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Abstract A third-order in time numerical IMEX-type algorithm for the Stokes-
Darcy system for flows in fluid saturated karst aquifers is proposed and ana-
lyzed. A novel third-order Adams-Moulton scheme is used for the discretiza-
tion of the dissipative term whereas a third-order explicit Adams-Bashforth
scheme is used for the time discretization of the interface term that couples
the Stokes and Darcy components. The scheme is efficient in the sense that
one needs to solve, at each time step, decoupled Stokes and Darcy problems.
Therefore, legacy Stokes and Darcy solvers can be applied in parallel.The
scheme is also unconditionally stable and, with a mild time-step restriction,
long-time accurate in the sense that the error is bounded uniformly in time.
Numerical experiments are used to illustrate the theoretical results. To the
authors’ knowledge, the novel algorithm is the first third-order accurate nu-
merical scheme for the Stokes-Darcy system possessing its favorable efficiency,
stability, and accuracy properties.
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1 Introduction1

Certain rocks such as limestone, dolomite and gypsum are susceptible to dis-2

solution due to reaction with carbon-dioxide and water which leads, over long3

(geological) time, to the formation of voids (vugs) and conduits. This type of4

landscape is referred to as karst. Due to the existence of vugs and conduits,5

large amount of water may be stored in karst regions to form karst aquifers6

that are of great practical importance and are susceptible to pollution [34].7

For example, about 90% of the fresh water used in the State of Florida comes8

from karst aquifers and contamination is a serious problem [32].9

For many important applications such as contaminant transport in karst10

aquifers, one must couple the fluid motion in the porous media with the fluid11

motion in the conduit or vugs. For instance, contaminants driven into the12

porous media during a flood season may be released during a drought season.13

Moreover, because fluid motion in the porous media (matrix) is much slower14

compared to fluid motion in conduits, long-time accurate numerical schemes15

are highly desirable if one is interested in capturing the physically interesting16

retention and release of contaminants within karst aquifers.17

There has been a recent surge in interest in the design and analysis of18

numerical algorithms for the Stokes-Darcy and related systems that govern19

the motion of fluids flows in saturated karst aquifers. See, e.g., [9–11, 14–20

16, 19–23, 25, 33, 35–42, 45–48]. In particular, first order and second order in21

time accurate and long-time stable schemes have been proposed and studied22

in [11,16,36,37,42].23

The purpose of this work is to propose and investigate a novel third-order24

Adams-Moulton-Bashforth method for the Stokes-Darcy system. The algo-25

rithm is a special case of the implicit-explicit (IMEX) class of schemes [1–3,5].26

The coupling term in the interface conditions is treated explicitly in our algo-27

rithm so that only two decoupled problems (one Stokes and one Darcy) are28

solved at each time step. Therefore, the scheme can be implemented very ef-29

ficiently and, in particular, legacy codes for each of the two components can30

be utilized. Moreover, we show that our scheme is unconditionally stable and31

long-time stable in the sense that the solutions remain bounded uniformly in32

time. The uniform in time bound of the solutions further leads to uniform in33

time error estimates. This is a highly desirable feature because one would want34

to have reliable numerical results over the long-time scale of contaminant se-35

questration and release. We also provide the results of numerical experiments36

that illustrate our analytical results.37
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This work can be viewed as an improvement of our earlier work [16] in38

which a second-order in time Adams-Moulton-Bashforth algorithm was stud-39

ied. This is the first third-order algorithm that is unconditionally stable, long-40

time accurate in the sense of the existence of a uniform-in-time error bound,41

and efficient in the sense that only two decoupled problems (one Stokes, one42

Darcy) are needed at each time step.43

The rest of the paper is organized as follows. In Section 2, we introduce the44

coupled Stokes-Darcy system, the associated weak formulation, and the third-45

order in time scheme. The unconditional and long-time stability with respect46

to the L2 norm are presented in Section 3. Numerical results that illustrate47

the accuracy, efficiency, and long-time stability of our algorithms are given in48

Section 4. We close by providing some concluding remarks in Section 5.49

2 The Stokes-Darcy system and one type of third order IMEX50

method51

In this section we recall the Stokes-Darcy system modeling flows in saturated52

karst aquifers. A third-order in time numerical scheme based on the Adams-53

Moulton-Bashforth approach is presented as well.54

The Stokes-Darcy system. For simplicity, the following conceptual domain is55

considered for a karst aquifer. It contains a porous media (matrix), denoted56

by Ωp ∈ Rd, and a conduit, denoted by Ωf ∈ Rd, where d = 2, 3 denotes the57

spatial dimension. Γ denotes the interface between the matrix and the conduit.58

The remaining pieces of the boundaries for the matrix and the conduit are59

denoted ∂Ωp and ∂Ωf , respectively. We assume ∂Ωp and ∂Ωf are non-empty60

for simplicity.61
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Fig. 1 The physical domain consisting of a porous media Ωp and a free-flow conduit Ωf .

The governing coupled Stokes-Darcy system for karst aquifers is given by
S
∂φ

∂t
−∇ · (K∇φ) = f in Ωp,

∂uf
∂t
− 1

ρ
∇ · T (uf , p) = f and ∇ · uf = 0 in Ωf ,

(1)
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where the unknowns are the hydraulic head φ in the matrix and the fluid
velocity uf and the pressure p in the conduit [18]. The Darcy velocity up in
the matrix can be recovered by the Darcy equation up = −K∇φ. In (1), f
denotes a sink or source in the matrix, f denotes a body force density in the
conduit, ρ the fluid density which is taken to be 1 for simplicity, and T (uf , p)
denotes the stress tensor in the conduit. The physical parameters involved
are the water storage coefficient S, the hydraulic conductivity tensor K, and
the kinematic viscosity of the fluid ν. For simplicity, we assume homogeneous
Dirichlet boundary conditions for the hydraulic head φ and the free flow veloc-
ity uf in the conduit except on the interface Γ . On the interface Γ , we impose
the continuity of normal velocity (for conservation of mass), the balance of nor-
mal component of the normal stress, and the Beavers-Joseph-Saffman-Jones
interface boundary conditions (BJSJ) [6, 31,44]:

uf · nf = up · nf = −(K∇φ) · nf
− τ j · (T(uf , pf ) · nf ) = αBJSJτ j · uf , j = 1, . . . , d− 1

− nf · (T(uf , pf ) · nf ) = gφ.

(2)

In (2), nf denotes the outer normal vector to Ωf and {τ j}, j = 1, 2, . . . , d−1,62

denotes a set of linearly-independent tangential vectors on the interface Γ .63

The additional physical parameters are the gravitational constant g and the64

Beavers-Joseph-Saffman-Jones coefficient αBJSJ = α̃BJSJ
√
dν√

trace(K)
.65

Weak formulation of the Stokes-Darcy system. Let (·, ·)D and ‖ · ‖D denote
the standard L2(D) inner product and norm, respectively, where D can be Ωp,
Ωf , or Γ . We omit D whenever there is no ambiguity. We define the function
spaces

Hf =
{

v ∈
(
H1(Ωf )

)d | v = 0 on ∂Ωf \ Γ
}
,

Hp =
{
ψ ∈ H1(Ωp) | ψ = 0 on ∂Ωp \ Γ

}
,

Q = L2(Ωf ), W = Hf ×Hp.

Let X ′ denote the dual space of X with respect to the duality induced by66

the L2 inner product. The X ′, X action is denoted by < ·, · >X′,X with the67

subscript omitted if it is clear from the context.68

A weak formulation of the Stokes-Darcy system is then derived by the fol-
lowing procedure. First, we multiply the three equations in (1) by three test
functions v ∈ Hf , gψ ∈ Hp, and q ∈ Q, receptively, and integrate the results
over each corresponding domain. Then, integration by parts is applied to the
terms involving second order derivatives, a process that produces boundary
integrals. Finally, we appropriately substitute the BJSJ interface boundary
conditions (2) into the boundary integral terms to arrive at the weak formu-
lation

〈〈ut,v〉〉+ a(u,v) + b(v, p) + aΓ (u,v) = 〈f ,v〉 ∀v ∈W,

b(u, q) = 0 ∀ q ∈ Q,
(3)
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where W = Hf ×Hp, u = [u, φ]T , v = [v, ψ]T , f = [f , gf ]T , (·)t = ∂(·)/∂t,

〈〈ut,v〉〉 = 〈ut,v〉Ωf + gS〈φt, ψ〉Ωp , b(v, q) = −(q,∇ · v)Ωf ,

a(u,v) = af (u,v) + ap(φ, ψ) + aBJSJ(u,v),

aΓ (u,v) = g(φ,v · nf )Γ − g(u · nf , ψ)Γ ,

〈f ,v〉 = 〈f ,v〉Ωf + 〈gf, ψ〉Ωp ,

(4)

with
af (u,v) = ν(∇u,∇v)Ωf , ap(φ, ψ) = g(K∇φ,∇ψ)Ωp

aBJSJ(u,v) = αBJSJ(u · τ ,v · τ )Γ .

The bilinear form a(·, ·) can be shown to be coercive, i.e.,

a(u,u) ≥ (ν‖∇u‖2 + gKmin‖∇φ‖2 + αBJSJ‖u · τ‖2Γ ) ≥ Ca‖∇u‖2, (5)

where Ca = min(ν, gKmin) > 0 and Kmin denotes the smallest eigenvalue of69

K. Details can be found in, e.g., [8, 16].70

For the sake of exposition, we introduce the two norms

‖u‖a = (a(u,u))
1
2 , ‖v‖S = 〈〈v,v〉〉 12 .

It is easy to see that ‖v‖S is equivalent to the L2 norm, i.e.,

Cs‖v‖S ≤ ‖v‖ ≤ CS‖v‖S , (6)

where Cs = min{1,
√
gS} and CS = max{1,

√
gS}.71

Third-order Adams-Moulton-Bashforth IMEX method (AMB3). To define our
novel third-order scheme that is unconditionally stable and long-time accurate,
we first define two Adams-type difference operators. The first is the novel
Adams-Moulton difference operator defined on a 2∆t mesh

DAMv
n+1 =

2

3
vn+1 +

5

12
vn−1 − 1

12
vn−3, (7)

and the other is the Adams-Bashforth difference operator

DABv
n+1 =

23

12
vn − 4

3
vn−1 +

5

12
vn−2. (8)

Note that the Adams-Moulton operator (7) is different from the standard one72

5
12v

n+1 + 2
3v
n − 1

12v
n−1. The novel form of the Adams-Mouton operator that73

we adopt here is, due to its dissipativity, crucial to the long-time stability.74

The third-order Adams-Moulton-Bashforth method is a combination of the
third-order explicit Adams-Bashforth treatment for the coupling term and the
novel third-order Adams-Moulton method for the remaining terms. Specifi-
cally, we have, for any v ∈W and q ∈ Q,〈〈un+1 − un

∆t
,v
〉〉

+ ã
(
DAMun+1,v

)
+ b

(
v, DAMp

n+1
)

=
〈
DAMfn+1,v

〉
− ãΓ

(
DABun+1,v

)
,

b
(
DAMun+1, q

)
= 0.

(9)
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Here the bilinear form ã(u,v) is defined as

ã(u,v) = a(u,v) + ast(u,v),

where the artificial stabilizing term ast(·, ·) is defined as

ast(u,v) = γf (u · nf ,v · nf )Γ + γp(φ, ψ)Γ (10)

with parameters γf , γp ≥ 0. It is obvious that

ã(u,u) ≥ a(u,u) ≥ Ca‖∇u‖2, (11)

so that we can define the norm

‖u‖2ã = ã(u,u).

The interfeace term aΓ (u,v) is modified by ãΓ (u,v) as

ãΓ (u,v) = aΓ (u,v)− ast(u,v).

Efficiency of the scheme. Note that the only term that couples the Stokes75

equation in the conduit with the equation in the matrix is the interface term76

ãΓ through aΓ . Because this coupling term is treated explicitly in our scheme77

(9), the scheme is of high efficiency because we only need to solve two decoupled78

subproblems at each time step, one Stokes and one Darcy:79

1. At time t = tn+1, given un,un−1,un−2,un−3;80

2. Set v = [v, 0] so that all the terms involving φn+1 vanish and thus we only81

need apply a fast Stokes solver to determine un+1;82

3. Set v = [0, gψ] so that all the terms involving un+1 vanish and thus we83

only need apply a fast Darcy solver for φn+1;84

4. Set n = n+ 1 and return to step 1.85

The computation of step 2 and 3 can be conducted in a parallel fashion and86

one can use legacy Stokes and Darcy codes, respectively, for each step, if one87

so desires.88

3 Unconditional and long-time stability89

Useful inequalities. We recall a few inequalities to aid readability.90

– Trace inequality: if v ∈W, then

‖v‖Γ ≤ Ctr
√
‖v‖‖∇v‖, ‖v‖Γ ≤ Ctr‖∇v‖, ‖v‖Γ ≤ Ctr‖v‖ã. (12)

– Poincaré inequality: if v ∈W, then

‖v‖ ≤ CP ‖∇v‖. (13)

– Young inequality:

a
1
2 b

1
2 c ≤ a2

64ε3
+ ε(b2 + c2) ∀ a, b, c, ε > 0. (14)

– Triangle inequality: ‖a+ b‖ 1
2 ≤ ‖a‖ 1

2 + ‖b‖ 1
2 .91

Other variants of Young’s inequality will also be used.92
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Useful lemmas. Here we introduce a few useful lemmas that are useful in the93

analysis of our schemes.94

The following estimates follow from the basic inequalities.95

Lemma 1 Let aγ(·, ·) and ast(·, ·) be defined as in (4) and (10), respectively.
Then, there exists a constant Cct such that

|ãΓ (u,v)| ≤ |ast(u,v)|+ |aΓ (u,v)| ≤ Cct‖u‖Γ ‖v‖Γ ∀u,v ∈W.

Lemma 2 For any β1 > 0, v,w ∈W, we have

|ãΓ (v,w)| ≤ β1(‖v‖2ã + ‖w‖2ã) + β2‖v‖2S , (15)

where β2 = 1
64β
−3
1 C2

SC
4
ctC

8
trC
−1
a .96

Proof By Lemma 1, the equivalence between ‖ · ‖S and ‖ · ‖, (6), (11), and the
trace theorem, we have, for any v,w ∈W,

ãΓ (v,w) ≤ Cct‖v‖Γ ‖w‖Γ ≤ CctC2
tr‖v‖

1
2 ‖∇v‖ 1

2 ‖w‖ã

≤ C
1
2

SCctC
2
trC
− 1

4
a ‖v‖

1
2

S‖v‖
1
2

ã ‖w‖ã.
(16)

The inequality (15) is then obtained by setting ε = β1C
− 1

2

S C−1ct C
−2
tr C

1
4
a in the97

Young’s inequality.98

Lemma 3 The interface term ãΓ (DABu,u) can be bounded by

− 2∆tãΓ

(
23

12
un − 4

3
un−1 +

5

12
un−2,un+1

)
≤ 1

12
∆t‖un+1‖2ã +

23

528
∆t‖un‖2ã +

16

528
∆t‖un−1‖2ã +

5

528
∆t‖un−2‖2ã

+
23

6
β2∆t‖un‖2S +

8

3
β2∆t‖un−1‖2S +

5

6
β2∆t‖un−2‖2S .

Proof Set β1 = 1
88 in Lemma 2. Then β2 = 10648C2

SC
4
ctC

8
trC
−1
a and

− 2∆tãΓ

(
23

12
un − 4

3
un−1 +

5

12
un−2,un+1

)
≤23

6
∆t

(
β2‖un‖2S +

1

88
‖un‖2ã +

1

88
‖∇un+1‖2ã

)
+

8

3
∆t

(
β2‖un−1‖2S +

1

88
‖∇un−1|2ã +

1

88
‖∇un+1‖2ã

)
+

5

6
∆t

(
β2‖un−2‖2S +

1

88
‖∇un−2‖2ã +

1

88
‖∇un+1‖2ã

)
≤ 1

12
∆t‖un+1‖2ã +

23

528
∆t‖un‖2ã +

16

528
∆t‖un−1‖2ã +

5

528
∆t‖un−2‖2ã

+
23

6
β2∆t‖un‖2S +

8

3
β2∆t‖un−1‖2S +

5

6
β2∆t‖un−2‖2S

(17)

so that the lemma is proved.99
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Lemma 4 The interface term −aΓ (DABu,u) + ast(DABu − DAMu,u) can
be bounded by

− 2∆taΓ

(
23

12
un − 4

3
un−1 +

5

12
un−2,un+1

)
+ 2∆tast

(
−2

3
un+1 +

23

12
un − 7

4
un−1 +

5

12
un−2 +

1

12
un−3,un+1

)
≤ 58∆t

360
‖un+1‖2a +

27∆t

360
‖un‖2a +

21∆t

360
‖un−1‖2a +

7∆t

360
‖un−2‖2a

+
∆t

360
‖un−3‖2a + (C2 + 2C3)∆t‖un+1 − un‖2S + 5C3∆t‖un − un−1‖2S

+ 2C3∆t‖un−1 − un−2‖2S +
C3∆t

3
‖un−2 − un−3‖2S ,

(18)

where C2 = 4920750C2
SC

4
ctC

8
trC
−1
a and C3 = 3375C2

SC
4
ctC

8
trC
−1
a .100

Proof Recall aΓ (u,u) = 0. Therefore, the interface term can be rewritten as

− 2∆taΓ

(
2un+1 +

23

12
un − 4

3
un−1 +

5

12
un−2,un+1

)
+ 2∆tast

(
−2

3
un+1 +

23

12
un − 7

4
un−1 +

5

12
un−2 +

1

12
un−3,un+1

)
=2∆taΓ

(
un+1 − un,un+1

)
− 11

6
∆taΓ

(
un − un−1,un+1

)
+

5

6
∆taΓ

(
un−1 − un−2,un+1

)
− 4

3
∆tast

(
un+1 − un,un+1

)
+

5

2
∆tast

(
un − un−1,un+1

)
−∆tast

(
un−1 − un−2,un+1

)
− 1

6
∆tast

(
un−2 − un−3,un+1

)
.

(19)

Similar as in the proof of Lemma 2, the first term on the right-hand side can
be estimated by

2∆taΓ
(
un+1 − un,un+1

)
≤ ∆t

180
‖un+1‖2a + C2∆t‖un+1 − un‖2S (20)

and the other terms can be directly estimated by Lemma 2 with β1 = 1
60 . The101

desired result (18) then follows easily.102

The following variants of the Grownwall-Bellman inequality will simplify103

the analysis. They are particularly useful for the stability analysis of multi-step104

methods.105

Lemma 5 Assume that {zn} and {yn} are two non-negative sequences that
satisfy

zn+1 + ξ−1yn+1 ≤ zn +∆t

k∑
i=0

ζizn−i +

k∑
i=0

ξiyn−i +∆tz̄, (21)
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where z̄, ξi, and ζi are nonnegative constants and

ξ−1 ≥
k∑
i=0

ξi. (22)

Let

En = zn +
∆t

1 +∆t
∑k
i=0 ζi

k∑
i=1

k∑
j=i

ζjzn−i +
1

1 +∆t
∑k
i=0 ζi

k∑
i=0

k∑
j=i

ξjyn−i.

(23)
Then

En ≤ e
∑k
i=0 ζit

(
Ek +

z̄∑k
i=0 ζi

)
(24)

for any n∆t ≤ t.106

Proof From the definition of En and the constraint (22), we have

En+1 ≤ (1 +∆t

k∑
i=0

ζi)En +∆tz̄ (25)

so that the bound (24) is easily derived via recursion.107

Another variant of Grownwall-Bellman inequality will be useful in the long108

time stability analysis.109

Lemma 6 Assume that {zn} and {yn} are two nonnegative sequences that
satisfy

zn+1 + ζ−1∆tyn+1 ≤ zn +∆t

k∑
i=0

ζiyn−i +∆tz̄, (26)

where ζi, i = −1, . . . , k, are nonnegative constants and

ζ̄ =
1

k + 1

(
ζ−1 −

k∑
i=0

ζi

)
> 0. (27)

Let

En = zn +∆t

k∑
i=0

(k − i)ζ̄ +

k∑
j=i

ζj

 yn−i. (28)

Then

En+1 + ζ̄∆t

k∑
i=0

yn+1−i ≤ En +∆tz̄. (29)

Moreover, if zn+1 ≤ Cζyn+1, then

En ≤
(
1 + C̄∆t

)−(n−k)
Ek +

z̄

C̄
, (30)

where

C̄ = min

{
ζ̄

2Cζ
,

ζ̄

2(ζ−1 − ζ̄)∆t

}
. (31)
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Proof Let di = (k− i)ζ̄+
∑k
j=i ζj . Then En = zn+∆t

∑k
i=0 diyn−i. It is easily110

verified that111

d0 + ζ̄ = ζ−1, (32)

di − di+1 − ζ̄ = ζi, for i = 1, · · · , k − 1, (33)

dk = ζk, (34)

so the inequality (26) can be recast as

zn+1+∆t(d0+ ζ̄)yn+1 ≤ zn+∆t

k−1∑
i=0

(di−di+1− ζ̄)yn−i+∆tdkyn−k+∆tz̄ (35)

or

zn+1 +∆t

k∑
i=0

diyn+1−i + ζ̄∆t

k∑
i=0

yn+1−i ≤ zn +∆t

k∑
i=0

diyn−i +∆tz̄, (36)

which is exactly the inequality (29). Now, if zn+1 ≤ Cζyn+1, then112

k∑
i=0

yn+1−i ≥
1

2Cζ
zn+1 +

yn+1

2
+

k∑
i=1

yn+1−i

≥ 1

2Cζ
zn+1 +∆tC̃

k∑
i=0

diyn+1−i, (37)

where C̃ = 1
∆t min{ 1

2d0
,min{d−1i }ki=1} = 1

2d0∆t
. Note that d0 = kζ̄+

∑k
j=0 ζj =

ζ−1 − ζ̄ so that

ζ̄

k∑
i=0

yn+1−i ≥ C̄(zn+1 +∆t

k∑
i=0

diyn+1−i) = C̄En+1, (38)

where C̄ is defined in (31). Then, from (29), we have

(1 + C̄∆t)En+1 ≤ En +∆tz̄. (39)

Now by recursion, we have113

En ≤ (1 + C̄∆t)−(n−k)Ek +∆tz̄

n−k∑
i=1

(1 + C̄∆t)−i

≤ (1 + C̄∆t)−(n−k)Ek +
z̄

C̄
(40)

so that the lemma is proved.114

Additional sequences are considered in the following lemma.115
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Lemma 7 Assume that {zn} and {y`n}, ` = 1, . . . , L, are nonnegative se-
quences that satisfy

zn+1 +∆t

L∑
`=1

ζ`−1y
`
n+1 ≤ zn +∆t

L∑
`=1

k∑̀
i=0

ζ`i y
`
n−i +∆tz̄, (41)

where ζ`i ` = 1, . . . , L and i = −1, . . . , k`, are nonnegative constants with 1 ≤
k` ≤ k, and

ζ̄` =
1

k` + 1

(
ζ`−1 −

k∑̀
i=0

ζ`i

)
> 0. (42)

Define

En = zn +∆t

L∑
`=1

k∑̀
i=0

(k` − i)ζ̄` +

k∑̀
j=i

ζ`j

 y`n−i. (43)

Then

En+1 +∆t

L∑
`=1

ζ̄`
k∑̀
i=0

y`n+1−i ≤ En +∆tz̄. (44)

In addition, assume that zn+1 ≤ Cζy`0n+1 for some `0. Then

En ≤
(
1 + C̄∆t

)−(n−k)
Ek +

z̄

C̄
, (45)

where

C̄ = min

{
ζ̄`0

2Cζ
,min

`

ζ̄`

2(ζ`−1 − ζ̄`)∆t

}
. (46)

The proof is very much the same as that for Lemma 6 and thus is omitted116

here.117

Unconditional stability. Now we can prove that our novel AMB3 scheme is118

unconditionally stable over any finite time.119

Theorem 1 Let T > 0 be any fixed time. Then, the AMB3 scheme (9) is120

unconditionally stable in (0, T ].121

Proof Set v = 2∆tun+1 in (9). Using of < 2a, a − b >= |a|2 + |a − b|2 − |b|2,
we obtain

‖un+1‖2S − ‖un‖2S + ‖un+1 − un‖2S + 2∆tã
(
DAMun+1,un+1

)
= 2∆t

〈
DAM fn+1,un+1

〉
− 2∆tãΓ

(
DABun+1,un+1

)
,

(47)

where the pressure term b
(
un+1, 23p

n+1 + 5
12p

n−1 − 1
12p

n−3) = 0 because un+1 ∈
Hf and pn+1, pn−1, pn−3 ∈ Q. A crucial observation is that the last term on
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the left-hand-side can be bounded below, i.e., according to Young’s inequality,
we have

2ã

(
2

3
un+1 +

5

12
un−1 − 1

12
un−3,un+1

)
≥2

(
2

3
‖un+1‖2ã −

5

24

(
‖un−1‖2ã + ‖un+1‖2ã

)
− 1

24

(
‖un−3‖2ã + ‖un+1‖2ã

))
≥5

6
‖un+1‖2ã −

5

12
∆t‖un−1‖2ã −

1

12
∆t‖un−3‖2ã.

(48)

This implies that the special Adams-Moulton operator that we developed is122

dissipative because the coefficient of the positive term is larger than the sum123

of the coefficients of the negative terms. This fact will be exploited heavily124

below to prove the unconditional stability as well as the long-time stability of125

the scheme.126

We also notice that the forcing term on the right-hand-side can be bounded
above according to Young’s inequality:

2
〈
DAM fn+1,un+1

〉
≤ 1

6C2
P

Ca
∥∥un+1

∥∥2 + 6C2
PC
−1
a

∥∥DAM fn+1
∥∥2

≤ 1

6

∥∥un+1
∥∥2
ã

+ β3 max
i

∥∥f i∥∥2 , (49)

where β3 = 10C2
PC
−1
a . Combining the above estimates with Lemma 3 and

discarding the term ‖un+1 − un‖2S , we have

‖un+1‖2S +
308

528
∆t‖un+1‖2ã

≤(1 +
23

6
β2∆t)‖un‖2S +

8

3
β2∆t‖un−1‖2S +

5

6
β2∆t‖un−2‖2S +

23

528
∆t‖un‖2ã

+
236

528
∆t‖un−1‖2ã +

5

528
∆t‖un−2‖2ã +

44

528
∆t‖un−3‖2ã + β3∆tmax

i

∥∥f i∥∥2 .
Now, define

En = ‖un‖2S +
7β2∆t

2
(
1 + 22

3 β2∆t
)‖un−1‖2S +

5β2∆t

6
(
1 + 22

3 β2∆t
)‖un−2‖2S

+
308∆t

528
(
1 + 22

3 β2∆t
)‖un‖2ã +

285∆t

528
(
1 + 22

3 β2∆t
)‖un−1‖2ã

+
49∆t

528
(
1 + 22

3 β2∆t
)‖un−2‖2ã +

44∆t

528
(
1 + 22

3 β2∆t
)‖un−3‖2ã.

(50)

We then have, by Lemma 5

‖un+1‖2S ≤ En ≤ e
22
3 β2T

(
E3 +

3β3
22β2

max
i

∥∥f i∥∥2) , (51)

on any finite time interval [0, T ].127



A Long-time accurate 3rd order scheme for the SD system 13

Long-time stability. We next show that our scheme is long-time stable in the128

sense that the solutions will remain bounded uniformly in time as long as129

a time-step restriction is satisfied. As a direct consequence of this long-time130

stability, we are able to show that we are able to derive uniform in time bounds131

on the error.132

Theorem 2 Assume that f ∈ L∞(L2(Ω)). For the AMB3 scheme, there exists
∆t0 > 0 such that the solution is uniformly bounded in time if ∆t ≤ ∆t0. In
particular, there exist 0 < λ1 < 1, 0 < λ2 <∞, and E3 ≥ 0 such that

‖un+1‖2 ≤ λn−21 E3 + λ2.

Proof After rearranging (47) in a slightly different way, we have

‖un+1‖2S − ‖un‖2S + ‖un+1 − un‖2S + 2∆ta
(
DAMun+1,un+1

)
= 2∆t

〈
DAM fn+1,un+1

〉
− 2∆taΓ

(
DABun+1,un+1

)
+ 2∆tast

(
DABun+1 −DAMun+1,un+1

)
.

(52)

Similar to the proof of the previous theorem, the bilinear term on the left-
hand-side can be bounded from below by

2a
(
DAMun+1,un+1

)
≥ 5

6
‖un+1‖2a −

5

12
‖un−1‖2a −

1

12
‖un−3‖2a (53)

and the forcing term can be bounded from above by

2
〈
DAM fn+1,un+1

〉
≤ 1

180
‖un+1‖2a + β4 max

i
‖f i‖2, (54)

where β4 = 300C2
PC
−1
a . The interface term has been estimated in Lemma 4.

Combine the above inequalities with Lemma 4, we have

‖un+1‖2S +
240

360
∆t‖un+1‖2a + [1− (C2 + 2C3)∆t]‖un+1 − un‖2S

≤ ‖un‖2S +
27

360
∆t‖un‖2a +

171

360
∆t‖un−1‖2a +

7

360
∆t‖un−2‖2a

+
31

360
∆t‖un−3‖2a + 5C3∆t‖un − un−1‖2S + 2C3∆t‖un−1 − un−2‖2S

+
C3∆t

3
‖un−2 − un−3‖2S + β4∆tmax

i
‖f i‖2.

(55)

We require that

1− (C2 + 2C3)∆t >
22C3

3
∆t. (56)

A convenient choice is

∆t0 ≤
1

C2 + 31
3 C3

(57)
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such that 1− (C2 + 2C3)∆t ≥ 25C3

3 ∆t if ∆t ≤ ∆t0. Let

En = ‖un‖2S +
239

360
∆t‖un‖2a +

211

360
∆t‖un−1‖2a +

39

360
∆t‖un−2‖2a

+
31

360
∆t‖un−3‖2a +

24C3∆t

3
‖un − un−1‖2S

+
8C3∆t

3
‖un−1 − un−2‖2S +

C3∆t

3
‖un−2 − un−3‖2S .

(58)

Note that ‖un+1‖2S ≤ Cζ‖un+1‖2a, where Cζ = C2
PC
−2
a C−2s . By Corollary 7,

we arrive at the conclusion

‖un+1‖2S ≤ En+1 ≤ (1 + C̄∆t)n−2E3 + C̄−1β4 max
i
‖f‖2, (59)

where C̄ = min{ 1
720Cζ

, 1
478}. The theorem is proven if we set λ1 = (1+C̄∆t)−1133

and λ2 = C̄−1β4 maxi ‖f‖2.134

An immediate consequence of the previous theorem is the following uniform135

in time error bound. This is a highly desirable property because the retention136

and release of contaminants in karst aquifers usually occur over very long time137

scales.138

Theorem 3 Suppose that the solutions u and p are smooth and bounded uni-
formly in time. Let en := u(n∆t)− un denote the error. Then, provided that
the time-step restriction as in the previous theorem is satisfied, we have the
estimates

‖en+1‖2 ≤ (1 + C̄∆t)−n+2ε23 + C4(∆t)6,

where C̄ and C4 are appropriate positive constants, and

ε23 = ‖e3‖2S +
239

360
∆t‖e3‖2a +

211

360
∆t‖e2‖2a +

39

360
∆t‖e1‖2a

+
24C3∆t

3
‖e3 − e2‖2S +

8C3∆t

3
‖e2 − e1‖2S +

C3∆t

3
‖e1‖2S .

Proof Because u, p are smooth and bounded, and since the scheme 9 is third-
order in time, we have that the solution satisfies the scheme in the form of〈〈u((n+ 1)∆t)− u(n∆t)

∆t
,v
〉〉

+ ã (DAMu((n+ 1)∆t),v)

+ b (v, DAMp((n+ 1)∆t)) =
〈
DAMfn+1,v

〉
− ãΓ (DABu((n+ 1)∆t),v)

+
(
Rn+1,v

)
,

b (DAMu((n+ 1)∆t), q) = 0,

where the remainder term Rn is uniformly bounded by

‖Rn‖ ≤ C(∆t)3 ∀n = 1, 2, . . . .
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This implies that the error en satisfies〈〈en+1 − en

∆t
,v
〉〉

+ ã
(
DAMen+1,v

)
+ b

(
v, DAMe

n+1
p

)
= −ãΓ

(
DABen+1,v

)
+
(
Rn+1,v

)
,

b
(
DAMen+1, q

)
= 0,

where enp = p(n∆t) − pn. Repeating the same argument as in the previous139

theorem leads to the desired estimate. Therefore, we have a third-order uniform140

in time error bound provided that the time-step restriction is satisfied and that141

the scheme is initiated properly so that ε3 is of third-order. This ends the proof142

of uniform in time third-order error bound.143

Remark 4 If a conforming finite element is used, the scheme is still long-144

time stable under the constraint ∆t ≤ ∆t0 where ∆t0 is independent of the145

finite element mesh size h. Moreover, based on the stability analysis, we can146

prove that the AMB3 scheme is third-order temporal accurate. Following the147

analysis in [16], if the Taylor-Hood (P2-P1) finite element pair is used for the148

discretization of the Stokes system and continuous piecewise quadratic (P2)149

finite elements are used for discretization of the Darcy system, the error of the150

fully discretized scheme will be ‖un(t)−unh‖ = O(∆t3+h3), which is illustrated151

by the numerical results in next section.152

4 Numerical results153

We report here on the results of several numerical experiments. The numerical154

results illustrate the third-order accuracy, unconditional stability, and the long-155

time stability and uniform in time error bounds.156

Suppose that the error behaves like O(hθ1 +∆tθ2). Then, if we set ∆t = hθ,
the rate of convergence would be of the order of rh,θ = min(θ1, θθ2) with re-
spect to h. The rate of convergence can be numerically estimated by calculating

rh,θ ≈ log2

‖u2h,θ − uexact‖l2
‖uh,θ − uexact‖l2

. (60)

Here, we use the discrete l2 norm of nodal values to measure errors.157

We setΩf = (0, 1)×(1, 2),Ωp = (0, 1)×(0, 1), and the interface Γ = (0, 1)×158

{1} which separates Ωf and Ωp. Uniform triangular meshes are created by first159

dividing the rectangular domains Ωp and Ωf into identical small squares and160

then dividing each square into two triangles. With respect to such grids, the161

Taylor-Hood (P2-P1) finite element pair is used to discretize the Stokes system162

so that the conduit fluid velocity uh is approximated by continuous piecewise163

quadratic functions and the conduit pressure p is approximated by continuous164

piecewise linear functions. Continuous piecewise quadratic functions are used165

to approximate the hydraulic head φh.166
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4.1 Convergence rates167

We choose the manufactured solution of the Stokes-Darcy system (1) given by

uf (x, t) =
(
− 1

π
ey sinπx cos 2πt , (ey − e) cosπx cos 2πt

)
,

pf (x, t) = 2ey cosπx cos 2πt,

φ(x, t) = (ey − ey) cosπx cos 2πt.

The right-hand side data in the partial differential equations, initial conditions,168

and boundary conditions are then chosen correspondingly. Here, we set∆t = h,169

K = I, ν = g = S = γf = γp = 1, T = 1, and αBJSJ = 1.170

Table 1 shows that the numerical convergence rate is approximately third171

order for φ and u, and of a bit over second order for p. This is all consistent with172

the third-order temporal scheme and the Taylor-Hood (P2-P1) finite element173

pair for the Stokes equations and the the P2 element for the Darcy equation.174

h eφ eu ep
1/16 1.40e-3 6.49e-4 1.35e-2
1/32 2.05e-4 9.44e-5 1.97e-3
1/64 2.70e-5 1.24e-5 3.36e-4
1/128 3.45e-6 1.58e-6 6.55e-5
1/256 4.36e-7 1.99e-7 1.41e-5
1/512 5.45e-8 2.49e-8 3.26e-6

rterminal 3.00 3.00 2.11

Table 1 Relative error and order of accuracy with respect to the spatial grid size h for
Example 4.1 at t = 1 and with ∆t = h and rterminal = r1/512,1 defined by (60).

4.2 Long-time error175

To illustrate the long-time behavior of our schemes, we use the following man-
ufactured solution that is a slight modification of one used in [9]:

uf (x, t) =
(

[x2y2 + e−y], [−2

3
xy3 + [2− π sin(πx)]]

)
[2 + cos(2πt)]

pf (x, t) = −[2− π sin(πx)] cos(2πy)[2 + cos(2πt)]

φ(x, t) = [2− π sin(πx)][−y + cos(π(1− y))][2 + cos(2πt)].

The right-hand side data in the partial differential equations, initial conditions,176

and boundary conditions are then chosen correspondingly. Here, we set K = I,177

ν = g = S = 1, T = 1, and αBJSJ = 1. In this long time numerical experiment,178

we set the terminal time T = 100 and h = 1/64. Figure 2 displays the relative179

error as a function of t for two different values of ∆t. We see that the long-time180

error remains bounded, and indeed, seems to not grow.181
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Fig. 2 Relative error for the hydraulic head in the matrix φ (top-left), conduit velocity u
(top-right), and conduit pressure p (bottom) for 0 ≤ t ≤ 100 for h = 1/64.

4.3 Long-time stability analysis182

We use the same domain and the same initial conditions as in the Section 4.2,
i.e., we have

uf (x, 0) =
(
− 1

π
ey sinπx , (ey − e) cosπx

)
,

pf (x, 0) = 2ey cosπx,

φ(x, 0) = (ey − ey) cosπx,

but now the forcing terms are set to zero and homogeneous Dirichlet boundary183

conditions are imposed on the hydraulic head φ and conduit flow velocity184

u. To study the long-time stability of the scheme, we define the functionals185

Eφ = ‖φ‖2l2 , Eu = ‖u‖2l2 , and Ep = ‖p‖2l2 . The the final time is set to T = 100.186

For Figure 3, we set h = 1/128, ∆t = 1/10, K = I, ν = g = S = 1, and187

γf = γp = 0. The energy does decay as time evolves, which suggests that the188

long-time stability time-step size constraint in the analysis is satisfied with the189

above choices for the parameters.190

For Figure 4, we set h = 1/128, K = I, ν = 0.0001, g = S = 1, and191

γf = γp = 0. The figure shows that for this choice of ν, the time-step constraint192

is between 1/15 and 1/10 which is more restrictive compared to that for Figure193

3 for which ν = 1. Thus, we note that the theoretical time step size constraint194
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Fig. 3 Long-time behavior of the functionals Eφ + Eu (left) and Ep (right) for ν = 1 and
K = I.

(57) decreases as ν becomes smaller so that the long-time numerical results of195

Figures 3 and 4 are consistent with our long-time stability analysis.
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Fig. 4 Long-time behavior of the functionals Eφ +Eu (top row) and Ep (bottom row) for
ν = 0.0001 and K = I.

196

For Figure 5, we set h = 1/128, K = 0.01I, ν = g = S = 1, and γf = γp = 0.197

The figure shows that for this choice of K, the time-step constraint is between198

1/50 and 1/45 which is more restrictive compared to that for Figure 3 for199

which K = I. Thus, again, the long-time numerical results of Figures 3 and200
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5 are consistent with the theoretical time-step size constraint (57), i.e., the201

time-step constraint becomes smaller as the minimum eigenvalue of K becomes202

smaller.
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Fig. 5 Long-time behavior of the functionals Eφ +Eu (top row) and Ep (bottom row) for
ν = 1 and K = 0.01I.

203

For Figure 6, we set h = 1/128, K = 0.01I, ν = g = S = 1, and γf =204

γp = g/2. The figure shows that for this choice of γf and γp, the time-step205

constraint is between 1/45 and 1/40 which is less restrictive compared to that206

for Figure 5 for which γf = γp = 0. Thus the results show that the stabilizing207

term does provide better long-time stability.208

5 Concluding remarks209

We proposed and investigated a long-time, third-order accurate, and effi-210

cient numerical method for coupled Stokes-Darcy systems. The algorithm is211

a combination of a novel third-order Adams-Moulton method and a Adams-212

Bashforth method. Our algorithm is a special case of the class of implicit-213

explicit (IMEX) schemes. The interfacial term that requires communications214

between the porous media and conduit, i.e., between the Stokes and Darcy215

components of the model, is treated explicitly in our scheme so that, at each216

time step, only two decoupled problems (one Stokes and one Darcy) are solved.217
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Fig. 6 Long-time behavior of the functionals Eφ +Eu (top row) and Ep (bottom row) for
ν = 1, K = 0.01I, and γf = γp = g/2.

Therefore, our scheme can be implemented very efficiently and, in particular,218

legacy codes can be used for each component.219

We have shown that our scheme is unconditionally stable and, with a220

mild time-step restriction, long-time stable in the sense that solutions remain221

bounded uniformly in time. The uniform bound in time of the solution leads222

to uniform in time error estimates. This is a highly desirable feature because223

the physically interesting phenomena of contaminant sequestration and re-224

lease usually occur over a very long time scale and one would like to have225

faithful numerical results over such time scales. The estimates are illustrated226

by numerical examples. All these features suggest that the method has strong227

potential in real applications.228

Methods having even higher-order temporal accuracy and the desired un-229

conditional and long-time stability can be derived via suitable combination of230

a higher-order Adams-Moulton method for the dissipative term and a stan-231

dard Adams-Bashforth method for the interface term. Details will be reported232

on elsewhere.233
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