = p(tm1 , . . . , tmk).

Putting the Universal Finiteness Theorem (Theorem 2.9) together with Theorem 2.10,
we have the following.

Theorem 2.11 (Universal Finiteness Theorem II). For any constant C, there is a finite
list of Laurent polynomials p1, . . . , pr ∈ Z[[t1, . . . , tk]] so that if (S, φ) satisfies L(S, φ) < C,
then

λ(φ) = |p(m)
i (t)|

for some i = 1, . . . , r and m ∈ Zk.
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2.5. The magic manifold. All of the known minimum dilatation examples for punctured
as well as closed surfaces are associated, after possibly adding or removing punctures, to
points on the fibered face of the magic manifold (see [KT1] [KKT]). This is the 3-cusped
hyperbolic 3-manifold that is topologically equal to the complement of the link drawn
in Figure 1 in the 3-sphere S3. The name magic manifold appears also in the context of
hyperbolic 3-manifolds which admit many non-hyperbolic Dehn fillings, and is the 3-cusped
hyperbolic 3-manifold with smallest volume [Gor].

Figure 1. Magic Manifold as complement of links in S3.

The first homology group G = H1(M ;Z) is a free group on 3 generators x, y, z cor-
responding to meridian loops around the component of the link. The symmetry of the
link induces a symmetry on the Thurston norm. Let x̂, ŷ, ẑ be the dual elements. These
form a basis for H1(M ;R), and x, y, z define coordinate functions on H1(M ;R). With
respect to these coordinates, Thurston norm ball is the convex polytope with vertices
(±1, 0, 0), (0,±1, 0), (0, 0,±1), (±1,±1,±1). Consider the face F defined by the convex
hull of (1, 0, 0), (1, 1, 1), (0, 1, 0), (0, 0,−1). The cone over F can be characterized by the
property

x+ y − z > max{x, y, x− z, y − z, 0},
and F is given by

{(x, y, z) : x+ y − z = 1, x > 0, y > 0, x > z, y > z}.
We switch to multiplicative notation by replacing x, y, z with tx, ty, tz. Then, the Te-
ichmüller polynomial for F is given by

P (tx, ty, tz) = tx+y−z − tx − ty − tx−z − ty−z + 1.(3)

2.6. Dehn Fillings. Let M be a hyperbolic 3-manifold with cusps. Each cusp looks
topologically like

S1 × S1 × (0,∞),

and we can think of M as the interior of a 3-manifold Mu with torus boundary compo-
nents. A Dehn filling of Mu at a torus boundary component is the 3-manifold given by
attaching a solid torus by identifying boundaries. The filled 3-manifold is determined up to
homeomorphism type by the image of the contracting loop on the surface of the solid torus
in π1(M). This can be specified by a slope when M is a knot or link complement in S3

as follows. The meridian µ is the element of the fundamental group of the torus boundary
component that contracts in S3, and the longitude γ is the element whose linking number
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with the knot in S3 equals zero. Then Dehn fillings are determined by rational numbers
p
q , where qµ + pγ is the contracting loop. If the component of the link is clear, we write

the Dehn filling as M( ba). Thus, for example, if M is the complement of a knot in S3,

then M(0) = S3. If M ′ is obtained from the complement M of a link with k components
`1, . . . , `k with meridians µi and longitudes γi, then we write M ′ as M ′ = M(p1q1 ; . . . ; pkqk ).

If M has a circle fibration ψ : M → S1 with monodromy (S, φ), then the intersection
of S with a cusp of M determines a Dehn filling M ′ of M along the cusp. Let F be the
fibered face of M containing the dual element αS of S. The map H1(M ′;R)→ H1(M ;R)
defined by the inclusion M ↪→M ′ is one-to-one, since every loop on M ′ can be pushed off
into M . Let F ′ be the preimage of F in H1(M ′;R). Since the map H1(M ;R)→ H1(M ′;R)
has kernel generated by the contracting loop of the Dehn filling, we have the following.

Proposition 2.12. If the boundary slope is a finite order element of H1(M ;R), then the
inclusion F ′ ↪→ F is a bijection. Otherwise, F ′ maps to a co-dimension one linear section
of F .

The elements of F ′ inherit many of the properties of F .

Proposition 2.13. Let α′ be a rational element of F ′, and α its image in F .

(1) The boundary slopes defined by the intersection of the dual surface Sα with the cusp
are all homologically equivalent to that defined by S.

(2) The intersections S′α with the filled cusp define a periodic orbit of φ′α.
(3) If the points in the periodic orbit do not come from poles of the quadratic differ-

ential on S determined (up to scalar multiple) by the stable and unstable foliations
associated to φα, then (Sα, φα) is pseudo-Anosov and

λ(φ′α) = λ(φα).

The proof of parts (1) and (2) of Proposition 2.13 is an easy consequence of the defi-
nitions. Part (3) follows from the fact that the stable and unstable foliations of (Sα, φα)
also form stable and unstable foliations for (S′α, φ

′
α) as long as the periodic orbit does not

consist of poles.

Remark 2.14. In the case of poles, it is possible that (S′α, φ
′
α) is not pseudo-Anosov. In

this case, by Theorem 2.2, it follows that the Dehn filling M ′ is not hyperbolic, and hence
(S′α, φ

′
α) is not pseudo-Anosov for all rational α′ ∈ F ′. Such a Dehn filling is called an

exceptional Dehn filling, and it was shown by Thurston that there are only a finite number
of boundary slopes with this property.

Let Θ ∈ ZG be the Teichmüller polynomial for F and Θ′ ∈ ZG′ the Teichmüller poly-
nomial for F ′, where G = H1(M ;Z)/torsion and G′ = H1(M ′;Z)/torsion.

Proposition 2.15. If no periodic orbit contains poles, then the Teichmüller polynomial of
F ′ is a factor of the specialization of the Teichmüller polynomial for F defined by the map
i∗ : G→ G′ induced by the inclusion i : M →M ′, that is, if

Θ =
∑
g

agg,
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then Θ′ divides
∑

g agi∗(g).

Remark 2.16. Assuming the case that the periodic orbit does not consist of poles, the
effect of Dehn filling on normalized dilatation is more complicated than for the dilatation
itself. For example, if α′ is a rational element of F ′ and α is its image in F , then

χ(Sα) = χ(S′α)− sα,

where sα is the number of components in the intersection of Sα with the cusp, and depends
on α. Thus, the normalized dilatation function L on F ′ is not the pull back of the normal-
ized dilatation function on F , and the effect of pull back on the minimizer of normalized
dilatation is not obvious.

2.7. Fibered faces of the manifoldMm( 1
−2). The minimum dilatation orientable pseudo-

Anosov mapping class of genus 8 is the monodromy of a fibration of Ms = Mm( 1
−2) (see

[Hir]). The manifold Ms is homeomorphic to the complement of the encircled closure of
the braid σ1σ

−1
2 , where σ1 and σ2 are the standard braid generators of the braid group

on 3-strands. This two component link, known as 62
2 in Rolfsen’s knot table [Rolf], is

symmetric in the two components and can be drawn in two ways (see Figure 2).

K

2
KK

1

K
1

2

Figure 2. Two drawings of the 62
2 link.

Let Mm be the magic manifold described in Section 2.5. Assume that the Dehn filling is
done on the cusp of Mm corresponding to the coordinate function y. Then inclusion map
Mm →Ms induces the surjection

H1(Mm;R)→ H1(Ms;R)

has kernel generated by ty+2(x+z). Substituting x = b, z = a and y = −2(b + a) in
Equation 3 gives

P (ta, tb) = t3b+a − t2b+2a − tb − tb−a − ta+2b + 1

= (tb+a + 1)(t2b − tb+a − tb − tb−a + 1).

Let Fm be the fibered face described in Section 2.5. In [Hir], we show that the fibered
face Fs of Ms corresponding to Fm is the locus

Fs = {(x, z) : x = 1, −1 < z < 1},
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and the Teichmüller polynomial equals

θs(t
a, tb) = t2b − tb+a − tb − tb−a + 1.

The Alexander polynomial of Ms equals [Rolf]

∆s(t
a, tb) = t2b − tb+a + tb − tb−a + 1.

Let α(a, b) denote the element of H1(M : R that sends x to b and z to a. If b is even, and
a is odd, then

|θs(ta, tb)| = |∆s(t
a, tb)|

and we have the following.

Proposition 2.17. On the fibered face Fs of Ms, the monodromy of α(a, b) is orientable
if and only if b is even and a is odd, and in particular, it is orientable when b is even and
a = 1.

The monodromy (S(a,b), φ(a,b)) associated to a rational point on Fs whose primitive
element has coordinates (a, b) has topological Euler characteristic equal to minus the degree
of the Alexander polynomial. Thus, the genus of S(a,b) is given by

g(a, b) = 1 + b− s

2
,

where s is the number of punctures of S(a,b).

Let K1 and K2 be the connected components of the 62
2-link, and let µi and γi be their

meridian and longitude for i = 1, 2. Then µ1 and µ2 generate H1(Ms;Z) and

γ1 = 3µ2 γ2 = 3µ1.

Take any integral (a, b) ∈ Fs · R+, and let α = α(a, b). Let Bi be the boundary tori of
tubular neighborhoods of Ki in Ms. For i = 1, 2, let mi = α(µi) and `i = α(γi) be the
images of the meridians and longitudes of Ki. Let

d1 = gcd(a, 3b) and d2 = gcd(3a, b).

Then di is the index of the image of π1(Bi) in Z, and hence is equal to the number of
connected components of S(a,b) ∩Bi.

In the particular case where (a, b) = (1, n), we have the following.

Lemma 2.18. The number of punctures s of S(1,n) is given by

s =

{
2 if 3 doesn’t divide n
4 if 3 divides n

Corollary 2.19. The monodromies (S1,g, φ1,g), where g = 2, 4 (mod 6), have the property
that

(1) S1,g has genus g;
(2) S1,g has two singularities of degrees 3g − 2 and g − 2, respectively;
(3) (S1,g, φ1,g) is orientable; and
(4) λ(φ1,g) = |LT1,g|.

11



By Fried’s theorem (Theorem 2.5), the function L(S, φ) extends to a continuous convex
function on F that goes to infinity toward the boundary. Thus, it has a unique minimum
in Fs. The Teichmüller polynomial is invariant under the involution on H1(Ms;R) given
by sending z to −z. It follows that λ(S, φ)) is symmetric around the z = 0 axis, and the

minimum of L on F occurs at the rational point α(0,1)
||α(0,1) , and is given by

λ(φ(0,1)) = |t3 − 3t+ 1| = 3 +
√

5

2
= γ2

0 .

Thus the conjectural minimum accumulation point for genus normalized dilatations of
pseudo-Anosov mapping classes (Conjecture 1.1).

Concretely (S(0,1), φ(0,1)) is the mapping class known as the simplest hyperbolic braid.
Using the left diagram in Figure 2, consider the three times punctured disk D bounded
by the encircling link K2. Then D is Poincare dual to µ2 considered as an element of
H1(Ms;Z), and hence is the dual surface to α(0, 1). The mondromy is defined by con-
sidering Ms as the complement of the braid defined by K1 in a solid torus given by the
complement of a thickened K2 in S3. The solid torus fibers uniquely up to isotopy over S1

with fiber D, and the monodromy is the braid monodromy defined by K2, namely the one
defined by σ1σ

−1
2 , where σ1 and σ2 are the braid generators.

The points α(1, n) in H1(Ms;R) define rays converging to the ray through α(0, 1), and
hence the sequence L(S(1,n), φ(1,n)) converges to → L(S(0,1), φ(0,1)). Since χ(D) = −2, we
have

λ(φ(1,g))
2g = L(S(1,g), φ(1,g))→ L(S(0,1), φ(0,1)) = γ4

0 .

This leads to the more general version of Conjecture 1.1.

Conjecture 2.20. The smallest accumulation point for normalized dilatations is γ4
0 .

The minimum dilatation orientable pseudo-Anosov mapping classes of genus 7 was found
independently in [AD] and [KT2] and is the monodromy of Mw = Mm( 3

−2), which is the

complement of the (−2, 3, 8)-pretzel link, also known as the Whitehead sister-link in S3.
The minimum dilatations of pseudo-Anosov mapping classes arising as monodromies of
circle fibrations of Mw are all of the form |LTa,b|, where a ∈ {3, 7, 13, 17} and b = g + 2.
Putting together the examples above, we have the following.

Proposition 2.21. For all g
δg ≤ |LT1,g|,

and hence
lim sup(δg)

g ≤ γ2
0

and
lim supL(S, φ) ≤ γ4

0 .

Let λ(a,b) = |LT(a,b)|, and let λ(x,y,z) = |P (tx, ty, tz)|. In Table 1, we show the smallest
known dilatations for orientable and unconstrained pseudo-Anosov mapping classes on
closed surfaces of genus 2 through 12. These put together the results in [AD] (Table 1.9),
[KT2] (Thm 1.6, 1.7, 1.12, and Prop. 4.3.7), [KKT] (Table 1) and [Hir] (Prop 4.7).

12



g orientable unconstrained
2 λ(1,2) ≈ 1.72208 same

3 λ(3,4) ≈ 1.40127 same

4 λ(1,4) ≈ 1.28064 λ(3,5) ≈ 1.26123

5 λ(1,6) ≈ 1.17628 λ(1,7) ≈ 1.14879

6 λ(10,8,3) ≈ 1.20189 λ(1,8) ≈ 1.12876

7 λ(2,9) ≈ 1.11548 same

8 λ(1,8) ≈ 1.12876 λ(18,17,7) ≈ 1.10403

9 λ(2,11) ≈ 1.09282 same

10 λ(1,10) ≈ 1.10149 λ(1,12) ≈ 1.08377

11 λ(1,12) ≈ 1.08377 λ(1,13) ≈ 1.07705

12 λ(12,20,3) ≈ 1.10240 λ(3,14) ≈ 1.07266

Table 1. Smallest known dilatations for genus g ≤ 12.

2.8. Dilatations of pseudo-Anosov mapping classes. We are particularly interested
in the subclass of pseudo-Anosov mapping classes whose stable and unstable foliations are
orientable. This is equivalent to the condition that the homological dilatation λhom(φ),
which is the spectral radius of the action of φ on the first homology of S, is equal to
the geometric dilatation λ(φ). Such mapping classes are called orientable. Let δ+

g be the
minimum dilatation for orientable pseudo-Anosov mapping classes on Sg. By the results
in [Pen] and [HK], δ+

g has the same asymptotic behavior as δg:

log(δ+
g ) � 1

g
.

In the orientable case, δ+
g has been computed for g = 2, 3, 4, 5, 7, 8 beginning with work

by Lanneau and Thiffeault in [LT] and continuing with [Hir], [AD] [KT2]. In [LT] Lanneau
and Thiffeault also gave the first attempt to describe the behavior of minimum dilatation
explicitly as a function of g. Given a polynomial p(t), the house of p(t) is given by

|p| = max{|µ| : p(µ) = 0}.

Question 2.22. Let

pn(t) = t2n − tn+1 − tn − tn−1 + 1.

Then for even genus g ≥ 2,

δ+
g = |pg|.

If the answer to Question 2.22 is affirmative, then

lim inf
g→∞

(δ+
g )g ≤ γ2

0 ,

where γ0 is the golden mean. This suggests the following conjecture (cf. Conjecture 1.1).
13



Conjecture 2.23. The genus-normalized minimum dilatations satisfy

lim inf
g→∞

(δ+
g )g = γ2

0 .

3. Digraphs and Perron units

The dynamics of a pseudo-Anosov mapping class φ : S → S, in particular, the structure
of the stable and unstable invariant foliations, can be captured in terms of an associated
directed graph, via an associated train track map. The train track map defines a Perron-
Frobenius linear map T that preserves a symplectic bilinear form, and the dilatation of
the mapping class equals the Perron-Frobenius eigenvalue of T . It follows that dilatations
are Perron units. The minimum dilatation problem for pseudo-Anosov mapping classes is
closely related in spirit to Lehmer’s problem for Mahler measures of monic integer polyno-
mials posed in [Leh]. In this section, we review Lehmer’s question on the distribution of
algebraic integers, and focus on the particular case of Perron units.

3.1. Mahler measure and Lehmer’s question. Given a monic integer polynomial

p(t) = td + ad−1t
d−1 + · · ·+ a0, ai ∈ Z

the Mahler measure is given by

M(p) =
∏

p(µ)=0

max{1, |µ|}.

In [Leh], Lehmer asks: is there a positive gap between 1 and the next smallest Mahler
measure?

The smallest known Mahler measure greater than one is called Lehmer’s number

λL ≈ 1.17628,

and its minimal polynomial for λL is

pL(t) = t10 + t9 − t7 − t6 − t5 − t4 − t3 + t+ 1.

By a result of Smyth [Smy], the smallest Mahler measure of a non-reciprocal irreducible
polynomial is approximately λS = 1.32472, which is greater than λL. Thus to solve
Lehmer’s problem it suffices to look at reciprocal polynomials.

3.2. Normalized house. The house of a polynomial is given by

|p| = max{|µ| : p(µ) = 0}.

We have the inequalities

|p| ≤ M(p) ≤ |p|d.(4)

We call |p|d the normalized house of p(t). It is an open question whether there is a positive
gap between 1 and the next smallest normalized house. If the answer is no, it would imply
that there are sequences of Mahler measures converging to 1 from above.

14



Lehmer’s polynomial pL has only one root outside the unit circle, and hence we have
the first inequality in Equation (4),

|pL| =M(pL).

The second inequality is also sharp (e.g., take p(t) = tn − 2).

3.3. Perron numbers. A Perron-Frobenius matrix T is an n × n matrix whose entries
are all non-negative real numbers, and such that for some k0, the entries of T k are all
positive all k ≥ k0. Given a non-negative matrix T = [ai,j ], one can define an associated
directed graph, or digraph, D with n vertices v1, . . . , vn and ai,j directed edges from vi to
vj . By this correspondence T is Perron-Frobenius if and only if D is strongly connected,
i.e., there is a directed path between any two vertices, and aperiodic, the path lengths of
cycles have no common divisor greater than one [Kit]. By the Perron-Frobenius theorem,
if T is Perron-Frobenius, then there is a vector v with positive entries such that Tv = λv,
for some λ > 1, and λ is completely determined by these properties. This λ is called the
Perron-Frobenius eigenvalue of T , or dilatation of D.

A Perron number is a real algebraic integer λ > 1 such that all algebraic conjugates have
complex norm strictly less than λ. An algebraic integer is a Perron number if and only if
it is the Perron-Frobenius eigenvalue of a matrix. Pisot and Salem numbers are examples
of Perron numbers. A Pisot number is an algebraic integer greater than one all of whose
other algebraic conjugates lie strictly inside the unit circle. A Salem number is an algebraic
integer greater than one all of whose other algebraic conjugates lie on or inside the unit
circle with at least one on the unit circle. The smallest Pisot number is the smallest Mahler
measure λS for non-reciprocal polynomials found by Smyth. It is not known whether there
are Salem numbers arbitrarily close to 1 or whether the infimum of all Mahler measures
greater than 1 is a Salem numbers. The smallest known Salem number is Lehmer’s number
λL.

Graph theory provides an answer to the minimum normalized house problem for Perron
numbers and their defining polynomials. Recalling the correspondence between Perron-
Frobenius matrices and digraphs, one notes that the smallest dilatation digraph has the
form given in Figure 3 (see [Pen]). The characteristic polynomial of the digraph is

pn(t) = tn − t− 1,

for n ≥ 4. The polynomial is interesting also in the case n = 2, since |p2| = γ0 is the golden
mean, and in the case n = 3, since p3 = x3 − x − 1 is the Smyth polynomial defining λS .
We also have

lim
n→∞

|pn|n = 2,

where the convergence is from above.
Properties of the normalized house of reciprocal Perron numbers were recently studied

in [McM2], showing that any Perron unit α of degree n satisfies the inequality

αn ≥ γ4
0 ,

where γ0 is the golden mean (see Theorem 3.2).
15



Figure 3. Minimum dilatation digraph.

3.4. Complexity of digraphs. The complexity c of a digraph is the number of edges
minus the number of vertices of the graph (or minus the topological Euler characteristic).

Lemma 3.1 (Ham-Song [HS]). If λ is the spectral radius of M , then c satisfies the in-
equality

c ≤ λ2n − 1.

Figure 4. Digraphs realizing LT1,n.

Figure 4 shows a family of directed graphs whose characteristic polynomials are given
by LT1,3. In the Figure, an edge labeled m is subdivided into a chain of m edges and m−1
additional vertices. Other examples of digraphs with the same dilatation were found in
[Bir]. The ones shown in Figure 4 have the additional property that they are defined from
the transition matrix of train track maps associated to pseudo-Anosov mapping classes
(see Section 6).

The LT polynomials satisfy
|LT1,n| ≤ |LTa,n|

for all 1 ≤ a < n, and for any fixed 0 < a,

lim
n→∞

|LTa,n|2n =

(
3 +
√

5

2

)2

= γ4
0 .
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Thus to find the smallest Perron units, it suffices to consider only those with λ < λn =
|LT1,n|. It follows that to solve the minimum dilatation problem it suffices to look at
mapping classes whose corresponding digraphs have complexity c ≤ 5.

3.5. Dilatations of digraphs whose matrices preserve a symplectic form. It is
well-known that any Perron number can be realized as the spectral radius of a Perron
Frobenius matrix. Furthermore, any Perron unit is the dilatation of a Perron Frobenius
matrix that preserves a symplecitc form. It is not known, however, whether every Perron
unit is a dilatation of pseudo-Anosov mapping class.

Given a Perron unit λ, we define its PF-degree to be the minimum dimension of a Perron
Frobenius matrix realizing λ. McMullen has recently announced the following result giving
further support to Conjecture 1.1.

Theorem 3.2 (McMullen [McM2]). Let pd be the minimum Perron unit of Perron degree
d. Then

(1) (pn)n ≥ γ4
0 for all n ≥ 1, and

(2) limn→∞(pn)n = γ4
0 .

4. Orientable pseudo-Anosov mapping classes

In [LT] Lanneau and Thiffeault studied potential defining polynomials for δ+
g in the

cases g = 2, . . . , 8, and found lower bounds for δ+
g for these g. Using known examples

whose dilatations match these lower bounds they determined δ+
g for g = 2, 3, 4, 5. From

the results of Cho and Ham in [CH], it follows that δ2 = δ+
2 . Lanneau and Thiffeault’s

lower bound for g = 6 agrees with δ+
5 , showing that δ+

g is not strictly monotone decreasing.

An example realizing δ+
7 was found in [AD] and in [KT2], and an example realizing δ+

8 was
found in [Hir]. The exact value for δ+

6 is not known.
The minimum dilatations of orientable pseudo-Anosov mapping classes for low genus

are given in Table 2. The associated PF-polynomial is the characteristic polynomial of
an associated Perron-Frobenius matrix. This is not necessarily irreducible. In Table 2 we
repeatedly see the cyclotomic factor σ(t) = t2 − t+ 1.

g δ+
g ≈ PF polynomial factorization

2 1.72208 t4 − t3 − t2 − t+ 1 irreducible
3 1.40127 t8 − t7 − t4 − t+ 1 σ(t)(t6 − t4 − t3 − t2 + 1)
4 1.28064 t8 − t5 − t4 − t3 + 1 irreducible
5 1.17628 t12 − t7 − t6 − t5 + 1 σ(t)(t10 + t9 − t7 − t6 − t5 − t4 − t3 + t+ 1)
7 1.11548 t18 − t11 − t9 − t7 + 1 σ(t)(t14 + t13 − t9 − t8 − t7 − t6 − t5 + t+ 1)
8 1.12876 t16 − t9 − t8 − t7 + 1 irreducible

Table 2. List of minimum dilatations and their PF polynomials.
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For a, b ∈ Z, define the Lanneau-Thiffeault polynomial LTa,b to be the polynomial

LTa,b(t) = t2b − tb+a − tb − tb−a + 1.

As can be seen from Table 2, for g = 2, 3, 4, 5, 7, 8, the PF polynomial for the minimum di-
latations of orientable pseudo-Anosov mapping classes is a Lanneau-Thiffeault polynomial.

Question 2.22 can be rephrased as follows.

Question 4.1 (Lanneau-Thiffeault Question). For even g ≥ 2 is it true that

δ+
g = |LT1,g|

where |LT1,g| is the house of LT1,g(t)?

By the following result, |LT1,g| is an upper bound for δ+
g for g ranging in an arithmetic

sequence or even integers.

Theorem 4.2. [[Hir]] For each g ≡ 2, 4 (mod 6), there is an orientable pseudo-Anosov
mapping class on a genus g closed surface with dilatation equal to |LT1,g|.

5. Fat train track maps and automata

For each pseudo-Anosov mapping class, one can associate a fat train track map that
encodes essential geometric information, including information about singularities, the in-
variant stable foliation, and dilatations. In this section, we give relevant background and
definitions.

5.1. Train tracks and train track maps. A train track is a finite topological graph τ
(or 1-complex) with no double edges or vertices of degree one. A smoothing of τ at a vertex
v is a choice of tangent directions for the half edges of τ that meet at v, that is if e1 and
e2 meet at a vertex, then they meet either smoothly or in a cusp.

In Figure 5, e3 meets e1 and e2 smoothly, while e1 and e2 meet at a cusp.

1

e2

e3e3

e1

e2

e

Figure 5. Smoothing at a trivalent vertex

Figure 6 shows a smoothing of a degree four vertex.
For our examples, we will consider train tracks consisting of a 3b-gon whose edges meet

in cusps and 2b-edges attached smoothly to the vertices of the 3b-gon in one of the ways
shown in Figure 5 and Figure 6.

By a fat graph, we mean a graph such that at any vertex v, there is a cyclic ordering of
the half edges that meet at v. This gives a local embedding of the half edges meeting at v
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Figure 6. Smoothing at a degree 4 vertex

into a disk centered at v. Given any fat graph Γ, there is a canonical orientable surface SΓ

with boundary on which Γ embeds so that

(1) at each vertex the ordering of the edges corresponds to the counterclockwise order-
ing on the surface; and

(2) SΓ deformation retracts to the image of Γ under the embedding.

Each boundary component is one boundary component of an annular complementary com-
ponent of τ on SΓ. Consider the edges surrounding the other interior boundary component.
Each time two adjacent edges meet in a cusp, we call it a vertex of the polygon formed by
τ around the boundary component. If the number of vertices of the polygon is k, we say
the boundary component is contained in a k-gon of τ .

A fat train track τ embedded on a surface S fills S if S is obtained from Sτ by filling in
some subset (possibly empty) of the boundary components of Sτ with disks.

A train track map f : τ → τ is a local embedding so that vertices map to vertices, and
edges map to edge-paths on τ so that no subinterval of an edge passes across two half edges
meeting at a cusp. We consider train track maps up to isotopy on τ .

A train track map f determines a linear transformation RE to itself as followis. Let E
be the set of (unoriented) edges of τ . Given e ∈ E , let

f∗(e) =
∑
e′

ae′e
′,

where ae′ is the number of times f(e) passes over e′. Define T : RE → RE , where for each
w ∈ RE ,

T (w)(e) = w(f∗(e)),

where w extends linearly. The transformation T is called the transition map defined by f .
The weight space Wτ of a train track τ is the subspace of RE consisting of edge labels

so that if three half edges e1, e2 and e3 meet at a vertex as in Figure 5, then

w(e1) + w(e2) = w(e3),

and if e1, e2, e3 and e4 meet as in Figure 6, then

w(e1) + w(e2) = w(e3) + w(e4).

An edge labeling w determines a labeling on edge paths, which we also denote by w. Given
a train track map f with transition map T , we have T (Wτ ) = Wτ .
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A train track τ ⊂ S and train track map f : τ → τ is compatible with a mapping class
(S, φ), if τ fills S and the induced map φ∗ on τ equals f .

Theorem 5.1. If (S, φ) is pseudo-Anosov, then

(1) (S, φ) has a compatible train track τ and train track map f : τ → τ ;
(2) the induced map f∗ on Wτ is Perron-Frobenius, and preserves a symplectic form;

and
(3) λ(φ) is the spectral radius of f∗.

In the examples that follow, it is possible to find a subcollection of edges in E whose
duals in RE form a basis for Wτ . We call these the real edges of τ and the complementary
set of edges the infinitessimal edges.

5.2. Simplest hyperbolic braid. Figure 7 gives an example of a fat train track and train
track map compatible with the simplest hyperbolic braid. The weights in the weight space
are determined by their labels on the two longer edges of the train track, and the three
encircling loops are the corresponding infinitessimal edges. The action of the simplest
hyperbolic braid monodromy defined by σ1σ

−1
2 acts on the real edges according to the

matrix [
1 1
1 2

]
,

and the dilatation is the largest eigenvalue 3+
√

5
2 = γ2

0 .

Figure 7. Train track for simplest hyperbolic braid monodromy

5.3. Orientable train tracks. Each train track on S determines a foliation on S as
follows. For each complementary region of τ on S surrounded by a k-gon, the foliation has
a k-pronged singularity. A train track is orientable, if there is an orientation on the edges
so that if two edges meet smoothly at a vertex, the orientations are compatible.

Figure 8 sketches the foliation around a boundary component of S corresponding to a
hexagon on a fat train track. The orientation on the train track determines an orientation
on the foliations.

Thus, we have the following.

Proposition 5.2. A pseudo-Anosov map (S, φ) that has a compatible train track map
f : τ → τ , where τ is orientable, is orientable.
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Figure 8. A hexagon on a fat traintrack, and corresponding foliations.

5.4. Train track automaton. Given two fat train tracks τ1 and τ2, a folding map f :
τ1 → τ2 is a quotient map obtained by identifying edge-segments of a pair of edge in τ1 as
follows. Take two edges e1 and e2 on τ1 with half edges that meet at a cusp at a vertex
v, and that are adjacent in the fat graph ordering. Then the folding map of e1 over e2 is
obtained by identifying the embedded image of a closed interval in e1 with endpoint v with
e2 by a homeomorphism sending v to v. The fat train track automaton is the set of all fat
train tracks with a directed edge from one train track to another if there is a folding map
between them.

Each folding map is a homotopy equivalence of graphs and defines a linear transformation
between edge labels, and between weight spaces. A circuit in the fat train track automaton
corresponds to a composition of folding maps together with an homeomorphism of train
tracks. Thus, the transition matrix for the train track map corresponds to a composition
of transition matrices for folding maps and a permutation matrix.

A train track automaton is a directed graph whose vertices are train tracks and edges
are folding maps.

Proposition 5.3 (Stallings [Sta], Ham-Song [HS]). Any pseudo-Anosov mapping class can
be represented by a circuit on a train track automaton.

6. Small dilatation examples

In this section, we define train track maps for mapping classes (Sn, φn) for all integers
n ≥ 2, and describe corresponding circuits in the train track folding automaton, and
digraphs. These train track maps define mapping classes with the same genus, boundary
components, and dilatations as (S1,n, φ1,n).

We begin with a fat train track map defining (S2, φ2) in Figure 9 . One can check
that all of the train tracks in the circuit shown in Figure 9 fix a genus two surface with
two complementary disk components, one bounded by the central hexagon, and the other
bounded by the edges of the hexagon and by each side of the four real edges. The train track
map defined by composing the folded mapping classes described in the circuit corresponds
to the orientable pseudo-Anoosv mapping classes whose dilatation realizes δ2 = δ+

2 .
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The center hexagon is made up of infinitessimal edges and the other four edges are real
edges. Starting at the upper left train track in the the automaton, we first fold edge a over
edge c and the following adjacent infinitessimal edge. In the next step we fold b over the
new edge a. Then we fold the new edge b over c. Finally by a rotation, we return to the
original train track.

rotation

a

c

b

a

b

b

c

b −> b+c

b −> a+b

a −> a+c

Figure 9. Train track circuit for example realizing δ+
2 and δ2.

The transition matrices for the folding diagrams starting at the top left and going around
counter-clockwise are:


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

 and


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 .
The composition is given by 

1 1 0 0
0 0 0 1
0 1 0 0
1 1 1 0
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and its characteristic polynomial is x4 − x3 − x2 − x+ 1. This gives

δ2 = δ+
2 = |x4 − x3 − x2 − x+ 1| ≈ 1.72208.

The train track in Figure 9 generalizes to the one in Figure 10.

b −> a + b

rotation

a

b

c

a

b

b

c

a −> a+c

b −> b+c

Figure 10. Circuit in train track automaton for (Sn, φn)

Let Gn be the digraphs in Figure 4. The “shape” of the train track map and folding
maps for (Sn, φn) are related to each other in a systematic way, and one observes the
following.

Proposition 6.1. The digraphs associated to the transition matrices for the train track
maps of (Sn, φn) are Gn, and hence the dilatations of (Sn, φn) are given by

λ(φn) = |LT1,n|.

The genus of Sn can be determined from the topological Euler characteristic of Gn,
χ(Gn) = 2n and the number of boundary components of the fat graph. There is one
component for the central 3n-gon, and either one or three other boundary components,
depending on whether n is divisible by 3. This implies the following.

Proposition 6.2. The surface Sn has genus g = n if n = 1, 2 (mod 3), and has genus
g = n− 1 if n = 0 (mod 3).
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From the train track maps, we can also determine when the mapping classes are ori-
entable, for this is exactly when the train tracks themselves are orientable as seen in the
next proposition.

Proposition 6.3. The mapping class (Sn, φn) is orientable if and only if n is even.

Proof. The complementary region of (Sn, φn) splits into a central 3n-gon and either one
n-gon, or three n/3-gons, depending on whether or not n is divisible by 3. In order for the
train track to be orientable, we need to have each polygon have an even number of sides.
Thus, n must be even.

When n is even, there are two possible ways to orient the central 3n-gon. Each extends
to a compatible orientation on the entire train track. (An example is shown in Figure 11).

Figure 11. Oriented train track for n = 4.
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