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Abstract

We study the well-posedness of a coupled Cahn-Hilliard-Stokes-Darcy system which is

a di↵use-interface model for essentially immiscible two phase incompressible flows with

matched density in a karstic geometry. Existence of finite energy weak solution that is

global in time is established in both 2D and 3D. Weak-strong uniqueness property of the

weak solutions is provided as well.
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1. Introduction

Applications such as contaminant transport in karst aquifer, oil recovery in karst oil

reservoir, proton exchange membrane fuel cell technology and cardiovascular modelling

require the coupling of flows in conduits with those in the surrounding porous media.

Geometric configurations that contain both conduit (or vug) and porous media are termed

karstic geometry. Moreover, many flows are naturally multi-phase and hence multi-phase

flows in the karstic geometry are of interest. Despite the importance of the subject, little

work has been done in this area. Our main goal here is to analyze a di↵use-interface

model for two phase incompressible flows with matched densities in the karstic geometry

that was recently derived in [1] via Onsager’s extremum principle.

To fix the notation, let us assume that the two-phase flows are confined in a bounded

connected domain ⌦ ⇢ Rd (d = 2, 3) of C2,1 boundary @⌦. The unit outer normal at @⌦

is denoted by n. The domain ⌦ is partitioned into two non-overlapping regions such that

⌦ = ⌦c [ ⌦m and ⌦c \ ⌦m = ;, where ⌦c and ⌦m represent the underground conduit (or

⇤
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vug) and the porous matrix region, respectively. We denote @⌦c and @⌦m the boundaries

of the conduit and the matrix part, respectively. Both @⌦c and @⌦m are assumed to be

Lipschitz continuous. The interface between the two parts (i.e., @⌦c\@⌦m) is denoted by

�cm, on which ncm denotes the unit normal to �cm pointing from the conduit part to the

matrix part. Then we denote �c = @⌦c\�cm and �m = @⌦m\�cm with nc,nm being the

unit outer normals to �c and �m. We assume that both �m and �cm have positive measure

(namely, |�m| > 0, |�cm| > 0) but allow �c = ;, i.e. ⌦c can be enclosed completely by ⌦m.

A two dimensional geometry is illustrated in Figure 1. When d = 3, we also assume that

the surfaces �c, �m, �cm have Lipschitz continuous boundaries. On the conduit/matrix

interface �cm, we denote by {⌧ i} (i = 1, ..., d�1) a local orthonormal basis for the tangent

plane to �cm.

Figure 1: Schematic illustration of the domain in 2D

In the sequel, the subscript m (or c) emphasizes that the variables are for the matrix part

(or the conduit part). We denote by u the mean velocity of the fluid mixture and ' the

phase function related to the concentration of the fluid (volume fraction). The following

convention will be assumed throughout the paper

u|⌦m = um, u|⌦c = uc, '|⌦m = 'm, '|⌦c = 'c.

Governing PDE system. To the best of our knowledge, the first di↵use-interface

model for incompressible two-phase flows in karstic geometry with matched densities was

recently derived in [1] by utilizing Onsager’s extremal principle (see references therein).

Our aim in this paper is to study its well-posedness. Indeed, we can perform the analysis

for a more general system, in which the Stokes equation can also be time-dependent. Thus,

we shall consider the following Cahn-Hilliard-Stokes-Darcy system (CHSD for brevity)
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coupled through a set of interface boundary conditions (see (1.16)–(1.22) below):

⇢0$@tuc = r · T(uc, Pc) + µcr'c, in ⌦c, (1.1)

r · uc = 0, in ⌦c, (1.2)

@t'c + uc ·r'c = div(M('c)rµc), in ⌦c, (1.3)

um = � ⇢0g⇧

⌫('m)
(rPm � µmr'm) , in ⌦m, (1.4)

r · um = 0, in ⌦m, (1.5)

@t'm + um ·r'm = div(M('m)rµm), in ⌦m, (1.6)

where the chemical potentials µc, µm are given by

µj = �
⇣
� ✏�'j +

1

✏
('3

j � 'j)
⌘
, j 2 {c,m}. (1.7)

Here, the parameter $ in (1.1) is a nonnegative constant. When $ = 0, the system

(1.1)–(1.6) reduces to the CHSD system derived in [1]. ⇢0 represents the fluid density,

and g is the gravitational constant. The parameter � > 0 is related to the surface tension.

We remark that the Stokes equation (1.1) can be viewed as low Reynolds number approx-

imation of the Navier-Stokes equation, while the Darcy equation (1.4) can be viewed as

the quasi-static approximation for the saturated flow model under the assumption that

the porous media pressure adjusts instantly to changes in the fluid velocity [2, 3].

In the di↵use-interface model of immiscible two phase flows, the chemical potential µ

(see Eq. (1.7)) is given by the variational derivative of the following free energy functional

E(') := �

Z

⌦

✓
✏

2
|r'|2 + 1

✏
F (')

◆
dx, (1.8)

where F (') is the Helmholtz free energy and usually taken to be a non-convex function

of ' for immiscible two phase flows, e.g., a double-well polynomial of Ginzburg-Landau

type in our present case:

F (') =
1

4
('2 � 1)2. (1.9)

Singular potential of Flory-Huggins type can be treated as well, see for instance [4]. The

first term (i.e., the gradient part) of E is a di↵usion term that represents the hydrophilic

part of the free-energy, while the second term (i.e., the bulk part) expresses the hydropho-

bic part of the free-energy. The small constant ✏ in (1.8) is the capillary width of the binary

mixture. As the constant ✏ ! 0, ' will approach 1 and �1 almost everywhere, and the

contribution due to the induced stress will converge to a measure-valued force term sup-

ported only on the interface between regions {' = 1} and {' = �1} (cf. [5, 6]). The

nonlinear terms µcr'c and µmr'm in the convective Cahn-Hilliard equations (1.3) and

(1.6) can be interpreted as the “elastic” force (or Korteweg force) exerted by the di↵usive

interface of the two phase flow. This “elastic” force converges to the surface tension at
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sharp interface limit ✏! 0 at least heuristically (cf. e.g., [5, 7]). Since the value of � does

not a↵ect the analysis, we simply set � = 1 throughout the rest of the paper. Likewise,

we set the fluid density ⇢0 and gravitational constant g to be 1 without loss of generality.

The two phase flow in the conduit part and matrix part is described by the Stokes

equation (1.1) and the Darcy equation (1.4), respectively. In (1.1), the Cauchy stress

tensor T is given by

T(uc, pc) = 2⌫('c)D(uc)� PcI

where D(uc) =
1
2(ruc +rTuc) is the symmetric rate of deformation tensor and I is the

d ⇥ d identity matrix. Besides, Pc and Pm stand for the modified pressures that also

absorb the e↵ects due to gravitation. The viscosity and the mobility of the CHSD model

are denoted by ⌫ and M, respectively. They are assumed to be suitable functions that

may depend on the phase function ' (see Section 2.3). M(') is taken to be the same

(function of the phase function) for the conduit and the matrix for simplicity. In Eq.

(1.4), ⇧ is a d⇥ d matrix standing for permeability of the porous media. It is related to

the hydraulic conductivity tensor of the porous medium K through the relation ⇧ = ⌫K
⇢0g

.

In the literature, K is usually assumed to be a bounded, symmetric and uniformly positive

definite matrix but could be heterogeneous [8].

Next, we describe the initial boundary (or interface) conditions of the CHSD system

(1.1)–(1.6).

Initial conditions. The CHSD System (1.1)–(1.6) is subject to the initial conditions

uc|t=0 = u0(x), in⌦c, (1.10)

'|t=0 = '0(x), in⌦. (1.11)

In particular, when $ = 0, we do not need the initial condition (1.10) for uc.

Boundary conditions on �c and �m. The boundary conditions on �c and �m take

the following form:

uc = 0, on �c, (1.12)

um · nm = 0, on �m, (1.13)
@'c

@nc

=
@µc

@nc

= 0, on �c, (1.14)

@'m

@nm

=
@µm

@nm

= 0, on �m. (1.15)

Interface conditions on �cm. The CHSD system (1.1)–(1.6) are coupled through

the following set of interface conditions:

'm = 'c, on �cm, (1.16)

µm = µc, on �cm, (1.17)
@'m

@ncm

=
@'c

@ncm

, on �cm (1.18)
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@µm

@ncm

=
@µc

@ncm

, on �cm (1.19)

um · ncm = uc · ncm, on �cm, (1.20)

�ncm · (T(uc, Pc)ncm) = Pm, on �cm, (1.21)

�⌧ i · (T(uc, Pc)ncm) = ↵BJSJ
⌫('m)p
trace(⇧)

⌧ i · uc, on �cm, (1.22)

for i = 1, .., d� 1.

The first four interface conditions (1.16)–(1.19) are simply the continuity conditions

for the phase function, the chemical potential and their normal derivatives, respectively.

Condition (1.20) indicates the continuity in normal velocity that guarantees the conser-

vation of mass, i.e., the exchange of fluid between the two sub-domains is conservative.

Condition (1.21) represents the balance of two driving forces, the pressure in the matrix

and the normal component of the normal stress of the free flow in the conduit, in the

normal direction along the interface. The last interface condition (1.22) is the so-called

Beavers-Joseph-Sa↵man-Jones (BJSJ) condition (cf. [9, 10]), where ↵BJSJ � 0 is an

empirical constant determined by the geometry and the porous material. The BJSJ con-

dition is a simplified variant of the well-known Beavers-Joseph (BJ) condition (cf. [11])

that addresses the important issue of how the porous media a↵ects the conduit flow at

the interface:

�⌧ i · (2⌫D(uc))ncm = ↵BJ
⌫p

trace(⇧)
⌧ i · (uc � um), on �cm, i = 1, ..., d� 1.

This empirical condition essentially claims that the tangential component of the normal

stress that the free flow incurs along the interface is proportional to the jump in the

tangential velocity over the interface. To get the BJSJ condition, the term �⌧ i ·um on the

right hand side is simply dropped from the corresponding BJ condition. Mathematically

rigorous justification of this simplification under appropriate assumptions can be found

in [12].

There is an abundant literature on mathematical studies of single component flows in

karstic geometry [2, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Those aforementioned

mathematical works on the flows in karst aquifers treat the case of confined saturated

aquifer where only one type of fluid (e.g., water) occupies the whole region exclusively.

The mathematical analysis is already a challenge due to the complicated coupling of

the flows in the conduits and the surrounding matrix, which are governed by di↵erent

physical processes, the complex geometry of the network of conduits as well as the strong

heterogeneity.

The current work contributes to, to the authors’ best knowledge, a first rigorous

mathematical analysis of the di↵use-interface model for two phase incompressible flows in

the karstic geometry. In particular, we prove the existence of global finite energy solutions

in the sense of Definition 2.1 to the CHSD system (1.1)–(1.22) (see Theorem 2.1). The
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proof is based on a novel semi-implicit discretization in time numerical scheme (3.1)–(3.5)

that satisfies a discrete version of the dissipative energy law (2.2) (see Proposition 3.2

below). One can thus establish the existence of weak solutions to the resulting nonlinear

elliptic system via the Leray-Schauder degree theory (cf. [25, 26]). Then the existence

of global finite energy solutions to the original CHSD system follows from a suitable

compactness argument. We point out that our numerical scheme (3.1)–(3.5) di↵ers from

the one proposed and studied by Feng and Wise [27] (for the Cahn-Hilliard-Darcy system

in simple domain) in the sense that, among others, both the elastic forcing term µr' in

the Stokes/Darcy equations and the convection term u ·r' in the Cahn-Hilliard equation

are treated in a fully implicit way. As a consequence, we are able to prove the existence of

finite energy solutions by only imposing the initial data '0 2 H1(⌦), whereas in [27] the

authors have to assume '0 2 H2(⌦) (or at least H1(⌦)\L1(⌦)), which is not natural in

view of the basic energy law (2.2). On the other hand, this choice of discretization brings

extra di�culties such that neither the variational approach in [28, 27] nor the monotonicity

method devised in [29] can be applied. Besides, the complexity of the domain geometry

also motivates us to introduce an equivalent norm for the velocity field (Eq. (3.73)), which

is necessary for the analysis in the case of stationary Stokes equation ($ = 0). After the

existence result is obtained, a weak-strong uniqueness property of the weak solutions is

shown via the energy method (cf. Theorem 2.2 for the precise statement). We note that

existence and uniqueness of strong solutions to the coupled CHSD system (1.1)–(1.22) is

beyond the scope of this manuscript and will be addressed in a forthcoming work.

It is worth mentioning that there are a lot of works on di↵use-interface models for im-

miscible two phase incompressible flow with matched densities in a single domain setting.

For instance, concerning the Cahn-Hilliard-Navier-Stokes system (Model H), existence of

weak solutions, existence and uniqueness of strong solutions and long time dynamics are

established in [4, 30, 31, 32] and references therein. As for the Cahn-Hilliard-Darcy (also

referred to as Cahn-Hilliard-Hele-Shaw) system in porous media or in the Hele-Shaw cell,

the readers are referred to [27, 33, 34, 35, 36] for latest results.

The rest of this paper is organized as follows. In Section 2, we first introduce the

appropriate functional spaces and derive a dissipative energy law associated with the

CHSD system (1.1)–(1.22). After that, we present the definition of suitable weak solutions

and state the main results of this paper. Section 3 is devoted to the existence of global

finite energy weak solutions. We first obtain the existence of weak solutions to an implicit

time-discretized system by the Leray-Schauder degree theory. Then the existence of finite

energy weak solutions to the original CHSD system follows from a compactness argument.

Finally, in Section 4 we prove the weak-strong uniqueness property of the weak solutions.
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2. Preliminaries and Main Results

2.1. Functional spaces

We first introduce some notations. If X is a Banach space and X 0 is its dual, then

hu, vi ⌘ hu, viX0,X for u 2 X 0, v 2 X denotes the duality product. The inner product on

a Hilbert space H is denoted by (·, ·)H . Let ⌦ ⇢ Rd be a bounded domain, then Lq(⌦),

1  q  1 denotes the usual Lebesgue space and k · kLq(⌦) denotes its norm. Similarly,

Wm,q(⌦), m 2 N, 1  q  1, denotes the usual Sobolev space with norm k · kWm,p(⌦).

When q = 2, we simply denote Wm,2(⌦) by Hm(⌦). Besides, the fractional order Sobolev

spaces Hs(⌦) (s 2 R) are defined as in [37, Section 4.2.1]. If I is an interval of R+ and

X a Banach space, we use the function space Lp(I;X), 1  p  +1, which consists of p-

integrable functions with values in X. Moreover, Cw(I;X) denotes the topological vector

space of all bounded and weakly continuous functions from I to X, while W 1,p(I,X)

(1  q < +1) stands for the space of all functions u such that u, du
dt

2 Lp(I;X), where
du
dt

denotes the vector valued distributional derivative of u. Bold characters are used to

denote vector spaces.

Given v 2 L1(⌦), we denote by v = |⌦|�1
R
⌦ v(x)dx its mean value. Then we define

the space L̇2(⌦) := {v 2 L2(⌦) : v = 0} and v̇ = P0v := v � v the orthogonal projection

onto L̇2(⌦). Furthermore, we denote Ḣ1(⌦) = H1(⌦) \ L̇2(⌦), which is a Hilbert space

with inner product (u, v)Ḣ1 =
R
⌦ ru · rvdx due to the classical Poincaré inequality for

functions with zero mean. Its dual space is simply denoted by Ḣ�1(⌦).

For our CHSD problem with domain decomposition, we introduce the following spaces

H(div;⌦j) := {w 2 L2(⌦j) | r ·w 2 L2(⌦j)}, j 2 {c,m},
Hc,0 := {w 2 H1(⌦c) | w = 0 on �c},

Hc,div := {w 2 Hc,0 | r ·w = 0},
Hm,0 := {w 2 H(div;⌦m) | w · nm = 0 on �m},

Hm,div := {w 2 Hm,0 | r ·w = 0},
Xm := Ḣ1(⌦m).

We denote (·, ·)c, (·, ·)m the inner products on the spaces L2(⌦c), L2(⌦m), respectively

(also for the corresponding vector spaces). The inner product on L2(⌦) is simply denoted

by (·, ·). Then it is clear that

(u, v) = (um, vm)m + (uc, vc)c, kuk2L2(⌦) = kumk2L2(⌦m) + kuck2L2(⌦c),

where um := u|⌦m and uc := u|⌦c .

On the interface �cm, we consider the fractional Sobolev spaces H
1
2
00(�cm) and H

1
2 (�cm)

for (Lipschitz) surface �cm when d = 3 or curve when d = 2 with the following equivalent

norms (see [38, pp.-66], or [39]):

kuk2
H

1
2 (�cm)

=

Z

�cm

|u|2dS +

Z

�cm

Z

�cm

|u(x)� u(y)|2

|x� y|d dxdy,
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kuk2
H

1
2
00(�cm)

= kuk2
H

1
2 (�cm)

+

Z

�cm

|u(x)|2

⇢(x, @�cm)
dx,

where ⇢(x, @�cm) denotes the distance from x to @�cm. The above norms are not equiv-

alent except when �cm is a closed surface or curve (cf. [24]). If �cm is a subset of @⌦c

with positive measure, then H
1
2
00(�cm) is a trace space of functions of H1(⌦c) that vanish

on @⌦c \ �cm. Similarly in the vectorial case, we have H
1
2
00(�cm) = Hc,0|�cm . H

1
2
00(�cm)

is a non-closed subspace of H
1
2 (�cm) and has a continuous zero extension to H

1
2 (@⌦c).

For H
1
2
00(�cm), we have the following continuous embedding result (cf. [17]): H

1
2
00(�cm) $

H
1
2 (�cm) $ H� 1

2 (�cm) $ (H
1
2
00(�cm))0. We note that H� 1

2 (@⌦c)|�cm * H� 1
2 (�cm) and

H� 1
2 (@⌦c)|�cm ⇢ (H

1
2
00(�cm))0, where the space H� 1

2 (@⌦c)|�cm is defined in the follow-

ing way: for all f 2 H� 1
2 (@⌦c)|�cm and g 2 H

1
2
00(�cm), hf, gi

H� 1
2 (@⌦c)|�cm , H

1
2
00(�cm)

:=

hf, egi
H� 1

2 (@⌦c), H
1
2 (@⌦c)

with eg being the zero extension of g to @⌦c.

For any u 2 H(div,⌦c), its normal component u · ncm is well defined in (H
1
2
00(�cm))0,

and for all q 2 H1(⌦c) such that q = 0 on @⌦c\�cm, we have

(r · u, q)c = (u,rq)c + hu · ncm, qi
(H

1
2
00(�cm))0, H

1
2
00(�cm)

.

Similar identity holds on the matrix domain ⌦m.

2.2. Basic energy law

An important feature of the CHSD system (1.1)–(1.22) is that it obeys a dissipative

energy law. To this end, we first note that the total energy of the coupled system is given

by:

E(t) =
Z

⌦c

$

2
|uc|2dx+

Z

⌦


✏

2
|r'|2 + 1

✏
F (')

�
dx. (2.1)

Then we have the following formal result:

Lemma 2.1 (Basic energy law). Let (um,uc,') be a smooth solution to the initial bound-

ary value problem (1.1)–(1.22). Then (um,uc,') satisfies the following basic energy law:

d

dt
E(t) = �D(t)  0, 8 t � 0, (2.2)

where the energy dissipation D is given by

D(t) =

Z

⌦m

⌫('m)⇧
�1|um|2dx+

Z

⌦c

2⌫('c)|D(uc)|2dx

+

Z

⌦

M(')|rµ(')|2dx+
↵BJSJp
trace(⇧)

d�1X

i=1

Z

�cm

⌫(')|uc · ⌧ i|2dS. (2.3)
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Proof. For the conduit part, multiplying the equations (1.1), (1.3) by uc and µ('c), re-

spectively, integrating over ⌦c, and adding the resultants together, we get

d

dt

Z

⌦c

$

2
|uc|2dx+

Z

⌦c

@t'cµ('c)dx

=

Z

⌦c

[r · T(uc, Pc)] · ucdx+

Z

⌦c

µ('c)div(M('c)rµ('c))dx.

After integration by parts and using the boundary conditions, we obtain that

d

dt

Z

⌦c


$

2
|uc|2 +

✏

2
|r'c|2 +

1

✏
F ('c)

�
dx+

Z

⌦c

M('c)|rµ('c)|2dx

=

Z

⌦c

[r · T(uc, Pc)] · ucdx+

Z

�cm

M('c)µ('c)
@µ('c)

@ncm

dS

+✏

Z

�cm

@t'c
@'c

@ncm

dS. (2.4)

Applying the divergence theorem to the first term on the right-hand side of (2.4), we infer

from the boundary conditions (1.12), (1.21), (1.22) and the incompressibility condition

(1.2) that
Z

⌦c

[r · T(uc, Pc)] · ucdx

=

Z

�cm

(T(uc, Pc)ncm) · ucdS �
Z

⌦c

T(uc, Pc) : rucdx

=
2X

i=1

Z

�cm

(⌧ T
i T(uc, Pc)ncm)(uc · ⌧ i)dS

+

Z

�cm

(nT
cmT(uc, Pc)ncm)(uc · ncm)dS

�
Z

⌦c

(2⌫('c)D(uc)� PcI) : rucdx

= � ↵BJSJp
trace(⇧)

d�1X

i=1

Z

�cm

⌫('m)|uc · ⌧ i|2dS �
Z

�cm

Pm(uc · ncm)dS

�
Z

⌦c

2⌫('c)|D(uc)|2dx. (2.5)

Next, we consider the matrix part. Multiplying the equation (1.6) by µ('m) and

integrating over ⌦m, we get
Z

⌦m

@t'mµ('m) + (um ·r'm)µ('m)dx =

Z

⌦m

µ('m)div(M('m)rµ('m))dx. (2.6)

On the other hand, we infer from the Darcy equation (1.1) that

µ('m)r'm = ⌫('m)⇧
�1um +rPm.
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Using this fact and integration by parts, we infer from the boundary condition (1.15) that

d

dt

Z

⌦m


✏

2
|r'm|2 +

1

✏
F ('m)

�
dx

+✏

Z

�cm

@t'm
@'m

@ncm

dS +

Z

⌦m

�
⌫('m)⇧

�1|um|2 + um ·rPm

�
dx

= �
Z

�cm

M('m)µ('m)
@µ('m)

@ncm

dS �
Z

⌦m

M('m)|rµ('m)|2dx, (2.7)

where we recall that ncm denotes the unit normal to interface �cm pointing from the

conduit to the matrix. By the divergence theorem and the incompressibility condition

(1.5), we get
Z

⌦m

um ·rPmdx =

Z

⌦m

[r · (Pmum)� Pm(r · um)] dx

= �
Z

�cm

Pmum · ncmdS (2.8)

Then (2.7) becomes

d

dt

Z

⌦m


✏

2
|r'm|2 +

1

✏
F ('m)

�
dx

+

Z

⌦m

�
⌫('m)⇧

�1|um|2 +M('m)|rµ('m)|2
�
dx

= �
Z

�cm

M('m)µ('m)
@µ('m)

@ncm

dS � ✏

Z

�cm

@t'm
@'m

@ncm

dS

+

Z

�cm

Pmum · ncmdS. (2.9)

Finally, combining (2.4), (2.5) and (2.9), using the definition of ' as well as the

continuity conditions (1.16)–(1.17) on interface �cm, we can cancel the boundary terms

and conclude the basic energy law (2.2). The proof is complete.

2.3. Weak formulation and main results

We make the following assumptions on viscosity ⌫, mobility coe�cient M as well as

the permeability matrix ⇧:

(A1) ⌫ 2 C1(R), ⌫  ⌫(s)  ⌫̄ and |⌫ 0(s)|  ⌫̃ for s 2 R, where ⌫̄, ⌫ and ⌫̃ are positive

constants.

(A2) M 2 C1(R), m  M(s)  m̄ and |M0(s)|  m̃ for s 2 R, where m̄, m and m̃ are

positive constants.

(A3) The permeability ⇧ is isotropic, bounded from above and below (so is the hydraulic

conductivity tensor K), namely, ⇧ = (x)I with I being the d ⇥ d identity matrix

and (x) 2 L1(⌦) such that there exist ̄ >  > 0,   (x)  ̄ a.e. in ⌦.
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Below we introduce the notion of finite energy weak solution to the CHSD system

(1.1)–(1.22) as well as its corresponding weak formulation.

Definition 2.1. Suppose that d = 2, 3 and T > 0 is arbitrary. Let ↵ = 8
5 when d = 3 and

↵ < 2 being arbitrary close to 2 when d = 2.

Case 1: $ > 0. We consider the initial data u0(x) 2 L2(⌦c), '0 2 H1(⌦). The

functions (uc,um, Pm,', µ) with the following properties

uc 2 L1(0, T ;L2(⌦c)) \ L2(0, T ;Hc,div) \W 1,↵(0, T ; (H1(⌦c))
0), (2.10)

um 2 L2(0, T ;L2(⌦m)), (2.11)

Pm 2 L↵(0, T ;Xm), (2.12)

' 2 L1(0, T ;H1(⌦)) \ L2(0, T ;H3(⌦)) \W 1,↵(0;T ; (H1(⌦))0), (2.13)

µ 2 L2(0, T ;H1(⌦)), (2.14)

is called a finite energy weak solution of the CHSD system (1.1)–(1.22), if the following

conditions are satisfied:

(1) For any vc 2 C1
0 ((0, T );Hc,div) and qm 2 C([0, T ];Xm),

�$
Z T

0

(uc, @tvc)cdt+ 2

Z T

0

(⌫('c)D(uc),D(vc))cdt

+

Z T

0

✓
⇧

⌫('m)

h
rPm � µ('m)r'm

i
,rqm

◆

m

dt

+
d�1X

i=1

↵BJSJp
trace(⇧)

Z T

0

Z

�cm

⌫('m)(uc · ⌧ i)(vc · ⌧ i)dSdt

+

Z T

0

Z

�cm

Pm(vc · ncm)dSdt�
Z T

0

Z

�cm

(uc · ncm)qmdSdt

=

Z T

0

(µ('c)r'c,vc)cdt, (2.15)

moreover, the velocity um in the matrix part satisfies

Z T

0

(um,vm)mdx = �
Z T

0

✓
⇧

⌫('m)

h
rPm � µ('m)r'm

i
,vm

◆

m

dt, (2.16)

for any vm 2 C([0, T ];L2(⌦m)).

(2) For any � 2 C1
0 ((0, T );H1(⌦)),

�
Z T

0

(', @t�)dt+

Z T

0

(M(')rµ('),r�)dt = �
Z T

0

(u ·r',�)dt, (2.17)

Z T

0

(µ('),�)dt =

Z T

0


1

✏
(f('),�) + ✏(r',r�)

�
dt. (2.18)

(3) uc|t=0 = u0(x), '|t=0 = '0(x).

11



(4) The finite energy solution satisfies the energy inequality

E(t) +
Z t

s

D(⌧)d⌧  E(s), (2.19)

for all t 2 [s, T ) and almost all s 2 [0, T ) (including s = 0), where the total energy E is

given by (2.1).

Case 2: $ = 0. In this case, we do not need the initial condition for uc. The

regularity property for uc (cf. (2.10)) is simply replaced by

uc 2 L2(0, T ;Hc,div). (2.20)

The finite energy weak solution (uc,um, Pm,', µ) still fulfills the above properties (1)–(4)

with $ = 0 in corresponding formulations.

Remark 2.1. In the above weak formulation (2.15)–(2.16), the reason we do not break the

force term rPm�µ('m)r'm is that this term (or equivalently, the velocity in the matrix

part um) has better regularity/integrability than its two components (see (2.11)–(2.12)).

Remark 2.2. We note that the interface boundary conditions (1.13)–(1.22) are enforced

as a consequence of the weak formulation stated above. Note also that the pressure terms

Pc and Pm are only uniquely determined up to an additive constant in the strong form

(1.1)–(1.22), i.e., they satisfy the same set of equations with the same boundary conditions

as well as interface conditions after being shifted by the same constant. As a consequence,

it makes sense to seek Pm in the space Ḣ1(⌦m) (i.e., Xm). The equivalence for smooth

solutions between the weak formulation and the classical form can be verified in a straight-

forward way.

Now we are in a position to state the mains results of this paper:

Theorem 2.1 (Existence of finite energy weak solutions). Suppose that d = 2, 3 and the

assumptions (A1)–(A3) are satisfied.

(i) If $ > 0, for any u0 2 L2(⌦c), '0 2 H1(⌦) and T > 0 being arbitrary, the

CHSD system (1.1)–(1.22) admits at least one global finite energy weak solution

{uc,um, Pm,', µ} in the sense of Definition 2.1.

(ii) If $ = 0, for any '0 2 H1(⌦), the CHSD system (1.1)–(1.22) admits at least one

global finite energy weak solution {uc,um, Pm,', µ} in the sense of Definition 2.1.

Theorem 2.2 (Weak-strong uniqueness). Let d = 2, 3, $ � 0 and the assumptions

(A1)–(A3) be satisfied. Suppose that {uc,um, Pm,'} is a finite energy weak solution to

the CHSD system (1.1)–(1.22) in (0, T ) ⇥ ⌦ and {ũc, ũm, P̃m, '̃} is a regular solution

emanating from the same initial data with the following regularity conditions

ũc 2 L
8
3 (0, T ;Hc,div), ũm 2 L

8
3 (0, T ;Hm,div), '̃ 2 L

8
3 (0, T ;H3(⌦)),

then it holds

uc = ũc, um = ũm, Pm = P̃m, ' = '̃.

12



3. Existence of Weak Solutions

We shall apply a semi-discretization approach (finite di↵erence in time, cf. [40, 41])

to prove the existence result Theorem 2.1. First, a discrete in time, continuous in space

numerical scheme is proposed and shown to be mass-conservative and energy law pre-

serving. Then, the existence of weak solutions to the discretized system is proved by

the Leray-Schauder degree theory. Last, an approximate solution is constructed and its

convergence to the weak solution of the original CHSD system (1.1)–(1.22) is established

via a compactness argument.

3.1. A time discretization scheme

Here we propose a semi-implicit time discretization scheme to the weak formulation

(2.15)–(2.18). Recall our convention

'|⌦c = 'c, '|⌦m = 'm, µ|⌦c = µc, µ|⌦m = µm.

For arbitrary but fixed T > 0 and positive integer N 2 N, we denote by � = �t = T
N

the time step size. Given (uk
c ,'

k
c , P

k
m,'

k
m), k = 0, 1, 2, ..., N � 1, we want to determine

(uc,'c, Pm,'m) = (uk+1
c ,'k+1

c , P k+1
m ,'k+1

m ) as a solution of the following nonlinear elliptic

system

$

✓
uk+1
c � uk

c

�
,vc

◆

c

+ 2
�
⌫('k

c )D(uk+1
c ),D(vc)

�
c

+

✓
⇧

⌫('k
m)

⇥
rP k+1

m � µk+1
m r'k+1

m

⇤
,rqm

◆

m

+
d�1X

i=1

↵BJSJp
trace(⇧)

Z

�cm

⌫('k
m)(u

k+1
c · ⌧ i)(vc · ⌧ i)dS

+

Z

�cm

P k+1
m (vc · ncm)dS �

Z

�cm

(uk+1
c · ncm)qmdS

= (µk+1
c r'k+1

c ,vc)c, (3.1)
✓
'k+1 � 'k

�
,�

◆
+ (uk+1 ·r'k+1,�) = �

�
M('k)rµk+1,r�

�
, (3.2)

(µk+1,�) =
1

✏

⇣
ef('k+1,'k),�

⌘
+ ✏(r'k+1,r�), (3.3)

for any vc 2 Hc,div, qm 2 Xm and � 2 H1(⌦). In the above formulation, the vector uk+1

satisfies uk+1|⌦c = uk+1
c and uk+1|⌦m = uk+1

m , where

uk+1
m = � ⇧

⌫('k
m)

�
rP k+1

m � µk+1
m r'k+1

m

�
. (3.4)

The function ef(�, ) in equation (3.3) is derived from a convex splitting approximation to

the nonconvex function F (') (see (1.9)) and it takes the following form (cf. e.g., [42, 28])

ef(�, ) = �3 �  . (3.5)
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Remark 3.1. We note that equations (3.1)–(3.4) are strongly coupled, which demands

suitable choices on discretization schemes in order to prove the existence of weak solutions

(see [28, 27] and [29] for related di↵use-interface models). Here, the advective term in the

Cahn-Hilliard equation (i.e., the second term u · r' in equation (3.2)) and accordingly

the elastic forcing term µr' in equations (3.1), (3.4) are discretized fully implicitly.

Under this fully implicit discretization, it is possible to preserve a discrete energy law

(see Lemma 3.2) in analogy to the continuous one (2.2), moreover it enables us to obtain

the existence of weak solutions under the natural assumption on initial data such that

'0 2 H1(⌦). In [28, 27], a di↵erent semi-implicit treatment of the advective term and the

elastic forcing term for the Cahn-Hilliard-Darcy system in a simple domain was proposed.

The discretization therein still keeps a discrete energy law while one needs to assume

'0 2 H2(⌦) (or at least H1(⌦) \ L1(⌦)) to obtain the existence of weak solutions.

In the following content of this subsection, we will temporarily omit the superscript

k + 1 for uk+1
c , P k+1

m , uk+1
m , 'k+1, µk+1 for the sake of simplicity. Besides, we just provide

the proof for the case $ > 0, while the argument can be easily adapted to the simpler

case $ = 0 with minor modifications.

A few a priori estimates can be readily derived. First, one can deduce that the above

numerical scheme keeps the mass conservation property.

Lemma 3.1. Suppose that uk
c 2 L2(⌦c), 'k 2 H1(⌦) and {uc, Pm,', µ} 2 Hc,div ⇥Xm ⇥

H3(⌦)⇥H1(⌦) solve the nonlinear system (3.1)–(3.4). Then um (given by (3.4)) satisfies

um 2 Hm,div, um · ncm = uc · ncm 2 H
1
2 (�cm). (3.6)

Moreover, the following mass-conservation holds
Z

⌦

' dx =

Z

⌦

'k dx. (3.7)

Proof. It is clear from equation (3.4) and the Sobolev embedding theorem (d  3) that

um 2 L2(⌦m). Taking the test function vc = 0 in equation (3.1) and utilizing equation

(3.4), one obtains

�
um,rqm

�
m
�
Z

�cm

(uc · ncm)qmdS = 0, 8 qm 2 Xm, (3.8)

which easily yields that r ·um = 0 in the sense of distribution and then um 2 H(div;⌦m).

Thus, the normal component um · n is well-defined in H� 1
2 (@⌦m) (n denotes the unit

outer normal on @⌦m and it corresponds to nm on �m and to �ncm on �cm, respectively).

Applying Green’s formula to the first term in equation (3.8) gives that

um · nm = 0 in H� 1
2 (�m) and um · ncm = uc · ncm in

�
H

1
2
00(�cm)

�0
.

Therefore, um 2 Hm,div. It follows from the trace theorem that uc · ncm 2 H
1
2 (�cm), then

one further gets um · ncm = uc · ncm in H
1
2 (�cm).
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The mass-conservation (3.7) now follows from taking the test function � = 1 in equa-

tion (3.2) and performing integration by parts.

The next lemma shows that the numerical scheme (3.1)–(3.5) satisfies a discrete ana-

logue of the basic energy law (2.1).

Lemma 3.2. Suppose that uk
c 2 L2(⌦c), 'k 2 H1(⌦) and {uc, Pm,', µ} 2 Hc,div ⇥Xm ⇥

H3(⌦)⇥H1(⌦) solve the system (3.1)–(3.4). Then the following discrete energy inequality

holds

E(uc,') + �
�
⌫('k

m)⇧
�1um,um

�
m
+ 2�

�
⌫('k

c )D(uc),D(uc)
�
c

+�

Z

⌦

M('k)|rµ|2dx+
�↵BJSJp
trace(⇧)

d�1X

i=1

Z

�cm

⌫('k
m)|uc · ⌧ i|2dS

+
$

2

�
uc � uk

c ,uc � uk
c

�
c
+
✏

2
kr('� 'k)k2L2(⌦) +

1

2✏
k'� 'kk2L2(⌦)

 E(uk
c ,'

k), (3.9)

where the energy functional E is defined in (2.1).

Proof. Taking vc = uc, qm = Pm in (3.1), using (3.4) and the elementary identity

a · (a� b) =
1

2

�
|a|2 � |b|2 + |a� b|2

�
, 8 a, b 2 R or Rd. (3.10)

we have

$

2�
(uc,uc)c +

$

2�

�
uc � uk

c ,uc � uk
c

�
c
+ 2

�
⌫('k

c )D(uc),D(uc)
�
c

+
�
⌫('k

m)⇧
�1um,um

�
m
+

d�1X

i=1

↵BJSJp
trace(⇧)

Z

�cm

⌫('k
m)|uc · ⌧ i|2dS

=
$

2�

�
uk
c ,u

k
c

�
c
+ (µr',u). (3.11)

By a direct calculation, we infer from the definition of the convex splitting function ef
that

ef(�, )(��  ) = F (�)� F ( ) +
1

4
(�2 �  2)2 +

1

2
(��  )2 +

1

2
�2(��  )2

� F (�)� F ( ) +
1

2
(��  )2. (3.12)

Then taking the test functions � = µ in (3.2) and � = ' � 'k in (3.3), after integration

by parts, we infer from (3.10) and (3.12) that

✓
'� 'k

�
, µ

◆
+ (u ·r', µ) +

Z

⌦

M('k)|rµ|2dx = 0, (3.13)
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where

�
'� 'k, µ

�
=

1

✏

⇣
ef(','k),'� 'k

⌘
+ ✏(r',r('� 'k))

� ✏

2
kr'k2L2(⌦) +

✏

2
kr('� 'k)k2L2(⌦) �

✏

2
kr'kk2L2(⌦)

+
1

✏

�
F (')� F ('k), 1

�
+

1

2✏
k'� 'kk2L2(⌦). (3.14)

Combining the above estimates (3.11)–(3.14) together, we easily conclude the discrete

energy inequality (3.9).

3.2. Existence of weak solutions to the discrete problem

In order to prove the existence of solutions to the discrete problem (3.1)–(3.4), we

shall adapt an argument involving the Leray-Schauder degree theory (cf. e.g., [25]) that

has been used in [26] to show the existence of weak solutions to a di↵use-interface model

in simple domain with general densities. The idea is to rewrite the system (3.1)–(3.3) in

terms of suitable ”good” operator denoted by Tk and ”bad” operator denoted by Gk such

that

Tk(w) = Gk(w), (3.15)

where w := {uc, Pm,', µ} is the solution. More precisely, in the abstract equation (3.15)

the operators Tk : X ! Y and Gk : X ! Y (see (3.34)–(3.35) for their detailed definition

and the associated spaces X and Y will be specified in (3.33)) basically correspond to,

respectively, the left-hand side and right-hand side of the following reformulation of the

system (3.1)–(3.3) (dropping the superscript k + 1 for simplicity as mentioned before)

(uc,vc)c + 2
�
⌫('k

c )D(uc),D(vc)
�
c
+

✓
⇧

⌫('k
m)

rPm,rqm

◆

m

+
d�1X

i=1

↵BJSJp
trace(⇧)

Z

�cm

⌫('k
m)(uc · ⌧ i)(vc · ⌧ i)dS

+

Z

�cm

Pm(vc · ncm)dS �
Z

�cm

(uc · ncm)qmdS (3.16)

= (µcr'c,vc)c + (uc,vc)c +

✓
⇧

⌫('k
m)

µmr'm,rqm

◆

m

�
⇣$
�
(uc � uk

c ),vc

⌘

c
,

�
�
M('k)rµ,r�

�
=

✓
'� 'k

�
,�

◆
+ (u ·r',�), (3.17)

1

✏

�
'3,�

�
+ ✏(r',r�) =

✓
µ+

1

✏
'k,�

◆
. (3.18)
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As will be shown below, the operator Tk : X ! Y is continuous and invertible with

T �1
k (0) = 0, while the operator Gk : X ! Y is compact. Thus the abstract equation

(3.15) can be recasted into

(I � T �1
k Gk)(w) = 0,

where I : X ! X is the identity operator. Then the existence of solutions can be shown

by Leray-Schauder degree theory.

Remark 3.2. Note that equation (3.16) is derived from an addition of a term (uc,vc)c
on both sides of equation (3.1). This modification is necessary in proving the invertibility

of the operator associated with the left-hand side of equation (3.16), especially under the

circumstance |�c| = 0 where only the version (3.21) of Korn’s inequality can be applied.

We shall divide the proof for the existence of weak solutions to the approximate

problem (3.1)–(3.4) into three steps.

Step 1. Invertibility of operators associated with the left-hand sides of the

reformulated system (3.16)–(3.18).

First, we deal with the operator associated with the left-hand side of equation (3.16).

Define the product space

V := Hc,div ⇥Xm. (3.19)

Then we introduce the operator Lk : V ! V0 that can be associated with the following

bilinear form a(·, ·) : V ⇥V ! R:

hLk(uc, Pm), (vc, qm)iV0,V

= a((uc, Pm), (vc, qm))

= 2
�
⌫('k

c )D(uc),D(vc)
�
c
+ (uc,vc)c +

✓
⇧

⌫('k
m)

rPm,rqm

◆

m

+
d�1X

i=1

↵BJSJp
trace(⇧)

Z

�cm

⌫('k
m)(uc · ⌧ i)(vc · ⌧ i)dS

+

Z

�cm

Pm(vc · ncm)dS �
Z

�cm

(uc · ncm)qmdS, (3.20)

for any (uc, Pm), (vc, qm) 2 V.

Recall the following Korn’s inequality (cf. e.g., [43]),

kvckH1(⌦c)  C
�
kvckL2(⌦c) + kD(vc)kL2(⌦c)

�
, 8vc 2 Hc,div, (3.21)

where the constant C depends only on ⌦c. Moreover, if the boundary �c has non-zero

measure, the Korn’s inequality can be simplified as (cf. e.g., [44])

kvckH1(⌦c)  CkD(vc)kL2(⌦c), 8vc 2 Hc,div. (3.22)
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As a consequence, using the assumptions (A1), (A3) and the Poincaré inequality, we

deduce that the above bilinear form a(·, ·) is coercive on V, namely, for any (uc, Pm) 2 V,

a((uc, Pm), (uc, Pm))

= 2
�
⌫('k

c )D(uc),D(uc)
�
c
+ (uc,uc)c +

✓
⇧

⌫('k
m)

rPm,rPm

◆

m

+
d�1X

i=1

↵BJSJp
trace(⇧)

Z

�cm

⌫('k
m)|uc · ⌧ i|2dS

� C1kuck2H1(⌦c) + C2kPmk2H1(⌦m),

for some constants C1, C2 independent of uc, Pm and 'k.

Then by the Lax-Milgram lemma, we can easily deduce that

Lemma 3.3. Assume that the assumptions (A1) and (A3) are satisfied. Then for any

given 'k 2 H1(⌦), the operator Lk : V ! V0 is invertible and its inverse L�1
k : V0 ! V

is continuous.

Next, we state the invertibility of the operator induced by the left-hand side of equation

(3.17). To this end, we recall the following simple facts in [26]. Define the operator

divN : L2(⌦) ! Ḣ�1(⌦) by

hdivNv,�iḢ�1(⌦),Ḣ1(⌦) = �(v,r�), 8� 2 Ḣ1(⌦).

The operator divN acts on vector fields, which do not necessarily vanish on the boundary,

and involves boundary conditions in a weak sense. Let M 2 L1(⌦) such that M(x) �
m0 > 0 almost every in ⌦. We then introduce the operator divN(M(x)r·) : Ḣ1(⌦) !
Ḣ�1(⌦) defined as

hdivN(M(x)r'),�iḢ�1(⌦),Ḣ1(⌦) = �(M(x)r',r�), 8� 2 Ḣ1(⌦).

Then the operator divN(M(x)r·) is an isomorphism due to an easy application of the

Lax-Milgram lemma.

Hence, under the assumption (A2), it is easy to see that

Lemma 3.4. Assume that the function M satisfies (A2). For any given 'k 2 H1(⌦), the

operator

Dk := divN(M('k)r·) : Ḣ1(⌦) ! Ḣ�1(⌦) (3.23)

is invertible and its inverse D�1
k : Ḣ�1(⌦) ! Ḣ1(⌦) is continuous.

We now proceed to the solvability of equation (3.18). For any given function 'k 2
H1(⌦), we define the nonlinear operator Sk : Ḣ1(⌦) ! Ḣ�1(⌦) as follows

hSk( ),�iḢ�1(⌦),Ḣ1(⌦) = ✏(r ,r�) + 1

✏

�
( + 'k)3,�

�
, 8� 2 Ḣ1(⌦), (3.24)

where 'k = |⌦|�1
R
⌦ '

kdx.

Then we have
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Lemma 3.5. Let 'k 2 H1(⌦) be fixed. For any given function µ0 2 Ḣ�1(⌦), there

exists a unique solution  2 Ḣ1(⌦) to the equation Sk( ) = µ0. The solution operator

S�1
k : Ḣ�1(⌦) ! Ḣ1(⌦) is continuous. Moreover, if µ0 2 Ḣ1(⌦), then the solution

satisfies  2 Ḣ3(⌦) and S�1
k : Ḣ1(⌦) ! Ḣ3(⌦) is bounded and continuous.

Proof. The unique solvability of equation Sk( ) = µ0 for given source function µ0 can be

obtained by the theory of monotone operators.

We note that Sk is well defined for any given function 'k 2 H1(⌦). Indeed, using the

Sobolev embedding H1(⌦) ,! L6(⌦) for d = 2, 3, we can see that for any  2 Ḣ1(⌦),
���hSk( ),�iḢ�1(⌦),Ḣ1(⌦)

���  C(✏)
⇣
k k3H1(⌦) + |'k|3 + k kH1(⌦)

⌘
k�kH1(⌦),

which implies the boundedness of Sk in H1(⌦). Moreover, if a sequence  n !  in Ḣ1(⌦)

as n ! 1, by Hölder’s inequality and the Sobolev embedding, we deduce that for any

� 2 Ḣ1(⌦),
���hSk( n)� Sk( ),�iḢ�1(⌦),Ḣ1(⌦)

���

 C(✏)
⇣
k( n + 'k)3 � ( + 'k)3k

L
6
5 (⌦)

+ kr( n �  )kL2(⌦)

⌘
k�kH1(⌦)

 C(✏)
�
k 2

n +  2 + ('k)2kL2(⌦)k n �  kL3(⌦) + kr( n �  )kL2(⌦)

�
k�kH1(⌦)

! 0.

Hence, the nonlinear operator Sk : Ḣ1(⌦) ! Ḣ�1(⌦) is continuous. Concerning the

coercivity of Sk, using the Young inequality, we have for any  2 Ḣ1(⌦),

hSk( ), iḢ�1(⌦),Ḣ1(⌦)

=
1

✏

Z

⌦

( + 'k)3 dx+ ✏

Z

⌦

|r |2 dx

� 1

✏

Z

⌦

| |4 dx� 3|'k|
✏

Z

⌦

| |3dx� 3|'k|2

✏

Z

⌦

| |2dx� |'k|3

✏

Z

⌦

| |dx

+✏

Z

⌦

|r |2 dx

� C(✏)k k2H1(⌦) � C(✏, |⌦|, |'k|), (3.25)

which yields that

hSk( ), iḢ�1(⌦),Ḣ1(⌦)

k kH1(⌦)
! +1, as k kH1(⌦) ! 1.

Finally, the strict monotonicity of Sk follows from the following identity

hSk( 1)� Sk( 2), 1 �  2iḢ�1(⌦),Ḣ1(⌦)

=
1

✏

Z

⌦

( 1 �  2)
2
h
( 1 + 'k)2 + ( 2 + 'k)2 + ( 1 + 'k)( 2 + 'k)

i
dx
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+✏

Z

⌦

|r( 1 �  2)|2 dx

� 0, 8 1, 2 2 Ḣ1(⌦) (3.26)

and the equal sign holds if and only if  1 =  2.

Based on the above observations, we can apply the Browder-Minty theorem (cf. e.g.,

[45, pp. 39, Theorem 2.2]) to conclude the existence of a unique solution  2 Ḣ1(⌦) to

the nonlinear equation Sk( ) = µ0 for a given source function µ0 2 Ḣ�1(⌦). The coercive

estimate (3.25) also implies that

k k2H1(⌦)  C(✏)
⇣
kµ0k2Ḣ�1(⌦)

+ |'k|4 + 1
⌘
. (3.27)

For the continuous dependence of the solution  on µ0, i.e., if a sequence µ0n ! µ0

strongly in Ḣ�1(⌦) and Sk( n) = µ0n, Sk( ) = µ0, then  n, 2 Ḣ1(⌦) and as n ! +1,

it holds

hSk( n)� Sk( ), n �  iḢ�1(⌦),Ḣ1(⌦) = hµ0n � µ0, n �  iḢ�1(⌦),Ḣ1(⌦) ! 0. (3.28)

Then a similar estimate like (3.26) yields that  n !  strongly in Ḣ1(⌦). As a conse-

quence, the solution operator S�1
k : Ḣ�1(⌦) ! Ḣ1(⌦) is continuous.

If we further assume that µ0 2 Ḣ1(⌦), the weak solution  indeed has higher regularity.

To this end, we rewrite the weak form of the equation Sk( ) = µ0 as

✏
�
r ,r�

�
=

⇣
µ0 �G( ,'k),�

⌘
, 8� 2 Ḣ1(⌦),

where G( ,'k) = ✏�1( + 'k)3 2 L2(⌦). Then  is a weak solution to the following

elliptic equation with homogeneous Neumann boundary condition:
8
>>><

>>>:

�✏� = µ0 �G0, in ⌦,
@ 

@n
= 0, on @⌦,

R
⌦  dx = 0,

(3.29)

with G0 = G( ,'k)�G( ,'k). Since the source function µ0 �G0 2 L̇2(⌦), one deduces

from the classical elliptic regularity theory (cf. [39]) that  2 H2(⌦) if ⌦ is C1,1 or a

convex bounded domain. In particular, one can derive from (3.29) that

k kH2(⌦)  C(✏)
⇣
kµ0kL2(⌦) + k k3H1(⌦) + |'k|3 + k kL2(⌦)

⌘
, (3.30)

Since H2(⌦) is an algebra with respect to point-wise multiplication in Rd (d  3), one

has µ0 �G0 2 Ḣ1(⌦). Then it follows from (3.29), (3.30) that

k kH3  C(✏)
⇣
kµ0kH1(⌦) + |'k|3 + k 3kH1(⌦) + k kL2(⌦)

⌘
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 C(✏)
⇣
kµ0kH1(⌦) + |'k|3 + k kL2(⌦)

⌘

+C(✏)
⇣
k k2L1(⌦)kr kL2(⌦) + k k3L6(⌦)

⌘

 C(✏,⌦, kµ0kH1(⌦), |'k|), (3.31)

which yields that the solution operator  = S�1
k (µ0) is bounded from Ḣ1(⌦) to Ḣ3(⌦).

Consider the di↵erence problem
8
<

:
�✏�( n �  ) = (µ0n � µ0)� (G0n �G0),
@( n �  )

@n
= 0, on @⌦,

(3.32)

withG0n = G( n,'
k)�G( n,'

k) andG0 = G( ,'k)�G( ,'k). Assuming that µ0n ! µ0

strongly in Ḣ1(⌦), similar to (3.30), we can first derive the H2 estimates for  n,  , and

then use the elliptic estimates as in (3.31) to get

k n �  kH3(⌦)  C(kµ0n � µ0kH1(⌦) + kG0n �G0kH1(⌦) + k n �  kL2(⌦))

 C(k nkL1(⌦), k kL1(⌦), kr nkL3(⌦), kr kL3(⌦))k n �  kH1(⌦)

+Ckµ0n � µ0kH1(⌦).

We have already shown that S�1
k : Ḣ�1(⌦) ! Ḣ1(⌦) is continuous, which combining the

above estimate further yields that S�1
k : Ḣ1(⌦) ! Ḣ3(⌦) is also (strongly) continuous.

The proof is complete.

Step 2. Definition of operators Tk, Gk and their properties.

We introduce the following product spaces
(
X = V ⇥ Ḣ1(⌦)⇥ Ḣ3��(⌦)⇥ R,
Y = V0 ⇥ Ḣ�1(⌦)⇥ L̇2(⌦)⇥ R,

(3.33)

where � 2 (0, 12) is a constant.

Owing to the mass-conservation property (3.7) of the approximate scheme and for the

convenience of the norm of Ḣ1(⌦), we will project the unknowns ' and µ into L̇2(⌦) such

that

' =  + 'k, µ = µ0 + Sk,

where 'k and Sk are the average of 'k and ef(','k) on ⌦, respectively.

According to the formulation of the system (3.16)–(3.18), we now introduce the non-

linear operators Tk, Gk : X ! Y. For any given functions 'k 2 H1(⌦), uk
c 2 L2(⌦c) and

for w = (uc, Pm, µ0, , Sk) 2 X, we define

Tk(w) =

0

BBB@

Lk(uc, Pm)

Dk(µ0)

Sk( )

Sk

1

CCCA
, (3.34)
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and

Gk(w) =

0

BBBB@

Jk(w)

P0

⇣
��1( + 'k � 'k) + u ·r 

⌘

µ0 + ✏�1('k � 'k)

|⌦|�1✏�1
R
⌦

⇣
( + 'k)3 � 'k

⌘
dx

1

CCCCA
, (3.35)

The operators Lk, Dk, Sk in (3.34) are defined in (3.20), (3.23) and (3.24) (associated

with the given function 'k), respectively. In (3.35), the operator Jk : X ! V0 is given by

hJk(w), (vc, qm)iV0,V

=
⇣
�$
�
(uc � uk

c ) + (µ0c + Sk)r c, vc

⌘

c
+ (uc,vc)c

+

✓
⇧

⌫('k
m)

(µ0m + Sk)r m,rqm

◆

m

, 8 (vc, qm) 2 V. (3.36)

Here, one recalls that P0 is the projection operator from L2(⌦) into L̇2(⌦) and the facts

µ0c = µ0|⌦c , µ0m = µ0|⌦m . The velocity u in (3.35) fulfills u|⌦c = uc, u|⌦m = um and um

is given by (3.4).

From the definition of Tk and Lemmas 3.3–3.5 obtained in the previous step, one can

conclude that

Lemma 3.6. Tk : X ! Y is an invertible mapping and its inverse T �1
k : Y ! X is

continuous. In particular, T �1
k (0) = 0.

Then concerning the operator Gk, one has

Lemma 3.7. Gk : X ! Y is a continuous and bounded mapping. Moreover, it is compact.

Proof. For allw = (uc, Pm, µ0, , Sk) 2 X, using the Sobolev embedding theorems (d  3)

such that H1 ,! L6 and H1�� ,! L3, H2�� ,! L1 for � 2 (0, 12), it is straightforward to

show that

Gk(w) 2
�
L2(⌦c)⇥ (H1��(⌦m))

0�⇥ L̇2(⌦)⇥ Ḣ1(⌦)⇥K ,!,! Y,

where K is a bounded set in R. Our conclusion easily follows.

We now interpret the relation between the abstract equation Tk(w) = Gk(w) forw 2 X

and the elliptic system (3.1)–(3.3). The following equivalence result can be easily seen

from the definitions (3.20)–(3.24) and (3.34)–(3.36):

Proposition 3.1. {uc, Pm,', µ} 2 Hc,div ⇥ Xm ⇥ H3(⌦) ⇥ H1(⌦) is a solution of the

system (3.1)–(3.3) if and only if w = (uc, Pm, µ0, , Sk) 2 X satisfies Tk(w) = Gk(w)

with ' =  + 'k, µ = µ0 + Sk.
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Step 3. Solvability of the nonlinear system (3.1)–(3.4)

We proceed to show that there exists a w 2 X such that Tk(w) = Gk(w). Since Tk

is invertible, this abstract equation can be rewritten equivalently as w = T �1
k (Gk(w)),

namely,

(I �Nk)(w) = 0. (3.37)

where I is the identity operator on X and the nonlinear operator Nk is defined by

Nk(w) := T �1
k (Gk(w)) : X ! X, 8w 2 X (3.38)

and it is a compact operator on X due to Lemmas 3.6 and 3.7. Thus we only have to prove

that there exists a vector w = (uc, Pm, µ0, , Sk) 2 X that satisfies equation (3.37). This

can be done by a homotopy argument based on the Leray-Schauder degree (cf. [25, 26]).

Lemma 3.8. Assume that assumptions (A1)–(A3) are satisfied. For any uk
c 2 L2(⌦c) and

'k 2 H1(⌦), the equation Tk(w) = Gk(w) admits a solution w = (uc, Pm, µ0, , Sk) 2 X.

Proof. For s 2 [0, 1], we define

uk
c (s) = (1� s)uk

c , 'k(s) = (1� s)'k.

Replace uk
c , '

k in the system (3.16)–(3.18) by uk
c (s), '

k(s), respectively. Then we denote

by T (s)
k , G(s)

k the corresponding operators under the above transformation. In particular,

T (0)
k = Tk, G(0)

k = Gk. It is easy to see that T (s)
k , G(s)

k have the same properties as in

Lemmas 3.6–3.7. Then we denote by N (s)
k = (T (s)

k )�1G(s)
k , which is a compact operator.

Moreover, N (0)
k = Nk.

In analogy to (3.9), we can derive the following discrete energy law with respect to

the parameter s:

E(uc,') + �
�
⌫('k

m(s))⇧
�1um,um

�
m
+ 2�

�
⌫('k

c (s))D(uc),D(uc)
�
c

+�

Z

⌦

M('k(s))|rµ|2dx+
�↵BJSJp
trace(⇧)

d�1X

i=1

Z

�cm

⌫('k
m(s))|uc · ⌧ i|2dS

+
$

2

�
uc � uk

c (s),uc � uk
c (s)

�
c
+
✏

2
kr('� 'k(s))k2L2(⌦)

+
1

2✏
k'� 'k(s)k2L2(⌦)

 E(uk
c (s),'

k(s)). (3.39)

For any given uk
c 2 L2(⌦c) and 'k 2 H1(⌦), there exists a constant R > 0 depending

only on kuk
ckL2(⌦c), k'kkH1(⌦), $, ✏ and ⌦ such that E(uk

c (s),'
k(s))  R for all s 2 [0, 1].

By the energy estimate (3.39), there exists C0 > 0 depending on R and coe�cients

of the system but independent of s such that the solution w = w(s) to the equation

T (s)
k (w) = G(s)

k (w), if it exists, will satisfy

kw(s)kX  C0, 8 s 2 [0, 1].
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Taking the ball in X centered at 0 with radius 2C0:

B = {w 2 X : kwkX  2C0},

we infer from the above a priori estimate that for all s 2 [0, 1], (I�N (s)
k )(w) 6= 0 for any

w 2 @B. Therefore, the Leray-Schauder degree of the operator I �N (s)
k at 0 in the ball

B, denoted by deg(I �N (s)
k ,B,0), is well-defined for s 2 [0, 1].

On the other hand, since N (0)
k = Nk, then by the homotopy invariance of the Leray-

Schauder degree, we have

deg(I �Nk,B,0) = deg(I �N (0)
k ,B,0) = deg(I �N (1)

k ,B,0). (3.40)

Next, we shall prove that deg(I�N (1)
k ,B,0) = 1. For this purpose, we define a further

homotopy for s 2 [1, 2] such that

N (s)
k (w) =

⇣
T (1)
k

⌘�1 h
(2� s)G(1)

k (w)
i
, 8w 2 X. (3.41)

For s 2 [1, 2), (I�N (s)
k )(w) = 0 if and only if for w = (uc, Pm, µ0, , Sk) 2 X, the vector

(uc, Pm,', µ) with ' =  , µ = µ0 + Sk(2� s)�2 is a solution of the following system

$(2� s)

�
(uc,vc)c + 2 (⌫(0)D(uc),D(vc))c

+(s� 1)(uc,vc)c +

✓
⇧

⌫(0)
rPm,rqm

◆

m

+
d�1X

i=1

↵BJSJp
trace(⇧)

Z

�cm

⌫(0)(uc · ⌧ i)(vc · ⌧ i)dS

+

Z

�cm

Pm(vc · ncm)dS �
Z

�cm

(uc · ncm)qmdS

= (2� s)(µcr'c,vc)c + (2� s)

✓
⇧

⌫(0)
µmr'm,rqm

◆

m

, (3.42)

2� s

�
(',�) + (2� s)(u ·r',�) = �(M(0)rµ,r�), (3.43)

(2� s)(µ,�) =
1

✏

�
'3,�

�
+ ✏(r',r�), (3.44)

for any qm 2 Xm, vc 2 Hc,div, � 2 H1(⌦), and um is given by

um = � ⇧

⌫(0)
[rPm � µ('m)r'm] . (3.45)

Taking the testing functions vc = uc, qm = Pm in (3.42), � = µ in (3.43) and � = ' in

(3.44), summing up, we obtain that

$(2� s)

�
(uc,uc)c +

✏

�
(r',r') + 1

�✏

Z

⌦

'4dx
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+2 (⌫(0)D(uc),D(uc))c + (s� 1)(uc,uc)c

+

✓
⇧

⌫(0)
rPm,rPm

◆

m

+
d�1X

i=1

↵BJSJp
trace(⇧)

Z

�cm

⌫(0)|uc · ⌧ i|2dS

+(M(0)rµ,rµ)

= 0. (3.46)

The above estimate implies that for s 2 (1, 2), (I �N (s)
k )(w) = 0 if and only if w = 0.

Moreover, it is straightforward to check that I � N (2)
k = I (cf. Lemmas 3.6, 3.7, in

particular,
�
T (1)
k

��1
(0) = 0) and thus (I �N (2)

k )(w) = 0 if and only if w = 0. Thus, for

s 2 [1, 2], we have (I �N (s)
k )(w) 6= 0 for any w 2 @B. As a consequence, the homotopy

invariance of the Leray-Schauder degree yields that

deg(I �N (1)
k ,B,0) = deg(I,B,0) = 1. (3.47)

In summary, we can conclude from (3.40) and (3.47) that deg(I�Nk,B,0) = 1, which

implies that the abstract equation (3.37) admits a solution w = (uc, Pm, µ0, , Sk) 2 X

that solves Tk(w) = Gk(w).

The proof of Lemma 3.8 is complete.

Finally, we can conclude the existence of weak solutions to the system (3.1)–(3.3) from

Lemmas 3.1, 3.2, 3.5, 3.8 and Proposition 3.1,

Theorem 3.1 (Existence of solutions to the discrete problem). For every uk
c 2 L2(⌦c)

and 'k 2 H1(⌦), there exists a weak solution {uc,um, Pm,', µ} to the nonlinear discrete

problem (3.1)–(3.4) such that

uc 2 Hc,div, um 2 Hm,div, Pm 2 Xm, ' 2 H3(⌦), µ 2 H1(⌦).

Moreover, the solution satisfies the mass-conservation property (3.7) and the energy-

dissipation inequality (3.9).

3.3. Construction of approximate solution and passage to limit

The existence of weak solutions to the time-discrete system (3.1)–(3.4) enables us to

construct approximate solutions to the time-continuous system (2.15)–(2.18). Recall that

� = T
N
, where T > 0 and N is an positive integer. We set

tk = k�, k = 0, 1, · · · , N.

Let {uk+1
c , P k+1

m ,'k+1, µk+1} (k = 0, 1, · · · , N � 1) be chosen successively as a solution of

the discretized problem (3.1)–(3.4) with (uk
c ,'

k) being the “initial value” (cf. Theorem

3.1). In particular, (u0
c ,'

0) = (u0,'0). Then for k = 0, 1, · · · , N � 1, we define the

approximate solutions as follows

'� :=
tk+1 � t

�
'k +

t� tk
�

'k+1, for t 2 [tk, tk+1],
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u�
c :=

tk+1 � t

�
uk
c +

t� tk
�

uk+1
c , for t 2 [tk, tk+1],

bP �
m := P k+1

m , for t 2 (tk, tk+1],

bu�
m := � ⇧

⌫('k
m)

�
rP k+1

m � µk+1r'k+1
m

�
, for t 2 (tk, tk+1],

bu�
c := uk+1

c , for t 2 (tk, tk+1],

bu�|⌦c = bu�
c, bu�|⌦m = bu�

m, for t 2 (tk, tk+1],

b'� := 'k+1, for t 2 (tk, tk+1],

e'� := 'k, for t 2 [tk, tk+1),

bµ� := µk+1, for t 2 (tk, tk+1].

Remark 3.3. It follows from the above definitions that '�, u�
c are continuous piecewise

linear functions in time, while bu�
c, bP �

m, b'�, bµ� are piecewise constant (in time) functions

being right continuous at the nodes {tk+1} and e'� is left continuous at the nodes {tk}.

Using the above definition of approximate solutions, one can derive from the discrete

problem (3.1)–(3.4) that the following identities hold:

$

Z T

0

�
@tu

�
c,vc

�
c
dt+ 2

Z T

0

�
⌫(e'�

c)D(bu�
c),D(vc)

�
c
dt

+

Z T

0

✓
⇧

⌫(e'�
m)

⇣
r bP �

m � bµ�
mrb'�

m

⌘
,rqm

◆

m

dt

+
d�1X

i=1

↵BJSJp
trace(⇧)

Z T

0

Z

�cm

⌫(e'�
m)(bu�

c · ⌧ i)(vc · ⌧ i)dSdt

+

Z T

0

Z

�cm

bP �
m(vc · ncm)dSdt�

Z T

0

Z

�cm

(bu�
c · ncm)qmdSdt

=

Z T

0

(bµ�
crb'�

c,vc)cdt, (3.48)

Z T

0

�
@t'

�,�
�
dt�

Z T

0

(bu� b'�,r�)dt = �
Z T

0

(M(e'�)rbµ�,r�)dt, (3.49)

Z T

0

(bµ�,�)dt =
1

✏

Z T

0

⇣
ef(b'�, e'�),�

⌘
dt+ ✏

Z T

0

(rb'�,r�)dt, (3.50)

Z T

0

(bu�
m,vm)mdt = �

Z T

0

✓
⇧

⌫(e'�
m)

⇣
r bP �

m � bµ�
mrb'�

m

⌘
,vm

◆

m

dt. (3.51)

for any vc 2 C1
0 ([0, T ];Hc,div), qm 2 C1([0, T ];Xm), � 2 C1

0 ([0, T ];H1(⌦)) and vm 2
C1([0, T ];L2(⌦m)).

Besides, let E�(t) be the piecewise linear interpolation of the discrete energy E(uk
c ,'

k)

at tk such that

E�(t) =
tk+1 � t

�
E(uk

c ,'
k) +

t� tk
�

E(uk+1
c ,'k+1), for t 2 [tk, tk+1], (3.52)
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and D�(t) be the interpolated approximate dissipation

D�(t) = 2
�
⌫('k

c )D(uk+1
c ),D(uk+1

c )
�
c
+
�
⌫('k

m)⇧
�1uk+1

m ,uk+1
m

�
m

+

Z

⌦

M('k)|rµk+1|2dx

+
↵BJSJp
trace(⇧)

d�1X

i=1

Z

�cm

⌫('k
m)|uk+1

c · ⌧ i|2dS, for t 2 (tk, tk+1),

Then it follows from the discrete energy estimate (3.9) that for k = 0, 1, · · · , N � 1

d

dt
E�(t) =

1

�
(E(uk+1

c ,'k+1)� E(uk
c ,'

k))  �D�(t), for t 2 (tk, tk+1). (3.53)

In particular, we have for t 2 [0, T ],

E(bu�
c(t), b'�(t)) +

Z t

0

D�(t)dt  E(u0,'0), 8 t 2 [0, T ]. (3.54)

3.4. Proof of Theorem 2.1

We now proceed to prove our main result Theorem 2.1 on the existence of finite energy

weak solutions to system (2.15)–(2.18). To this end, we shall distinguish the two cases

such that $ > 0 and $ = 0.

3.4.1. Case $ > 0

In order to pass to the limit as � ! 0, we first derive some a priori estimates on

the approximate solutions that are uniform in �. First, recall the mass-conservation from

Lemma 3.1 Z

⌦

('k+1 � 'k)dx = 0, for k = 0, ..., N � 1,

which immediately yields
Z

⌦

'�dx =

Z

⌦

b'�dx =

Z

⌦

e'�dx =

Z

⌦

'0dx.

Besides, it follows from the energy estimate (3.54) that

$kbu�
ckL1(0,T ;L2(⌦c)) + kb'�kL1(0,T ;H1(⌦))  C, (3.55)

kD(bu�
c)kL2(0,T ;L2(⌦c)) +

d�1X

i=1

kbu�
c · ⌧ ikL2(0,T ;L2(�cm))  C, (3.56)

kbu�
mkL2(0,T ;L2(⌦m))  C, (3.57)

krbµ�kL2(0,T ;L2(⌦))  C, (3.58)

where the constant C depends on E(u0,'0) and ⌦ but is independent of �. Taking � = 1

in (3.3), we have for k = 0, 1, ..., N � 1
����
Z

⌦

µk+1dx

����  ✏�1

Z

⌦

(|'k+1|3 + |'k|)dx  C,

27



which combined with the Poincaré inequality and (3.58) implies that

kbµ�kL2(0,T ;H1(⌦))  CT ,

where the constant CT depends on E(u0,'0), ⌦ and T . Then similar to the Neumann

problem (3.29), we can apply the elliptic estimate (similar to (3.31)) to get

kb'�kL2(0,T ;H3(⌦))  CT . (3.59)

Using (3.4), the above estimates, the Hölder inequality and the Gagliardo-Nirenberg in-

equality, we can obtain the following estimates for bPm such that when d = 3

Z T

0

kr bP �
mk

8
5

L2(⌦m)dt

 C

Z T

0

⇣
kbu�

mk
8
5

L2(⌦m) + krb'�
mk

8
5

L3(⌦m)kbµ
�
mk

8
5

L6(⌦m)

⌘
dt

 C

Z T

0

(kbu�
mk2L2(⌦m) + 1)dt+ C sup

0tT
kb'�

mk
6
5

H1(⌦m)

Z T

0

kb'�
mk

2
5

H3(⌦m)kbµ
�
mk

8
5

H1(⌦m)dt

 C

Z T

0

(kbu�
mk2L2(⌦m) + 1)dt

+C sup
0tT

kb'�
mk

6
5

H1(⌦m)

⇣Z T

0

kb'�
mk2H3(⌦m)dt

⌘ 1
5
⇣Z T

0

kbµ�
mk2H1(⌦m)dt

⌘ 4
5

 CT , (3.60)

and when d = 2

Z T

0

kr bP �
mk

2r
1+r

L2(⌦m)dt

 C

Z T

0

⇣
kbu�

mk
2r
1+r

L2(⌦m) + krb'�
mk

2r
1+r

L
2r
r�2 (⌦m)

kbµ�
mk

2r
1+r

Lr(⌦m)

⌘
dt

 C

Z T

0

(kbu�
mk2L2(⌦m) + 1)dt+ C sup

0tT
kb'�

mk
2(r�1)
1+r

H1(⌦m)

Z T

0

kb'�
mk

2
1+r

H3(⌦m)kbµ
�
mk

2r
1+r

H1(⌦m)dt

 C

Z T

0

(kbu�
mk2L2(⌦m) + 1)dt

+C sup
0tT

kb'�
mk

2(r�1)
1+r

H1(⌦m)

⇣Z T

0

kb'�
mk2H3(⌦m)dt

⌘ 1
1+r

⇣Z T

0

kbµ�
mk2H1(⌦m)dt

⌘ r
1+r

 CT , for any r 2 (2,+1). (3.61)

Based on the above estimates (3.55)–(3.61) which are independent of �, we can see

that there exists a subsequence {(bu�
c, bP �

m, b'�, bµ�)} (still denoted by the same symbols for
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simplicity) as � ! 0 (or equivalently N ! +1) such that
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

bu�
c ! uc weakly star in L1(0, T ;L2(⌦c)),

weakly in L2(0, T ;H1(⌦c)),

bPm ! Pm weakly in L↵(0, T ;Xm),

bu�
m ! um weakly in L2(0, T ;L2(⌦m)),

b'� ! ' weakly star in L1(0, T ;H1(⌦)),

weakly in L2(0, T ;H3(⌦)),

bµ� ! µ weakly in L2(0, T ;H1(⌦)),

(3.62)

for certain functions (uc, Pm,um,', µ) satisfying

uc 2 L1(0, T ;L2(⌦c)) \ L2(0, T ;H1(⌦c)),

Pm 2 L↵(0, T ;Xm),

um 2 L2(0, T ;L2(⌦m)),

' 2 L1(0, T ;H1(⌦)) \ L2(0, T ;H3(⌦)),

µ 2 L2(0, T ;H1(⌦)),

where ↵ = 8
5 when d = 3 and ↵ 2 (43 , 2) that can be arbitrary close to 2 when d = 2.

In order to pass to the limit in nonlinear terms, we need to show the strong convergence

of b'� (up to a subsequence). It follows from equation (3.49), the Gagliardo-Nirenberg

inequality and the Sobolev embedding theorem that

k@t'�k
8
5

L
8
5 (0,T ;(H1(⌦))0)

 C

Z T

0

⇣
krbµ�k

8
5

L2(⌦) + kb'�k
8
5
L1(⌦)kbu

�k
8
5

L2(⌦)

⌘
dt

 C

Z T

0

krbµ�k
8
5

L2(⌦)dt+ C sup
0tT

kb'�k
6
5

L6(⌦)

Z T

0

kb'�k
2
5

H3(⌦)kbu
�k

8
5

L2(⌦)dt

 C

Z T

0

⇣
krbµ�k2L2(⌦) + 1

⌘
dt+ C sup

0tT
kb'�k

6
5

H1(⌦)

Z T

0

⇣
kb'�k2H3(⌦) + kbu�k2L2(⌦)

⌘
dt

 CT , when d = 3. (3.63)

For d = 2, we use the Brézis-Gallouet interpolation inequality (cf. [46])

kgkL1(⌦)  CkgkH1(⌦)

q
ln(1 + kgkH2(⌦)) + C(1 + kgkH1(⌦)), 8 g 2 H2(⌦)

to obtain that for any ↵ 2 (1, 2), it holds

k@t'�k↵L↵(0,T ;(H1(⌦))0)

 C

Z T

0

⇣
krbµ�k↵L2(⌦) + kb'�k↵L1(⌦)kbu�k↵L2(⌦)

⌘
dt
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 C

Z T

0

krbµ�k↵L2(⌦)dt

+C(1 + sup
0tT

kb'�k↵H1(⌦))

Z T

0

⇣
1 +

q
ln(1 + k'kH2(⌦))

⌘↵

kbu�k↵L2(⌦)dt

 C

Z T

0

⇣
krbµ�k2L2(⌦) + 1

⌘
dt

+C

Z T

0

h⇣
1 +

q
ln(1 + k'kH2(⌦))

⌘ 2↵
2�↵

+ kbu�k2L2(⌦)

i
dt

 CT , when d = 2. (3.64)

As a result, it follows that

@t'
� ! @t' weakly in L↵(0, T ; (H1(⌦))0).

where ↵ = 8
5 when d = 3 and ↵ 2 (1, 2) that can be arbitrary close to 2 when d = 2.

Since

kb'� � '�k(H1)0 =

����(tk+1 � t)
('k+1 � 'k)

�

����
(H1)0

 �k@t'�k(H1)0 , t 2 (tk, tk+1],

for k = 0, 1, ..., N � 1, we have

Z T

0

kb'� � '�k↵(H1)0dt  �↵
Z T

0

k@t'�k↵(H1)0dt ! 0, as � ! 0, (3.65)

which implies

b'� � '� ! 0, strongly in L↵(0, T ; (H1)0), as � ! 0.

Similarly, one can show ke'� � b'�kL↵(0,T ;(H1)0) ! 0, as � ! 0. Thus, the sequences {'�},
{b'�} and {e��}, if convergent, should converge to the same limit. On the other hand,

by the definition of '�, it satisfies the estimates similar to (3.55), (3.59) for b'�. Hence,

applying the Simon’s compactness lemma (cf. e.g., [47]), we deduce that there exists

'⇤ 2 L2(0, T ;H3��(⌦)) \ C([0, T ];H1��(⌦)), for a suitable subsequence,

'� ! '⇤, strongly in L2(0, T ;H�(⌦)), as � ! 0,

for certain 0 < �  1. In particular, we have '⇤ = ' and up to a subsequence,

b'�, e'� ! ' strongly in L2(0, T ;H3��(⌦)) \ C([0, T ];H1��(⌦)), as � ! 0. (3.66)

Concerning the initial data, since by definition '�|t=0 = '0, we infer from (3.66) that

'|t=0 = '0.

Indeed, by (3.55), (3.63) and [26, Lemma 4.1], we also have ' 2 Cw([0, T ];H1(⌦)).
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Using similar arguments for (3.60) and (3.61), we can deduce from (3.48) and (3.60)

that (taking qm = 0)

k@tu�
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8
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8
5 (0,T ;(H1(⌦))0)

 C

Z T

0

⇣
kbu�

ck
8
5

H1(⌦c)
+ k bP �

mk
8
5

H1(⌦m) + kbµ�
ck

8
5

L6(⌦c)
krb'�

ck
8
5

L3(⌦c)

⌘
dt

 CT , when d = 3 (3.67)

and

k@tu�
ck

2r
1+r

L
2r
1+r (0,T ;(H1(⌦))0)

 C

Z T

0

✓
kbu�

ck
2r
1+r

H1(⌦c)
+ k bP �

mk
2r
1+r

H1(⌦m) + kbµ�
ck

2r
1+r

Lr(⌦c)
krb'�

ck
2r
1+r

L
2r
r�2 (⌦c)

◆
dt

 CT , 8 r 2 (2 +1), when d = 2 (3.68)

Parallel to the arguments for '�, b'�, the above estimates yield that as � ! 0,

bu�
c � u�

c ! 0, strongly in L↵(0, T ; (H1(⌦c))
0), (3.69)

bu�
c,u

�
c ! uc, strongly in L2(0, T ;H�(⌦c)) \ C([0, T ];H��(⌦c)), (3.70)

for some � 2 (0, 1), ↵ = 8
5 when d = 3 and ↵ 2 (43 , 2) that can be arbitrary close to 2

when d = 2. Moreover, we have uc|t=0 = u0 and uc 2 Cw([0, T ];L2(⌦c)).

Based on the strong convergence (3.66) and the Sobolev embedding theorem, we can

derive that
ef(b'�, e'�) ! f('), strongly in L2(0, T ;L2(⌦)). (3.71)

By the assumptions (A1)–(A2), we get

⌫(e'�) ! ⌫('), strongly in C([0, T ];H1��(⌦)),

M(e'�) ! M('), strongly in C([0, T ];H1��(⌦)).

Similar to the argument in (3.60), we have bµ�rb'� 2 L↵(0, T ;L2(⌦)) with ↵ being the

parameter specified above. Moreover, we infer from the strong convergence of b'� (see

(3.66)) and the weak convergence of bµ� (see (3.62)) that

bµ�rb'� ! µr'

in the distribution sense. At last, we note that in (3.48)–(3.49), after integration by parts,

we get

Z T

0

�
@tu

�
c,vc

�
c
dt = �

Z T

0

�
u�
c, @tvc

�
c
dt,

Z T

0

�
@t'

�,�
�
dt = �

Z T

0

�
'�, @t�

�
dt.
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Using the above convergence results, we are able to pass to the limit in Eqs. (3.48)–(3.51)

to see that the limit functions (uc, Pm,um,', µ) satisfy the weak formulation (2.15)–(2.18)

(see Definition 2.1).

Finally, we show that (uc,um,', µ) also fulfills the energy inequality (2.19). The

energy estimate (3.53) yields that

E(u0,'0)h(0) +

Z T

0

E�(t)h0(t)dt �
Z T

0

D�(t)h(t)dt, (3.72)

for all h(t) 2 W 1,1(0, T ) with h � 0 and h(T ) = 0. On the other hand, it follows from the

strong convergence results (3.66) and (3.70) that as � ! 0, for almost every t 2 (0, T ),

we have (up to a subsequence),

bu�
c(t) ! uc(t), strongly in L2(⌦c),

b'�(t) ! '(t), strongly in H1(⌦),

which imply that

E�(t) ! E(uc(t),'(t)), for almost every t 2 (0, T ).

By the lower semi-continuity of norms and the almost everywhere convergence of ⌫(e'�),

M(e'�), we have

lim inf
�!0

Z t

s

D�(⌧)h(⌧)d⌧ �
Z t

s

D(⌧)h(⌧)d⌧, for 0  s < t  T,

where D(t) is defined as in (2.3). Passing to the limit in (3.72), we get

E(u0,'0)h(0) +

Z T

0

E(uc(t),'(t))h
0(t)dt �

Z T

0

D(t)h(t)dt.

Then we can conclude from [26, Lemma 4.3] that the energy inequality (2.19) holds for

all s  t < T and almost all 0  s < T including s = 0.

3.4.2. Case $ = 0

If $ = 0, one does not have a direct estimate on kbu�
ckL2(⌦c) (compare to (3.55)). Recall

also that in our domain setting, the boundary �c = ; is allowed, i.e., ⌦c can be enclosed

completely by ⌦m. As a consequence, the classical Korn’s inequality (3.22) does not apply.

To overcome this di�culty, we shall derive an equivalent norm on the following space

Z = {u | uc = u|⌦c 2 Hc,div, um = u|⌦m 2 Hm,div, uc · ncm = um · ncm on �cm}.

Lemma 3.9. The norm given by

kuk2Z := kD(uc)k2L2(⌦c) +
d�1X

i=1

kuc · ⌧ ik2L2(�cm) + kumk2L2(⌦m). (3.73)

is an equivalent norm on Z.
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Proof. The case that �c has positive measure is trivial in view of Korn’s inequality (3.22).

Below we focus on the situation where ⌦m encloses completely ⌦c. It is clear from Korn’s

inequality (3.21) and the trace theorem that the following quantity defines an equivalent

norm on Z

|||u|||2 := kD(uc)k2L2(⌦c) + kuck2L2(⌦c) +
d�1X

i=1

kuc · ⌧ ik2L2(�cm) + kumk2L2(⌦m). (3.74)

One only needs to prove there exists a constant C independent of the function u such

that

|||u|||  CkukZ, 8u 2 Z.

Suppose by contradiction that for a sequence {un} in Z it holds

|||un||| � nkunkZ. (3.75)

By homogeneity, we may normalize |||un||| = 1. Then {un} is a bounded sequence in Z.

There exists a subsequence, still denoted by {un}, such that un converges to u1 weakly

in Z. In particular, one has by Sobolev compact embedding ucn := un|⌦c converges to

uc1 strongly in L2(⌦c). On the other hand, due to (3.75),

kunkZ ! 0. (3.76)

It follows from the definitions (3.73) and (3.74) that kucnkL2(⌦c) converges to 1, which

implies

kuc1kL2(⌦c) = 1. (3.77)

Using the facts that umn := un|⌦m 2 Hm,div, (3.76) and the trace theorem, we see that

umn · ncm

��
�cm

! 0, in H� 1
2 (�cm).

Since un 2 Z, by the continuity condition on the interface �cm, one concludes

ucn · ncm

��
�cm

= umn · ncm

��
�cm

! 0, in H
1
2 (�cm).

On the other hand, (3.76) implies kucn ·⌧ ikL2(�cm) ! 0 (i = 1, ..., d�1). As a consequence

of the above estimates and the fact that uc1 is the weak limit of ucn in H1(⌦c), we obtain

uc1

��
�cm

= 0. (3.78)

Finally, by the weak lower semi-continuity of norm, one has

kD(uc1)kL2(⌦c)  lim inf
n!1

kD(ucn)kL2(⌦c) = 0. (3.79)

By virtue of (3.78) and (3.79), we infer from the Korn’s inequality (3.22) that

kuc1kL2(⌦c) = 0.

This leads to a contradiction with (3.77). The proof is complete.
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Now we return to the proof of Theorem 2.1. It follows easily from Lemma 3.1 and the

definition of bu�
c, bu�

m that

bu�
m 2 Hm,div, bu�

m · ncm = bu�
c · ncm in H

1
2 (�cm).

Thus, the equivalent norm (3.73) in Lemma 3.9 is applicable, and one can derive estimate

on kbu�
ckL2(0,T ;H1(⌦c)) from the energy estimate (3.54). Then one can conclude the proof as

in the case of $ > 0.

The proof of Theorem 2.1 is complete.

4. Weak-strong Uniqueness

In this section, we prove the uniqueness result Theorem 2.2. Below we just give the

proof for d = 3, while the proof for d = 2 can be obtained with minor modifications under

certain weaker regularity assumptions.

First, we recall that the finite energy weak solution (uc, Pm,um,', µ) to CHSD system

(1.1)–(1.22) satisfy the energy inequality (2.19), i.e.,
Z
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On the other hand, the regular solution (ũc, P̃m, ũm, '̃, µ̃) are allowed to be used as the

test functions for the CHSD system and the following energy equality holds
Z
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⌫('̃m)|ũc · ⌧ i|2dSd⌧

=

Z

⌦c

$

2
|u0|2dx+

Z

⌦


✏

2
|r'0|2 +

1

✏
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dx. (4.2)

Next, taking ũ and �✏�'̃ as test functions in the weak formulation for the finite

energy weak solution (uc, Pm,um,', µ) and using the equations for ũc, '̃, we obtain that

$(uc(t), ũc(t))c �$

Z

⌦c

|u0|2dx
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�1um · ũmdxd⌧ +

Z t

0

Z

⌦m

⌫('̃m)⇧
�1um · ũmdxd⌧

= �
Z t

0

��
rPm � µmr'm

�
, ũm

�
m
d⌧ �

Z t

0

⇣�
rP̃m � µ̃mr'̃m

�
,um

⌘

m
d⌧

=

Z t

0

Z

�cm

Pm(ũc · ncm)dSd⌧ +

Z t

0

Z

�cm

P̃m(uc · ncm)dSd⌧

+

Z t

0

(µmr'm, ũm)md⌧ +

Z t

0

(µ̃mr'̃m,um)md⌧. (4.5)

Adding (4.1) with (4.2) and subtracting the sum of (4.3)–(4.5) from the resultant, by a

direct computation we obtain that

$

2

Z

⌦c

|uc(t)� ũc(t)|2dx+
✏

2

Z

⌦

|r'(t)�r'̃(t)|2dx

+

Z t

0

Z

⌦c

2⌫('c)|D(uc)� D(ũc)|2dxd⌧
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+

Z t

0

Z

⌦m

⌫('m)⇧
�1|um � ũm|2dxd⌧

+✏2
Z t

0

Z

⌦

M(')|r�'�r�'̃|2dxd⌧

+
↵BJSJp
trace(⇧)

d�1X

i=1

Z t

0

Z

�cm

⌫(')|(uc � ũc) · ⌧ i|2dSd⌧

 �
Z t

0

Z

⌦c

2(⌫('̃c)� ⌫('c))D(ũc) : (D(ũc)� D(uc))dxd⌧

�
Z t

0

Z

⌦m

(⌫('̃m)� ⌫('m))⇧
�1ũm(ũm � um)dxd⌧

�✏2
Z t

0

Z

⌦

(M('̃)�M('))r�'̃ · (r�'̃�r�')dxd⌧

� ↵BJSJp
trace(⇧)

d�1X

i=1

Z t

0

Z

�cm

(⌫('̃m)� ⌫('m))(ũc · ⌧ i)((ũc � uc) · ⌧ i)dSd⌧

+2

Z t

0

Z

⌦

(M(')r�' ·rf(') + M('̃)r�'̃ ·rf('̃))dxd⌧

�
Z t

0

Z

⌦

(M(')rf(') ·r�'̃+M('̃)rf('̃) ·r�')dxd⌧

� 1

✏2

Z t

0

Z

⌦

(M(')|rf(')|2 +M('̃)|rf('̃)|2)dxd⌧

+
1

✏

Z

⌦

(2F ('0)� F (')� F ('̃))dx

+✏

Z t

0

Z

⌦

(�'r' · ũ+�'̃r'̃ · u� u ·r'�'̃� ũ ·r'̃�')dxd⌧

:=
9X

j=1

Ij, (4.6)

where we have used the incompressibility condition and the fact
Z

⌦

(u ·r')f(')dx =

Z

⌦

u ·rF (')dx = 0.

Using the mass conservation property
R
⌦('̃�')dx = 0 (due to the choice of initial data),

the Poincaré inequality, the Sobolev embedding theorem and the Gagliardo-Nirenberg

inequality, we have the following estimates for � = '̃� '

k�kL1(⌦)  C(kr��k
1
4

L2(⌦)k�k
3
4

L6(⌦) + k�kL6(⌦))

 C(kr��k
1
4

L2(⌦)kr�k
3
4

L2(⌦) + kr�kL2(⌦)),

k��kL3(⌦)  C
�
kr��k

3
4

L2(⌦)kr�k
1
4

L2(⌦) + kr�kL2(⌦)

�
,
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kr�kL6(⌦)  C
�
kr��k

1
2

L2(⌦)kr�k
1
2

L2(⌦) + kr�kL2(⌦)

�
.

Combining the above estimates with the Young inequality, we get

I1  C

Z t

0

k⌫('̃c)� ⌫('c)kL1(⌦c)kD(ũc)kL2(⌦c)kD(ũc)� D(uc)kL2(⌦c)d⌧

 C

Z t

0

k'̃� 'kL1(⌦)kD(ũc)kL2(⌦c)kD(ũc)� D(uc)kL2(⌦c)d⌧

 C

Z t

0

(kr�('̃� ')k
1
4

L2(⌦)kr('̃� ')k
3
4

L2(⌦) + kr('̃� ')kL2(⌦))

⇥kD(ũc)kL2(⌦c)kD(ũc)� D(uc)kL2(⌦c)d⌧

 ⇣

Z t

0

kr�('̃� ')k2L2(⌦)d⌧ + ⇣

Z t

0

kD(ũc)� D(uc)k2L2(⌦c)d⌧

+C

Z t

0

�
kD(ũc)k

8
3

L2(⌦c)
+ 1

�
kr('̃� ')k2L2(⌦)d⌧,

where ⇣ > 0 is a small constant to be chosen later. In a similar manner, we have the

following estimates for I2, I3 and I4:

I2  ⇣

Z t

0

kr�('̃� ')k2L2(⌦)d⌧ + ⇣

Z t

0

kũm � umk2L2(⌦m)d⌧

+C

Z t

0

�
kũmk

8
3

L2(⌦m) + 1
�
kr('̃� ')k2L2(⌦)d⌧,

I3  ⇣

Z t

0

kr�('̃� ')k2L2(⌦)d⌧

+C

Z t

0

�
kr�'̃k

8
3

L2(⌦) + 1
�
kr('̃� ')k2L2(⌦)d⌧,

I4  ⇣

Z t

0

kr�('̃� ')k2L2(⌦)d⌧ + ⇣

d�1X

i=1

Z t

0

Z

�cm

|(ũc � uc) · ⌧ i|2dSd⌧

+C

Z t

0

�
kũck

8
3

L2(⌦c)
+ 1

�
kr('̃� ')k2L2(⌦)d⌧,

Since ' 2 L1(0, T ;H1(⌦)) \ L2(0, T ;H3(⌦)), by the Gagliardo-Nirenberg inequality we

deduce that
Z T

0

kf(')k4H1(⌦)dt  C

Z T

0

(k'k4H1(⌦) + k'k12L6(⌦) + 81k'2r'k4L2(⌦))dt

 CT + C

Z t

0

k'k8L1(⌦)kr'k4L2(⌦)dt

 CT + C

Z T

0

(kr�'k
1
4

L2(⌦)k'k
3
4

L6(⌦) + k'kL6(⌦))
8dt
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 CT + C

Z T

0

kr�'k2L2(⌦)dt

 CT ,

which implies f(') 2 L4(0, T ;H1(⌦)) ⇢ L
8
3 (0, T ;H1(⌦)). Thus we can take f(') = '3�'

as a test function in the Cahn-Hilliard equation for '. Since the nonlinear part '3 is

monotone increasing, similar to [48, Proposition 4.2], we see that the dual product satisfies

h't, f(')i(H1)0,H1 = d
dt

R
⌦ F (')dx for a.e. t 2 (0, T ). Then integrating with respect to t

we deduce that
Z

⌦

F (')dx�
Z

⌦

F ('0)dx

= ✏

Z t

0

Z

⌦

M(')r�' ·rf(')dxd⌧ � 1

✏

Z t

0

Z

⌦

M(')|rf(')|2dxd⌧,

In a similar way, we have the same identity for the regular solution '̃
Z

⌦

F ('̃)dx�
Z

⌦

F ('0)dx

= ✏

Z t

0

Z

⌦

M('̃)r�'̃ ·rf('̃)dxd⌧ � 1

✏

Z t

0

Z

⌦

M('̃)|rf('̃)|2dxd⌧,

As a consequence, we obtain that

I5 + I6 + I7 + I8

=

Z t

0
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⌦

[�M(')r�('̃� ') ·rf(') + M('̃)r�('̃� ') ·rf('̃)]dxd⌧
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+
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0
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:= J1 + J2. (4.7)

The term J1 can be estimated like I1 such that
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For J2, it holds
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Now we estimate the last term I9,
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Z t

0

Z

⌦
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 ⇣
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0

kr�('̃� ')k2L2(⌦)d⌧ + ⇣

Z t

0

kũ� uk2L2(⌦)d⌧
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Z t

0

�
kũk

8
3

L2(⌦) + kr�'̃k
8
3

L2(⌦) + 1
�
kr('̃� ')k2L2(⌦)d⌧. (4.8)

Combining the above estimates, using the equivalent norm kukZ given by (3.73) in

Lemma 3.9 and the assumptions (A1)–(A3), by taking ⇣ > 0 su�ciently small, we deduce

that

$k(ũc � uc)(t)k2L2(⌦c) + ✏kr('̃� ')(t)k2L2(⌦)

+�1

Z t

0

�
k(ũ� u)(⌧)k2Z + kr�('̃� ')(⌧)k2L2(⌦)

�
d⌧

 �2

Z t

0

h(⌧)kr('̃� ')(⌧)k2L2(⌦)d⌧, (4.9)

where

h(t) = kũ(t)k
8
3
Z + kr�'̃(t)k

8
3

L2(⌦) + kr�'(t)k2L2(⌦) + 1,

and the constants �1, �2 > 0 may depend on the initial energy E(0) as well as the coe�-

cients of the CHSD system.

Since by our assumption (uc,')|t=0 = (0, 0) and h(t) 2 L1(0, T ), then it follows from

(4.9) and the Gronwall inequality that for t 2 [0, T ],

$k(ũc � uc)(t)k2L2(⌦c) + ✏kr('̃� ')(t)k2L2(⌦) = 0 (4.10)

and then Z T

0

k(ũ� u)(t)k2Zdt = 0. (4.11)

Recalling the fact
R
⌦('̃ � ')dx = 0 for t 2 [0, T ], by the Poincaré inequality and the

definition of the norm k · kZ (see (3.73)), we infer that

(uc,um,') = (ũc, ũm, '̃). (4.12)

Finally, we remark that for the case of $ = 0, one can proceed as above and conclude

(4.10), (4.11) with $ = 0 in (4.10), which again yield the uniqueness result (4.12).

The proof of Theorem 2.2 is complete.
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