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Solving PhaseLift by low-rank Riemannian
optimization methods for complex semidefinite
constraints

Wen Huang · K. A. Gallivan ·
Xiangxiong Zhang

Abstract A framework, PhaseLift, was recently proposed to solve the phase
retrieval problem. In this framework, the problem is solved by optimizing a
cost function over the set of complex Hermitian positive semidefinite matrices.
This approach to phase retrieval motivates a more general consideration of op-
timizing cost functions on semidefinite Hermitian matrices where the desired
minimizers are known to have low rank. This paper considers an approach
based on an alternative cost function defined on a union of appropriate man-
ifolds. It is related to the original cost function in a manner that preserves
the ability to find a global minimizer and is significantly more efficient com-
putationally. A rank-based optimality condition for stationary points is given
and optimization algorithms based on state-of-the-art Riemannian optimiza-
tion and dynamically reducing rank are proposed. Empirical evaluations are
performed using the PhaseLift problem. The new approach is shown to be
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an effective method of phase retrieval with computational efficiency increased
substantially compared to the algorithm used in original PhaseLift paper.

Keywords Riemannian Optimization · Low rank optimization · Complex
optimization · Phase Retrieval · PhaseLift

1 Introduction

The phase retrieval problem concerns recovering a signal given the modulus
of its Fourier transform. It is a key problem for many important applications,
e.g., X-ray crystallography imaging [Har93], diffraction imaging [BDP+07],
optics [Wal63] and microscopy [MISE08]. The continuous form of the problem
recovers x(t) : Rs → C from |x̃(u)|, where x̃(u) : Rs → C is defined by

x̃(u) =

∫

Rs

x(t) exp(−2πu · t
√
−1)dt,

and · denotes the Euclidean inner product. This paper considers the dis-
crete form of the problem where an indexed set of complex numbers x ∈
Cn1×n2×...×ns is to be recovered from the modulus of its discrete Fourier trans-
form |x̃(g1, g2, . . . , gs)|, where (g1, g2, . . . , gs) ∈ Ω := G1 ×G2 × . . .Gs and Ω
is a grid of an s-dimensional space. The discrete Fourier transform x̃ is given
by

x̃(g1, g2, . . . , gs) =

1√
n

∑

i1,i2,...,is

xi1i2...is exp

(
−2π(

(i1 − 1)g1
n1

+ . . .+
(is − 1)gs

ns
)
√
−1

)
, (1.1)

where n = n1n2 . . . ns, ij is an integer satisfying 1 ≤ ij ≤ nj for j = 1, . . . s,
xi1i2...is denotes the corresponding entry of x and x̃(g1, g2, . . . , gs) denotes the
corresponding entry of x̃.

It is well-known that the solution of the phase retrieval is not unique. For
example, when Ω is the uniform grid, i.e, Gi = {0, 1, . . . , ni−1}, i = 1, 2, . . . , s,
if x is a solution, then

1. y = cx is a solution where c ∈ C and |c| = 1;
2. y ∈ Cn1×n2×...ns such that yi1i2...is = xj1j2...js is a solution, where jk =

ik + ak mod nk, k = 1, . . . , s and a1, a2, . . . as are integers;
3. y ∈ Cn1×n2×...ns such that yi1,i2,...is = x̄j1j2...js is a solution, where jk =

−ik mod nk, k = 1, . . . , s and x̄ is the conjugate of x.

These equivalent solutions are called trivial associates of x and infinitely many
additional solutions may exist [San85].

Oversampling in the Fourier domain is a standard method to obtain a
unique solution and it has been shown to almost always give a unique solu-
tion for multiple dimensional problems for real-valued and nonnegative sig-
nals [BS79,Hay82,San85]. Many algorithms based on alternating projection
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[GS72] have been developed to solve phase retrieval problem using the over-
sampling framework [Fie78,Fie82,Els03,Bla04,Mar07,CMWL07]. While these
algorithms are efficient and effective in some problem settings, they may not
perform well in other settings. For details on the capabilities and difficulties
of these algorithms see [CESV13] and the references therein.

In recent years other frameworks, using multiple structured illuminations,
or the mathematically equivalent construct of masks, combined with convex
programming, have been proposed to recover the phase exactly, e.g., PhaseLift
[CESV13] and PhaseCut [WDM13]. It was later proved that a feasibility prob-
lem of two convex sets can be solved for PhaseLift in [CL13,DH14]. For the
PhaseLift framework, four major results are of interest here. First, using a
small number (related to s) of noiseless measurements of the modulus de-
fined by certain carefully designed illuminations, the phase can be recovered
exactly [CESV13]. Second, when these carefully designed measurements are
not used, exact recovery is still possible using O(n2) noiseless measurements
[CL13]. Third, the phase can be recovered exactly with high probability using
O(n log n) noiseless measurements of the modulus [CSV13]. Finally, the sta-
bility of recovering the phase using noisy measurements is shown in [CSV13].

For the PhaseCut framework, it is known that if the phase can be recov-
ered using PhaseLift, then it can also be recovered by a modified version of
PhaseCut and that the PhaseCut is at least as stable as the weak formula-
tion of PhaseLift for noisy measurements [WDM13]. The weak formulation is
formally defined in [WDM13, Section 4.1], however, the idea of a weak formu-
lation is also given earlier in the proof of [CESV13, Theorem 2.1]. Empirically,
PhaseCut is observed to be more stable in the situation of sparse sampling of
the modulus.

The problems in both PhaseLift and PhaseCut concern optimizing convex
cost functions defined on a convex set of complex matrices, i.e.,

min
X∈Dn

H(X), (1.2)

whereH : Dn → R : X '→ H(X), and Dn denotes the set of all n-by-n complex
Hermitian positive semidefinite matrices. PhaseCut further requires that the
diagonal entries of X are 1. However, the dimension of (1.2) is usually too
large to be solved by standard convex programming techniques. For example,
in order to recover an image of 100 by 100 pixels, i.e., s = 2 and n1 = n2 = 100,
solving an optimization problem with an argument that is a 1002 by 1002

matrix is required. The complexity of solving PhaseLift and PhaseCut using
standard semidefinite programming solvers, e.g., SDPT3 [TTT99], is discussed
in [WDM13, Section 4.6].

Since the desired optimum, X∗, is known to be a rank-one matrix, a low-
rank matrix approximation of the argument matrix is used in [CESV13] to
save computations for PhaseLift. While this approximation has good empirical
performance, no convergence proof is given in [CESV13]. For PhaseCut, a
block coordinate descent algorithm is proposed in [WDM13] and the algorithm
is shown to be computationally inexpensive for each iteration. However, the
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block coordinate descent algorithm converges slowly, i.e., linear convergence
[BV04, Section 9.4.3], and the overall computational cost can be unacceptably
high.

This paper uses the framework of PhaseLift and an alternate cost function
F : Cn×p → R : Y '→ F (Y ) = H(Y Y ∗) defined by matrix factorization is con-
sidered. Even though F is not convex, it is shown to be a suitable replacement
of the cost function H . Riemannian optimization methods on an appropriate
quotient space are used for optimizing tF . Using the cost function F with a
small dimension p reduces storage and the computational complexity of each
iteration. Convergence at superlinear rates is also guaranteed theoretically by
known Riemannian optimization results. This new approach is shown to per-
form empirically much better than the low-rank approximate version of the
algorithm used for PhaseLift in [CESV13] from the points of view of efficiency
and effectiveness. Finally, note that the analysis and algorithm presented is
not specific to the cost function used for phase retrieval in PhaseLift but for a
general cost function defined on Dn and therefore the approach has potential
for optimization in other applications where the global optimum is known to
have low rank.

The idea of using low-rank factorization to solve positive semidefinite con-
strained problems is, of course, not new but all the research results of which
the authors’ are aware, are for real positive semidefinite matrix constraints.
Burer and Monteiro [BM03] first investigate this approach for semidefinite pro-
gramming (SDP) in which the cost function is linear. Journée et al. [JBAS10]
use low-rank factorization for a more general problem in the sense that the
cost function H is not necessary linear,

min
X∈S+n

H(X),

such that tr(AiX) = bi, i = 1, . . .m,

where S+n denotes the set of all real n-by-n symmetric positive semidefinite
matrices, Ai ∈ Rn×n, Ai = AT

i and AiAj = 0 for any i ̸= j. The conditions
that Ai = AT

i and AiAj = 0 for any i ̸= j implies the number of equality
constraints m is at most n as pointed out in [JBAS10]. The complex problem
(1.2) does not belong to this category of problem and details of important
differences and a discussion of the geometry are given in Section 4.

The paper is organized as follows. Section 2 presents the notation used.
The derivation of the optimization problem framework in PhaseLift is given in
Section 3. The alternate cost function and optimality conditions are derived
in Section 4. Riemannian optimization methods and the required geometric
objects are presented in Section 5. In Section 6, the effectiveness of the methods
are demonstrated with several numerical experiments and, finally, conclusions
are given in Section 7.
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2 Notation

For any z ∈ Cn1×n2×...ns , vec(z) ∈ Cn, where n = n1n2 . . . ns, denotes the
vector form of z, i.e.,

(vec(z))k = zi1i2...is ,

where k = i1 +
∑s−1

j=1 n1n2 . . . nj(ij+1 − 1). Re(·) denotes the real part of
the argument and superscript ∗ denotes the conjugate transpose operator. A
matrix or a vector with superscriptˇmeans it is a real matrix or a real vector.
Given a vector v with length h, Diag(v) denotes an h-by-h diagonal matrix
the diagonal entries of which are v.

√
v denotes a vector with entries that are

square root of corresponding entries in v.
0s×k denotes an s × k zero matrix; Is×k denotes a diagonal matrix with

diagonal entries 1; and 0s denote a vector with length s with entries all 0.
diag(M) denotes a vector of the diagonal entries of M ∈ Cs×k and tr(M)
denotes the trace of M . If s ≥ k, M⊥ denotes an s × (s − k) matrix such
that M∗

⊥M⊥ = I(s−k)×(s−k) and M∗
⊥M = 0(s−k)×k. M(:, 1 : k) denotes a

matrix that is formed by the first k columns of matrix M . span(M) denotes
the column space of M . Eij denotes a matrix with i-th row j-th column entry
be 1 and other entries be 0.

Given an embedded submanifold M ⊆ Cs×k, Tx M and Nx M denote the
tangent space and normal space of M at x ∈ M respectively. Dk denotes
set {X ∈ Cn×n|X = X∗, X ≥ 0, rank(X) ≤ k}, 1 ≤ k ≤ n. Note that the
statementX ≥ 0 means that matrixX is positive semidefinite. St(k, s) denotes
the complex compact Stiefel manifold {A ∈ Cs×k|A∗A = Ik×k} with s ≥ k.
SC+(k, s) denotes the set of all Hermitian positive semidefinite s×s matrices of
fixed rank k. When elements of SC+(k, s) are restricted to be real, it is denoted
by SR+(k, s). Cs×k

∗ denotes the complex noncompact Stiefel manifold, i.e., the
set of all s × k full column rank complex matrices. Os denotes the group of
s-by-s unitary matrices.

Given a function f(x) onM or Cs×k, grad f(x) denotes the gradient of f at
x, Hess f(x) denotes the Hessian of f at x and Hess f(x)[η] denotes the action
of Hess f(x) along direction η. These are Riemannian or Euclidean depending
on the domain.

The standard Euclidean metric is denoted

gE(Y, Ŷ ) = Re(tr(Y ∗Ŷ )),

for Y, Ŷ ∈ Cs×t and the orthogonal projection with respect to gE from a point
X to a convex set L is denoted PL(X).

3 The PhaseLift Approach to Phase Retrieval

3.1 Exact Measurement Optimization Problems

The PhaseLift framework uses a grid, Gi, in each dimension, i = 1, . . . , s, to
define the discrete Fourier domain of interest in Ct1×t2×...ts and Gi(j) denotes
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the j-th entry in grid Gi, i = 1, . . . , s. It is assumed that entries in Gi are
increasing, i.e., Gi(h) > Gi(k) if h > k.

The known random masks or illumination fields defined on the discrete
signal domain are denoted wr ∈ Cn1×n2×...ns , r = 1, . . . l. It follows that
x̃ ∈ Ct1×t2×...ts of (1.1) can be expressed as

(x̃i)j1j2...js =
1√
n

∑

i1,i2,...,is

(
(wi)i1i2...isxi1i2...is

exp

(
−2π(

G1(j1)(i1 − 1)

n1
+ . . .+

Gs(js)(is − 1)

ns
)
√
−1

))
, (3.1)

where the subscripts of x̃i,wi and x denote the index in the appropriate dis-
crete domain. Let x, x̃i and wi denote vec(x), vec(x̃i) and vec(wi) respectively.
Using the Kronecker product, (3.1) can be rewritten as

x̃i = (Fns ⊗ Fns−1 ⊗ . . .Fn1)Diag(wi)x,

where Fni ∈ Cti×ni , i = 1, . . . , s denotes the one-dimensional Discrete Fourier
Transform (DFT), i.e.,

(Fni)hk =
1

√
ni

exp(−2πGi(h)(k − 1)
√
−1/ni), h = 1, . . . , ti, k = 1, . . . , ni.

Let Zi denote (Fns ⊗ Fns−1 ⊗ . . .Fn1)Diag(wi), Z denote (ZT
1 ZT

2 . . . ZT
l )

T

and x̃ denote (x̃T
1 x̃T

2 . . . x̃T
l )

T . The noiseless measurements b ∈ Rm are given
by

b = diag(x̃x̃∗) = diag(Zxx∗Z∗),

where m = nl. The task is to recover x ∈ Cn that satisfies

b = diag(Zxx∗Z∗),

given Z and b. This is a feasible problem of a quadratic equation that is
equivalent to a feasible problem of a linear equation with rank constraints,
i.e.,

find X ∈ Cn×n (3.2)

such that b = diag(ZXZ∗), X ∈ Dn, and rank(X) = 1.

The alternative problem suggested in [CESV13] considers an optimization
problem that does not force the rank of matrix to be one but adds a nuclear
norm penalty term to favor low-rank solutions

min
X∈Dn

∥b− diag(ZXZ∗)∥22 + κ tr(X), (3.3)

where κ is a positive constant. Furthermore, it was proved in [CL13,DH14]
that a feasibility problem of two convex sets can be solved instead of (3.3).
Solving the feasibility problem in [CL13,DH14] is equivalent to solving (3.3)
with κ = 0.
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3.2 Noisy Measurement Optimization Problems

Measurements with noise, b ∈ Rm, are assumed to have the form

b = diag(Zxx∗Z∗) + ϵ,

where ϵ ∈ Rm is noise sampled from a distribution p(:;µ), and the task is to
minimize the negative log-likelihood function

min
x

− log(p(b;µ))

such that µ = diag(Zxx∗Z∗),

which is equivalent to

min
X

− log(p(b;µ))

such that µ = diag(ZXZ∗), X ∈ Dn and rank(X) = 1.

The alternate problem suggested in [CESV13] is

min
X

− log(p(b;µ)) + κ tr(X) (3.4)

such that µ = diag(ZXZ∗) and X ∈ Dn,

or equivalently

min
X∈Dn

− log(p(b; diag(ZXZ∗))) + κ tr(X) (3.5)

where κ is a positive constant. Problems (3.4) and (3.5) are preferred over
Problem (3.2), since they are convex programming problems when the log-
likelihood function is concave.

The Poisson and Gaussian distributions are given in [CESV13] as examples
that have this kind of log-likelihood function. If b = (b1, . . . , bm)T and µ =
(µ1, . . . , µm)T with bi, i = 1, . . . ,m drawn from a Poisson distribution with
mean µi, then Problem (3.5) becomes

min
X∈Dn

m∑

i=1

(µi − bi logµi) + κ tr(X),

where µ = diag(ZXZ∗). If bi, i = 1, . . . ,m are drawn from Gaussian distribu-
tion with mean µk and variance δk, then Problem (3.5) becomes

min
X∈Dn

m∑

i=1

1

2σ2
i

(bi − µi)
2 + κ tr(X)

= min
X∈Dn

(b − diag(ZXZ∗))TΓ (b− diag(ZXZ∗)) + κ tr(X) (3.6)

where Γ = Diag(1/σ2
1 , . . . , 1/σ

2
m).
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4 Theoretical Results

This section presents theoretical results that motivate the design of algorithms
for optimizing a cost function H defined on Dn. The analysis does not rely on
the convexity of the cost function H . First, Section 4.1 presents an alternate
cost function F to replaceH whereH can be any of the cost functions discussed
in Section 3. In order to make F be a suitable replacement, it is crucial to
establish optimality conditions for H based on the properties of F . Since an
n dimensional complex vector can be viewed as a 2n dimensional real vector,
functions F and H can be viewed either on a complex space or on a real space.
It follows that the optimality conditions can be obtained by two approaches.
Section 4.2 presents the definitions of stationary points for real and complex
versions of functions F and H from a Euclidean point of view. Section 4.3
discusses the properties of the domain Dn from a manifold point of view.
Finally, the main results, optimality conditions for H based on the properties
of F , are given in Section 4.4.

4.1 Equivalent Cost Function

The cost functions generically denoted H all satisfy

H : Dn → R : X '→ H(X).

It is well-known that for any X ∈ Dn, there exists Yn ∈ Cn×n such that
YnY ∗

n = X . Furthermore, if X is rank p, then there exists Yp ∈ Cn×p such that
YpY ∗

p = X . Throughout this paper, the subscript of Y is used to emphasize
the column size of Y . Therefore, a surjective mapping between Cn×p and Dp

is given by

αp : Cn×p → Dp : Yp '→ YpY
∗
p .

It is clear that αp is not an injection. Specifically, given X ∈ Dp, if Yp satisfies
αp(Yp) = YpY ∗

p = X , then YpOp also satisfies αp(YpOp) = X for any Op ∈ Op.
Thus, if the desired solution of H is known to be at most rank p, then an
alternate cost function to H can be used:

Fp : Cn×p → R : Yp '→ H(αp(Yp)) = H(YpY
∗
p ).

The subscripts of F and α indicate the column size of the argument. The do-
main of Fp has lower dimension than that of H which may yield computational
efficiency. Therefore, an alternate problem of (1.2) is considered

min
Yp∈Cn×p

Fp(Yp). (4.1)
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4.2 Stationary Points

In order to understand the Euclidean gradients and Hessians, and stationary
points of F and H as well as important relationships between them, it is useful
to consider the structure of the spaces and functions from a real point of view.
This section develops that point of view and discusses the implications with
respect to the complex forms of F and H .

Let a superscript˜denote the mapping

˜: Cn×p → R2n×2p : Y = Y̌1 + Y̌2

√
−1 '→ Ỹ =

(
Y̌1 −Y̌2

Y̌2 Y̌1

)

which is an isometry from Cn×p to R2n×2p [GW04]. It preserves the opera-
tions of addition and multiplication when the sizes of matrices allow. Note the
mapping˜is an injection but not a surjection.

For any matrix X = X̌1 + X̌2

√
−1 ∈ Dn the mapping˜yields

X̃ =

(
X̌1 −X̌2

X̌2 X̌1

)
= X̂ =

(
X̌1 X̌T

2

X̌2 X̌3

)
∈ S+2n,

since X̌T
2 = −X̌2 where X̌3 := X̌1. Thus, (1.2) can be formulated as a problem

with real semidefinite constraints:

min
X̂∈S+2n

H̃(X̂) := H(X̌1 + X̌2

√
−1) (4.2)

such that tr(AkX̂) = 0, k = 1, 2, . . . , n(n+ 1),

where Ak, k = 1, . . . , n(n+ 1)/2 are given by

Ak =

(
0n×n Eij + Eji

Eij + Eji 0n×n

)
, i = 1, . . . , n, j = i, . . . , n

and the n(n+ 1)/2 remaining Ak, are given by

Ak =

(
Eij + Eji 0n×n

0n×n −Eij − Eji

)
, i = 1, . . . , n, j = i, . . . , n

where Eij ∈ Rn×n are the standard basis matrices.
The real semidefinite formulation (4.2) of the complex problem (1.2) is

different than the related real problem on symmetric semidefinite matrices in
[JBAS10]. The conditions given in [JBAS10] do not hold for (4.2) since the
number of constraints n(n+1) in (4.2) is greater than the size of the argument
2n for n > 1 which is required in their formulation.

Since H̃ in (4.2) is defined on a real space, [JBAS10, Definition 1] is appli-
cable:
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Definition 1 A stationary point of (4.2) is a symmetric matrix X̂ ∈ R2n×2n

for which there exists a vector δ = (δ1, . . . , δm)T ∈ Rm and a symmetric matrix
S ∈ R2n×2n such that the first-order optimality conditions hold:

tr(AiX̂) = 0, X̂ ≥ 0, S ≥ 0,

SX̂ = 0, S = grad H̃(X̂)−
m∑

i=1

δiAi,

where m = n(n+ 1).

Similarly, let Yp be denoted by Y̌1 + Y̌2

√
−1 and Ŷp be denoted by

(
Y̌1 Y̌3

Y̌2 Y̌4

)
.

Problem (4.1) is equivalent to

min
Ŷp∈R2n×2p

F̃p(Ŷp) := Fp(Y̌1 + Y̌2

√
−1), (4.3)

such that tr(BT
i Ŷp) = 0, i = 1, . . . , 2np,

where Bk, k = 1, . . . , np are given by

Bk =

(
0n×p Eij

Eij 0n×p

)
, i = 1, . . . , n, j = i, . . . , p

and the np remaining Bk, are given by

Bk =

(
Eij 0n×p

0n×p −Eij

)
, i = 1, . . . , n, j = 1, . . . , p

where Eij ∈ Rn×p are the standard basis matrices. The Bk are not unique but
this choice is simple and has useful properties exploited later.

The relationship between grad F̃p(Ŷp) and grad H̃(ŶpŶ ∗
p ) is easily obtained

and is given in Lemma 1.

Lemma 1 The gradients of the functions F̃p in (4.3) and H̃ in (4.2) satisfy

grad F̃p(ŶP ) = 2 grad H̃(ŶpŶ
T
p )Ŷp

A stationary point of F̃p is defined to satisfies the first order KKT condi-
tions:

Definition 2 Ŷp is a stationary point of (4.3) if there exists a vector λ =
(λ1, . . . ,λ2np)T ∈ R2np such that

tr(BT
i Ŷp) = 0 and grad F̃p(ŶP )−

2np∑

i=1

λiBi = 2 grad H̃(ŶpŶ
T
p )Ŷp−

2np∑

i=1

λiBi = 02n×2p,

(4.4)
where tr(BT

i Ŷp) = 0, i = 1, . . . , 2np.
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Lemma 2 shows a necessary and sufficient condition for a stationary point
of F̃p. In other words, it specifies the λi in the Definition 2.

Lemma 2 Ŷ ∈ R2n×2p is a stationary point of F̃p if and only if

tr(BT
i Ŷp) = 0 and P∆ grad F̃p(Ŷp) = 2P∆(grad H̃(ŶpŶ

T
p )Ŷp) = 0, (4.5)

where ∆ denotes the feasible set of (4.3).

Proof First, suppose (4.5) holds. It can be seen that ∆ is a linear space, i.e.,

∆ = {
(
M̌1 −M̌2

M̌2 M̌1

)
|M̌1, M̌2 ∈ Rn×p}

and the perpendicular space of ∆ is

∆⊥ = {
(
−M̌1 M̌2

M̌2 M̌1

)
|M̌1, M̌2 ∈ Rn×p}

It follows that grad F̃p(Ŷp) = P∆ grad F̃p(Ŷp)+P∆⊥ grad F̃p(Ŷp). By the defini-

tions ofBk and∆⊥, there exist {λi}2npi=1 such that
∑2np

i=1 λiBi = P∆⊥ grad F̃p(Ŷp).

Therefore, Ŷ is a stationary point of F̃p by Definition 2.
If Ŷp is a stationary point of F̃p, it follows that grad F̃p(Ŷp) ∈ P∆⊥ grad F̃p(Ŷp),

which yields (4.5).

The complex forms and their gradients, Hessians and stationary points can
also be characterized and related to the real formulations above. The gradient
and the action of Hessian of Fp are easily computed and are given in Lemma
3 in terms of H .

Lemma 3 The gradient of Fp at Yp is given by

gradFp(Yp) = 2 gradH(YpY
∗
p )Yp (4.6)

and the action of the Hessian of Fp at Yp on ηp ∈ Cn×p is given by

HessFp(Yp)[ηp] = 2 gradH(YpY
∗
p )ηp + 2(HessH(YpY

∗
p )[ηpY

∗
p + Ypη

∗
p])Yp.

(4.7)

Proof On one hand, it satisfies that for all ηp ∈ Cn×p

DFp(Yp)[ηp] = gE(gradFp(Yp), ηp).

On the other hand, we have

DFp(Yp)[ηp] =DH(YpY
∗
p )[Ypη

∗
p + ηpY

∗
p ] = gE(gradH(YpY

∗
p ), Ypη

∗
p + ηpY

∗
p )

=Re(tr(gradH(YpY
∗
p )

∗Ypη
∗
p)) + Re(tr(gradH(YpY

∗
p )

∗ηpY
∗
p ))

=Re(tr(η∗p gradH(YpY
∗
p )

∗Yp)) + Re(tr(η∗p gradH(YpY
∗
p )Yp))

=Re(tr(η∗p(gradH(YpY
∗
p ) + gradH(YpY

∗
p )

∗)Yp))

=gE((gradH(YpY
∗
p ) + gradH(YpY

∗
p )

∗)Yp, ηp),
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which implies gradFp(Yp) = (gradH(YpY ∗
p ) + gradH(YpY ∗

p )
∗)Yp. Since H is

defined on Hermitian matrices, gradH can be written as a Hermitian matrix.
It follows that gradFp(Yp) = 2 gradH(YpY ∗

p )Yp which is (4.7). The action of
Hessian (4.7) can be computed in a straightforward way.

Definition 3 expresses a stationary point ofH in terms of a stationary point
of H̃, the real form of H .

Definition 3 Matrix X = X̌1 + X̌2
√
−1 ∈ Dn is a stationary point of H if

X̃ =

(
X̌1 −X̌2

X̌2 X̌1

)

is a stationary point of H̃ .

4.3 Structure of Dk

The discussion so far has all been relative to the Euclidean spaces of matrices
with size and rank constraints. The structure of Dk and its relationship to
Riemannian manifolds are crucial to the development of the optimality condi-
tions and efficient algorithms. Dk is not a manifold but a union of manifolds,
i.e.,

Dk = ∪k
p=0 S

C
+(p, n),

where SC+(p, n) can be shown to be a manifold over R, i.e., it has a real pa-
rameterization. More specifically, the conjugate congruence orbit, CCO(A) =
{PAP ∗|P ∈ GL(n,C)}, is not a manifold over C but a manifold over R
[DTD11] for any A ∈ Cn×n where GL(n,C) denotes the complex general
linear group. By choosing A to be

E =

(
Ip 0
0 0

)
,

it follows that SC+(p, n) = CCO(E). Therefore, SC+(p, n) is a manifold over R.
Note that throughout this paper, a manifold always refers to a manifold over
R rather than C even though the original optimization domain is in Cn×n.

We also point out that SR+(p, n) is well known to be a smooth manifold
and there exist many geometries for this manifold : a submanifold embedded
in Rn×n [HM94,HS95,OHM06,KL07,VAV09,VV10], a quotient manifold of
Rn×p [AIDV09,BMS10,JBAS10,MBS11], a quotient manifold of the Stiefel
manifold and SR+(p, p) [MJBS09,BMS10,BS10] and a quotient manifold of the
generalize linear group [VAV12].

Lemma 4 gives the tangent cone of a point X ∈ Dk. A similar result has
been given for real low-rank matrices in [Cas12, Theorem 6.6] and the proof
in Lemma 4 follows the spirit of the proof of that theorem.
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Lemma 4 If X ∈ Dk has rank p ≤ k and thin singular value decomposition
X = UpDpU∗

p then the tangent cone of Dk at X denoted by TX Dk is given by

TX Dk = {
(
Up (Up)⊥

)(S A∗

A R

)(
Up (Up)⊥

)∗ |S ∈ Cp×p, S = S∗,

A ∈ C(n−p)×p, R = R∗, R ∈ C(n−p)×(n−p), rank(R) = k − p.}
(4.8)

Proof For any element ηX ∈ TX Dk, there exists a smooth curve γ(t) ⊂ Dk,
such that γ(0) = X and γ̇(0) = ηX . By [Kat80, p120-122], there exist smooth
curves U(t) ⊂ On, D(t) ⊂ Rn×n, and D(t) is diagonal matrix such that
γ(t) = U(t)D(t)U(t)∗. Therefore, ηX can be written as

ηX = U̇(0)D(0)U(0)∗ + U(0)Ḋ(0)U(0)∗ + U(0)D(0)U̇(0)∗.

Since it is well known that the tangent space of the complex Stiefel manifold
at Up is TUp St(p, n) = {UpΩu + (Up)⊥Ku|Ω∗

u = −Ωu,Ku ∈ C(n−p)×p}, the
first p columns of U̇(0) can be written in the form of UpΩ + (Up)⊥K, where
Ω∗ = −Ω, Ω ∈ Cp×p, K ∈ C(n−p)×p. It follows that

ηX = (UpΩ + (Up)⊥K)DpU
∗
p

+ (Up (Up)⊥)Ḋ(0)(Up (Up)⊥)
∗ + UpDp(UpΩ + (Up)⊥K)∗.

Let Diag(Ḋp, Ḋn−p) denote Ḋ(0) where Ḋp ∈ Rp×p and Ḋn−p ∈ R(n−p)×(n−p).
It follows that

ηX =Up(ΩDp + Ḋp +DpΩ
∗)U∗

p

+ (Up)⊥KDpU
∗
p + UpDpK

∗(Up)⊥ + (Up)⊥Ḋn−p(Up)
∗
⊥

=
(
Up (Up)⊥

)(ΩDp + Ḋp +DpΩ∗ DpK∗

KDp Ḋn−p

)(
Up (Up)⊥

)∗
(4.9)

Since γ(t) ∈ Dk, Ḋn−p has at most rank k − p. Using S to denote the right
hand side of (4.8), (4.9) yields TX Dk ⊆ S.

For any ξX ∈ S, by definition there exists S1, A1 and R1 such that

ξX =
(
Up (Up)⊥

)( S1 A∗
1

A1 R1

)(
Up (Up)⊥

)∗
,

where S1 = S∗
1 and R1 is a rank k − p matrix. It follows that

ξX =
(
Up (Up)⊥

)( 0 −D−1
p A∗

1

A1D−1
p 0

)(
Dp 0p×(n−p)

0(n−p)×p 0(n−p)×(n−p)

)(
Up (Up)⊥

)∗

+
(
Up (Up)⊥

)
Diag(S1, R1)

(
Up (Up)⊥

)∗

+
(
Up (Up)⊥

)( Dp 0p×(n−p)

0(n−p)×p 0(n−p)×(n−p)

)(
0 D−1

p A∗
1

−A1D−1
p 0

)(
Up (Up)⊥

)∗
.
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Since
(
Up (Up)⊥

)( 0 −D−1
p A∗

1

A1D−1
p 0

)
∈ T(Up (Up)⊥) On,

there exist a smooth curve r1(t) such that r1(0) = (Up (Up)⊥) and

ṙ1(0) =
(
Up (Up)⊥

)( 0 −D−1
p A∗

1

A1D−1
p 0

)

Define D1(t) to be Diag(Dp + tS1, tR1) which is a smooth curve over Cn×n.
Therefore, γ1(t) = r1(t)D1(t)r1(t)∗ is a smooth curve in Dk and satisfies
γ̇1(0) = ξX , which implies ξX ∈ TX D. Thus, S ⊆ TX Dk holds.

When k = p, TX Dk is the tangent space of SC+(p, n) at X , i.e.,

TX SC+(p, n) = {
(
Up (Up)⊥

)( S A∗

A 0(n−p)×(n−p)

)(
Up (Up)⊥

)∗ |A ∈ Cp×(n−p),

S ∈ Cp×p, S = S∗.}

Finally, the tangent cone of a low-rank matrix X can be written as the sum-
mation of directions in TX SC+(p, n) and directions pointing to a higher rank
space, i.e.,

TX Dk = TX SC+(p, n) + (Up)⊥R(Up)
∗
⊥. (4.10)

This is the form that is convenient computationally and used in the imple-
mentation of the algorithms assessed below.

4.4 Euclidean Optimality Conditions

In this section, the characterizations of stationary points of F and H over Dn,
i.e., on a feasible subset of a Euclidean space, derived in Section 4.2 are used
to derive the relationship between optimizing F and optimizing H over Dn.

Theorem 1 develops a condition related to H satisfied by stationary points
of F that follows from (4.6) in Lemma 3.

Theorem 1 Yp is a stationary point of Fp if and only if gradH(YpY ∗
p )Yp =

0n×p.

Let s denote the rank of Yp andX denote YpY ∗
p . From gradH(X) ∈ TX Dp and

(4.10), we have gradH(X)Yp = 0n×p is equivalent to PTX SC
+(p,n)(gradH(X)) =

0n×n. In other words, Theorem 1 shows that Yp is a stationary point of Fp

if and only if the component of gradH(X) in TX SC+(s, n) is zero. Note that
if it is only known that Yp is a stationary point of Fp then no information
concerning gradH(X) pointing to a higher rank space is given.

Since the condition gradH(X)Yp = 0n×p is equivalent to the condition
grad H̃(ỸpỸ T

p )Ỹp = 02n×2p, Theorem 1 can also be obtained from the real
formulation of the cost function, i.e., Lemma 2, however, the information above



PhaseLift by low-rank Riemannian optimization methods 15

characterizing the stationary point of Fp in terms of the absence of a certain
component of gradH(X) is more easily seen from the complex form.

Lemma 5 provides sufficient conditions for X to be a stationary point of
H .

Lemma 5

1. If gradH(X)X = 0 and gradH(X) ≥ 0, then X ∈ Dn is a stationary point
of H.

2. If Yp is a stationary point of Fp and gradH(YpY ∗
p ) ≥ 0, then X = YpY ∗

p

is a stationary point of H.

Proof The conditions gradH(X)X = 0 and gradH(X) ≥ 0 imply grad H̃(X̃) ≥
0 and grad H̃(X̃)X̃ = 0. Therefore, choosing S = grad H̃(X̃) and δ = 0m in
Definition 1 yields the first statement. The second statement follows from
Theorem 1 and the first statement.

Theorem 2 and [JBAS10, Theorem 7] show similar results under different
frameworks. Both results suggest considering the cost function Fp if the de-
sired minimizer of H is known to have rank smaller than p, as is the case with
PhaseLift for phase retrieval. This is formalized in Theorem 2 and has crit-
ical algorithmic, efficiency and optimality implications when H has suitable
structure such as convexity as in the case of PhaseLift. These implications for
PhaseLIft are discussed in Section 6.1.

Theorem 2 Suppose Yp = KsQ∗ is a rank deficient minimizer of Fp, where
Ks ∈ Cn×s

∗ and Q ∈ St(s, p). Then (Ks)∗⊥ gradH(YpY ∗
p )(Ks)⊥ is a positive

semidefinite matrix and, therefore, X = YpY ∗
p is a stationary point of H.

Proof This is proved by contradiction. If (Ks)∗⊥ gradH(X)(Ks)⊥ is not a
positive semidefinite matrix, then it has at least one negative eigenvalue.
If µ and v denote a negative eigenvalue and the corresponding eigenvec-
tor then the semidefinite positive matrix η = −(Ks)⊥(vµv∗)(Ks)∗⊥ satisfies
gE(η, gradH(X)) < 0. Thus, a smooth curve γ(t), e.g., γ(t) = X + tη, can
be chosen such that γ̇(0) = η, γ(t) ∈ Dp for all t ∈ [0, δ) and γ(0) = X ,
where δ is a positive constant. The derivative d

dtH(γ(t))|t=0 by definition is
gE(η, gradH(X)) and, therefore, d

dtH(γ(t))|t=0 < 0.
Since a smooth eigenvalue value decomposition exists for any smooth curve

in Cn×n [Kat80, p120-122], there exists smooth curves r(t) ⊂ St(p, n) and
d(t) = (d1(t), d2(t), . . . , dp(t))T ⊂ Rp such that γ(t) = r(t)Diag(d(t))r(t)∗ .
The derivative of r(t)Diag(

√
d(t)) is

η(t) = ṙ(t)Diag(
√
d(t)) + r(t)Diag(

ḋ1(t)

2
√
d1(t)

, . . . ,
ḋp(t)

2
√
dp(t)

)

and the derivative of r(t2)Diag(
√
d(t2)) is

ξ(t) = ṙ(t2)2tDiag(
√
d(t2)) + r(t2)Diag(ḋ1(t

2)

√
t2

d1(t2)
, . . . , ḋp(t

2)

√
t2

dp(t2)
).
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Two cases are considered. The first case assumes that for any i, the con-
ditions di(0) = 0, ḋi(0) = 0 hold and the second case, which is true if the first
case is not, assumes that there exists an i such that di(0) = 0 but ḋi(0) ̸= 0.

In the first case, η(0) is well-defined and it follows that

d

dt
H(γ(t))|t=0 =

d

dt
Fp(r(t)Diag(

√
d(t)))|t=0 = gE(η(0), gradFp(Yp)) = 0,

which contradicts that d
dtH(γ(t))|t=0 < 0.

In the second case, η(0) is undefined but ξ(0) is well-defined. It follows that

d2

dt2
H(γ(t2))|t=0 =

d2

dt2
Fn(r(t

2)Diag(
√

d(t2)))t=0

= gE(ξ(0),HessFp(Ỹp)[ξ(0)]) ≥ 0. (4.11)

Let a(t) = H(γ(t)) and so ȧ(0) < 0. It follows that

d2

dt2
H(γ(t2))|t=0 =

d2

dt2
a(t2) = (4t2ä(t2) + 2ȧ(t2))|t=0 = 2ȧ(0) < 0,

which conflicts with (4.11). Therefore, (Ks)∗⊥ gradH(YpY ∗
p )(Ks)⊥ is a positive

semidefinite matrix which is a contradiction with the initial assumption of the
proof.

LetQs denote an orthonormal basis of span(Ks). gradH(X) can be written
as

gradH(X) =
(
Qs (Ks)⊥

)( S A∗

A R

)(
Qs (Ks)⊥

)∗
,

where S ∈ Cs×s, S∗ = S, A ∈ C(n−s)×p and R = (Ks)∗⊥ gradH(X)(Ks)⊥.
Theorem 1 implies gradH(X)Ks = 0n×s. It follows that S = 0s×s and
A = 0(n−s)×s. Therefore, R ≥ 0 implies gradH(X) ≥ 0 which means X is
a stationary point of H by Lemma 5.

(Ks)⊥((Ks)∗⊥ gradH(X)(Ks)⊥)(Ks)∗⊥ is the component of gradH(X) that
points to a higher rank space, i.e., gradH(X) − PTX SC

+(s,n)(gradH(X)) =

(Ks)⊥((Ks)∗⊥ gradH(X)(Ks)⊥)(Ks)∗⊥. Therefore, the positive semidefiniteness
of (Kp)∗⊥ gradH(X)(Kp)⊥ means that the descent direction, − gradH(X),
does not have a component pointing to the higher rank space and stays in the
positive semidefinite domain Dn.

Theorem 2 can be obtained also by the approach in the proof of [JBAS10,
Theorem 7] that exploits the second-order KKT condition for the low-rank
factorization alternate cost function F̃p.

5 A Riemannian Approach

5.1 Riemannian Optimization Preliminaries

Riemannian optimization is an active research area and recently many Rieman-
nian optimization methods have been systemically analyzed and efficient li-
braries designed, e.g., Riemannian trust-region Newton method (RTR-Newton)
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[Bak08], Riemannian Broyden family method including BFGS method and its
limited-memory version (RBroyden family, RBFGS, LRBFGS) [RW12,Hua13,
HGA14], Riemannian trust-region symmetric rank-one update method and its
limited-memory version (RTR-SR1, LRTR-SR1) [Hua13,HAG14], Riemannian
Newton method (RNewton) and Riemannian non-linear conjugate gradient
method (RCG) [AMS08].

Journée et al. [JBAS10] have proposed a method that combines a Rie-
mannian optimization method on a fixed rank manifold with a procedure of
increasing rank for their semidefinite constrained problem setting. Specifically,
given an iterate with rank r, a Riemannian optimization method is applied
for a cost function on a manifold with rank r. If the limit point is not rank
deficient, then either a descent direction to a higher rank space can be found
or a desired stationary point is obtained. For the former case, a descent algo-
rithm is applied to find a next descent iterate which is used to be the initial
point for a Riemannian optimization method on a manifold with larger rank.
For the latter case, the convergence rate can be obtained and depends on the
Riemannian optimization algorithm. If the limit point is rank deficient, then
all existing Riemannian convergence analyses are not applicable. This case was
ignored in [JBAS10] since situations of a limit point being rank deficient were
not encountered in their experiments.

If the rank of the desired minimizer is known, such as in the problems in
PhaseLift, then both [BM03] and [JBAS10] suggest to choose the rank of initial
point to be that rank. However, this, in fact, is not the appropriate response
due to complexity considerations as the theory and algorithms derived in this
section indicate, and the numerical experiments in Section 6 demonstrate. To
see this, let r∗ denote the desired rank of the global minimizer. As shown in
Theorem 1, there may exist a stationary point Yr∗ of Fr∗ for which Yr∗Y

∗
r∗ is

not a stationary point of H . It follows that forcing iterates to be rank r∗ is
not appropriate and starting from a higher rank or moving to a higher rank
to move to the minimizer of H is necessary. This is discussed further later in
this section.

There is also a potential problem of using a rank increasing procedure. If
Yp is a stationary point of Fp, then (Yp, 0n×(k−p)) is also a stationary point of
Fk by Theorem 1. A procedure that increases rank starting from Yp may find a
point Yk which is close to (Yp, 0n×(k−p)) . It follows that using Yk to be an ini-
tial point of the iteration on the rank-k manifold may not work efficiently since
Yk may be too close to a stationary point. Therefore, an algorithm based on
Riemannian optimization methods on a fixed rank manifold and a procedure
to decrease rank is proposed in this section. Since it is known that the mini-
mizer for PhaseLift phase retrieval has rank 1 this is sufficient to allow global
minimization using only rank decreases. For completeness, a simple procedure
to increase rank under the complex Hermitian semidefinite matrix framework
is included.
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5.2 Riemannian Optimization on Fixed Rank Manifold

Derivations for Riemannian objects of SR+(p, n) have been given in [AIDV09].
This section includes derivations of Riemannian objects for the complex case,
i.e., SC+(p, n). Since the mapping αp is not an injection, all the minimizers of Fp

are degenerate, which causes difficulties in some algorithms, e.g., Riemannian
and Euclidean Newton method. In order to overcome this difficulty, a function
defined on a quotient manifold with fixed rank is considered. To this end,
define the mapping βp to be the mapping αp restricted on Cn×p

∗ , i.e.,

βp : Cn×p
∗ → SC+(p, n) : Y '→ αp(Y ) = Y Y ∗.

and function Gp to be the function Fp restricted on Cn×p
∗ , i.e.,

Gp : Cn×p
∗ → R : Y '→ Fp(Y ) = H(βp(Y )).

Like αp, the mapping βp is a surjection but not a injection and there are
multiple matrices in Cn×p

∗ mapping to a single point in SC+(p, n). Nevertheless,
given a X ∈ SC+(p, n), β

−1
p (X) is a manifold while α−1

p (X) is not a manifold.
Therefore, using the mapping βp, a quotient manifold can be used to remove
the degeneracy by defining the equivalence class β−1

p (Y Y ∗)

[Y ] = {Y O|O ∈ Op}.

and the set

Cn×p
∗ /Op = {[Y ]|Y ∈ Cn×p

∗ }.

This set can be shown to be a quotient manifold over R and the proof can
be found in Appendix A. To clarify the notation, π(Y ) is used to denote [Y ]
viewed as an element in Cn×p

∗ /Op and π−1(π(Y )) is used to denote [Y ] viewed
as a subset of Cn×p

∗ . The function mp : π(Y ) '→ Y Y ∗ is a diffeomorphism
between Cn×p

∗ /Op and SC+(p, n).
An element of a quotient manifold is an equivalence class which is often

cumbersome computationally . Fortunately, choosing a representative for an
equivalence class and definitions of related mathematical objects have been
developed in many papers in the literature of computation on manifolds, e.g.,
[AMS08]. The vertical space at Y ∈ π−1(π(Y )), which is the tangent space of
π−1(π(Y )) at Y , is

VY = {YΩ|Ω∗ = −Ω,Ω ∈ Cp×p}.

The horizontal space at Y , HY , is defined to be a subspace of TY Cn×p
∗ = Cn×p

that is orthogonal to VY , i.e., satisfying HA ⊕ VA = TA GL(n,C). Therefore,
a Riemannian metric of Cn×p

∗ is required to define the meaning of orthogonal.
The standard Euclidean metric is

ĝY (ηY , ξY ) = Re(tr(η∗Y ξY )), (5.1)
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for all ηY , ξY ∈ TY Cn×p
∗ and Y ∈ Cn×p

∗ . The horizontal space is therefore

HY ={V ∈ Cn×p|Y ∗V = V ∗Y }
={Y (Y ∗Y )−1S + Y⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p}.

The horizontal spaceHY is a representation of the tangent space Tπ(Y ) Cn×p
∗ /Op.

It is known that for any ηπ(Y ) ∈ Tπ(Y )Cn×p
∗ /Op, there exists a unique vector

in HY , called the horizontal lift of ηπ(Y ) and denoted by η↑Y , satisfying

D π(Y )[η↑Y ] = ηπ(Y ),

see e.g., [AMS08]. Lemma 6 gives a relationship among horizontal lifts of a
tangent vector ηπ(Y ) when different representations in π−1(π(Y )) are chosen.
The result follows from [Hua13, Theorem 9.3.1].

Lemma 6 A horizontal vector field η̂ of Cn×p
∗ is the horizontal lift of a vector

field η on Cn×p
∗ /Op if and only if, for each Y ∈ Cn×p

∗ , we have

η̂Y O = η̂Y O for all O ∈ Op.

The orthogonal projections on to the horizontal space or the vertical space are
also easily characterized.

Lemma 7 The orthogonal projection to vertical space VY is

P v
Y (η) = YΩ,

where Ω is the skew symmetric matrix that solves the Sylvester equation,

ΩY ∗Y + Y ∗YΩ = Y ∗η − η∗Y.

The orthogonal projection to Horizontal space HY is

P h
Y (η) = η − YΩ.

Proof By definition of HY and VY , P h
Y (η) satisfies that Y

∗P h
Y (η) = P h

Y (η)
∗Y

and can be expressed as η − YΩ. It follows that

ΩY ∗Y + Y ∗YΩ = Y ∗η − η∗Y

which gives the desired results.

The metric ĝ of Cn×p
∗ defines a metric g of Cn×p

∗ /Op.

Lemma 8 The mapping g defined by

gπ(Y )(ηπ(Y ), ξπ(Y )) = ĝY (η↑Y , ξ↑Y ) = Re(tr(η∗↑Y
ξ↑Y )) (5.2)

is a Riemannian metric on Cn×p
∗ /Op.
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Proof The lifted metric is invariant on the chosen representation for π(Y )

ĝY O(η↑Y O , ξ↑Y O) = Re(tr(η∗↑Y O
ξ↑Y O)) = Re(tr((η↑Y O)∗(ξ↑Y O)))

= Re(tr(η∗↑Y
ξ↑Y )) = ĝY (η↑Y , ξ↑Y ).

Finally, the desired cost function that removes the equivalence can be de-
fined as

fp : Cn×p
∗ /Op → R : π(Y ) '→ fp(π(Y )) = Gp(Y ) = Fp(Y ). (5.3)

The function fp in 5.3 has the important property that π(Y ) is a nondegenerate
minimizer of f over Cn×p

∗ /Op if and only if Y Y ∗ is a nondegenerate minimizer
of H over SC+(p, n).

The gradient and the action of the Hessian of (5.3) are given in Lemma 9.

Lemma 9 The horizontal lift of the gradient of (5.3) at Y is

(grad f(π(Y )))↑Y = P h
Y (gradF (Y )),

and the action of Hessian of (5.3) at π(Y ) along ηπ(Y ) ∈ Tπ(Y ) Cn×p
∗ /Op

satisfies

(Hess f(π(Y ))[ηπ(Y )])↑Y = P h
Y (Ṁ − η↑Y Ω),

where Ṁ = HessF (Y )[η↑Y ], Ω is the skew-symmetric matrix that solves

ΩY ∗Y + Y ∗YΩ = Y ∗M −M∗Y,

and M = gradF (Y ).

Proof The directional derivative of f along any ηπ(Y ) ∈ Tπ(Y ) Cn×p
∗ /Op is

D f(π(Y ))[ηπ(Y )] = D f(π(Y ))[D π(Y )[η↑Y ]]

= DF (Y )[η↑Y ] = ĝY (gradF (Y ), η↑Y ) = ĝY (P
h
Y (gradF (Y )), η↑Y ).

Additionally using the definition of gradient [AMS08, (3.31)], i.e.,

D f(π(Y ))[ηπ(Y )] = gπ(Y )(grad f(π(Y )), ηπ(Y )),

and the equation

gπ(Y )(grad f(π(Y )), ηπ(Y )) = ĝY ((grad f(π(Y )))↑Y , η↑Y ),

yields the result. The action of the Hessian is computed in a straightforward
way.
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The retraction used in the Riemannian optimization methods is

Rπ(Y )(ηπ(Y )) = π(Y + η↑Y ). (5.4)

Two vector transports are used for different Riemannian algorithms. One is
the vector transport by parallelization [HAG14, Section 2.3.1] and the other
one is the vector transport by differentiated retraction (5.4), which also is the
vector transport by projection:

(
Tηπ(Y )

(ξπ(Y ))
)
↑(Y +η↑Y )

= P h
(Y+η↑Y )

ξ↑Y . (5.5)

In summary, this section provides all the objects used in Riemannian op-
timization methods, i.e., the horizontal space, the projection to a horizontal
space, the Riemannian metric, the retraction, the vector transport, the Rie-
mannian gradient and action of the Riemannian Hessian.

5.3 Dynamic Rank Reduction

Since the domain of fp, Cn×p
∗ /Op, is not closed, i.e., a sequence {W (i)} repre-

senting {π(W (i))} generated by an algorithm may have a limit point Ŵ with
rank less than p, a simple well-known strategy for dynamically reducing rank
is adapted and used. Since it is impossible in practice to check whether a limit
point of iterates {W (i)} is a lower rank matrix or just close to one of lower
rank, the idea suggested below makes more sense when the desired rank of the
minimizer is known and the current iterate W (i) has a higher rank than the
desired rank. This is the case with PhaseLift for phase retrieval.

The thin singular value decomposition of the i-th iterate is W (i) = UΣV ∗

and Σ = Diag(σ1,σ2, . . . ,σp), where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. Let σ̃
be ∥Diag(σ1, . . . ,σp)∥F /

√
p. If there exists q < p such that σq/σ̃ > δ and

σq+1/σ̃ ≤ δ for a given threshold δ, then Ŵ = U(:, 1 : q)Diag(σ1, . . .σq)V (:
, 1 : q)∗ is chosen to be the initial point for optimizing cost function fq over
Cn×q

∗ /Oq. The details of reducing rank are given in Algorithm 1. Note that the
step of decreasing the rank may produce an iterate that increases the cost func-
tion value. This facilitates global optimization by allowing nondescent steps.

Combining a Riemannian optimization method with the procedure of re-
ducing rank gives Algorithm 2.

5.4 Dynamic Rank Increase

While dynamic rank increase is not required for PhaseLift phase retrieval, it is
included for completeness in the discussion of optimization over the Hermitian
positive semidefinite matrices with a maximum rank constraint. Suppose the
limit point of {W (i)}, Ŵ , is full rank, i.e., rank is p. It is still possible to move
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Algorithm 1 Reduce Rank
Require: Y ∈ Cn×p; threshold δ;
Ensure: W ∈ Cn×q ;
1: Take thin singular value decomposition for Y , i.e., Y = U Diag(σ1, . . . ,σp)V ∗, where

U ∈ Cn×p, V ∈ Cp×p and σ1 ≥ . . . ≥ σp ≥ 0;
2: Set σ̃ = ∥Diag(σ1, . . . , σp)∥F /

√
p;

3: if σp/σ̃ > δ then
4: q ← p, W ← Y and return;
5: else
6: Find q such that σq/σ̃ > δ and σq+1/σ̃ ≤ δ;
7: Let W = U(:, 1 : q)Diag(σ1, . . .σq)V (:, 1 : q)∗ and return;
8: end if

Algorithm 2 Rank Reduce Algorithm

Require: p > 0; Y
(0)
p ∈ Cn×p a representation of initial point π(Y

(0)
p ) for f ; Stopping

criterion threshold ϵ; rank reducing threshold δ; a Riemannian optimization method;
Ensure: W
1: for k = 0, 1, 2, . . . do
2: Apply Riemannian method for cost function f over Cn×p

∗ /Op with initial point

π(Y (k)
p ) until i-th iterate W (i) satisfying g(grad f, grad f) < ϵ2 or the requirement of

reducing rank with threshold δ;
3: if g(grad f, grad f) < ϵ21 then

4: Find a minimizer W = W (i) over Cn×p
∗ /Op and return;

5: else {iterate in the Riemannian optimization method meets the requirements of re-
ducing rank}

6: Apply Algorithm 1 with threshold δ and obtain an output Ŵ ∈ Cn×q ;

7: p← q and set Y
(k+1)
p = Ŵ ;

8: end if
9: end for

from Ŵ along a descent direction that increases the rank. Since (Ŵ 0n×(k−p))
is always a stationary point of Fk, the gradient of Fk is not enough to provide
a direction that reduces the cost function H and increases the rank. Instead,
another equivalent cost function can be used

f̂k : St(k, n)× Rk → R : (Uk, dk) '→ H(Uk Diag(dk)U
∗
k ). (5.6)

The reason is that given a rank p matrix X ∈ Dk and a direction V in
the tangent cone at X , there may not exist a direction ηk for point Yk =
(Kp 0n×(k−p)) ∈ Cn×k, YkY ∗

k = X such that ηkY ∗
k + Ykη∗k = V . This can

be seen from the fact that V can be any vector in TX Dk but the image
of ηkY ∗

k + Ykη∗k is TKp S
C
+(p, n) which is only a subset of TX Dk. However,

by the proof in Lemma 4, there exists U̇k and ḋ such that U̇k Diag(dk)U∗
k +

Uk Diag(ḋk)U∗
k + Uk Diag(dk)U̇∗

k = V for any V ∈ TX Dk.
A simple strategy of increasing rank by 1 at a time is used, i.e., k = p+ 1,

can be used. Let Û Diag(σ̂1, . . . , σ̂p)Û∗ be thin singular value decomposi-

tion of Ŵ . If there exists a vector û ∈ Cn, û∗û = 1, û∗Û = 0 such that
the negative gradient of f̂ at ((Û û), (σ1, . . . ,σp, 0)T ) ∈ St(k, n) × Rk, de-
noted by (η, v) ∈ TÛ St(k, n) × Rk, satisfies that the k-th component of v
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is positive, then applying one step of any algorithm for f̂ with initial point
((Û û), (σ1, . . . ,σp, 0)T ) is able to obtain a new point (P, ℓ) such that all
entries in ℓ are all positive. It follows that a higher rank iterate that keeps
function decreasing is obtained. An algorithm for optimizing fk with initial
point π(P

√
ℓ) over the fixed rank quotient Cn×k

∗ /Ok can be applied.
To determine the new point, a Riemannian gradient on St(k, n) × Rk is

needed. The metric of the product of manifolds St(k, n)× Rk is

gP(U,d)((ξ, v), (ξ̂, v̂)) = Re(tr(ξ∗ξ̂)) + vT v̂, (5.7)

where ξ, ξ̂ ∈ TU St(k, n) and v, v̂ ∈ Rk. The Riemannian gradient of cost
function f̂ in (5.6) is given in the next lemma.

Lemma 10 The Riemannian gradient of (5.6) with respect to metric (5.7) is

grad f̂(Uk, dk) = (M − Uk sym(U∗
kM), v) (5.8)

where sym(A) = (A+A∗)/2,

M = 2 gradH(Uk Diag(dk)U
∗
k )Uk Diag(dk)

and

v = diag(U∗
k gradH(Uk Diag(dk)U

∗
k )Uk).

Proof The directional directive of f̂(Uk, dk) along (ηk, u) ∈ TUk St(k, n)× Rk

is given by

D f̂(Uk, dk)[(ηk, u)] = Re(tr(η∗k2 gradH(Uk Diag(dk)U
∗
k )Uk Diag(dk)))

+uT diag(U∗
k gradH(Uk Diag(dk)U

∗
k )Uk) = gP ((M, v), (ηk, u)).

Therefore, (PTUk
St(k,n)(M), v) = (M − Uk sym(U∗

kM), v) is the Riemannian
gradient by [AMS08, (3.31)].

Lemma 11 is the basic property for designing the algorithm. The details
for increasing rank are given in Algorithm 3.

Lemma 11 Let U ∈ St(p, n) and Θ = (σ1, . . . ,σp)T , σ1 ≥ σ2 ≥ . . . ≥ σp > 0.
Matrix A denotes gradH(Uk Diag(dk)U∗

k ). There exists a vector u ∈ span(U⊥)
such that u∗Au < 0 if and only if

gP ((0n×(p+1), (0, . . . , 0, 1)
T ), grad f̂(R, (ΘT , 0)T )) < 0

where (R, (ΘT , 0)T ) = ((U u), (ΘT , 0)T ).

Proof The result is easily seen from (5.8) in Lemma 10.
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Algorithm 3 Increase Rank

Require: Full rank matrix Y ∈ Cn×p
∗ ;

Ensure: (R,Θ) ∈ St(p+ 1, n)× Rp+1 or Y ;
1: Thin singular value decomposition for Y , i.e., Y = U Diag(σ1, . . . ,σp)V ∗, where U ∈

Cn×p, V ∈ Cp×p and σ1 ≥ . . . ≥ σp > 0;
2: (Approximately) solve the Rayleigh quotient problem

min
u∈span(U⊥),u∗u=1

u∗Au,

where A = gradH(U Diag(σ2
1 , . . . , σ

2
p)U

∗).
3: if find u such that u∗Au < 0 then
4: return R = (U u) and Θ = diag(σ1, . . . ,σp, 0);
5: else
6: return Y ;
7: end if

Combining the ideas of Riemannian optimization methods and the proce-
dure of increasing rank yield Algorithm 4.

This rank increase algorithm is related to the algorithm discussed in [JBAS10].
Algorithm 4 generalizes their algorithm to Hermitian positive semidefinite ma-
trices. The literature on optimization over symmetric or Hermitian positive
semidefinite matrices consists of algorithms that use either rank increase or
rank decrease that are applied to problems where the rank of the optimizer
can be bounded from above or below a priori. One may ask what if all ideas of
Riemannian optimization methods on a fixed rank manifold and the procedure
of increasing and reducing rank are combined. Note that since the procedure
of decreasing rank does not necessarily give an iterate that reduce the cost
function, combining the idea of increasing and reducing the rank may produce
iterates whose ranks are not fixed eventually and thereby the iterates may
be even not convergent. Recently, a rigorous definition of a rank adaptation
strategy for optimization with rank inequality constraints based on the no-
tion of rank-related Riemannian retractions has been developed and shown to
be superior to the heuristics in the literature for problems such as weighted
matrix approximation [ZHG+14,ZHG+]. Current work on the topic includes
the adaptation of the strategy to problems with additional constraints such as
Hermitian [Zho].

6 Experiments

In this section, numerical simulations for noiseless problems and those with
Gaussian noise are used to illustrate the performance of the proposed method.
The required Riemannian objects are derived in Section 6.1 and the experimen-
tal environment and parameters are defined in Section 6.2. Several Riemannian
optimization algorithms are compared for a range of parameters in Section 6.3
and a representative selected for use in the more extensive set of numerical
experiments used to demonstrate the efficiency of the Riemannian approach
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Algorithm 4 Rank Increasing Algorithm

Require: p > 0; Y
(0)
p ∈ Cn×p a representation of initial point π(Y

(0)
p ) for f ; Stopping

criterion threshold ϵ; Riemannian optimization methods (a) and (b).
Ensure: W
1: for k = 0, 1, 2, . . . do
2: Apply the Riemannian optimization method (a) for cost function f over Cn×p

∗ /Op

with initial point π(Y (k)
p ) until i-th iterate W (i) satisfying g(grad f, grad f) < ϵ2.

3: p← p+ 1
4: Apply Algorithm 3 with input W (i);
5: if The output of Algorithm 3 is still W (i) then
6: return W = W (i)

7: else {The output is (R,Θ)}
8: Apply one step of the Riemannian optimization method (b) for cost function f̂

over St(p, n)× Rp with initial point (R,Θ) and obtain next iterate (R̂, Θ̂).

9: Set Y (k+1)
p = R̂ diag(

√
Θ̂);

10: end if
11: end for

to PhaseLift. In Section 6.4, the Riemannian approach is compared to the al-
gorithm used in the convex programming approach of [CESV13,CSV13] that
represents the current PhaseLift state-of-the-art. Finally, the peformance is
evaluated for a complex-valued image from [CESV13] using masks that satisfy
the assumptions of the PhaseLift framework and binary masks that do not.
The latter are of interest from a practical point of view.

6.1 Gradient, and Action of Hessian and Complexity for PhaseLift

When the entries in the noise ϵ are drawn from the normal distribution with
mean 0 and variance τ , the cost functions of (3.3) and (3.6) are essentially
identical, i.e., for (3.3), H1(X) = ∥b− diag(ZXZ∗)∥22 + κ tr(X), and for (3.6),
H2(X) = 1

τ2 ∥b−diag(ZXZ∗)∥22+κ tr(X). Without loss of generality, only the
cost function

H(X) =
∥b− diag(ZXZ∗)∥22

∥b∥22
+ κ tr(X)

is considered. The Euclidean gradient and the action of the Euclidean Hessian
of H are given in Lemma 12.

Lemma 12 The Euclidean gradient of H is

gradH(X) =
2

∥b∥22
Z∗ Diag(diag(ZXZ∗)− b)Z + κIn×n.

The action of the Euclidean Hessian at X along V is

HessH(X)[V ] =
2

∥b∥22
Z∗ Diag(diag(ZV Z∗))Z,

where V = V ∗.
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Proof The directional derivative of H(X) along direction V , DH(X)[V ], is by
definition equal to gE(V, gradH(X)). In addition, we have

DH(X)[V ] =
2

∥b∥22
(diag(ZXZ∗)− b)∗ diag(ZV Z∗) + κ tr(V )

=
2

∥b∥22
tr(Diag(diag(ZXZ∗)− b)(ZV Z∗)) + κ tr(V )

=
2

∥b∥22
Re(tr(Z∗Diag(diag(ZXZ∗)− b)ZV )) + κ tr(V )

=gE(V,
2

∥b∥22
Z∗Diag(diag(ZXZ∗)− b)Z + κIn×n),

which means gradH(X) = 2
∥b∥2

2
Z∗ Diag(diag(ZXZ∗) − b)Z + κIn×n. From

this it is straightforward to compute the action of the Euclidean Hessian on a
matrix.

The gradients and actions of Hessians of functions Fp and fp, Euclidean
and Riemannian respectively, constructed using Lemmas 3 and 9, are

gradF (Y ) =
4

∥b∥22
Z∗ Diag(diag(ZY Y ∗Z∗)− b)ZY + κY,

the action of the Hessian of F at Y on η ∈ Cn×p is given by

HessF (Y )[η] =
4

∥b∥22
Z∗Diag(diag(ZY Y ∗Z∗)− b)Zη + κη

+
4

∥b∥22
Z∗ Diag(diag(Z(ηY ∗ + Y η∗)Z∗))ZY,

the horizontal lift of the gradient of (5.3) at Y is

(grad f(π(Y )))↑Y = P h
Y (

4

∥b∥22
Z∗Diag(diag(ZY Y ∗Z∗)− b)ZY + κY ),

and the action of Hessian of (5.3) at π(Y ) along ηπ(Y ) ∈ Tπ(Y ) Cn×p
∗ /O satisfies

(Hess f(π(Y ))[ηπ(Y )])↑Y = P h
Y (Ṁ − η↑Y Ω),

where Ṁ = 4
∥b∥2

2
Z∗Diag(diag(ZY Y ∗Z∗)−b)Zη↑Y +

4
∥b∥2

2
Z∗Diag(diag(Z(η↑Y Y

∗+

Y η∗↑Y
)Z∗))ZY + κη↑Y , Ω is the skew-symmetric matrix that solves

ΩY ∗Y + Y ∗YΩ = Y ∗M −M∗Y,

and M = 4
∥b∥2

2
Z∗ Diag(diag(ZY Y ∗Z∗)− b)ZY + κY .

The complexities of evaluations of the function value, gradient and action
of Hessian of Fp are all of the same order, O(lpnsmaxi(log(ni)). The com-
plexities of evaluations of the function value, gradient and action of Hessian
of fp are O(lpnsmaxi(log(ni)), O(lpnsmaxi(log(ni)) + O(np2) + O(p3) and
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O(lpnsmaxi(log(ni)) +O(np2) +O(p3) respectively. If p << n then all these
complexities are dominated by O(lpnsmaxi(log(ni)).

For the optimization problems in the PhaseLift framework for phase re-
trieval, Theorem 2 is extremely important due to the following reasons. First,
the cost function H in PhaseLift is convex over a convex domain Dn. There-
fore, finding a stationary point of H by using the cost function F is sufficient
to find a global minimizer of H . Second, the rank of the desired minimizer ofH
in PhaseLift is one. It follows that by using a low-rank factorization-based cost
function Fp with small p > 1 it is possible to find the desired unique rank-one
minimizer of H and optimizing Fp with small p > 1. (This approach also has
lower storage and computational complexity compared to optimizing H .) The
theorem guarantees that any minimizer, Yp, of Fp with rank less than p must
have rank 1 and YpY ∗

p must be the global minimizer of H . Stationary points,
including local minimizers, of Fp with rank p can be discarded if found and
the algorithm restarted appropriately. If an X with numerical rank 1 < r < p
is encountered when iterating using Fp then X is not a stationary point and
the rank reduction strategy increases efficiency by removing the unnecessary
directions from X and continuing the iteration on Fr.

Even though stationary points with rank 1 that are not local minimizers
of F1 may exist, their presence tends to simply slow the algorithm rather than
stopping the iteration at the saddle point. As expected, therefore, running with
p > 1 avoids this issue completely. There is no theorem guaranteeing that the
iterates generated by optimizing Fp with adapting but remaining greater than
1 always converge to an approximation of the rank-one minimizer of H in
PhaseLift, such convergence occurred in all of the experiments below and if it
were to occur Theorem 2 allows detection and restarting as discussed above.

6.2 Data, Parameters and Notations

All codes are written in Matlab and all experiments are performed in Matlab
R2014a on a 64 bit Ubuntu system with 3.6 GHz CPU (Intel (R) Core (TM)
i7-4790).

Unless indicated in the description of the experiments, the following test
data are used. A complex number a+ b

√
−1 is said to be drawn from a distri-

bution in this paper if both a and b are drawn from the distribution indepen-
dently. The entries of the true solution x∗ and Gaussian masks wi, i = 1, . . . l
are drawn from the standard normal distribution. The entries of x∗ are further
normalized by ∥x∗∥2 and the wi, i = 1, . . . , l are further normalized by

√
n. For

the noiseless problem, the measurement b is set to be diag(Zx∗x∗
∗Z

∗) and for
Gaussian noise problem, the measurement b is set to be diag(Zx∗x∗

∗Z
∗) + ϵ,

where the entries of ϵ ∈ Rm are drawn from the normal distribution with mean
0 and variance τ that is specified later for each experiment.

The initial iterate Y (0)
p is generated by orthonormalizing a complex n-by-p

matrix with entries drawn from the standard normal distribution. Note the
initial iterate is chosen such that its singular values are identical. This choice



28 Wen Huang et al.

Table 1 Notation for reporting the experimental results.

iter summation of numbers of iterations in Step 2 of Algorithm 2
nf number of function evaluations
ng number of gradient evaluations
nH number of operations of the form Hη
ff the function value of the final iterate
t average wall time (seconds)

of initial point minimizes the influence of magnitudes of singular values of the
initial point. In other words, if a bias of magnitudes of singular values is shown
during iteration, one knows that the bias is generated by the algorithm and
the surface of the cost function not the initial iterate.

The stopping criterion of Algorithm 2 requires the norm of gradient to less
than 10−6 and the minimum number of iterations at each rank is 10. Since
Algorithm 2 eventually optimizes the cost function fp with p = 1, the penalty
term tr(X) = tr(Y Y ∗) for minimizing the rank is not necessary. Therefore, κ
is set to be 0 for Algorithm 2.

To obtain sufficiently stable timing results, an average time is taken of
several runs with identical parameters for a total runtime of at least 1 minute.
The notation used when reporting the experimental results is given in Table
1.

6.3 A Representative Riemannian Method and Choices of Initial Point Size
and Rank Reducing Threshold

Practically, the dimension of the domain is usually large so RBFGS and RTR-
SR1 are not applicable since the Hessian approximation requires too much
storage. The Riemannian optimization methods used in the experiments are
representative of the state-of-the-art and have satisfactory convergent rate.
The methods are: RNewton, RTR-Newton, LRBFGS, LRTR-SR1 and RCG.
Note that in RNewton and RTR-Newton solving the linear system or local
model uses a truncated CG method [Ste83,CGT00] which only requires the
action of Hessian. Therefore, RNewton and RTR-Newton, like all of the other
methods, are applicable to a large scale problem. The line search algorithm
used with RNewton and LRBFGS is the back tracking which finds an Armijo
point [AMS08, Definition 4.2.2]. RCG uses the line search algorithm of [NW06,
Algorithm 3.5] to find a point satisfying the strong Wolfe conditions with
c1 = 10−4 and c2 = 10−1. The vector transports in LRBFGS and LRTR-SR1
use vector transport by parallelization [HAG14, Section 2.3.1] and RCG uses
vector transport by differentiated retraction.

The initial p, denoted p0, and the rank reducing parameter δ are set to
8 and 0.9 respectively. The parameters l and s are 6 and 2 respectively. The
experimental results are reported in Table 2 with several values of n1 and n2 for
the noiseless problem. LRBFGS is the fastest algorithm among them. RNewton
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Table 2 Comparison of RNewton (1), RTR-Newton (2), LRBFGS (3), LRTR-SR1 (4) and
RCG (5) for average of 10 random runs. The subscript ν indicates a scale of 10ν .

(n1, n2) (32, 32) (32, 64) (64, 64) (64, 128) (128, 128) (128, 256) (256, 256)

(1)

iter 2.341 2.581 2.921 3.261 3.81 4.561 5.141
nf 3.241 3.361 3.581 4.121 4.581 5.741 5.881
ng 2.341 2.581 2.921 3.261 3.81 4.561 5.141
nH 4.562 3.392 3.862 4.002 4.212 4.882 5.732
ff 1.25−13 2.17−13 1.37−14 4.83−13 1.59−14 2.32−12 3.79−13
t 2.54 3.25 9.28 1.721 3.021 7.571 1.982

(2)

iter 2.821 2.661 2.841 3.061 3.421 3.621 3.361
nf 2.821 2.661 2.841 3.061 3.421 3.621 3.361
ng 2.821 2.661 2.841 3.061 3.421 3.621 3.361
nH 3.002 6.132 4.362 484 5.272 5.332 5.772
ff 2.11−14 2.86−13 4.53−13 4.69−13 3.03−13 9.74−14 3.45−14
t 1.83 5.45 8.23 1.921 3.421 6.071 1.422

(3)

iter 9.61 1.042 1.162 1.292 1.402 1.772 1.872
nf 9.781 1.062 1.202 133 1.452 1.842 191
ng 9.61 1.042 1.162 1.292 1.402 1.772 1.872
ff 6.40−12 6.82−12 7.61−12 1.04−11 1.58−11 2.24−11 3.55−11
t 6.00−1 1.03 1.90 3.37 6.86 1.591 3.271

(4)

iter 1.452 1.442 1.562 1.712 1.882 2.292 2.432
nf 1.452 1.442 1.562 1.712 1.882 2.292 2.432
ng 1.452 1.442 1.562 1.712 1.882 2.292 2.432
ff 1.24−11 1.08−11 1.50−11 3.67−11 3.10−11 4.82−11 2.04−10
t 9.97−1 1.64 3.16 6.20 1.221 3.141 6.811

(5)

iter 8.741 86 9.161 9.421 1.002 1.092 1.162
nf 2.662 2.592 2.772 2.892 3.112 3.452 3.732
ng 2.552 250 266 2.802 3.022 3.362 3.652
ff 3.11−12 3.47−12 5.42−12 7.94−12 1.16−11 1.60−11 2.53−11
t 1.18 2.00 3.74 7.18 1.471 3.631 9.541

and RTR-Newton require least number of iteration but the relative expensive
action of Hessian evaluation makes them relatively slow. The performance of
RCG depends significantly on the choice of parameters c1 and c2 used in the
strong Wolfe conditions. We tested a few of them and RCG is always slower
than LRBFGS. (A representative result is reported.) Therefore, LRBFGS
is chosen to be the representative Riemannian method for the more detailed
comparisons with a standard nonmanifold method.

Table 3 presents the experimental results of the representative Riemannian
method LRBFGS with l = 6, s = 2 and several values of p0 and δ. The noiseless
problem is used. The mean and the standard derivation of computational time
of 100 runs of LRBFGS are reported. In addition, Figures 1 present an example
that shows the relationships among iteration number, computational time and
cost function values with δ = 0.9 and several values of p0.

The average computational time and the standard derivation of p0 = 1
are much larger relatively than the other starting ranks. This clearly shows
that the performance simply optimizing over matrices with the fixed optimal
rank is not a reliable and efficient method. Additionally, note that, when the
initial point is close to the global rank-one minimizer, then Algorithm 2 with
p0 = 1 is fast, otherwise Algorithm 2 with p0 = 1 is usually very slow. Figure
1 illustrates this point by using p0 = 1 to generate a random initial iterate. As
expected, using p0 > 1 significantly improves the performance of the algorithm.
It allows the algorithm to search on a larger dimensional space and find a more
reasonable initial point for Algorithm 2 when p finally reduces to 1. The values
p0 = 8 and δ = 0.9 are therefore chosen for use with LRBFGS in the later
comparisons.
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Table 3 The mean and the standard derivation of computational time of 100 runs of
LRBFGS with variant p0 and δ and output format is (mean)/(the standard derivation).
Since δ does not take effect for p0 = 1, the row corresponding to p0 = 1 has only one result.

δ 0.95 0.9 0.85 0.8 0.75 0.7

p0

1 3.33/2.47
2 2.67/2.28 2.67/2.28 2.68/2.29 2.67/2.31 2.66/2.28 2.62/2.28
4 1.76/5.43−1 1.80/4.74−1 1.79/3.91−1 1.81/3.89−1 1.84/3.83−1 1.83/2.87−1
8 1.67/1.72−1 1.82/1.65−1 2.05/2.23−1 2.34/2.93−1 2.63/3.30−1 2.97/4.00−1
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Fig. 1 The figures show relationships among iteration, computational time and cost func-
tion value for n1 = n2 = 64 and δ = 0.9. The curves generated by different p0 are displayed
in different colors. Markers ▽, o, ∗, +, △, x, ◃ and ▹ on the curves indicate the ranks, from
1 to 8 respectively, of the corresponding iterations.

6.4 Comparisons with a Standard Low-rank Method

Candes et al., [CESV13,CSV13] use a Matlab library TFOCS [BCG11] that
contains a variety of accelerated first-order methods given in [Nes04] and, in
particular, the method based on FISTA [BT09] is used to optimize the cost
functions in PhaseLift. FISTA [BT09] works as follows. Given an initial point
X(0), set B(0) = X(0) and θ(0) = 1, and inductively define

X(i) = PDn(B
(i−1) − t(i) gradH(B(i−1))), (6.1)

θ(i) = 2(1 +

√

1 +
4

(θ(i−1))2
)−1,

β(i) = θ(i)((θ(i−1))−1 − 1),

B(i) = X(i) + β(i)(X(i) −X(i−1)), (6.2)

where t(i) is an appropriate step size, e.g., by back tracking. For large scale
problems, matrix X(i) is stored by its low-rank approximation computed via

projection, i.e.,
∑k

j=1 max(σ(i)
j , 0)v(i)j (v(i)j )∗, where

∑n
j=1 σ

(i)
j v(i)j (v(i)j )∗ is an

eigenvalue decomposition of X(i) and eigenvalues satisfies σ(i)
1 ≥ σ(i)

2 ≥ . . . ≥
σ(i)
n . The orthogonal projection (6.1) is obtained by using ”eigs” with function

handle providing matrix vector multiplication since the matrix vector multipli-
cation of (B(i−1)− t(i) gradH(B(i−1)))v is cheap for any v ∈ Cn. The low-rank
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subtraction (6.2) is computed exactly by doubling the storage. LR-FISTA is
used to denote the low-rank version of FISTA.

As in [CESV13], the difference between the true solution and the minimizer
is measured by the relative mean-square error (RMSE) that is defined to be
mina:|a|=1 ∥ax− x∗∥2/∥x∗∥2 and RMSE in dB is defined by 10 log10(RMSE).
The scale of the noise is measured by the signal-to-noise ratio (SNR) in dB
that is defined to be SNR = 10 log10(∥b∥22/∥b− b̂∥22), where b = diag(Zx∗x∗

∗Z
∗)

and b̂ is the noise measurements.

The stopping criterion of LR-FISTA requires that the Frobenius norm of
the relative difference between X(i) and X(i−1) is less than 10−6 or the number
of iterations is greater than 2000, i.e., ∥X(i) − X(i−1)∥F /∥X(i)∥F < 10−6 or
iter > 2000.

In practice, the choice of κ needs careful consideration. The standard golden
section search [Kie53] is used by Candes et al. [CESV13] to find the best κ
that gives the smallest RMSE. This method can be used only when the true
solution x∗ is known. In addition, Candes et al. indicate that one would have
to find the best κ via a strategy like cross validation or generalized cross
validation. However, since Algorithm 2 was designed with rank in mind the
default choice for problems with and without noise is κ = 0. κ is also chosen
to be 0 in LR-FISTA for noiseless measurements in order to recover the exact
solution. The effect of using κ > 0 in both algorithms is discussed below when
Gaussian noisy measurements are used.

Tables 4 and 5 report experimental results of comparisons of Algorithm 2
and LR-FISTA for the noiseless and Gaussian noise problems (3.3) and (3.6)
respectively. For the Gaussian noise problem, τ is 10−4 and the corresponding
SNR is 31.05 dB in this experiment. Multiple examples with different random
seeds and different SNR show similar results. First, increasing k for LR-FISTA
usually does not improve the performance in the sense of efficiency and effec-
tiveness for both noiseless and Gaussian noise problems. Therefore, k = 1 is
used in the later comparison. Second, increasing κ usually does not reduce the
RMSE. When it does, the RMSE values are not reduced significantly. There-
fore, κ = 0 is used in the later comparisons for Gaussian noise problems. Third,
Algorithm 2 outperforms LR-FISTA significantly in the sense that Algorithm
2 provides similar accuracy usually while requiring fewer operations of all types
(cost function evaluation, gradients etc.) and yielding a significantly smaller
computational time.

Figure 2 shows the relationships between RMSE and SNR for both Algo-
rithm 2 and LR-FISTA methods. Clearly, increasing the number of masks, l,
improves the accuracy, i.e., reduces the RMSE. In addition, the RMSE given
by Algorithm 2 is similar to that given by LR-FISTA. All the curves indi-
cate that increasing SNR in dB reduces the RMSE in dB linearly, which is
consistent with the report of [CESV13, Figure 4] for a 1-dimensional problem.
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Table 4 Comparisons of Algorithm 2 and LR-FISTA for the noiseless PhaseLift problem
(3.3) with n1 = n2 = 64 and several values of k. ♯ represents the number of iterations reach
the maximum.

noiseless
Algorithm 2

LR-FISTA
1 2 4 8 16

iter 124 1022 377 601 1554 2000♯

nf 129 2212 804 1278 3360 4322
ng 124 1106 402 639 1680 2161
ff 4.62−12 8.18−12 4.50−11 4.64−12 1.54−11 1.27−9

RMSE 6.34−6 1.01−5 1.74−5 1.46−5 1.10−4 2.56−3

t 2.12 1.272 5.251 9.351 3.482 6.862

Table 5 Comparisons of Algorithm 2 and LR-FISTA for the noise PhaseLift problem (3.6)
with SNR be 31.05 dB, n1 = n2 = 64 and several values of k and κ. ♯ represents the number
of iterations reach the maximum.

noise κ Algorithm 2
LR-FISTA

1 2 4 8 16

iter

10−2 84 409 2000♯ 2000♯ 2000♯ 2000♯

10−4 122 978 2000♯ 2000♯ 2000♯ 2000♯

10−6 128 1027 2000♯ 2000♯ 2000♯ 2000♯

0 138 1070 2000♯ 2000♯ 2000♯ 2000♯

nf

10−2 86 886 4280 4284 4290 4280
10−4 129 2116 4296 4316 4300 4318
10−6 132 2210 4266 4312 4336 4316
0 143 2306 4308 4322 4314 4320

ng

10−2 84 526 3468 3376 3242 3371
10−4 122 1105 2148 2158 2150 2159
10−6 128 1105 2712 2156 2168 2158
0 138 1153 2154 2161 2157 2160

ff

10−2 1.63−1 1.63−1 1.77−1 2.24−1 2.75−1 3.04−1

10−4 1.80−3 1.80−3 1.81−3 2.19−3 4.55−3 7.01−3

10−6 1.84−5 1.84−5 1.91−5 2.35−5 3.55−5 7.62−5

0 4.08−7 4.08−7 1.16−6 6.27−6 2.51−5 8.89−5

RMSE

10−2 1.80−1 1.80−1 2.64−1 3.60−1 4.19−1 4.45−1

10−4 2.63−3 2.63−3 6.46−3 2.17−2 4.98−2 6.57−2

10−6 6.72−4 6.72−4 1.09−3 2.10−3 3.53−3 6.27−3

0 6.70−4 6.70−4 1.09−3 2.18−3 4.01−3 7.29−3

t

10−2 1.59 5.171 3.792 4.482 5.732 9.452
10−4 2.06 1.212 3.052 3.172 4.802 7.852
10−6 2.13 1.272 2.752 3.012 4.642 7.042
0 2.20 1.342 2.632 2.982 4.322 6.912

6.5 Performance of PhaseLift on a Complex-valued Image

The complex-valued 2D image shown in Figure 3 is used in [CESV13] to illus-
trate the performance of PhaseLift for noiseless measurements when the masks
are either Gaussian or binary and for noisy measurements when the masks are
Gaussian. Gaussian masks are as defined in Section 6.2. A binary set of masks
contain a mask that is all 1 (which yields the original image) and several other
masks comprising elements that are 0 or 1 with equal probability.
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Fig. 2 Comparison of the Algorithm 2 performance and the LR-FISTA performance for
Gaussian noise problems with n1 = n2 = 64, k = 1 and p0 = 4.

It is empirically shown in [CESV13] that the noiseless measurements given
by either Gaussian masks or binary masks enable retrieval of the phase using
LR-FISTA in the sense that the differences between original image and re-
constructed images are almost invisible to the eye. Quantitative error for the
noiseless experiments are not given. For noisy measurements, only the Gaus-
sian masks are considered and they give a satisfactory quantitative error in
reconstructed phase and image. The implication, not stated in [CESV13], that
the binary masks require an unacceptably large computational in the presence
of noise is demonstrated below.

In all cases, the computation times are seen to be in hours for solving the
PhaseLift optimization problem using LR-FISTA in [CESV13] (the details of
the computational platform are not given). The experimental results below
demonstrate that due to the efficiency of Algorithm 2, both phase retrieval
by PhaseLift for both Gaussian and binary masks on this image is compu-
tationally practical. Times required for LR-FISTA, implemented using the
same computational library primitives as the Riemannian algorithms for fair
comparison, are included to verify its computational impracticality implied in
[CESV13].

Since the computational time for LR-FISTA on this image is potentially
very large, the default setting of stopping criterion given above is modified to
include the additional condition of stopping when the computational time is
greater than 1 hour.

Table 6 shows the RMSE and computational times of Algorithm 2 and
LR-FISTA with varying number and types of masks. In all experiments LR-
FISTA is stopped after 1 hour of computation, i.e., it does not achieve ∥X(i)−
X(i−1)∥F /∥X(i)∥F < 10−6 for any experiment. Additionally, after 1 hour the
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Fig. 3 Image of the absolute value of the complex-valued image.

retrieval is not satisfactory and the RMSE is consistently and significantly
worse than the RMSE achieved by Algorithm 2 with exception of the single
high noise Gaussian mask experiment where both achieve the same RMSE in
dB.

The RMSE achieved by Algorithm 2 shows the influence of the number
and the type of masks as expected. Using a few Gaussian masks is sufficient
to recover satisfactory phase and achieve acceptable RMSE values.

The quality of recovery by binary masks suffers from noise and an insuffi-
cient number of masks. The ultimate quality of retrieval as the SNR reduces
from high noise to noiseless is determined by the number of masks used. For
example, for 32 masks −10 dB is achieved with an SNR of 40 dB and does
not improve for noiseless. For a fixed SNR, increasing the number of binary
masks, as expected, reduces the RMSE. Note that the computational time as
the number of binary masks increases does not increase that rapidly. So there
is more work required to understand the PhaseLift cost function surface for bi-
nary masks and its implications for the convergence of Riemannian algorithms
and local/global minima structure.

Figures 4, 5 and 6 present the reconstructed images and their errors from
Algorithm 2. The errors in the images shown are magnified 10 times for
display purposes. As expected, there are almost no visible errors in the
reconstructed images given by Gaussian masks, and the errors of images given
by reconstructed phases using binary masks are visible especially when the
number of binary masks is 6.

7 Conclusion

In this paper, the recently proposed PhaseLift framework for solving the phase
retrieval problem has motivated the consideration of cost functions H on the
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Table 6 RMSE and computational time (second) results with varying number and types
of masks are shown in format RMSE/TIME. ♯ represents the computational time reaching
1 hour, i.e., 3.63 seconds.

Algorithm 2 LR-FISTA
SNR (dB) 20 40 inf 20 40 inf

6 Gaussian masks -20.8/4.301 -40.8/4.501 -54.3/4.191 -20.8/♯ -34.3/♯ -34.3/♯
6 binary masks -1.41/7.902 -8.88/4.242 - 9.64/4.422 -0.84/♯ -3.03/♯ -3.04/♯
32 binary masks -6.56/6.842 -25.2/7.362 -25.9/6.542 -2.17/♯ -2.35/♯ -2.38/♯

6 Gaussian masks, SNR: 20 10 times error

6 Binary masks, SNR: 20 10 times error

32 Binary masks, SNR: 20 10 times error

Fig. 4 Reconstructions via PhaseLift with varying number and types of masks. For the
same number and types of masks, the reconstructions of noisy measurements with SNR 20
are shown. The error is shown in the images by magnifying 10 times.
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6 Gaussian masks, SNR: 40 10 times error

6 Binary masks, SNR: 40 10 times error

32 Binary masks, SNR: 40 10 times error

Fig. 5 Reconstructions via PhaseLift with varying number and types of masks. For the
same number and types of masks, the reconstructions of noisy measurements with SNR 40
are shown. The error is shown in the images by magnifying 10 times.

set of complex Hermitian positive semidefinite matrices Dn that include the
PhaseLift cost function.

An alternate cost function F related to factorization is used to replace
the cost function H , i.e., F (Y ) = H(Y Y ∗). The optimality conditions of H
are related to the properties of F and the important optimality condition,
Theorem 2, shows that if Yp is a rank deficient minimizer of Fp, then YpY ∗

p is
a stationary point of H . For general problems defined on Dn, if r∗, the rank
of the desired minimizer of cost function H , is low, the optimality condition
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6 Gaussian masks, SNR: Inf 10 times error

6 Binary masks, SNR: Inf 10 times error

32 Binary masks, SNR: Inf 10 times error

Fig. 6 Reconstructions via PhaseLift with varying number and types of masks. For the
same number and types of masks, the reconstructions of noiseless measurements are shown.
The error is shown in the images by magnifying 10 times.

suggests the use of the alternate cost function F with p > r∗. If r∗ is small,
then a small p can be used and optimization on Fp can be more efficient than
optimization on H .

Additionally, Algorithm 2 and Algorithm 4 based on optimization on a fixed
rank manifold and dynamically reducing or increasing rank are developed for
optimizing the cost function F . For optimization on a fixed rank manifold,
recently developed state-of-the-art Riemannian optimization methods on a
quotient space are used and a superlinear convergent rate is obtained.
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For the case of the noiseless phase retrieval problem in the PhaseLift frame-
work, obtaining a rank-one minimizer Yp of Fp with p > 1 is shown to be
equivalent to obtaining the rank-one global minimizer YpY ∗

p of H . Empiri-
cally, in finite precision arithmetic, choosing p0 > 1 and using Algorithm 2
always yields a (approximately) rank-one minimizer for both the noiseless and
noisy phase retrieval problems. The computational time of Algorithm 2 with
LRBFGS is demonstrated to be significantly smaller than that of LR-FISTA
with accuracy is at least as good as LR-FISTA when the latter manages to
converge in an acceptable amount of time. In [CESV13], it is pointed out
that the algorithm LR-FISTA may be too slow for large-scale images and de-
velopment of a fast algorithm is a future research. The unacceptably large
computational time of LR-FISTA is empirically verified here and Algorithm
2 using the limited memory forms of the Riemannian fixed-rank optimization
algorithms, specifically LRBFGS for the phase retrieval problems, are clearly
seen to be practical in terms of computational time and recovery quality for a
wide range of problem sizes including those for which LR-FISTA fails.
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A Proof that Cn×p
∗ /Op is a smooth manifold over R

Let G and M be a Lie group and a smooth manifold over R respectively. The following
definitions and theorems, which can be found in [Lee11], are also used.

Definition 4 An action of G on M is a map G ×M→M, written as (g, p) *→ g · p, that
satisfies (i) g1 · (g2 · p) = (g1g2) · p for all g1, g2 ∈ G and p ∈ M and (ii) e · p = p for all
p ∈M, where e is the identity. In addition, the group action is smooth if the map is smooth.

Definition 5 Let G act smoothly on M.

– The group action is free if g · p = p for any p ∈M implies g = e;
– The group action is proper if the action map G ×M → M ×M satisfies that the

pre-image of any compact set is compact.

Theorem 3 [Lee11, Corollary 21.6] Every continuous action by a compact Lie group on
a manifold is proper.

Theorem 4 [Lee11, Theorem 21.10] Suppose G is a Lie group acting smoothly, freely, and
properly on a smooth manifold M. Then the orbit space M/G is a topological manifold and
has a unique smooth structure with the property that the quotient map π : M→M/G is a
smooth submersion.

Now we are ready to prove Cn×p
∗ /Op is a smooth manifold over R, where Cn×p

∗ is the
complex noncompact Stiefel manifold and Op is the group of p-by-p unitary matrices.

Proof The complex noncompact Stiefel manifold Cn×p
∗ and the group Op can be viewed as

a manifold and a group over R respectively [Nar73, Page 55]. Therefore, Theorems 3 and 4
are applicable.

By Theorem 4, we need only show that the group action (Op, Yp) *→ YpOp is smooth,
free, and proper. The smoothness follows from the smoothness of matrix multiplication. Since
Yp is full rank, YpOp = Yp implies Op = Ip. Therefore, the action is free. The properness
follows from the compactness of Op and Theorem 3.


