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Abstract � In this article we analyze totally periodic pseudo-Anosov ows in graph three manifolds. This means

that in each Seifert �bered piece of the torus decomposition, the free homotopy class of regular �bers has a �nite

power which is also a �nite power of the free homotopy class of a closed orbit of the ow. We show that each

such ow is topologically equivalent to one of the model pseudo-Anosov ows which we previously constructed

in [Ba-Fe]. A model pseudo-Anosov ow is obtained by glueing standard neighborhoods of Birkho� annuli and

perhaps doing Dehn surgery on certain orbits. We also show that two model ows on the same graph manifold

are isotopically equivalent (ie. there is a isotopy of M mapping the oriented orbits of the �rst ow to the oriented

orbits of the second ow) if and only if they have the same topological and dynamical data in the collection of

standard neighborhoods of the Birkho� annuli.

1. Introduction

Pseudo-Anosov ows are extremely common amongst three manifolds, for example1: 1) Suspension
pseudo-Anosov ows [Th1, Th2, Th3], 2) Geodesic ows in the unit tangent bundle of negatively curved
surfaces [An], 3) Certain ows transverse to foliations in closed atoroidal manifolds [Mo3, Cal1, Cal2,
Cal3, Fe4]; ows obtained from these by either 4) Dehn surgery on a closed orbit of the pseudo-Anosov
ow [Go, Fr], or 5) Shearing along tori [Ha-Th]; 6) Non transitive Anosov ows [Fr-Wi] and ows with
transverse tori [Bo-La].
The purpose of this article is to analyse the question: how many essentially di�erent pseudo-Anosov

ows are there in a manifold? Two ows are essentially the same if they are topologically equivalent. This
means that there is a homeomorphism between the manifolds which sends orbits of the �rst ow to orbits
of the second ow preserving orientation along the orbits. In this article, we will also consider the notion
of isotopic equivalence, i.e. a topological equivalence induced by an isotopy, that is, a homeomorphism
isotopic to the identity.
We will restrict to closed, orientable, toroidal manifolds. In particular they are suÆciently large in the

sense of [Wald3], that is, they have incompressible surfaces [He, Ja]. Manifolds with pseudo-Anosov ows
are also irreducible [Fe-Mo]. It follows that these manifolds are Haken [Ja]. We have recently extended
a result of the �rst author ([Ba2]) to the case of general pseudo-Anosov ows: if the ambient manifold is
Seifert �bered, then the ow is up to �nite cover topologically equivalent to a geodesic ow in the unit
tangent bundle of a closed hyperbolic surface [Ba-Fe, Theorem A]. In addition we also proved that if the
ambient manifold is a solvable three manifold, then the ow is topologically equivalent to a suspension
Anosov ow [Ba-Fe, Theorem B]. Notice that in both cases the ow does not have singularities, that
is, the type of the manifold strongly restricts the type of pseudo-Anosov that it can admit. This is in
contrast with the strong exibility in the construction of pseudo-Anosov ows � that is because many
ows are constructed in atoroidal manifolds or are obtained by ow Dehn surgery on the pseudo-Anosov
ow, which changes the topological type of the manifold. Therefore in many constructions one cannot
expect that the underlying manifold is toroidal.
In this article we will mainly study pseudo-Anosov ows in graph manifolds. A graph manifold is an

irreducible three manifold which is a union of Seifert �bered pieces. In a previous article [Ba-Fe] we
produced a large new class of examples in graph manifolds. These ows are totally periodic. This means
that each Seifert piece of the torus decomposition of the graph manifold is periodic, that is, up to �nite
powers, a regular �ber is freely homotopic to a closed orbit of the ow. More recently, Russ Waller [Wa]

1We also mention a recent work in progress by F. B�eguin, C. Bonatti and Bin Yu, constructing a wide family of new

Anosov ows; which can be seen as an extension of the construction in [Ba-Fe] ([BBB]).
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has been studying how common these examples are, that is, the existence question for these type of ows.
He showed that these ows are as common as they could be (modulo the necessary conditions).
In this article we will analyse the question of the classi�cation and rigidity of such ows. In order

to state and understand the results of this article we need to introduce the fundamental concept of a
Birkho� annulus. A Birkho� annulus is an a priori only immersed annulus, so that the boundary is a
union of closed orbits of the ow and the interior of the annulus is transverse to the ow. For example
consider the geodesic ow of a closed, orientable hyperbolic surface. The ambient manifold is the unit
tangent bundle of the surface. Let � be an oriented closed geodesic - a closed orbit of the ow - and
consider a homotopy that turns the angle along � by �. The image of the homotopy from � to the same
geodesic with opposite orientation is a Birkho� annulus for the ow in the unit tangent bundle. If � is
not embedded then the Birkho� annulus is not embedded. In general Birkho� annuli are not embedded,
particularly in the boundary. A Birkho� annulus is transverse to the ow in its interior, so it has induced
stable and unstable foliations. The Birkho� annulus is elementary if these foliations in the interior have
no closed leaves.
In [Ba-Fe, Theorem F] we proved the following basic result about the relationship of a pseudo-Anosov

ow and a periodic Seifert piece P : there is a �nite collection of elementary Birkho� annuli A1, ... , Ak,
which is unique up to homotopy along the ow (and isotopy restricted to the union of the interiors of the
annuli Ai), such that:
{ the interior of the Ai's are embedded and two-by-two disjoint;
{ the periodic orbits which are boundary components of the Birkho� annuli Ai are disjoint from the

union of the interiors of the Ai's. These orbits are called the vertical periodic orbits,
{ the spine is the union Z of all (closed) Birkho� annuli Ai. It is a deformation retract of P ,
{ the spine is minimal with respect to these conditions.
In particular, Z is connected and the vertical orbits are uniquely determined because of uniqueness

up to ow homotopy. Without the minimality condition the spine may not be unique. In general it may
happen that there is a Birkho� annulus A0 so that Z [ A0 is connected, and Z [ A0 also satis�es all the
properties of the de�nition of the spine, except for the minimality condition. See the details in [Ba-Fe] �
such an annulus A0 is associated with a lozenge which is not in the axis of any element of �1(P ) acting
freely in the orbit space. We will also abuse terminology in this article and say that Z is unique up to
ow isotopy to mean that it is unique up to ow homotopy and unique up to ow isotopy in the interior
of the Birkho� annuli.
In general the Birkho� annuli are not embedded in Z: it can be that the two boundary components

of the same Birkho� annulus are the same vertical periodic orbit of the ow. It can also occur that the
annulus wraps a few times around one of its boundary orbits. These are not exotic occurrences, but
rather fairly common.
In the sequel, we denote by N(Z) a representative tubular neighborhood of Z, i.e. a tubular neigh-

borhhod such that the local ow induced by � admits the following properties:
{ Z is a deformation retract of N(Z) (hence is isotopic to P ),
- every orbit of the local ow crossing one the Ai enters in N(Z) at a point where it is transverse, then

crosses Z at only one point, and exits from N(Z) at a point where it is transverse,
{ for every vertical periodic orbit � in N(Z), the local stable leaf of � is a �nite union of annuli, called

stable vertical annuli, tangent to the ow, each transverse to @N(Z) and realizing a homotopy between
(a power of) � and a closed loop in @N(Z). One de�nes similarly unstable vertical annuli in N(Z).
These conditions still allow that some orbits of the local ow in N(Z) do not cross the spine, or that

the ow is not transverse to the boundary of N(Z), but it will follow from Theorems B and C below that
these situations do not arise in the case of totally periodic pseudo-Anosov ows and that in this situation
every orbit of the local ow either meet Z or lies in a vertical annulus.
We �rst analyse periodic Seifert pieces. The �rst theorems (Theorem A and B) are valid for any closed

orientable manifold M , not necessarily a graph manifold. The �rst result is (see Proposition 3.2):

Theorem A � Let � be a pseudo-Anosov ow in M3. If fPig is the (possibly empty) collection of
periodic Seifert pieces of the torus decomposition of M , then the spines Zi and neighborhoods N(Zi) can
be chosen to be pairwise disjoint.
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We prove that the fZig can be chosen pairwise disjoint. Roughly this goes as follows: we show that the
vertical periodic orbits in Zi cannot intersect Zj for j 6= i, because �bers in di�erent Seifert pieces cannot
have common powers which are freely homotopic. We also show that the possible interior intersections
are null homotopic and can be isotoped away.
The next result (Proposition 3.4) shows that the boundary of the pieces can be put in good position

with respect to the ow:

Theorem B � Let � be a pseudo-Anosov ow and Pi; Pj be periodic Seifert pieces with a common
boundary torus T . Then T can be isotoped to a torus transverse to the ow.

The main property used to prove this result is that regular �bers restricted to both sides of T (from
Pi and Pj) cannot represent the same isotopy class in T .
Finally we prove the following (Proposition 3.5):

Theorem C � Let � be a totally periodic pseudo-Anosov ow with periodic Seifert pieces fPig. Then
neighborhoods fN(Zi)g of the spines fZig can be chosen so that their union is M and they have pairwise
disjoint interiors. In addition each boundary component of every N(Zi) is transverse to the ow. Each
N(Zi) is ow isotopic to an arbitrarily small neighborhood of Zi.

We stress that for general periodic pieces it is not true that the boundary of N(Zi) can be isotoped to
be transverse to the ow. There are some simple examples as constructed in [Ba-Fe]. The point here is
that we assume that all pieces of the JSJ decomposition are periodic Seifert pieces.
Hence, according to Theorem C, totally periodic pseudo-Anosov ow are obtained by gluing along the

boundary a collection of small neighborhoods N(Zi) of the spines. There are several ways to perform
this gluing which lead to pseudo-Anosov ows. The main result of this paper is that the resulting
pseudo-Anosovs ows are all topologically equivalent one to the other. More precisely (see section 5.1):

Theorem D � Let �, 	 be two totally periodic pseudo-Anosov ows on the same orientable graph
manifoldM . Let Pi be the Seifert pieces of M , and let Zi(�), Zi(	) be spines of �, 	 in Pi. Then, � and
	 are topologically equivalent if and only if there is a homeomorphism of M mapping the collection of
spines fZi(�)g onto the collection fZi(	)g and preserving the orientations of the vertical periodic orbits
induced by the ows.

Theorem D is a consequence of the following Theorem, more technical but slightly more precise (see
section 5.2):

Theorem D' � Let �, 	 be two totally periodic pseudo-Anosov ows on the same orientable graph
manifoldM . Let Pi be the Seifert pieces of M , and let Zi(�) be spines of �, with tubular neighborhoods
N(Zi(�)) as in the statement of Theorem C. Then, � and 	 are isotopically equivalent if and only if, there
is an isotopy in M mapping every spine Zi(�) onto spines Zi(	) of 	, mapping every stable/unstable
vertical annulus of � inN(Zi(�)) to a stable/vertical annulus inN(Zi(	)) and preserving the orientations
of the vertical periodic orbits induced by the ows.

The main ideas of the proof are as follows. One implication is obvious: if the two ows are isotopically
equivalent, the isotopy from the de�nition of isotopically equivalent, maps every Zi(�) onto a spine Zi(	)
of 	, with all the required properties.
Conversely, assume that up to isotopy � and 	 admit the same decomposition in neighborhoods

N(Zi) of spines Zi, so that they share exactly the same oriented vertical periodic orbits and the same
stable/unstable vertical annuli. Consider all the lifts to the universal cover of the tori in @N(Zi) for all

i. This is a collection T of properly embedded topological planes in fM , which is transverse to the lifted

ows e� and e	. We show that an orbit of e� or e	 (if not the lift of a vertical periodic orbits) is completely
determined by its itinerary up to shifts: the itinerary is the collection of planes it intersects. One thus

gets a map between orbits of e� and orbits of e	. This extends to the lifts of the vertical periodic orbits.
This is obviously group equivariant. The much harder step is to prove that this is continuous, which we
do using the exact structure of the ows and the combinatorics. Using this result we can then show that
the ow � is topologically equivalent to 	. Since the action on the fundamental group level is trivial,
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this topological equivalence is homotopic to the identity, hence, by a Theorem by Waldhausen ([Wald3]),
isotopic to the identity: it is an isotopic equivalence.
We then show (section 6.2) that for any totally periodic pseudo-Anosov ow � there is a model pseudo-

Anosov ow as constructed in [Ba-Fe] which has precisely the same data Zi, N(Zi) that � has. This
proves the following:

Main theorem � Let � be a totally periodic pseudo-Anosov ow in a graph manifold M . Then � is
topologically equivalent to a model pseudo-Anosov ow.

Model pseudo-Anosov ows are de�ned by some combinatorial data (essentially, the data of some fat
graphs and Dehn surgery coeÆcients; see section 6.1 for more details) and some parameters �i (one for
each Seifert piece Pi). A nice corollary of Theorem D' is that, up to isotopic equivalence, the model ows
actually do not depend on the choice of the �i's, nor on the choice of the selection of the particular gluing
map between the model periodic pieces.
In the last section, we make a few remarks on the action of the mapping class group of M on the space

of isotopic equivalence classes of totally periodic pseudo-Anosov ows on M .

2. Background

Pseudo-Anosov ows � de�nitions

De�nition 2.1. (pseudo-Anosov ow) Let � be a ow on a closed 3-manifold M . We say that � is a
pseudo-Anosov ow if the following conditions are satis�ed:

- For each x 2 M , the ow line t ! �(x; t) is C1, it is not a single point, and the tangent vector
bundle Dt� is C0 in M .

- There are two (possibly) singular transverse foliations �s;�u which are two dimensional, with leaves
saturated by the ow and so that �s;�u intersect exactly along the ow lines of �.

- There is a �nite number (possibly zero) of periodic orbits fig, called singular orbits. A stable/unstable
leaf containing a singularity is homeomorphic to P � I=f where P is a p-prong in the plane and f is a
homeomorphism from P � f1g to P � f0g. In addition p is at least 3.

- In a stable leaf all orbits are forward asymptotic, in an unstable leaf all orbits are backwards asymp-
totic.

Basic references for pseudo-Anosov ows are [Mo1, Mo2] and [An] for Anosov ows. A fundamental
remark is that the ambient manifold supporting a pseudo-Anosov ow is necessarily irreducible - the
universal covering is homeomorphic to R3 ([Fe-Mo]). We stress that in our de�nition one prongs are not
allowed. There are however \tranversely hyperbolic" ows with one prongs:

De�nition 2.2. (one prong pseudo-Anosov ows) A ow � is a one prong pseudo-Anosov ow in M3 if
it satis�es all the conditions of the de�nition of pseudo-Anosov ows except that the p-prong singularities
can also be 1-prong (p = 1).

Torus decomposition

Let M be an irreducible closed 3{manifold. If M is orientable, it has a unique (up to isotopy) minimal
collection of disjointly embedded incompressible tori such that each component of M obtained by cutting
along the tori is either atoroidal or Seifert-�bered [Ja, Ja-Sh] and the pieces are isotopically maximal with
this property. If M is not orientable, a similar conclusion holds; the decomposition has to be performed
along tori, but also along some incompressible embedded Klein bottles.
Hence the notion of maximal Seifert pieces in M is well-de�ned up to isotopy. If M admits a pseudo-

Anosov ow, we say that a Seifert piece P is periodic if there is a Seifert �bration on P for which, up to
�nite powers, a regular �ber is freely homotopic to a periodic orbit of �. If not, the piece is called free.

Remark. In a few circumstances, the Seifert �bration is not unique: it happens for example when P

is homeomorphic to a twisted line bundle over the Klein bottle or P is T 2 � I. We stress out that our
convention is to say that the Seifert piece is free if no Seifert �bration in P has �bers homotopic to a
periodic orbit.

Orbit space and leaf spaces of pseudo-Anosov ows
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Notation/de�nition: We denote by � : fM ! M the universal covering of M , and by �1(M) the funda-

mental group of M , considered as the group of deck transformations on fM . The singular foliations lifted

to fM are denoted by e�s; e�u. If x 2M let W s(x) denote the leaf of �s containing x. Similarly one de�nes

W u(x) and in the universal cover fW s(x);fW u(x). Similarly if � is an orbit of � de�ne W s(�), etc... Let

also e� be the lifted ow to fM .

We review the results about the topology of e�s; e�u that we will need. We refer to [Fe2, Fe3] for detailed

de�nitions, explanations and proofs. The orbit space of e� in fM is homeomorphic to the plane R2 [Fe-Mo]

and is denoted by O �= fM=e�. There is an induced action of �1(M) on O. Let

� : fM ! O �= R2

be the projection map: it is naturally �1(M)-equivariant. If L is a leaf of e�s or e�u, then �(L) � O

is a tree which is either homeomorphic to R if L is regular, or is a union of p-rays all with the same

starting point if L has a singular p-prong orbit. The foliations e�s; e�u induce �1(M)-invariant singular

1-dimensional foliations Os;Ou in O. Its leaves are �(L) as above. If L is a leaf of e�s or e�u, then a

sector is a component of fM � L. Similarly for Os;Ou. If B is any subset of O, we denote by B �R the

set ��1(B). The same notation B �R will be used for any subset B of fM : it will just be the union of
all ow lines through points of B. We stress that for pseudo-Anosov ows there are at least 3-prongs in

any singular orbit (p � 3). For example, the fact that the orbit space in fM is a 2-manifold is not true in
general if one allows 1-prongs.

De�nition 2.3. Let L be a leaf of e�s or e�u. A slice of L is l �R where l is a properly embedded copy
of the reals in �(L). For instance if L is regular then L is its only slice. If a slice is the boundary of a
sector of L then it is called a line leaf of L. If a is a ray in �(L) then A = a �R is called a half leaf
of L. If � is an open segment in �(L) it de�nes a ow band L1 of L by L1 = � �R. We use the same
terminology of slices and line leaves for the foliations Os;Ou of O.

If F 2 e�s and G 2 e�u then F and G intersect in at most one orbit.
We abuse convention and call a leaf L of e�s or e�u periodic if there is a non trivial covering translation

g of fM with g(L) = L. This is equivalent to �(L) containing a periodic orbit of �. In the same way

an orbit  of e� is periodic if �() is a periodic orbit of �. Observe that in general, the stabilizer of an
element � of O is either trivial, or a cyclic subgroup of �1(M).

Perfect �ts, lozenges and scalloped chains

Recall that a foliation F in M is R-covered if the leaf space of eF in fM is homeomorphic to the real
line R [Fe1].

De�nition 2.4. ([Fe2, Fe3]) Perfect �ts - Two leaves F 2 e�s and G 2 e�u, form a perfect �t if F \G = ;

and there are half leaves F1 of F and G1 of G and also ow bands L1 � L 2 e�s and H1 � H 2 e�u, so
that the set

F 1 [H1 [ L1 [G1

separates M and forms an a rectangle R with a corner removed: The joint structure of e�s; e�u in R is
that of a rectangle with a corner orbit removed. The removed corner corresponds to the perfect of F and
G which do not intersect.

We refer to �g. 1, a for perfect �ts. There is a product structure in the interior of R: there are
two stable boundary sides and two unstable boundary sides in R. An unstable leaf intersects one stable
boundary side (not in the corner) if and only if it intersects the other stable boundary side (not in the
corner). We also say that the leaves F;G are asymptotic.

De�nition 2.5. ([Fe2, Fe3]) Lozenges - A lozenge R is an open region of fM whose closure is homeomor-
phic to the product of the real line with a closed rectangle with two corners removed. More speci�cally two

points p; q (possibly singular) de�ne the corners of a lozenge if there are half leaves A;B of fW s(p);fW u(p)
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Figure 1: a. Perfect �ts in fM , b. A lozenge, c. A chain of lozenges.

Figure 2: A partial view of a scalloped region. Here C;F0; L0 are stable leaves, so this is a s-scalloped region.

de�ned by p and C;D half leaves of fW s(q);fW u(q) de�ned by p; q, so that A and D form a perfect �t and
so do B and C. The lozenge R does not have any singularities. The sides of R are A;B;C;D. The sides
are not contained in the lozenge, but are in the boundary of the lozenge. See �g. 1, b.

There may be singularities in the boundary of the lozenge: on the sides A, B, C and D, or in the
corner orbits.
Two lozenges are adjacent if they share a corner and there is a stable or unstable leaf intersecting both

of them, see �g. 1, c. Therefore they share a side. A chain of lozenges is a collection fCig; i 2 I, where
I is an interval (�nite or not) in Z; so that if i; i + 1 2 I, then Ci and Ci+1 share a corner, see �g. 1, c.
Consecutive lozenges may be adjacent or not. The chain is �nite if I is �nite.

De�nition 2.6. (scalloped chain) Let C be a chain of lozenges. If any two successive lozenges in the
chain are adjacent along one of their unstable sides (respectively stable sides), then the chain is called
s-scalloped (respectively u-scalloped) (see �g. 2 for an example of a s-scalloped chain). Observe that a
chain is s-scalloped if and only if there is a stable leaf intersecting all the lozenges in the chain. Similarly,
a chain is u-scalloped if and only if there is an unstable leaf intersecting all the lozenges in the chain.
The chains may be in�nite. A scalloped chain is a chain that is either s-scalloped or u-scalloped.

For simplicity when considering scalloped chains we also include any half leaf which is a boundary
side of two of the lozenges in the chain. The union of these is called a scalloped region which is then a
connected set.
We say that two orbits ; � of e� (or the leaves fW s();fW s(�)) are connected by a chain of lozenges

fCig; 1 � i � n, if  is a corner of C1 and � is a corner of Cn.

Remark 2.7. A key fact, �rst observed in [Ba3], and extensively used in [Ba-Fe], is that the lifts in fM
of elementary Birkho� annuli are related to lozenges invariant by some cyclic subgroup of �1(M) (see
[Ba3, Proposition 5:1] for the case of embedded Birkho� annuli). It will also play a crucial role in the
sequel. More precisely: let A be an elementary Birkho� annulus. We say that A lifts to the lozenge C

in fM if the saturation under e� of the interior of A is contained in C. It follows that this lift intersects
every orbit in C exactly once and also that the two boundary closed orbits of A lift
to the full corner orbits of C.

In particular the following important property also follows: if � and � are the periodic orbits in
@A (traversed in the ow forward direction), then there are positive integers n;m so that �n is freely

homotopic to (�m)�1. We emphasize the free homotopy between inverses.
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Remark 2.8. According to remark 2.7, chains of lozenges correspond to sequences of Birkho� annuli,
every Birkho� annulus sharing a common periodic orbit with the previous element of the sequence, and
also a periodic orbit with the next element in the sequence. When the sequence closes up, it provides an
immersion f : T 2 (or K) ! M , which is called a Birkho� torus (if the cyclic sequence contains an even
number of Birkho� annuli), or a Birkho� Klein bottle (in the other case).

3. Disjoint pieces and transverse tori

As mentioned in the introduction, in [Ba-Fe] section 7, we proved that if P is a periodic Seifert �bered
piece of M with a pseudo-Anosov ow � then the following happens: there is a connected, �nite union
Z of elementary Birkho� annuli, which is weakly embedded � this means that restricted to the union of
the interiors of the Birkho� annuli it is embedded and the periodic orbits are disjoint from the interiors.
We call such a Z a spine for the Seifert piece P .
In addition a compact neighborhood N(Z) is a representative for the Seifert �bered piece P if:
{ Z is a deformation retract of N(Z) (hence is isotopic to P ),
{ every orbit of the local ow crossing one the Ai enters in N(Z) at a point where it is transverse, then

crosses Z at only one point, and exits from N(Z) at a point where it is transverse,
{ for every vertical periodic orbit � in N(Z), the local stable leaf of � is a �nite union of annuli, called

stable vertical annuli, tangent to the ow, each transverse to @N(Z) and realizing a homotopy between
(a power of) � and a closed loop in @N(Z). One de�nes similarly unstable vertical annuli in N(Z).
We select one initial representative N(Z), which will be modi�ed all along the section.
In this section we prove several important results concerning the relative position of spines of distinct

periodic Seifert pieces (if there are such), and we prove that the representatives N(Z) can be chosen so
that every boundary component of N(Z) are transverse to the ow and that the retraction of N(Z) to
Z can be performed along the ow �.
Let us recall briey how the spine Z is constructed in [Ba-Fe]: let h be the element of �1(P ) correspond-

ing to regular �bers of P : h lies in the pseudo-center of �1(P ) � actually, it generates the pseudo-center
except in a few elementary cases. We consider the graph T whose vertices are �xed points of h in O, and
whose edges correspond to projections in O of h-invariant lozenges (cf. de�nition 2:11 in [Ba-Fe]). Then,
T is connected, �1(P )-invariant. We de�ne the subtree T 0 of T which is the union of axes of elements
of �1(P ) acting freely on T : it is a connected �1(P )-invariant subtree (see the paragraph \Pruning the
tree" in [Ba-Fe][section 7]). Every edge of T 0 corresponds to a h-invariant lozenge which is the lift of
a weakly embedded elementary Birkho� annulus. According to the following lemma, this elementary
Birkho� annulus is well-de�ned up to homotopy along the ow:

Lemma 3.1. Let A1; A2 be two elementary Birkho� annuli which lift to the same lozenge C in fM and
so that the cores of A1; A2 are freely homotopic. Then A1 is ow homotopic to A2 in the interior. That
is, there is a homotopy ft from A1 to A2 so that for any x in the interior of A1, f[0;1](x) is contained in

a ow line of �. In addition if x is a point where A1 does not self intersect, then ft([0; 1])(x) is a set of
no self intersections, of the homotopy.

Proof. Choose �xed lifts eA1; eA2 so that the interiors intersect exactly the orbits in C. Let g in �1(M) so

that it generates Stab( eAi). The fact that a single g generates both stabilizers uses the condition on the
cores of A1; A2.

Let E be the interior of eA1. For any p inE, there is a unique real number t(p) so that e�t(p)(p) = �i(p) is a

point in eA2. This map t(p) is continuous and clearly equivariant under g: e�t(g(p)) (g(p)) = g(�i(p)). Since
this is equivariant, it projects to a map from the interior of A1 to the interior of A2. The linear homotopy
along the orbits in the required homotopy. The homotopy is an isotopy where A1 is embedded. �

The fact that all these Birkho� annuli can be selected so that their union is weakly embedded is proved
in the paragraph \Weaky embedded union of Birkho� annuli" of [Ba-Fe][section 7]. It follows easily from
this description and from lemma 3.1 that the spine Z is unique up to homotopy along the ow and unique
up to isotopy restricted to the union of the interiors of the Birkho� annuli. In particular, the vertical
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orbits, i.e. the periodic orbits of each Zi are uniquely determined by Pi and �. In this article we abuse
terminology and say that Z is unique up to ow isotopy.

Proposition 3.2. Let � be a pseudo-Anosov ow and let fPi; 1 � i � ng (where n may be 0) be the
periodic Seifert pieces of �. Then we may choose the spines Zi of Pi so that they are pairwise disjoint.

Proof. We prove the proposition in several steps.

I) For any i 6= j, a periodic orbit in Zi does not intersect Zj .
In this part there will be no need to make adjustments to the Birkho� annuli. Suppose � is a closed

orbit in Zi which intersects Zj with j; i distinct. The �rst situation is that � intersects a closed orbit �
in Zj , in which case � = �. Recall that in a periodic Seifert piece some power �ni represents a regular
�ber in Zi and similarly some power �nj represents a regular �ber in Zj. But then the regular �bers in
Zi; Zj have common powers � this is impossible for distinct Seifert �bered pieces of M [He].
The second situation is that � intersects the interior of a Birkho� annulus A in Zj . Since Zj is a spine

for the Seifert piece Pj , there is an immersed Birkho� torus T in Zj containing A. In addition choose

T to be �1-injective. This can be achieved by looking at a lift eT to fM and the sequence of lozenges

intersected by eT . If there is no backtracking in the sequence of lozenges then T is �1-injective. It is easy
to choose one such T with no backtracking.

Fix a lift eA of A contained in a lift eT of T and let e� be a lift of � intersecting eA. Since T is

incompressible, eT is a properly embedded plane in fM . The topological plane eT is contained (except for
the lifts of the periodic orbits) in a bi-in�nite chain of lozenges C. Any orbit in the interior of one of the

lozenges in C intersects eT exactly once.
Since � corresponds to a closed curve in Pi and Zj is isotopic into Pj, then � can be homotoped to

be disjoint from Zj. Lift this homotopy to fM from e� to a bi-in�nite curve in fM disjoint from eT . Recall
that e� intersects eT in a single point. This implies that a whole ray r+ of e� has to move across eT by the

homotopy. Hence this ray is at bounded distance a0 from eT . As � is compact this implies that a power
of � is freely homotopic into T . More precisely: let g be the covering translation which is a generator of
Stab(e�) and such that g�1(r+) � r+. Let p be the initial point of r+. For every n > 0 let qn = g�n(p)

which is a point in r+ and hence d(qn; eT ) < a0 for all n. Then gn(qn) = p is at a distance < a0 from

gn(eT ) for any n > 0. But there are only �nitely many translates of eT which intersect any compact set

in fM . It follows that there is n > 0 so that gn( eT ) = eT , meaning that �n is freely homotopic into T . In

addition gn is in Stab(eT ).
This is now a contradiction because gn leaves invariant the bi-in�nite chain of lozenges C. In addition

g leaves e� invariant, so gn(e�) = e�. Since gn also leaves C invariant, then gn leaves invariant the lozenge
B of C containing e�. But then gn would leave invariant the pair of corners of B, contradiction to leaving
invariang e�. We conclude that this cannot happen. This �nishes part I).

II) Suppose that for some i 6= j there are Birkho� annuli A � Zi; B � Zj so that A \B 6= ;.
Notice that the intersections are in the interior by part I). Recall also that the interiors of the Birkho�

annuli are embedded. By a small perturbation put the collection fZkg in general position with respect
to itself. Let Æ be a component of A \B.
Suppose �rst that Æ is not null homotopic in A. Since A is �1-injective, then the same is true for Æ in

M and Æ in B. Then Æ is homotopic in A to a power of a boundary of A, which itself has a common power
with the regular �ber of Pi. This implies that the �bers in Pi; Pj have common powers, contradiction as
in part I).
It follows that Æ is null homotopic in A and hence bounds a disc D in A. Notice that Æ is embedded

as both A and B have embedded interiors. We proceed to eliminate such intersections by induction. We
assume that Æ is innermost in D: the interior of D does not intersect any Zk; k 6= i (switch j if necessary).
In addition Æ also bounds a disc D0 in B whose interior is disjoint from D � by choice of D. Hence D[D0

is an embedded sphere which bounds a ball B in M � because M is irreducible. We can use this ball to
isotope Zj to replace a neighborhood of D0 in B by a disc close to D and disjoint from D, eliminating
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the intersection Æ and possibly others. Induction eliminates all intersections so we can assume that all
fZkg are disjoint (for a more detailed explanation of this kind of argument, see [Ba3, section 7]).
Notice that the modi�cations in fZkg in part II) were achieved by isotopies. This �nishes the proof of

the proposition. �

Recall that we are assuming the manifold M to be orientable, so that we can use [Ba-Fe, Theorem
F]; however the following Lemma holds in the general case, hence we temporally drop the orientability
hypothesis.

Lemma 3.3. (local transversality) Let V be an immersed Birkho� torus or Birkho� Klein bottle with no

backtracking � this means that for any lift of V to fM , the sequence of lozenges associated to it has no

backtracking. Let eV be a �xed lift of V to fM and let e� a lift to eV of a closed orbit � in V . There are well

de�ned lozenges B1; B2 in fM which contain a neighborhood of e� in eV (with e� removed): e� is a corner
of both B1 and B2. If B1; B2 are adjacent lozenges then V can be homotoped to a torus or Klein bottle V 0

transverse to � near �, which furthermore satis�es the following additional property: for every element
x of V 0, either x lies in the local stable leaf leaf of � (if B1, B2 are adjacent along a stable leaf), the local
unstable leaf of � (if B1, B2 are adjacent along an unstable leaf), or x lies in the �-orbit of an element
of V . In other words, any neighborhood of V contains a torus or Klein bottle ow homotopic to V 0.

Conversely, if V can be homotoped to be transverse to � near � then B1 and B2 are adjacent. This is

independent of the lift eV of V and of e�.

Proof. Formally we are considering a map f : T 2 (or K) ! M so that the image is the union V of
(immersed) Birkho� annuli. The homotopy is a homotopy of the map f and it may peel o� pieces of V
which are glued together. This occurs for instance if the orbit � is traversed more than once in V , the
image of f . An example of this is a Birkho� annulus that wraps around its boundary a number of times.
Another possibility is that many closed curves in T 2 or K may map to � and we are only modifying the
map near one of these curves.
Let S be the domain of f which is either the torus T 2 or the Klein bottle K. There is a simple

closed curve � in S and a small neighborhood E of � in S so that f(E) is also the projection of a small

neighborhood of e� in eV to M . Notice that E may be an annulus or Mobius band. The statement \V can
be homotoped to be transverse to � in a neighborhood of �" really means that f jE can be homotoped
so that its �nal image f 0jE is transverse to �. We will abuse terminology and keep referring to this as
\V can be homotoped ...".
Let g be a covering translation associated to f(�). It follows that g(e�) = e�. In addition since g is

associated to a loop coming from S (and not just a loop in V ), then g preserves eV and more to the point
here g preserves the pair B1; B2. It may be that g switches B1; B2, for example if � is one sided in a
Mobius band. This is crucial here: if we took g associated to � for instance, then g(e�) = e�, but g could
scramble the lozenges with corner e� in an unexpected manner and one could not guarantee that B1; B2

would be preserved by g. We also choose � so that f(�) = �.

Suppose �rst B1; B2 are adjacent and wlog assume they are adjacent along a half leaf Z of fW u(�).
The crucial fact here is that since g preserves the pair B1; B2 then g leaves Z invariant. Let U be a
neighborhood of � in M . Choose it so the intersection with f(E) is either an annulus or Mobius band
(in general only immersed). Using the image �(Z) of the half leaf Z we can homotope the power of �
corresponding to g (that is, corresponding to f(�) as a parametrized loop) away from � so that its image
in �(Z) is transverse to the ow and closes up. In the universal cover g preserves the set B1; B2 then

the pushed curve from e� returns to the same sector of fM �fW s(e�) and this curve can be closed up when
mapped to M . Once that is done we can also homotope a neighborhood of � in V as well to be transverse
to �. Observe that this homotopy can be done so that � is homotoped inside W s(�) and that points of
V n � are homotoped along the ow, see �gure 3.
In the most general situation that neighborhood of � in V could be an annulus which is one sided in

M , then the push away from � could not close up. In our situation it may be that this annulus goes
around say twice over � and going once around � sends the lozenges B1; B2 to other lozenges. But going
around twice over � (corresponding to g) returns B1[B2 to itself. If the neighborhood is a Mobius band,
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Figure 3: A transverse view of the homotopy. Lines with arrows correspond to owlines, green lines represent local

stable semi leaves and the red line represents the local unstable semi leaf along which B1 and B2 are adjacent.

we want to consider the core curve as it generates the fundamental group of this neighborhood. This
�nishes the proof of the �rst statement of the lemma.

Suppose now that V can be homotoped to be transverse to � is a neighborhood of �. We use the same
setup as in the �rst part. Let U be a neighborhood of � in M so that the pulled back neighborhood of
� in S is either an annulus or Mobius band. We assume that V can be perturbed near � to V 0 in U ,
keeping it �xed in @U , and to be transverse to � in a neighborhood of �. Let A be the the part of V 0

which is the part of V perturbed near �.

Consider all prongs of (fW s(e�)[fW u(e�))�e�. By way of contradiction we are assuming that the lozenges
B1; B2 are not adjacent. Then there are at least 2 such prongs as above separating B1 from B2 in fM � e�
on either component of fM � (B1 [B2 [ e�). Let eA be the lift of A near e�.
We �rst show that eA\ e� is empty. Suppose not and let p in the intersection. Since A is transverse to �

then eA is transverse say to e�u so we follow the intersection eA\fW u(p) from p. This projects to a compact

set in A, contained in the interior of A as fW u(p) does not intersect @ eA. This is because @ eA is contained
in the union of the lozenges B1; B2 and they are disjoint from any prong of p. So the original curve in
fW u(p) has to return to e� and looking at this curve in fW u(�) this transverse curve has to intersect e�
twice, which makes it impossible to be transverse to the ow.

Since eA cannot intersect e� and it has boundaries in B1 and B2 then it has to intersect at least two

prongs from e�, at least one stable and one unstable prong in eU . Project to M . Then A cannot be
transverse to the ow �. This is because in a stable prong of � the ow is transverse to A in one
direction and in an unstable prong of � the ow is transverse to A in the opposite direction. This �nishes
the proof of lemma 3.3. �

Proposition 3.4. (transverse torus) Let � be a pseudo-Anosov ow in M3. Suppose that Pi; Pj are
periodic Seifert �bered pieces which are adjacent and let T be a torus in the common boundary of Pi; Pj.
Then we can choose N(Zi); N(Zj) representative neighborhoods of Pi; Pj so that the components Ti; Tj of
@N(Zi); @N(Zj) isotopic to T are the same set and this set is transverse to �.

Proof. By proposition 3.2 we may assume that N(Zi); N(Zj) are disjoint. Since Zi is a spine for Pi, the
torus T is homotopic to a Birkho� torus T1 contained in Zi. We assume that T1 has no backtracking.
Quite possibly T1 is only an immersed torus, for example there may be Birkho� annuli in Zi which are

covered twice by T1. The torus T1 lifts to a properly embedded plane eT1 which intersects a unique bi-
in�nite chain of lozenges B1. With appropriate choices we may assume that �1(T ) �= Z2 corresponds to
a subgroup G of covering translations leaving B1 invariant. The corners of the lozenges in B1 project to
closed orbits in T1. These have powers which are freely homotopic to the regular �ber in Pi because Pi

is a periodic Seifert piece. Similarly Pj produces a Birkho� torus T2 homotopic to T with T2 contained

in Zj and a lift eT2 contained in a bi-in�nite chain of lozenges B2, which is also invariant under the same
G. The corners of the lozenges in B2 project to closed orbits of the ow with powers freely homotopic to
a regular �ber in Pj . If these two collections of corners are the same, they have the same isotropy group,
which would imply the �bers in Pi; Pj have common powers, impossible as seen before.
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We conclude that B1;B2 are distinct and both invariant under G �= Z2. This is an exceptional situation
and proposition 5.5 of [Ba-Fe] implies that both chains of lozenges are contained in a scalloped region
and one of them (say B1) is s-scalloped and the other (B2) is u-scalloped. The lozenges in the s-scalloped
region all intersect a common stable leaf, call it E and the corners of these lozenges are in stable leaves
in the boundary of the scalloped region.

Let then � be a periodic orbit in T1 with lift e� to eT1 and lozenges B1; B2 of B1 which have corner e�.
Then B1; B2 are adjacent along an unstable leaf. Further if f(�) is the curve as in the proof of the previous
lemma, which is homotopic to a power of �, then f(�) is in T and so the covering translation associated

to f(�) preserves eT1 and hence also B1; B2. By the previous lemma we can homotope T1 slightly near �
to make it transverse to the ow near �. When lifting to the universal cover, the corresponding lift of the

perturbed torus will not intersect e�, but will intersect all orbits in the half leaf of fW u(e�) which is in the
common boundary of B1 and B2. Do this for all closed orbits of � in T1. Notice we are pushing T1 along
unstable leaves. Consider now a lozenge B1 in B1 and A the Birkho� annulus contained in the closure
of �(B1) which is contained in T1. Both boundaries have been pushed away along unstable leaves. The
unstable leaves are on the same side of the Birkho� annulus A. Therefore one can also push in the same
direction the remainder of T1 � to make it disjoint from Zi. This produces a new torus T 01 satisfying

� T 01 is a contained in a small neighborhood of Zi and is transverse to the ow �,
� T 01 is disjoint from every Zk (including Zi),

� There is a �xed lift eT 01 which is invariant under G and that it intersects exactly the orbits in the
scalloped region,

The much more subtle property to prove is the following:

Claim � T 01 can be chosen embedded.

To prove this claim we �x the representative N(Zi) of Pi and a Seifert �bration �i : Pi ! �i so that Zi

is a union of �bers: each Birkho� annulus A of Zi is a union of �bers and it is embedded in the interior.
Since M is orientable, the orbifold �i is a surface with a �nite number of singular points, which are the
projections by �i of the vertical periodic orbits. Moreover, �i(Zi) is a fat graph, i.e. is a graph embedded
in �i which is a deformation retract of �i. One can furthermore select �i so that the stable and unstable
vertical annuli in N(Zi) are Seifert saturated, ie. project to arcs in �i with one boundary in �i, the other
being a vertex of �i(Zi). Finally, one can assume that the retraction r : �i ! �i(Zi) is constant along
stable and unstable arcs, mapping each of them on the vertex of �i(Zi) lying in their boundary.
Since the Birkho� annuli in Zi are transverse to the ow, one can distinguish the two sides of every

edge of �i(Zi), one where the ow is \incoming", and the other \outgoing". The stable arcs are contained
in the incoming side, whereas the unstable arcs are contained in the outgoing side. It follows that the
set of boundary components of � can be partitioned in two subsets so that for every edge e of �i(Zi), the
two sides of e in � lie in di�erent sets of this partition.
The immersed Birkho� torus T1 is a sequence of Birkho� annuli A1, A2, ... , Ak, Ak+1 = A1. It

corresponds to a sequence e1, ... , ek, ek+1 = e1 of edges in �i(Zi). As described above, since B1 is
s-scalloped, T 01 is obtained by pushing every Ai along the unstable annuli so that T

0
i intersects no stable

annulus. It follows that we always push on the \outgoing" side. Let ci be the unique segment in the
outgoing boundary of �i whose image by the retraction r is ei: it follows that the sequence of segments
c1, c2, ... , ck describe an outgoing component C of @�i. In other words, �i(T1) is the retraction of a
boundary component of N(Zi).
Hence, if we have ei = ej for some i < j, we have ei+1 = ej+1, and so on, so that the sequence e1, ... ,

ek is the repetition of a single loop in �i(Zi). Then, T1 is homotopic to the boundary component �
�1
i (C)

of N(Zi) repeated at least twice. But it would mean that the JSJ torus T is homotopic to the JSJ torus

��1i (C) repeated several times, which is a clear contradiction.
Therefore, e1, ... , ek is a simple loop: T1 can pass through a Birkho� annulus in Zi at most once.

Then the homotopy from T1 to T
0
1 does the following: the interiors of the Birkho� annuli are homotoped

to an embedded collection. The neighborhoods of the periodic orbits also satisfy that. We conclude that
T 01 can be chosen embedded. This �nishes the proof of the claim.
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As T 01 is embedded and homotopic to T and M is irreducible, then T 01 is in fact isotopic to T [He].

The same is true for T2 to produce T 02 with similar properties. Notice that eT 01 and eT 02 intersect exactly
the same set of orbits in fM . Hence their projections T 01; T

0
2 to M bound a closed region F in M with

boundary T 01 [ T 02, homeomorphic to T 01 � [0; 1] and so that the ow is a product in F . We can then
isotope T 01 and T 02 along ow lines to collapse them together.
In this way we produce representatives N(Zi); N(Zj) of Pi; Pj respectively; with boundary components

T 01, T
0
2 isotopic to T (they are the same set) and transverse to the ow �. This �nishes the proof of

proposition 3.4. �

Proposition 3.5. (good position) Suppose that � is a totally periodic pseudo-Anosov ow in a graph
manifold M . Let Pi be the Seifert �bered spaces in the torus decomposition of M . Then there are spines
Zi made up of Birkho� annuli for Pi and representative compact neighborhoods N(Zi) so that:

� N(Zi) is isotopic to Pi,
� The union of N(Zi) is M and the interiors of N(Zi) are pairwise disjoint,
� Each @N(Zi) is a union of tori in M all of which are transverse to the ow � and ow isotopic
to tori in arbitrarly small neighborhoods of Zi.

Proof. If Pi and Pj are adjoining, the previous proposition explains how to adjust the corresponding
components of @N(Zi) and @N(Zj) to satisfy the 4 properties for that component without changing any
of the fZkg or the other components of @N(Zi); @N(Zj) (the fact that the tori in @N(Zi) can be pushed
under the ow in any arbitrary small neighborhood of Zi follows from the way they are constructed, see
lemma 3.3). We can adjust these tori in boundary of the collection fN(Zi)g one by one. This �nishes
the proof. This actually shows that any component of M � [ Zi is homeomorphic to T

2 � [0; 1]. �

Remarks � 1) This proposition shows that given any boundary torus of (the original) N(Zi) it can

isotoped to be transverse to �. Fix a component eZi of the inverse image of Zi in fM and let B1 be a

lozenge with a corner e� in eZi and so that B1 contains a lift eA of an (open) Birkho� annulus A in Zi. Let
� be the projection of e� to M . The proof of proposition 3.4 shows that for each side of A in M there is
a torus which is a boundary component of a small neighborhood N(Zi) and which contains an annulus
very close to A. Going to the next Birkho� annulus on each torus beyond �, proposition 3.4 shows that
the corresponding lozenge B is adjacent to B1. Hence we account for the two lozenges adjacent to B1.
This can be iterated. This shows that for any corner e�, every lozenge with corner e� contains the lift

of the interior of a Birkho� annulus in @N(Zi). Hence there are no more lozenges with a corner in eZi.
Hence the pruning step done in section 7 of [Ba-Fe] is inexistent: the subtree T 0 is the entire T . In

other words, the collection of lozenges which are connected by a chain of lozenges to any corner in eZi is
already associated to N(Zi). In particular, the minimality condition in the de�nition of the spines Zi is
not necessary in the case of totally periodic pseudo-Anosov ows. The other conditions determine the
spine up to ow isotopy.
2) These properties also imply that every periodic orbit of the ow admitting a power which is freely

homotopic to a �nite power of a regular �ber of Pi is a vertical periodic orbit (hence contained in Zi).
To see this: let � be such an orbit and n > 0 so that �n is freely homotopic to a regular �ber of Pi. Lift

coherently to fM to get e� left invariant by g, so that g also leaves invariant the tree T 0. In particular e�
is in T , which in this case is equal to T 0. Projecting to M this shows that � is a vertical periodic orbit
and hence contained in Zi.

4. Itineraries

In the previous section, we proved that M admits a JSJ decomposition so that every Seifert piece Pi is
a neighborhood N(Zi) of the spine Zi and whose boundary is a union of tori transverse to �. Denote
by T1, ... , Tk0 the collection of all these tori: for every k, there is a Seifert piece Pi such that � points
outward Pi along Tk, and another piece Pj such that � points inward Pj along Tk (observe that we may
have i = j, and also Pi and Pj may have several tori Tk in common). It follows from the description of
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N(Zi) that the only full orbits of � contained in N(Zi) are closed orbits and they are the vertical orbits
of N(Zi). Moreover, for every x in Tk, the future orbit of x either accumulates on a vertical periodic
orbit of Pj , or intersects a Birkho� annulus in Zj and then exits from Pj through one other torus Tl.
From now on in this section, we �x one such JSJ decomposition of M associated to the ow �. In

this section when we consider a Birkho� annulus without any further speci�cation we are referring to a

Birkho� annulus in one of the �xed spines Zi. In the same way a Birkho� band is a lift to fM of the
interior of one of the �xed Birkho� annuli.
Let Gs(Tk), G

u(Tk) be the foliations induced on Tk by �
s, �u. It follows from the previous section (and

also by the Poincar�e-Hopf index theorem) that Gs(Tk) and G
u(Tk) are regular foliations, i.e. that the

orbits of � intersecting Tk are regular. Moreover, Gs(Tk) admits closed leaves, which are the intersections
between Tk and the stables leaves of the vertical periodic orbits contained in N(Pj). Observe that all the
closed leaves of Gs(Tk) are obtained in this way: it follows from the fact that Tk can be retracted along
the ow to an union of Birkho� annuli in the spine Zi.
Hence there is a cyclic order on the set of closed leaves of Gs(Tk), two successive closed leaves for this

order are the boundary components of an annulus in Tk which can be pushed forward along the ow to a
Birkho� annulus contained in the spine Zj. We call such a region of Tk an elementary Gs-annulus of Tk.
Notice that an elementary annulus is an open subset of the respective torus Tk � the boundary closed

orbits are not part of the elementary annulus.
Similarly, there is a cyclic order on the set of closed leaves of Gu(Tk) so that the region between

two successive closed leaves (an elementary Gu(Tk)-annulus) is obtained by pushing forward along �
a Birkho� annulus appearing in Zi. The regular foliations Gs(Tk) and Gu(Tk) are transverse one to
the other and their closed leaves are not isotopic. Otherwise Pi; Pj have Seifert �bers with common
powers, contradiction. Hence none of these foliations admits a Reeb component. It follows that leaves
in an elementary Gs(Tk) or G

u(Tk)-annulus spiral from one boundary to the other boundary so that the
direction of \spiralling" is the opposite at both sides. It also follows that the length of curves in one leaf
of these foliations not intersecting a closed leaf of the other foliation is uniformly bounded from above.
In other words:

Lemma 4.1. There is a positive real number L0 such that any path contained in a leaf of Gu(Tk) (respec-
tively Gs(Tk)) and contained in an elementary Gs(Tk)-annulus (respectively Gu(Tk)-annulus) has length
� L0. �

The sets T , � and T] � Let T be the collection of all the lifts in fM of the tori Tk. Every element of

T is a properly embedded plane in fM . We will also abuse notation and denote by T the union of the
elements of T . Let � be the union of the lifts of the vertical orbits of �. Finally let T] = T [�.

Observe that there exists a positive real number � such that the �=2-neighborhoods of the Tk are
pairwise disjoint. Therefore:

8eT ; eT 0 2 T ; eT 6= eT 0 ) d( eT ; eT 0) � � (1)

Here d( eT ; eT 0) is the minimum distance between a point in eT and a point in eT 0.
What we have proved concerning the foliations Gs(Tk), G

u(Tk) implies the following: for every eT 2 T ,

the restrictions to eT of e�s and e�u are foliations by lines, that we denote byfGs( eT ), eGu(eT ). These foliations
are both product, i.e. the leaf space of each of them is homeomorphic to the real line. Moreover,

every leaf of eGs( eT ) intersects every leaf of eGu(eT ) in one and only one point. Therefore, we have a

natural homeomorphism eT � Hs(eT ) � Hu( eT ), identifying every point with the pair of stable/unstable

leaf containing it (here, Hs;u(eT ) denotes the leaf space of eGs;u( eT )).
Bands and elementary bands � Some leaves of eGs;u(eT ) are lifts of closed leaves: we call them periodic

leaves. They cut eT in bands, called (stable or unstable) elementary bands, which are lifts of elementary
annuli (cf. �g. 4). Observe that the intersection between a stable elementary band and an unstable
elementary band is always non-trivial: such an intersection is called a square. Finally, any pair of leaves

(`1; `2) of the same foliation eGs(eT ) or eGu(eT ) bounds a region in eT that we will call a band (elementary
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Elementary stable band 

Elementary

unstable band}

{
Figure 4: Bands and elementary bands. Nearly vertical lines are leaves of eGs( eT ), and nearly horizontal lines are

leaves of eGu( eT ). Thicker lines are periodic leaves. The shaded region is a band which is not an elementary band.

bands de�ned above is in particular a special type of band). A priori bands and elementary bands can

be open, closed or \half open" subsets of eT .
Remark 4.2. We arbitrarily �x a transverse orientation of each foliation Gs(Tk), G

u(Tk). It induces (in a

�1(M)-equivariant way) an orientation on each leaf space Hs;u(eT ). Since every leaf of eGu( eT ) is naturally
identi�ed with Hs(eT ), the orientation of Hs( eT ) induces an orientation on every leaf of eGu( eT ). When one

describes successively the periodic leaves of eGu( eT ), this orientation alternatively coincide and not with
the orientation induced by the direction of the ow. This is because such leaves are lifts of closed curves
isotopic to periodic orbits.

For every ~x in fM , let ( eT 1(~x); :::; eT n(~x); :::) be the list of the elements of T successively met by the

positive e�-orbit of ~x (including an initial eT if ~x is contained in an element eT of T ). Observe that this
sequence can be �nite, even empty: it happens precisely when the positive orbit remains trapped in a

connected component of fM n T , i.e. the lift of a Seifert piece Pi. In this case, the projection of the orbit

lies in the stable leaf of a vertical periodic orbit � of Pi. In other words, ~x lies in fW s(�) where � is a lift

of �. In that case, we denote by I+(~x) the sequence (eT 1(~x); :::; eT n(~x); �; �; :::), where eTn(~x) is the last

element of T intersecting the positive e�-orbit of ~x, and all the following terms are all equal to �. We say

then that I+(~x) is �nite. In the other case, i.e. when the sequence ( eT 1(~x); :::; eT n(~x); :::) is in�nite, I
+(~x)

will denote this in�nite sequence. In both situations, I+(~x) is called the positive itinerary of ~x.
Similarly, one can de�ne the negative itinerary I�(~x) has the sequence of elements of T successively

crossed by the negative orbit of ~x. Once more, such a sequence can be �nite if ~x lies in the unstable leaf
of the lift of a periodic vertical orbit �, in which case we repeatedly add this information at the end of
the sequence. Actually, we consider I�(~x) as a sequence indexed by 0, �1, �2, ...

Total itinerary and itinerary map � The sequence I�(~x) together with I+(~x) de�nes a sequence

indexed by Z called the total itinerary, denoted by I(~x). This de�nes a map I : fM ! T Z] called the
itinerary map.

4.1. Characterization of orbits by their itineraries. A very simple but crucial fact for the discussion

here is the following: if eT is an element of T , then eT is a properly embedded plane transverse to e�. Hence
it separates fM and intersects an arbitrary orbit of e� at most once.

Lemma 4.3. Let eT be an element of T . Let ~x, ~y be two elements of eT such that fW s(~x) = fW s(~y). Then
I+(~x) = I+(~y).
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Proof. Clearly:
eT 1(~x) = eT = eT 1(~y)

For every integer i such that eT i(~x) is well-de�ned, let eT
+

i be the connected component of fM n eT i(~x)

not containing ~x. One easily observes that if i < j, then eT+

j �
eT+

i .

We �rst consider the case where I+(~x) is �nite:

I+(~x) = (eT 1(~x); :::; eT n(~x); �; �; :::)

Then, � � eT+

n . Moreover, ~y lies infW s(~x) = fW s(�), hence I+(~y) is �nite, and the e�-orbit of ~y accumulates
on �. It must therefore enter in eT+

n , hence intersects
eT n(~x). But for that purpose, it must enter in eT

+

n�1,

hence intersect eT n�1(~x). Inductively, we obtain that (eT 1(~x); :::; eT n(~x)) is a subsequence (in that order),
of I+(~y).
Since we can reverse the role of ~x and ~y, we also prove in a similar way that I+(~y) is a subsequence of

I+(~x). By the remark above the equality I+(~x) = I+(~y) follows.

We consider now the other case; the case where I+(~x) is in�nite. Then, by what we have just proved
above, I+(~y) is an in�nite sequence too. Recall that there is a positive real number � bounding from
below the distance between elements of T . In particular:

8i 2 N; d( eT i(~x); eT i+1(~x)) � �

Now, any length minimizing path between eT i(~x) and eT i+2(~x) must intersect eT i+1(~x). It follows easily
that:

8i 2 N; d( eT i(~x); eT i+2(~x)) � 2�

Inductively, one gets:

8i; p 2 N; d( eT i(~x); eT i+p(~x)) � p�

On the other hand, since ey lies in fW s(~x), there is a positive real number R such that:

8t > 0; d(e�t
(~x); e�t

(~y)) � R

For every positive integer n, select t 2 R+ such that e�t
(~x) lies in eT+

n+p(~x), where p � 2R=�. Then:

d(e�t
(~x); eT n(~x)) � p� � 2R

Since d(e�t
(~x); e�t

(~y)) � R, e�t
(~x) and e�t

(~y) lie on the same side of eT n(~x), i.e. eT
+

n . Hence eTn(~x)
appears in the positive itinerary of ~y. Since n is arbitrary, it follows that I+(~x) is a subsequence of I+(~y),
the order in the sequence being preserved.
Switching the roles of ~x and ~y, we also get that I+(~y) is a subsequence of I+(~x). Hence, the two

itineraries must coincide. �

In order to prove the reverse statement, we need the following result:

Proposition 4.4. Let eT , eT 0 be two elements of T , intersected successively by a e�-orbit, i.e. such that

for some ~z 2 eT , the �rst intersection of the forward orbit of ~z with T (after eT ) is some e�t
(~z) 2 eT 0, t > 0.

Then, the subset eA( eT ; eT 0) comprised of elements of eT such that the positive itinerary starts by (eT ; eT 0; :::)
is a stable elementary band; more precisely, the stable elementary band of eT containing ~z.

Proof. The orbit of ~z between the times 0 and t lies in a connected component of fM n T , hence projects
into a Seifert piece Pi. Due to the previous section, this orbit in M starts in a connected component

of @Pi (projection T of eT ), intersects one of the Birkho� annuli A0 contained in the spine Zi, and then

crosses the projection T 0 of eT 0. In other words, there is a lift eA0 of A0 intersected by the orbit of ~z and

contained between eT and eT 0. The boundary of A0 is the union of two periodic orbits (maybe equal one
to the other), and any element of A0 has a negative orbit intersecting T , and a positive orbit intersecting

T 0. At the universal covering level, the boundary of eA0 is the union of two distinct orbits � and �;

the e�-saturation of the Birkho� band eA0 intersects eT (respectively eT 0) along an elementary band eA
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Figure 5: Isolating eT
0

and eA0 by stable prongs.

(respectively eA0). Moreover, the boundary of eA is the union of two leaves of eGs(eT ). More precisely, one

of these leaves is contained in the intersection eT \S1�, and the other in the intersection eT \S1�, where S1�
is a component of fW s(�) n � and S1� a component of fW s(�) n �.

Similarly, eA0 is an elementary band in eT 0 bounded by two leaves of eGu(eT 0), which are contained in

some components U1
�, U

1
� of fW u(�) n �, fW u(�) n �.

Clearly eA � eA( eT ; eT 0).
Claim 1: the intersection S1� \

eT is connected. If not, there would be a segment of orbit of e� with

extremities in eT but not intersecting eT . It would be in contradiction with the fact that eT disconnects fM
and is transverse to e�.
Similarly, S1� \

eT is connected (i.e. is reduced to a boundary component of the elementary band eA,
and the intersections U1

� \
eT 0, U1

� \
eT 0 are connected, i.e. precisely the boundary components of eA0.

Key fact: by our de�nition of pseudo-Anosov ows, � and � are not 1-prong orbits. It follows that

there is a component S2� of fW s(�) n � di�erent from S1�. We select this component to be the one just
after U1

�, i.e. such that the following is true: the union S(�) = S1� [ � [ S2� is a 2-plane such that the

connected component C(�) of fM n S(�) containing eA0 does not intersect fW s(�). Similarly, we de�ne a

2-plane S(�) = S1� [ � [ S2� contained in fW s(�) such that the connected component C(�) of fM n S(�)

containing eA0 does not intersect fW s(�) (see �g. 5).

Claim 2: S2� and S2� are disjoint from eT 0: indeed, the positive orbit of any point in eT 0 is trapped
into the component of fM n eT 0 disjoint from eA0, hence cannot accumulate on � or �: eT 0 is disjoint from
fW s(�) [fW s(�). The claim follows.

Claim 3: S2� and S2� are disjoint from eT : Assume by contradiction that S2� intersects eT . In the same

way we have proved that S1� \
eT is connected, one can prove that S2� \

eT is a single leaf of eGs( eT ). It

bounds together with S1�\
eT a eGs( eT )-band eB. Let g be the indivisible element of �1(M) corresponding to

a generator of the fundamental group of the projection of �: it preserves e�, eT , hence also S1� \ eT , S2� \ eT
and the band eB. It follows that the union of eB with the regions in S1�, S

2
� between S1� \

eT , S2� \ eT and �

projects in M as a torus contained in the Seifert piece Pi. This torus bounds a solid torus in Pi. Every

orbit of � entering in this solid torus from the projection of eB cannot exit from this solid torus, since it



TOTALLY PERIODIC PSEUDO-ANOSOV FLOWS IN GRAPH MANIFOLDS 17

cannot further intersect the projection of eB, nor the projections of S1�, S2�. It has to remain in the Seifert
piece containing the projection of �. It is a contradiction since the set of positive orbits trapped in Pi

has empty interior. Claim 3 is proved.

We now focus our attention to the region C(�)\C(�), whose boundary is the disjoint union S(�)
F
S(�).

According to Claim 2, eT 0 is contained in C(�)\C(�). Now it follows from Claim 3 that the intersection

C(�) \ C(�) \ eT is the elementary band eA.
Consider now the positive orbit of an element p of eT n eA: if p lies in @ eA, then this orbit accumulates

on � or � and therefore does not intersect eT 0. If not, then this orbit is disjoint from fW s(�) [fW s(�),

hence never enters in C(�) \ C(�). In particular, it never crosses eT 0.
It follows that eA(eT ; eT 0) � eA and so proposition 4.4 is proved. �

We can now prove the converse of Lemma 4.3:

Lemma 4.5. Let eT be an element of T . Let ~x, ~y be two elements of eT such that I+(~x) = I+(~y). Then

~y and ~x lie in the same leaf of eGs( eT ).

Proof. Let ~x1, ~x2, ... and ~y1, ~y2, ... be the elements of the positive orbits of ~x, ~y belonging in eT 1 :=
eT 1(~x) = eT 1(~y), eT 2 := eT 2(~x) = eT 2(~y), ... . According to Proposition 4.4, for every positive integer i, the

iterates ~xi, ~yi lie in the same stable elementary band eAi := eA(eT i; eT i+1) � eT i.
Consider �rst the case where the common itinerary I+(~x) = I+(~y) is �nite, of length n+1: ~xn and ~yn

lie in the elementary band of eT n, and Ik(~x) = Ik(~y) = � for some periodic orbit �, for all k > n. Hence,
th positive orbits of ~xn, ~yn accumulate on �. It follows from the arguments used in the proof of Claim

3 of Proposition 4.4 that the intersection fW s(�) \ eT n is a single leaf of eGs(eT n). Proposition 4.3 follows
easily in this case.

We are left with the case where I+(~x) = I+(~y) is in�nite. Let eGsi , eGui denote the restriction to eAi of
e�s, e�u. Observe that every leaf of eGui intersects every leaf of eGsi . In particular, the eGs1-leaf of ~x intersects

the eGu1 -leaf of ~y. Therefore, according to Lemma 4.3, one can assume without loss of generality that ~x

and ~y lies in the same leaf of eGu1 . More precisely, there is a path c : [a; b]! eA1 contained in a leaf of eGu1
and joining ~x to ~y.

Assume by way of contradiction that c is not a trivial path reduced to a point. If we push c forward by

the ow e�, one get a path c2 : [a; b]! eA2, contained in a leaf of eGu2 , connecting ~x2 to ~y2. By induction,

pushing along e�, we get a sequence of unstable paths ci : [a; b] ! eAi. Now, since all these paths are

obtained from c by pushing along e�, the length of ci is arbitrarily long if i is suÆciently big. This
contradicts Lemma 4.1.
This contradiction shows that c is reduced to a point, i.e. that ~x and ~y lie in the same leaf of eGs(eT ). �

Applying Lemmas 4.3 and 4.5 to the reversed ow one obtains:

Proposition 4.6. Let eT be an element of T . Let ~x, ~y be two elements of eT . Then I�(~x) = I�(~y) if and

only if ~y and ~x lie in the same leaf of fGu( eT ). �

Itineraries are elements of I := T Z] where T ] is the disjoint union of T with the set � of lifts of vertical

periodic orbits of �. We de�ne the shift map � : I ! I which send any sequence (�i)i2Z to the sequence

(�i+1)i2Z. Clearly, if ~x and ~y are two elements of fM lying on the same orbit of e�, then I(~y) is the image
of I(~x) under some iterate �k. Conversely:

Corollary 4.7. Let ~x, ~y be two elements of fM . Then ~x and ~y lie in the same orbit of e� if and only if
I(~y) = �k(I(~x)) for some k 2 Z.

Proof. Assume that I(~y) = �k(I(~x)) for some k 2 Z. Suppose �rst that the e� orbit of ~x intersects no
element of T . Then ~x is in � and similarly ~y is also in �. The hypothesis immediately imply that

~x; ~y are in the same orbit of e�. If ~x intersects an element T , then after a shift if necessary, we may

assume that T1(~x) is an element of T . Then, by replacing ~y by the element of its e�-orbit in the element
T1(~x) = T1+k(~y) of T , and ~x by its iterate in T1(~x), one can assume that ~x and ~y both lie in T1(~x), and
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that I(~x) = I(~y). In particular, I+(~x) = I+(~y) and I�(~x) = I�(~y). Then, according to Lemma 4.3 and
proposition 4.6, ~x and ~y have the same stable leaf and the same unstable leaf. The corollary follows. �

In the same way one can prove that for any ~x; ~y in fM , then ~x; ~y are in the same stable leaf of e� if and
only if the positive iteneraries of ~x; ~y are eventually equal up to a �xed shift.
We can now extend Proposition 4.4:

Proposition 4.8. Let eT , eT 0 be two elements of T . Then, the subset eA(eT ; eT 0) of eT comprised of elements

of eT whose positive orbits intersects eT 0; if non-empty, is a stable band. Furthermore, let ~x be an element

of eA( eT ; eT 0); its positive itinerary has the form ( eT 1 := eT ; eT 2; :::; eT n; ::::) where eT n = eT 0. Then, for any

other element ~y of eA( eT ; eT 0); the �rst n-terms of I+(~y) are also ( eT 1 := eT ; eT 2; :::; eT n). The elements eT 2,

... , eT n�1 are precisely the elements of T that separate eT from eT 0 in fM .

Proof. Assume that eA( eT ; eT 0) is non-empty, and let ~x be an element of eA(eT ; eT 0). Its positive itinerary

contains eT 0, hence has the form (eT 1 := eT ; eT 2; :::; eT n; ::::) described in the statement. As we have observed

in the proof of Lemma 4.3, we have eT+

j � eT+

i for every 1 � i < j � n, hence every eT i for 1 < i < n

disconnects eT from eT 0. On the other hand, every element of T disconnecting eT and eT 0 must appear
in the positive itinerary of elements of eA(eT ; eT 0). It follows easily that the �rst n-terms of the positive

itinerary of elements of eA( eT ; eT 0) coincide as stated in Proposition 4.8. Moreover, if an element of eT has

a positive itinerary of the form (eT 1 := eT ; eT 2; :::; eT n; ::::), it obviously belongs to eA( eT ; eT 0).
The only remaining point to check is that eA(eT ; eT 0) is a stable band. But this follows immediatly from

Lemma 4.3.
It is very useful to give more information here: if n = 2 then eA(eT ; eT 0) is a stable elementary band

which projects to an open annulus in T . If n > 2 then eA(eT ; eT 0) is a stable band which is not elementary.

For simplicity we describe the case n = 3. With the notation above, then eA(eT 2; eT 3) is a stable elementary

band as proved in Proposition 4.4. This band in eT 2 intersects the unstable elementary bands of eT 2 in

open squares. The one which has points owing back to eT 1 has boundary made up of two stable sides

a1; a2 which are contained in leaves of fGs( eT 2), and unstable sides b1; b2 contained in leaves of fGu(eT 2).

Flowing back to eT = eT 1 (in this case) produces eA( eT ; eT 0). The arcs b1; b2 ow back towards two vertical
periodic orbits, without ever reaching them. The arcs a1; a2 ow back to two full stable leaves a01; a

0
2 of

fGs( eT ). Then eA( eT ; eT 0) is the stable band with boundary a01; a
0
2. This is not an elementary stable band.

In fact more is true: this band is strictly contained in a unique elementary band and does not share a
boundary component with this elementary band. Finally this stable band projects injectively to T �

unlike what happens for elementary bands.
If n > 3 this process can be iterated. Using the notation above the stable band bounded by a01; a

0
2

intersects the unstable elementary bands in their lifted torus in squares. When owing backwards, the
same behavior described above occurs. �

De�nition 4.9. Let eT , eT 0 be two elements of T . We de�ne the (signed) distance n(eT ; eT 0) as follows:
{ if eT = eT 0, then n( eT ; eT 0) = 0,

{ if eA( eT ; eT 0) is non empty, then n(eT ; eT 0) is the integer n such that for every element ~x of eA( eT ; eT 0),
we have eT n+1(~x) = eT

0
; and n(eT 0; eT ) = �n(eT ; eT 0),

{ if eA( eT ; eT 0) and eA( eT 0; eT ) are both empty, then n(eT ; eT 0) = n(eT 0; eT ) =1.

Notice that every orbit  of e� is either contained in eT (a vertical orbit) or intersects it at most once.

This was explained in the proof of Proposition 3.2. It follows that the number n(eT ; eT 0) is uniquely de�ned.

4.2. Behavior of the �rst return map. Let us consider once more two successive elements eT , eT 0 of
T , i.e. such that n(eT ; eT 0) = 1. Recall that there is a stable elementary band eA := eA(eT ; eT 0) � eT bounded

by two stable leaves l1, l2, and an unstable elementary band eA0 � eT 0 bounded by two unstable leaves l01,
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l02, such that orbit of e� intersecting eT and eT 0 intersects them in precisely eA, eA0, respectively. The union
of all these orbits is a region of fM bounded by (see �g. 5):

{ eA and eA0;
{ two stable bands S1�, S

1
� where �, � are lifts of periodic orbits,

{ two unstable bands U1
�, U

1
� .

More speci�cally here S1� denotes the unique component of fW s(�)� (�[ eT ) whose closure intersects both
� and eT . Its boundary is the union of � and a stable leaf in eT . We call such a 3-dimensional region the

block de�ned by eT , eT 0; the orbits �, � are the corners of the block.

The map feT ;eT
0 � We have a well-de�ned map feT ;eT

0 : eA! eA0, mapping every point to the intersection

between its positive e�-orbit and eT 0. As long as there is no ambiguity on eT and eT 0, we will denote feT ;eT
0

by f .

Clearly, if two elements of eA lie on the same leaf of eGs( eT ), then f(~x) and f(~x0) lie on the same leaf of
eGs( eT 0). In other words, f induces a map

f s := f seT ;eT
0 : (l1; l2) ! Hs(eT 0);

where (l1; l2) is the open segment of the leaf space eHs( eT ) delimited by the boundary leaves l1 and l2 of
eA.
Since every leaf of eGs( eT 0) intersects every leaf of eGu(eT 0), it follows that f s is surjective: if v is a leaf

of eGs( eT 0) then the intersection property implies that v intersects l01. Then v intersects eA0 so v is in the

image of f . Moreover, the intersection between every leaf of eGs( eT 0) and eA0 is connected, hence f s is
one-to-one.
Now assume that as in �g. 6 the ow along the \periodic orbit" � is going up. Then, � is going down.

It follows that the map f has the following behavior: points in eA close to l1 are sent by f in the top

direction of eA0, meaning that the closer to l1 is the point ~x, the upper is the image f(~x). Indeed, the
closer to l1 is ~x, the longest is the period of time the positive orbit of ~x will follow the vertical direction
of �. On the other hand, when ~x is going near to l2, the image f(~x) will be going the closer to l

0
2, and in

the bottom direction.
We already know that stable leaves in eT 0 cross the two sides l01 and l02 of eA0, hence can be drawn as

in the picture in a nearly horizontal way (since we have drawn l01;2 as vertical lines). Therefore, stable

leaves in eA, which are the pull-back by f of stable leaves in eT , are as depicted in �g. 6: if we describe
such a leaf s from the bottom to the top, the image f(s) will go from the left (l01) to the right (l02). It
follows that what is at the right (respectively, at the left) of s is mapped under f below (respectively,
above) f(s).
Observe that if we reverse the direction of the ow on � (and hence also on �), when we would have

the opposite behavior: f would map what is on the right of s above f(s).

Now recall that we have arbitrarily �xed an orientation of Hs(eT ) and Hs( eT 0) (Remark 4.2). It is

equivalent to prescribe a total order � on Hs( eT ) and Hs(eT 0). Assume e.g. that the positive orientation
on Hs(eT ) - which is a space of roughly vertical lines in eA - is from the left to the right; and assume that

the orientation on Hs( eT 0) is from the top to the bottom. Then, if � is oriented from the bottom to the
top (as in the �gure), the map f s preserves the orientation, whereas if � as the inverse orientation, f s

reverses the orientations.

The map feT ;eT
0 when n(eT ; eT 0) > 1 � Now if eT , eT 0 are elements of T with n(eT ; eT 0) = n > 1, we still

have a map feT ;eT
0 : eA( eT ; eT 0)! eA0( eT ; eT 0) where eA(eT ; eT 0) is a stable band in eT and eA0( eT ; eT 0) an unstable
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band in eT 0. More precisely, the positive itinerary of orbits starting from eT and crossing eT 0 starts by
eT 1 := eT , eT 2, ... , eT n := eT

0
. Then feT ;eT

0 is the composition of all the feT i;
eT

0

i+1

. The fact that the domain

of feT ;eT
0 is a stable band was proved in the end of the proof of proposition 4.8. To get that the image is

an unstable band notice that owing backwards instead of forwards shows this fact (as the image is the
domain of the inverse map).

Exactly as in the case that n(eT ; eT 0) = 1, it follows that the map feT ;eT
0 also induces a surjective map

f seT ;eT
0 from a segment of Hs( eT ) onto the entire Hs( eT 0). This map can preserve the orientation or not;

this property depends on the orientation of the corners of the Birkho� annuli successively crossed.

Corollary 4.10. Let eT , eT 0, eT 00 three elements of T such that n( eT ; eT 0) and n(eT 0; eT 00) are positive. Then:

n(eT ; eT 00) = n(eT ; eT 0) + n(eT 0; eT 00)

Proof. Let eT 1 := eT , eT 2, ... , eT n := eT 0 the initial terms of future itineraries of elements of A(eT ; eT 0), and
eT 01 := eT 0, eT 02, ... , eT 0m := eT 00 the initial terms of future itineraries of elements of A( eT 0; eT 00). Since the

map f seT ;eT
0 is surjective, the unstable band A0(eT ; eT

0
) intersects the stable band A(eT 0; eT 00), A( eT ; eT 00) is not

empty. Furthermore, the initial terms of itineraries of elements in A(eT ; eT 00) are:

eT 1 := eT ; eT 2; :::; eT n := eT
0
= eT 01; eT

0

2; :::;
eT 0m

Hence n(eT ; eT 00) = n+m. The corollary follows. �

4.3. Realization of itineraries. We de�ne an oriented graph eG as follows:

� vertices are elements of T ,
� edges are Birkho� bands,

� the initial vertex and the �nal vertex of an oriented edge E are the elements eT , eT 0 of T such that

there are orbits of e� intersecting eT at a point ~x, then crossing E, and crossing afterwards eT 0 at
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a point ~x0. We require furthermore that E is the unique Birkho� band intersected by the orbit

between ~x and ~x0; in other words, that n(eT ; eT 0) = 1.

We add to eG some vertices: the set � of lifts of vertical periodic orbits. These new vertices will not be

connected one to the other, but only to vertices of eG: we add an edge oriented from eT to � (respectively

from � to eT ) if some element ~x of eT has a positive (respectively negative) orbit accumulating on � without

intersecting any element of T . The result is the augmented graph eG].

Lemma 4.11. The graphs eG and eG] are (weakly) connected.

Proof. Recall that an oriented graph is weakly connected if the underlying non-oriented graph is con-

nected, i.e. if any pair of vertices can be connected by a sequence of edges. It is quite obvious that eG] is

weakly connected as soon as eG is weakly connected.

For every element eT of T let U1( eT ) be the union of the points in fM whose orbits of e� intersect eT :
U1(eT ) is an open domain in fM which is e� invariant. Let W1( eT ) be the set of elements of T which can be

joined to eT by an orbit of e�, i.e. the elements of T which intersects U1( eT ). Notice that we can connect eT
to an element of U1( eT ) by a ow segment either going forwards or backwards. De�ne then inductively:

Ui+1( eT ) =
[

eT
0

2Wi(
eT )

U1(eT
0
)

Wi+1( eT ) =
[

eT
0

2Wi(
eT )

W1( eT
0
)

We obtain an increasing sequence of domains Ui( eT ) whose union U1( eT ) is an open subset of fM ; more

precisely, of fM n� (recall that � is the union of lifts of vertical periodic orbits). In a less formal way, one

can de�ne U1( eT ) as the set of elements of fM n� which are attainable from eT through concatenations

of segments of orbits of e� and paths in elements of T . For example suppose eT and eT 0 are \connected
via a singular vertical orbit ". This means that say fW s() has an annulus connecting  to eT and say
fW u() has an annulus B connecting it to eT 0. Suppose that A and B are separated by similar annuli

A1; A2; ::: which are alternatively unstable and stable (so A1 is not B). Start from eT near A and ow

forwards to eT 1 close to A and then along A1. Then eT 1 is in W1(eT ). Then in eT 1 move accross A1. Then

ow backwards tracking A1 and then A2 (notice A2 is a stable annulus) until it hits eT 2 which then is in

W2( eT ). Proceeding this way we get that eT 0 is in Wj( eT ) for some j > 0.

An easy property is that the domains U1( eT ) where eT are elements of T are either pairwise disjoint

or equal. Since any orbit of e� which is not the lift of a vertical periodic orbit intersects one element of

T , it follows that the union of these domains is the entire set fM n�. This domain is connected, hence
fM n� = U1(eT ) for every eT in T . In particular, for every eT , eT 0 in T , there is an integer i such that eT 0

lies in Wi( eT ).
Now observe that the sequence of elements of T successively crossed by an orbit of e� de�nes a path in

eG. It follows that eG is weakly connected, as required. �

As we have observed in the previous proof, every oriented path in eG] de�nes naturally an element of
I = T Z] . Recall that T ] = T [�.

Let I0 � I be the subset of I comprising sequences (�i)i2Z corresponding to oriented paths in eG]

satisfying the following additional property:

if �i is an element of �, then �j = �i for either all j � i, or all j � i.

Proposition 4.12. The image of the itinerary map I : fM ! T Z] is precisely I0.
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Proof. The fact that the image of I is contained in I0 is quite obvious since if an itinerary I(~x) = (�i)i2Z
has a term �i equal to � 2 �, then either ~x 2 fW u(�), or ~x 2 fW s(�). In the �rst case, �j = � for all
j � i, whereas in the second case �j = � for all j � i.
Let now (�i)i2Z be an element of I0. If every �i lies in �, then they are all equal (since there is no

edge in eG] connecting two di�erent elements of �): every �i is equal to � 2 �. Then the sequence is the
itinerary of any element of �.

Assume now that some �i is an element eT of T , suppose this is �1. Consider positive integers n: as long
as �n is an element of T (and not of �), then the signed distance n(�1; �n) (in the sense of De�nition 4.9)

is +n. It follows that eA(�1; �n) is a (non-empty!) stable band (usually not elementary). At the leaf space

level ( eHs(eT )), the projection of eA(�1; �n) is an open segment J(�1; �n) in eHs(eT ) � R.
Assume �rst the case where the positive itinerary is �nite: there is an integer n > 0 such that �i 2 T

for all i � n, and such that �n+1 is an element � of �. Then, there is one (and only one) stable leaf s0
of �n whose elements has positive itinerary (�; �; :::). Since f s�1;�n is surjective, there is a stable leaf s in

J(�1; �n) whose image by f
s
�1;�n

is s0. Then, the positive itinerary of elements of s is, as required, (�i)i�1.

Consider now the other case, that is, the case where every �i (i > 0) is an element of T . Then, the

segments (J(�1; �i)i�1) form a decreasing (for the inclusion) sequence of intervals in eHs(eT ) � R. In fact
more is true. The explanation at the end of the proof of proposition 4.8 shows that when n increases
by one, then both endpoints of J(�1; �n) change. This follows from the fact in that explanation that the
band inside the elementary band did not share a boundary component with the elementary band. Given
this fact, it follows that the intersection of the J(�1; �n) is non-empty. Every ~x in �1 whose projection lies
in this intersection will admit as positive itinerary (�i)i�1.

In both situations, we have a non-empty stable band eA((�i)i�1) comprising elements of T with positive

itinerary (�i)i�1. Observe that according to Lemma 4.5, eA((�i)i�1) is a single stable leaf � that is, it is
a degenerate stable band.
By applying this argument to the reversed ow, one gets that the set of elements of �0 whose negative

itinerary coincide with (�i)i�0 is an unstable leaf. Since in the plane �1 every unstable leaf intersects
every stable leaf, we obtain that �1 contains exactly one element whose itinerary is precisely (�i)i2Z. �

5. Topological and isotopic equivalence

Let �, 	 be two totally periodic pseudo-Anosov ows, and let fZi(�)g, fZi(	)g be respective (chosen)
spine collections.

5.1. Topological equivalence. In this section we show how to deduce Theorem D from Theorem D'.

Proof of Theorem D � First suppose that � and 	 are topologically equivalent. Let f be a self
homeomorphism of M realizing this equivalence. Then f(N(Zi(�))) is a representative for a Seifert
�bered piece Pj of M and @f(N(Zi(�))) is transverse to 	. In addition the image of every spine Zi(�)
satis�es all the the de�ning properties for a spine of 	 in Pj . Hence we can assume that this image is a
spine Z 0j(	) for 	 in the Seifert piece Pj , and every N(Z 0j(	)) = f(N(Zi(�))) is a tubular neighborhood

for this spine. Obviously, f maps vertical orbits for � to vertical orbits of 	, preserving the orientation.
Since the spine decomposition of 	 is unique up to isotopy along the ow, this �nishes the proof of this
direction.

Conversely, assume that up to a homeomorphism, we have the equality fZi(�)g = fZj(	)g, and that
the two ows de�ne the same orientation on the vertical orbits. Up to reindexing the collection fZj(	)g
we can assume that for all i, Zi(�) = Zi(	). Since the JSJ decomposition of M is unique up to isotopy
[Ja-Sh, Jo], it follows that N(Zi(�)) is isotopic to N(Zi(	)) for all i. A torus T boundary of N(Zi(�))
and N(Zj(�)) is isotopic to a corresponding boundary torus T

0 between N(Zi(	)) and N(Zj(	)). We can
then change the ow 	 by an isotopy so that T 0 = T . Hence we can assume that N(Zi(�)) = N(Zi(	)).
We simplify the notations by setting Zi = Zi(�) = Zi(	) and N(Zi) = N(Zi(�)) = N(Zi(	)).
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For each component Tk of @N(Zi), let G
s;u
� (Tk) and G

s;u
	 (Tk) be the foliations on Tk induced by the

stable/unstable foliations of respectively �, 	. Of course, a priori there is no reason for G
s;u
� (Tk) and

G
s;u
	 (Tk) to be equal. However we prove the following crucial properties:

Claim � The two foliations G
s;u
� (Tk) and G

s;u
	 (Tk) have the same number of closed leaves, and these

leaves are all vertical. It follows that these closed curves are isotopic. In addition one can assume that
the elementary G

s;u
� -annuli are exactly the elementary G

s;u
	 -annuli.

Consider the component Wk of N(Zi)� Zi containing Tk in its boundary. Then Wk is homeomorphic
to T 2� [0; 1), where Tk = T 2�f0g is a boundary component of N(Zi) and is therefore entering or exiting
N(Zi). Suppose without loss of generality that Tk is an outgoing component. By the description of the
ow in N(Zi) every point in Wk ows backward to intersect Zi or be asymptotic to a vertical orbit in
Zi. Let � be a vertical orbit of Zi. Since Tk is outgoing it follows that the unstable leaf of � intersects
Wk and consequently this unstable leaf intersects Tk, and in a closed leaf. It follows that for any such �

there is a closed leaf of Gs�(Tk) and a closed leaf of Gs	(Tk). These closed curves in Tk have powers which
are freely homotopic to powers of the regular �ber in Pi and hence they have powers which are freely
homotopic to each other. Since both are simple closed curves in Tk and N(Zi) is Seifert �bered, it now
follows that these closed leaves are isotopic in Tk. This proves that that G

s;u
� (Tk) and G

s;u
	 (Tk) have the

same number of closed leaves and they are all isotopic.
The manifold M is obtained from the collection of Seifert pieces fPig by glueings along the collection

of tori fTkg. Isotopic glueing maps of the fTkg generate the same manifold. Hence we can change the
glueing maps and have a homeomorphism of M which sends the closed leaves of G

s;u
� (Tk) to the closed

leaves of Gs;u	 (Tk).
The unstable vertical annuli for � (respectively for 	) connect the vertical periodic orbits to the closed

leaves in Tk. Now the point is that the vertical annuli for 	 may not be isotopic rel boundary to the
vertical annuli for �: they may wrap around Tk, intersecting several times the vertical annuli for �.
However, there is an orientation preserving homeomorphism which is the identity outside W k, inducing
a Dehn twist around Tk in the mapping class group of M , which maps every �-unstable annulus to the
corresponding 	-unstable annulus. The completion of Wk is a manifold which is a quotient of T 2� [0; 1].
The only identi�cations are in \vertical" orbits in T 2 � f1g. The maps above induce a homeomorphism
of this quotient of T 2 � [0; 1] which is the identity in the boundary. It follows that this is isotopic to a
\Dehn twist" in the boundary T 2 � f0g. We leave the details to the reader.
After these steps we have a homeomorphism h of M so that h(Zi(�)) = Zi(	), h(N(Zi(�))) =

N(Zi(	)), vertical annuli of � in N(Zi) are mapped to vertical annuli of 	 in N(Zj), and h preserves
the orientation of the vertical orbits.
Now the conjugate of the ow � by the homeomorphism h has precisely the same spine decomposition

fN(Zi(	))g, the same orientation on vertical periodic orbits as 	, and the same stable/vertical annuli
as 	 in each N(Zi(	)). According to Theorem D' (to be proved in the next section), using the identity
as the homeomorphism used in the statement of Theorem D'; this conjugate ow h�h�1 is isotopically
equivalent to 	. This �nishes the proof of Theorem D.

5.2. Isotopic equivalence. In this section we prove Theorem D'. As we have observed in the intro-
duction, one implication is obvious: if � and 	 are isotopically equivalent, the isotopy realizing this
equivalence maps a spine decomposition of � to a spine decomposition of 	 with all the required prop-
erties.

Conversely we assume as in the previous section that for every i we have Zi(�) = Zi(	) = Zi (after
reindexing), that �, 	 de�ne the same spine decomposition of M in periodic Seifert pieces N(Zi), and
that they induce the same orientation on the vertical periodic orbits in each Zi. We furthermore assume
that in each N(Zi) they have exactly the same stable/unstable vertical annuli.
Recall the following several objects we introduced in section 4:

� the set T of lifts of boundary components of N(Zi),
� the set � of lifts of vertical periodic orbits,

� elementary bands for e�,
The hypothesis imply that these objects coincide precisely with the similar objects associated to 	.
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Observe that in every Seifert piece N(Zi), the \blocks" connecting one incoming boundary torus to
an outgoing torus are delimited by vertical stable/unstable annuli, hence are exactly the same for the

two ows. It follows that the graph eG and the augmented graph eG] are precisely the same for the two

ows. Indeed: let eT , eT 0 are two vertices of the graph eG for �, connected by one edge, then there is a lift

N̂(Zi) such that eT and eT 0 are boundary component of N̂(Zi), and an orbit of e� inside N̂(Zi) joining a

point ~x in eT to a point ~y in eT 0. This orbit is trapped in the lift eU of a block as described in section 4,

delimited by two stable bands, two unstable bands, and two elementary bands, one in eT , the other in eT 0

(we refer once again to �gure 5). It follows that the orbit of e	 starting at ~x is trapped in the same lifted

block eU until it reachs the same elementary band as the one attained by the e�-orbit, so that we have

also n(eT ; eT 0) = +1 from the view point of 	.

Hence, Proposition 4.12 implies that any itinerary of e	 is realized by e�, and vice-versa.
Since the ows � and 	 have precisely the same blocks, with the same orientation on the periodic

corner orbits, we can apply section 4.2 and its conclusion. More precisely: for every lifted torus eT , let
Hs
	(
eT ) denote the leaf space of the restriction to eT of the stable foliation of e	. If eT 0 is another lifted

torus such that n( eT ; eT 0) > 0, we can de�ne a map gseT ;eT
0 , analogous to f seT ;eT

0 , from an interval of Hs
	(
eT )

onto Hs
	(
eT 0). This map is obtained using the ow e	.

We also need to de�ne the transverse orientation to the foliations Gs	(Tk) and G
u
	(Tk). These are the

stable and unstable foliations induced by the ow 	 in the JSJ tori fTkg. As observed in the previous
section, the closed leaves of these foliations are the same as the closed leaves of the foliations Gs�(Tk) and
Gu�(Tk) induced by � on Tk. Choose the transverse orientation of (say) Gs	(Tk) to have it agree with the
transverse orientation of Gs�(Tk) across the closed leaves.
By hypothesis, the ow directions of corresponding vertical periodic orbits of � and 	 in any given

Seifert piece Pi agree. This implies that the holonomy of the foliations Gs�(Tk) and G
s
	(Tk) along the

closed leaves agrees with each other, that is, they are either both contracting or both repelling.
The important conclusion is that with this choice of orientations and the above remark, gseT ;eT

0 is

orientation preserving if and only if f seT ;eT
0 is orientation preserving.

Let O�, O	 denote the orbit spaces of e�, e	, respectively. According to Corollary 4.7 applied to �

and to 	 as well, there is a natural bijection ' : O� ! O	: the one mapping an orbit of e� to the

unique orbit of e	 admitting the same itinerary up to the shift map. Observe that the map ' is naturally
�1(M)-equivariant. More precisely, ' commutes with the action of �1(M): for every � in O� and every
 in �1(M), we have:

'(�) = '(�) (2)

Lemma 5.1. The map ' : O� ! O	 is a homeomorphism.

Proof. The only remaining point to prove is the continuity of ' (the continuity of the inverse map '�1

is obtained by reversing the arguments below). We already know that two orbits lie in the same stable
leaf if and only if their itineraries, up to a shift, coincide after some time. Hence, ' maps the foliation
Os
� onto the foliation Os

	, and similarly, ' maps Ou
� onto Ou

	.

Observe that the projection of � by the map �� : fM ! O� is a closed discrete subset of O� that we
denote by ��, and the image of � by ' is a closed discrete subset �	 of O	 corresponding to the lifts
of vertical periodic orbits of 	.

We �rst show the continuity of ' on O� n��. Let � be an element of O� n��. This is an orbit of e�
which crosses some element eT of T at a point ~x. The restriction to eT of the projection map �� : fM ! O�

is injective as remarked before. Let P� be the projection of eT to O�; it is an open 2-plane contained
in O� n�. Elements of P� are characterized by the property that their itinerary (which is well-de�ned

up to the shift map) contains eT . It follows that the image of P� by ' is the projection P	 of eT in
O	 n�	. We will show that the restriction of ' to P� is continuous, which will prove as required that
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' is continuous on O� n��. The restrictions P
s
�, P

u
� of Os

� and Ou
� to P� are the projections of eGs	( eT ),

eGu	( eT ). They are regular foliations; more precisely, they are product foliations, transverse to each other.
Every leaf of Ps

� intersects every leaf of Pu
� in one and only one point. In summary, P� is homeomorphic

to Hs

P�

�Hu

P�

� R � R, where H
s;u

P�

denotes the leaf space of O
s;u
� restricted to P� respectively.

Similarly, P	 is homeomorphic to Hs

P	

� Hu

P	

. Furthermore, since ' maps Os
�, O

u
� onto Os

	, O
u
	,

the restriction of ' to P � Hs

P�

�Hu

P�

has the form:

(S;U)! ('s(S); 'u(U))

where S, U denote leaves of Ps
�, P

u
� and 's(S); 'u(U) are the induced images in the leaf space level.

Each leaf space Hs

P�

, Hs

P	

admits a subdivision in elementary segments J�( eT ; eT
0
) (respectively

J	( eT ; eT
0
)), which are the projections of elementary bands A( eT ; eT 0) where n(eT ; eT 0) = 1. Since the elemen-

tary bands in eT for e� and e	 are exactly the same, the map 's preserves the order between elementary
segments. This uses the choice of transverse orientations for Gs�(T ) and G

s
	(T ).

Let S, S0 be arbitrary elements of Hs

P�

, such that S � S0 for the order de�ned on Hs

P�

� Hs
�(
eT ) in

Remark 4.2. Then, if S, S0 lie in di�erent elementary bands, it follows from what we have just seen that

's(S) � 's(S0), since 's preserves the order between the elementary intervals J�( eT ; eT
0
) and J	(eT ; eT

0
).

Assume now that S, S0 lie in the same elementary band. Since S 6= S0, there is an element eT 0 of T such

that f seT ;eT
0(S) and f seT ;eT

0(S0) either lie in di�erent elementary segments of Hs
�(
eT 0) or lie in the closure of

the same elementary segment. The second case is equivalent to S or S0 being in the stable manifold of a
lift of a vertical periodic orbit. We will deal with the �rst case, the second case being simpler.

As above we have a map 's
� : H

s

P 0

�

! Hs

P 0

	

between the corresponding leaf spaces of foliations in eT 0.

Here P 0� and P 0	 are the projections of eT 0 to the orbit spaces of e� and e	 respectively. We clearly have

gseT ;eT
0('s(S)) = 's

�(f
s

eT ;eT
0(S)) and gseT ;eT

0('s(S0)) = 's
�(f

s

eT ;eT
0(S0)):

Hence, gseT ;eT
0('s(S)) and gseT ;eT

0('s(S)0) lie in di�erent elementary segments of Hs
�(
eT 0). We have the

following alternatives:

If f seT ;eT
0 preserves orientation: then f seT ;eT

0(S) � f seT ;eT
0(S0). In other words, the elementary seg-

ment containing f seT ;eT
0(S) is above the elementary segment containing f seT ;eT

0(S0). Since 's
� pre-

serves the order between elementary segments, we obtain:

gseT ;eT
0('s(S)) = 's

�(f
s

eT ;eT
0(S)) � 's

�(f
s

eT ;eT
0(S0)) = gseT ;eT

0('s(S0))

But in this case, gseT ;eT
0 is also orientation preserving; hence 's(S) � 's(S0).

If f seT ;eT
0 reverses orientation: then f seT ;eT

0(S0) � f seT ;eT
0(S), therefore:

gseT ;eT
0('s(S0)) = 's

�(f
s

eT ;eT
0(S0)) � 's

�(f
s

eT ;eT
0(S)) = gseT ;eT

0('s(S))

Since gseT ;eT
0 reverses orientation, we deduce 's(S) � 's(S0).

In both cases, we have proved 's(S) � 's(S0). Therefore, 's preserves the total orders on Hs

P�

and

Hs

P	

; since we already know that it is a bijection, it follows that 's is a homeomorphism.

We can reproduce the same argument, but this time for the negative itineraries, and this time involving
the unstable leaves: we then obtain that 'u is a homeomorphism. Therefore, the restriction of ' to P�

is continuous. As previously observed, it proves that ' is continuous on O� n��.
Permute the role of � and 	: the restriction to O	 n�	 of the inverse map '�1 is continuous. Hence

the restriction of ' to O� n�� is a homeomorphism - in particular, proper.
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Now the continuity of ' on the entire O� follows easily: indeed, on the one hand, the space of ends
of O� n�� (respectively O	 n�	) is naturally the union of �� and the end 1 of the plane O�. Since
O� is a two dimensional plane, and �� is discrete, it now follows that the restriction of ' to O� n ��

admits a unique continuous extension �' : O� ! O	, mapping �� onto �	. On the other hand, ' maps
bijectively �� onto �	. The problem is to prove that �' and ' coincide on ��. This follows easily from
the fact that for every element � of ��, ' maps an open half leaf of the stable leaf of � onto an open half
leaf of the stable leaf of '(�), and that these stable leaves do not accumulate at other elements of �	.
We have proved that ' : O� ! O	 is continuous. The proof of the Lemma is completed. �

Proposition 5.2. (Isotopic equivalence) The ows � and 	 are isotopically equivalent.

Proof. Given Lemma 5.1 this follows from established results: First, Haeiger [Hae] showed that Lemma

5.1 implies that the homeomorphism ' lifts as a map ~f : fM ! fM , satisfying:

' Æ�� = �	 Æ ~f

where �� : fM ! O� and �	 : fM ! O	 are the projection maps on the leaf spaces. In other words, ~f

maps the orbits of ~� onto orbits of ~	. In addition the map ~f also projects to a map in the quotient M ,
f :M !M , so that f is a homotopy equivalence of M which takes orbits of � to orbits of 	.
Actually, according to equation (2) (and according to [Hae]), we have for every  in �1(M):

 Æ ~f = ~f Æ 

It means that the map f : M !M is homotopic to the identity.
Since f is a homotopy equivalence, f is surjective, but it still may fail to be injective along the orbits.

Ghys [Gh] explained how to produce a homeomorphism with the same properties, by an average process
along the orbits. This was explicitly done by the �rst author, Theorem of [Ba1], for Anosov ows.
In [Ma-Tsu, Proposition 5.1], S. Matsumoto and T. Tsuboi proved a more general version suitable for
our purpose here. Their results imply that we eventually get the existence of a topological equivalence
between � and 	, which is homotopic to the identity. According to [Wald3, Theorem 7:1], using that M
is irreducible and has an incompressible surface, this homeomorphism f is isotopic to the identity. This
proves Theorem D'. �

6. Model ows

6.1. Construction of model pseudo-Anosov ows. In this section, we recall the construction in
[Ba-Fe], section 8, of model pseudo-Anosov ows. Actually, we will de�ne a family of model ows 	�;:::;�k

depending on real parameters �1, ... , �k; the ow 	�;:::;�k is pseudo-Anosov if the absolute value of every
�i is suÆciently large. In [Ba-Fe], we only considered the case where all the �i have the same value �,
but it is quite obvious that it need not to be so. The point here is that the choice of these parameters is
irrelevant, since it leads to the same ow up to isotopic equivalence.
First, �x a real number �. The ow will be obtained from building blocks, which are standard neighbor-

hoods of intrinsic elementary Birkho� annuli. Such a neighborhood is homeomorphic to [0; 1]�S1� [0; 1]
(with corresponding (x; y; z) coordinates).
The Birkho� annulus is [0; 1]�S1�f1=2g, where f0g �S1 �f1=2g and f1g �S1 �f1=2g are the only

closed orbits of the semiow in this block and they are the boundaries of the Birkho� annulus (see �gure
7).
The ow is tangent to the side boundaries f0g �S1� [0; 1] and f1g �S1 � [0; 1]. The ow is incoming

along [0; 1]� S1 � f0g and outgoing along [0; 1]� S1 � f1g. The vertical orbits are the periodic orbits in
the block. For example, the stable manifold of f0g � S1 � f1=2g is f0g � S1 � [0; 1=2] and the unstable
manifold is f0g�S1� [1=2; 1]. Every orbit entering in the interior of the incoming side reach the opposite
outgoing side. Such an orbit has a vertical deviation in the y coordinate, the bigger � is, the bigger is
this vertical deviation.
In [Ba-Fe] we prescribe an explicit formula for the ow, denoted by 	�, in the block B, depending on

the parameter �.
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Figure 7: Standard neighborhood of a Birkho� annulus.

Several copies of these blocks can be glued one to the other along annuli which are half of a tangential
boundary annulus. These are either the local stable or unstable manifolds of one of the periodic orbits.
For example one may glue f0g � S1 � [0; 1=2] to a similar half annulus in another copy of the block. In
particular we are glueing stable or unstable manifolds of certain vertical orbits to similar sets of other
vertical orbits. The glueings preserve the ow. One can do this in a very exible way, so that in the end
all tangential boundary components are eliminated. At this point one obtains a semiow in a manifold
P 0 which is a circle bundle over a surface with boundary �. In order to de�ne model ows, we actually
specify particular glueings between the stable/unstable annuli, so that every boundary component admits
a natural coordinate system (x; y) ([Ba-Fe, Section 8]). In particular, the coordinate y de�nes a function
on P 0, whose level sets are sections of the �bration over �i. All this process is encoded by the data of
a fat graph X embedded in �, whose vertices correspond to the (vertical) periodic orbits, whose edges
correspond to embedded elementary Birkho� annuli, and satisfying the following properties:

(1) X is a deformation retract of �.
(2) The valence of every vertex of X is an even number.
(3) The set of boundary components of � is partitioned in two subsets so that for every edge e of X,

the two sides of e in � lie in di�erent sets of this partition.
(4) Each loop in X corresponding to a boundary component of � contains an even number of edges.

We also allow Dehn surgery along the vertical orbits so that the resulting manifold is a Seifert bundle
over the surface �. This operation is encoded by the data of the fat graph (�;X) and also the Dehn
surgery coeÆcients D on vertices of X, i.e. on vertical orbits (these coeÆcients are well-de�ned with the
convention that the meridians of the Dehn �llings to be the loops contained in the section fy = Cteg

mentioned above). We denote the resulting manifold with semi-ow by (P (�;X;D);	�). Observe that
P (�;X;D) is a Seifert manifold. Moreover, the (x; y) coordinates in the initial building block provides
natural coordinates on every boundary component of P (�;X;D). The last item above ensures that each
boundary component of P (�;X;D) is a torus, as opposed to being a Klein bottle.
Finally, we consider several copies P1, ... , Pk of such Seifert �bered manifolds along their transversal

boundaries, each equipped with a local model ow 	�i for some real parameters �i. Let us be more
precise: for each Pi and each component T of Pi, select a vertical/horizontal basis of H1(T;Z), i.e. a basis
whose �rst element is represented by vertical loops (i.e. regular �bers of Pi), and whose second element
is represented by the intersection between T and the preferred section fy = Cteg we have de�ned above.
One could think at �rst glance that we have de�ned by this way a canonical basis of H1(T;Z), but the
point is that these homology classes are de�ned only up to sign: H1(T;Z) admits four vertical/horizontal
basis.
Once such a basis is selected in each boundary torus, select a pairing between these boundary tori,

and for each such pair (T; T 0) choose a two-by-two matrix M(T; T 0) with integer coeÆcients. It de�nes
an isomorphism between H1(T;Z) and H1(T

0;Z); hence an isotopy class of homeomorphisms between
T and T 0. In order to obtain a pseudo-Anosov ow in the resulting manifold, it is necessary that the
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glueing maps do not map �bers to curves homotopic to �bers, i.e. that no M(T; T 0) is upper triangular.
In [Ba-Fe] we show2 that the the resulting ow, denoted by 	�1;:::;�i, is pseudo-Anosov as soon as the
real parameters �i are all suÆciently large. We proved it for very particular glueing maps between the
boundary tori, which are linear in the natural coordinates de�ned by the (x; y) coordinates (even if the
proof in [Ba-Fe] can be easily extended to less restrictive choices). It is clear that for the resulting ow
	�1;:::;�i - called a model ow - the spine in every piece Pi, as stated in Theorem C, is the preimage by
the Seifert �bration of the fat graph Xi.
An immediate consequence of Theorem D' is that the resulting pseudo-Anosov ow is insensitive up

to isotopic equivalence to several choices: it does not depend on the real parameters �1, ... , �k, nor to
the choice of the glueing map in the isotopy class de�ned by the matrices M(T; T 0), as long as these data
are chosen so that the resulting ow is pseudo-Anosov.
In summary, the model ow is uniquely de�ned up to isotopic equivalence by:

(1) The data of a family of fat graphs (�i;Xi) and Dehn �lling coeÆcients Di (i = 1; :::; k).
(2) A choice of vertical/horizontal basis in each H1(T;Z),
(3) A pairing between the boundary tori of the Pi = P (�i;Xi;Di) (i.e. a pairing between the

boundary components of the �i's).
(4) For each such a pair (T; T 0), a two-by-two matrix with integer coeÆcients which is not upper

triangular.

Observe that item (2) is not innocuous: Suppose that for some Pi we replace the �rst vector in the
vertical/horizontal basis of each component of Pi (but we do not modify the basis of the boundary
components of the other pieces Pj , nor any of the other combinatorial data). Then we obtain a model
ow on the same manifold, with the same spine decomposition and vertical stable/unstable annuli, but
where the orientation of the vertical periodic orbits has been reversed. Therefore, this second model
pseudo-Anosov ow is not isotopically equivalent to the initial model ow.
We could formulate a statement establishing precisely when two initial combinatorial data provide

topologically equivalent model pseudo-Anosov ows, but it would require a detailed presentation of F.
Waldhausen's classi�cation Theorem of graph manifolds ([Wald1, Wald2]). We decided that it would
be an unnecessary complication, and that Theorems D and D' already provide a convenient formulation
for the solution of the classi�cation problem of totally periodic pseudo-Anosov ows. For example one
issue we do not address is the choice of section in each Seifert �bered piece minus small neighborhoods of
singular �bers. The boundary curves of these sections are essential to the classi�cation of totally periodic
pseudo-Anosov ows. These boundary curves are determined up to Dehn twists along vertical curves
[Wald1, Wald2, BNR].

6.2. Topological equivalence with model pseudo-Anosov ows. In this section we present the
proof of the Main Theorem, i.e. we show why every totally periodic pseudo-Anosov ow (M;�) is
topologically equivalent to one of the model pseudo-Anosov ows constructed in the previous section.
More precisely, we will show that is topologically equivalent with one model ow 	�1;:::;�i where all the
�i's are equal to the same real parameter � - we denote such a model ow by 	�.
According to section 3, the manifold M is obtained by glueing the Seifert pieces N(Zi) along (trans-

verse) tori. Moreover, every N(Zi) can be obtained by glueing appropriate sides of a collection of \blocks"
U(Ap), where each Ap is a Birkho� annulus. The union of these Birkho� annuli is the spine Zi of N(Zi).
Every block U(Ap) can be described as follows: its boundary contains two annuli, one inward and the
other outward, whose lifts correspond to what have been called elementary bands in the previous sec-
tion. The block U(Ap) also contains two periodic orbits (the boundary components of Ap; which may be
identi�ed through the glueing), two stable annuli (one for each vertical periodic orbit) and two unstable
annuli (also one for each periodic orbit) connecting the periodic orbits to the entrance/exit transverse
annuli in the boundary. All these annuli constitute the boundary of U(Ap). The remaining part of U(Ap)
is a union of orbits crossing Ap, and joining the entrance annulus to the exit annulus. Of course, the lifts

in fM of these blocks are nothing but what have been called blocks in section 4.2.

2Actually, in this reference we only considered the case where all the �i's are equal, but exactly the same proof therein

applies in the slightly more general case we consider here.
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The entire Seifert piece N(Zi) is obtained by glueing all these U(Ap) along their stable and unstable
sides. The way this glueing has to be performed is encoded by a fat graph whose vertices correspond to
the vertical periodic orbits, and the edges are the Birkho� annuli Ap. Let us be slightly more precise:
remove around every vertical periodic orbit a small tubular neighborhood. The result is a compact 3-
manifold N(Zi)

� which is a circle bundle over a surface ��i with boundary. Notice that, as any other
circle bundle (orientable or not) over a surface (orientable or not) with non-empty boundary, this circle
bundle admits a section. In other words, we can consider ��i as a surface embedded in N(Zi)

�; the edges
of Xi then are the intersection between ��i and the the Birkho� annuli Ap.
There are three types of boundary components:

� boundary components corresponding to exit transverse tori,
� boundary components corresponding to entrance transverse tori,
� boundary components corresponding to (the boundary of tubular neighborhoods of) vertical pe-
riodic orbits.

Let us de�ne the surface �i obtained by shrinking the last type of boundary components to points, that
we call special points. One can select the circle �bration ��i : N(Zi)

� ! ��i so that the restrictions of the
Birkho� annuli Ap are vertical. Then their projections de�ne in �i a collection of segments which are the
edges of a graph Xi embedded in �i. Moreover, since every orbit in N(Zi) crosses a Birkho� annulus or
accumulates on a vertical orbit, Xi is a retract of �i, in other words, (�i;Xi) is a fat graph. Observe that
it satis�es the four properties required in the de�nition of model ows in the previous section: we have
just established the �rst and third items; the second item corresponds to the fact that at each vertical
periodic orbit there is an equal number of stable and unstable vertical annuli, so that each of them is
adjacent to an even number of Birkho� annuli. The last item corresponds to the fact that the component
of @P 0 must be tori, not Klein bottles.
Therefore, there is a model semi ow 	i on a circle bundle P 0i = P (�i;Xi) ! �i as described in the

previous section. This partial ow has essentially the same properties that the restriction �i of � to
N(Zi) has: P

0
i is a circle bundle over �i; its boundary components are transverse to 	i; moreover the

inward (respectively outward) boundary components for 	i correspond to the boundary components of
�i that are the entrance (respectively exit) components as de�ned previously, i.e. with respect to �i.
Moreover, the preimage in P 0i of edges of Xi are annuli A0

p transverse to 	i. Every orbit of 	i either

crosses one (and only one) A0
p, or accumulates on one vertical periodic orbit.

The main di�erence is that P 0i is a circle bundle over �i, whereas N(Zi) is merely a Seifert manifold
with a Seifert �bration. In particular near the vertical periodic orbits, the �bration of Pi is a product
�bration. Moreover, some of the vertical periodic orbit of 	i might be 1-prong orbits. There is an
embedding N(Zi)

� ,! P 0i preserving the �bers, and mapping ��, considered as a section in N(Zi)
�, into

the canonical section fy = Cteg of N(Xi) ! �i. We can furthermore choose this embedding so that it
is coherent relatively to the orientation of vertical orbits: we require that the orientation of the regular
�bers in each component C of @N(Zi)

� de�ned by the oriented periodic orbit of � surrounded by C

coincide with the orientation de�ned by the periodic orbit of 	i surrounded by the image of C in P 0i .
Although N(Zi) is not always homeomorphic to P 0i , it is obtained from it by a Dehn surgery along

the vertical orbits. This Dehn surgery is encoded by the data of Dehn coeÆcients Di, i.e. the data at
each vertex of Xi of a pair (pi; qi) of relatively prime integers. This data is well-de�ned once one selects
the section ��i , since meridians around every vertical orbit can be de�ned as the loops contained in ��.
Hence, there is a homeomorphism between N(Zi) and the model piece Pi = P (�i;Xi;Di), which maps
oriented vertical orbits of � contained in Zi to oriented vertical orbits of the model semi-ow 	i. Observe
that this homeomorphism maps stable/unstable vertical annuli into stable/unstable vertical annuli of 	i.
Now M is obtained by glueing exit transverse tori to entrance transverse tori of the various Seifert

pieces N(Zi) through identi�cation homeomorphisms 'k (where k describes the set of transverse tori Tk
as denoted previously). The isotopy classes of these homeomorphisms can be characterized by two-by-two
matrices, once selected in each H1(T;Z) vertical/horizontal basis, where the second (horizontal) element
of the basis is now determined according to the section ��i . These two-by-two matrices cannot be upper
triangular, since adjacent Seifert pieces in a (minimal) JSJ decomposition cannot have freely homotopic
regular �bers.
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The choice of vertical/horizontal homological basis in each boundary torus ofN(Zi) naturally prescribes
a choice of vertical/horizontal homological basis in each boundary torus of Pi � N(Zi).
Hence we have collected all the necessary combinatorial data necessary for the construction of a model

ow 	 on a manifold M	 obtained by glueing the various pieces Pi. The resulting manifold M	 is
homeomorphic to M .
Now it should be clear to the reader that the (M;�) and (M	;	) have the same combinatorial data,

so that they are topologically equivalent by Theorem D. This completes the proof of the Main Theorem.

7. Concluding remarks

Throughout this section M is a graph manifold admitting a totally periodic pseudo-Anosov ow.

Number of topological equivalence classes and isotopic equivalence classes of pseudo-Anosov

ows. The mapping class group of a given topological surface S = �i with more than one boundary
component is in�nite. This implies that the number of fat graphs on S up to isotopy is in�nite, unless
S is a surface of small complexity. One example of a surface of small complexity is the annulus. Here
there is only one fat graph T which is a core circle. Notice that such surfaces also need to be considered
for pseudo-Anosov ows. At �rst one may think that a fat graph T a circle as above will only yield
one-prong pseudo-Anosov ows. However one can perform Dehn surgery on the vertical orbits to obtain
true pseudo-Anosov ows without one-prong orbits. In this article we do not explicitly determine all the
surfaces of small complexity with respect to this question.
In addition if a homeomorphism g of S maps a given fat graph T onto a fat graph isotopic to T , then

g is isotopic to the identity, because T is a deformation retract of S. It follows from these facts, and from
Theorem D', that the number of isotopic equivalence classes of pseudo-Anosov ows on the same graph
manifold so that at least one of the corresponding fat graph surfaces does not have small complexity, is
in�nite.
Let us now discuss the number of topological equivalence classes. Waller [Wa] proved that in general

the number of fat graph structures on a given topological surface S = �i, up to homeomorphisms of S,
even if always �nite, can be quite big. These all will generate topologically inequivalent pseudo-Anosov
ows. That is, di�erent graphs Xi yield di�erent ows. With the same fat graphs, with the careful choices
of particular sections and Dehn �lling coeÆcients, made above, then the following happens. The only
choice left is the direction of the vertical periodic orbits. Once the direction of a single vertical periodic
orbit in a �xed Pi is chosen, then all the directions in the other vertical orbits are determined, because
the choice of orientations propagates along Birkho� annuli, i.e. edges of the fat graph. But there are two
choices here. So there are at least 2k inequivalent such pseudo-Anosov ows if there are k pieces in the
JSJ decomposition of M .
Therefore, we have proved that there is no upper bound on the number of topological equivalence

classes of pseudo-Anosov ows on 3-manifolds.

Action of the mapping class group on the space of isotopic equivalence classes. The mapping
class group of the graph manifoldM preserves the JSJ decomposition; more precisely, induces a permuta-
tion on the space of Seifert pieces of the JSJ decomposition. In general, if the permutation is non trivial,
then it will map a totally periodic pseudo-Anosov ow � in M to a ow non isotopically equivalent to
�, except maybe in exceptional situations where M has some symmetries - for example, when M has
exactly two pieces which are both homeomorphic to the product S � S1 of a surface S with more than
one boundary component with the circle.
Let us focus on non-trivial elements of the mapping class group preserving every JSJ component. As

observed in the previous section, in general it will preserve no isotopic equivalence class of totally periodic
pseudo-Anosov ow, simply because the induced map on the base surface S of some Seifert piece does
not preserve the isotopy class of a fat graph in S.
However, there is an interesting phenomenom we want to discuss here: consider a torus T of the JSJ

decomposition of M . Let Pi, Pj be the two adjacent Seifert pieces of M containing T in their boundary.
Let U(T ) be a tubular neighborhood of T . SinceM is orientable, U(T ) is di�eomorphic to the product of
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an annulus A by the circle S1. Let � be a Dehn twist in the annulus A; then the map �T : A�S1 ! A�S1

de�ned by �T (x; �) = (�(x); �) de�nes a homeomorphism of M , with support contained in U(T ), which
is not homotopically trivial modulo the boundary. Therefore �T induces a homeomorphism of M which
is not isotopic to the identity, because it induces a non trivial isomorphism of �1(M). Notice in addition
that there are in�nitely many inequivalent ways of expressing U(T ) as a product of an annulus and a
circle: they are in one-to-one correspondance with the space of indivisible homology classes in H1(T;Z).
But the following remarkable property holds: Suppose that T is a torus of the JSJ decomposition

and �T is a Dehn twist in a vertical direction of T , i.e. for which the annulus A contains a loop freely
homotopic to the regular �bers of one of the two Seifert pieces Pi, Pj bounded by T . Then �T does not
change the isotopy class of totally periodic pseudo-Anosov ows, i.e. the conjugate of the ow by any
representant of �T is isotopically equivalent to the initial ow.
Indeed, let � be any such a ow. Up to isotopic equivalence, one can assume that T is contained in

one neighborhood N(Zi) which is a representative of the Seifert piece Pi, and in the region between Zi

and a boundary component of N(Zi) isotopic to T . Then, we can select in the isotopy class of �T another
homeomorphism f with support disjoint from Zi, disjoint from all the N(Zk) with k 6= i, and which
preserves all the vertical stable/unstable annuli in N(Zi). In addition f preserves the Zi and the vertical
annuli in N(Zi) for all i. Therefore, the conjugate of � by f has the same combinatorial/topological data
than �. Thus, according to Theorem D', the conjugate of � by f is isotopically equivalent to �, since
the identity map realizes the isotopy involved in the statement of Theorem D'.
Similarly, the same applies for Dehn twists along the vertical direction de�ned by the regular �bers of

the adjoining Seifert piece Pj . In this way, we can obtain many other elements of the mapping class group
in the stabilizer of the isotopic equivalence class by composing Dehn twists in the vertical direction for
Pi with Dehn twists in the vertical direction for Pj . In particular, if the intersection number between the
vertical direction de�ned by Pi and the one de�ned by Pj is �1, then any Dehn twist along any closed
simple loop in T preserves the isotopy class of totally periodic pseudo-Anosov ow inM . In general since
the �bers in Pj and Pi do not have common powers, they generate a �nite index subgroup of �1(T ). Hence
all such Dehn twists produce only �nitely many isotopic equivalence classes of pseudo-Anosov ows.

Topological transitivity of totally periodic pseudo-Anosov ows. It is easy to construct non
transitive totally periodic pseudo-Anosov ows. For simplicity we do an example without Dehn surgery.
Start with a surface S with high enough genus and three boundary components. Russ Waller [Wa] showed
that S has a structure as a fat graph with the properties of section 5 and one can then easily construct
a semiow 	0 in S � S1, with one exiting boundary component and two entering components. Glue one
entering boundary component with the exiting one by an admissible glueing. This is manifold M1 with
semiow 	1 with one entering component. Do a copy of M1 with a ow reversal of 	1 and then glue
it to M1 by an admissible map. The resulting manifold is a graph manifold with a model ow which is
clearly not transitive: the boundary component of M1 is transverse to the ow and any orbit intersecting
this torus is trapped in M1.
It is not very hard to characterize when exactly the model ow is transitive: we claim that it is

equivalent to the following property: the oriented graph G, which is the quotient by �1(M) of the

oriented graph eG de�ned in section 4.3, is strongly connected: for any pair of vertex T and T 0 in G, there
must be an oriented path going from T to T 0 and another oriented path going from T 0 to T .
This is done for a more general class of ows (at least the Anosov case) in a forthcoming article [BBB]

by B�eguin, Bonatti and Yu. Because of that we do not discuss further transitivity of model ows here.
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